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1. Introduction

In this note we review the construction of virtual fundamental classes via perfect obstruc-
tion theories by Behrend-Fantechi [BF98]. We will see some examples of obstruction theories
from deformation theory, and methods of dealing with virtual classes such as virtual pull-
back and localization. In the end we discuss the virtual classes on Calabi-Yau 4-folds by
Borisov-Joyce [BJ15] and Oh-Thomas [OT23] using shifted symplectic structures.

2. Behrend-Fantechi Virtual fundamental classes

In enumerative geometry, counts of objects of certain properties are usually obtained by
integrating the cohomology classes corresponding to those properties in the moduli space of
such objects. As moduli schemes are usually not smooth or even reduced, there is no defor-
mation invariant fundamental class to integrate against. By the notion of virtual smooth-
ness, this problem can be resolved by associating the moduli space a homology class of
expected dimension, called the virtual fundamental class, introduced by Li-Tian [LT96] and
Behrend–Fantechi [BF98]. In this section we follow the construction given in [BF98] and
[BCM18].

2.1. Intrinsic normal cone. Let X be a scheme (or Deligne-Mumford stack). A cone over
X is a scheme C = SpecX S•, where S• is a sheaf of graded OX-algebras such that OX = S0

and S1 is coherent and generates S• as an algebra. If k = C is the base field, the action t ·Si

by multiplication of ti induces an A1-action on C. The zero section of C is 0 : X → C given
by the surjection S• ↠ S0 which realizes X as a subscheme of C.
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For a locally free sheaf E , the cone C(E∨) = Spec Sym E∨ is a vector bundle over X. In

general, a cone of form Spec SymF for a coherent OX-module F is a group scheme and
called an abelian cone. For any cone C = SpecS•, the abelianization of C is given by
A(C) = Spec SymS1.
Natural examples of cones are tangent cones of points, or more generally the normal cone

of a closed embedding X ↪→ Y . This is given by

CX/Y = SpecX
⊕
n≥0

(In/In+1)

where I is the ideal sheaf of X in Y . In the case of a regular embedding, the normal cone
coincides with its abelianization, the normal sheaf (bundle).

Let X ↪→ Y be a closed embedding. Suppose EX/Y is a vector bundle of rank r and
i : CX/Y → EX/Y is an embedding of cones (preserves 0 section and the A1-action). Then
EX/Y is called an obstruction theory and the virtual fundamental class with respect to EX/Y

is defined by

[X]vir = 0!EX/Y
i∗[CX/Y ]

where i∗ is the proper pushforward and 0!EX/Y
: A∗(EX/Y ) → A∗−r(X) is given by the inverse

map of the flat pull-back [Ful13, Theorem 3.3]. In other words, the virtual fundamental
class with respect to the obstruction theory EX/Y is given by intersecting the normal cone
CX/Y with the 0-section of EX/Y . However, as the dimension of [X]vir depends on the rank
of EX/Y , this construction will usually not give us a class of the expected dimension. Thus
we consider a more general setting to impose more restrictions to the obstruction theory.

Let X be a Deligne-Mumford stack. Suppose E is a vector bundle, then a cone morphism
E → C is called an E-cone if the action of E on A(C) preserves C. This induces an action
of E on C, and the stack quotient [C/E] naturally admits a 0-section and an A1-action.
This is a cone stack in the sense that the morphism C → [C/E] is A1-equivariant, smooth
and surjective. The natural example we have is the intrinsic normal cone CX as a subcone
stack of the intrinsic normal sheaf NX . These can be described via local embeddings of X.
Suppose U → X is affine étale, and U → V an embedding with V smooth. We have

CX = [CU/V /TV |U ], NX = [NU/V /TV |U ].

Let E• ∈ D(QCoh(X)) be a complex of quasi-coherent sheaves on X concentrated in the
non-positive degrees. Define h1/h0(E•) as the stack theoretic quotient

[ker(E1 → E2)/ coker(E0 → E1)]

Let L•
X ∈ D≤0(QCoh(X)) be the cotangent complex of X, then h1/h0((L•)∨) is an algebraic

cone stack over X called the intrinsic normal sheaf NX .

Definition 2.1. An obstruction theory for X is a complex E ∈ D≤0(QCoh(X)) such that
E0 and E−1 are coherent, together with a morphism ϕ : E• → L•

X such that h0(ϕ) is an
isomorphism and h−1(ϕ) is surjective. When E• = [E−1 → E0] is a 2-term complex of vector
bundles on X, we say E• is a perfect obstruction theory.

The morphism ϕ of an perfect obstruction theory induces a closed embedding

ϕ∨ : NX → E := h1/h0((E•)∨) = [E1/E0].



3
where T vir = E• = (E•)∨ is the virtual tangent bundle. The term E0 is to be understood
as the “tangent” and the term E1 is to be understood as the “obstruction”. Recall that we
would like the virtual class to be the intersection of the normal cone with the zero section
of the obstruction.

Definition 2.2. The virtual fundamental class is

[X]vir = [X,E•] = 0!E1
[CX ×E E1].

The dimension of [Xvir] is equal to rank(E•) = rankE0−rankE−1, which is called the virtual
dimension of X with respect to E•.

2.2. Examples of obstruction theory. In this section we go through some examples of
obstruction theories of the moduli spaces.

2.2.1. Zero locus of a section. The easiest case of an obstruction bundle is when X is the zero
locus of a section of some vector bundle E → Y . If E has rank r, the virtual fundamental
class of X is of dimension n − r. If the ideal of X in Y is I, then the natural surjection
E∨|X → I/I2 gives an obstruction theory

[E∨|X
0−→ ΩY |X ] → L•

X = [. . . → I/I2 → ΩY |X ].
In this case the pushforward of [X]vir to Y is given by e(E) · [Y ] where e is the Euler class.

2.2.2. Moduli space of stable bundles on curves. Let M s(r, d) be the moduli space of stable
bundles of rank r and degree d of a smooth projective variety X. One can check whether
a complex gives obstruction theory using deformation theory according to [BF98, Theorem
4.5]. In this example we shall see an obstruction theory is given by Rπ∗RH om(F ,F) by
computing deformations of vector bundles [HL10, Section 2.A.6], where π : M s(r, d)×X →
M s(r, d) is the projection and F is the universal bundle. Recall that the universal sheaf is
only unique up to some twist in the Picard group, but this twist will cancel in RH om(F ,F).

Definition 2.3. Let Art be the category of Artin local rings. Let D : Art → Set be a
functor, and T,O be finite dimensional vector spaces. We say D admits a deformation-
obstruction theory with respect to the tangent T and obstruction O if the following holds.
Let A′ ↠ A be a small extension, that is it has nilpotent kernel I. Then we have

(1) a T ⊗C I action on D(A′),
(2) an obstruction map o : D(A) → O ⊗C I.

such that the image of D(A′) → D(A) is equal to o−1(0), and every non-empty fiber of
D(A′) → D(A) is a torsor under the action of T ⊗C I. The data is also required to be
functorial among different small extensions in the sense of [Fan05, Definition 6.1.21].

The tangent-obstruction theory of M s(r, d) at a fixed stable bundle F is given by tangent
space Ext1(F, F ) and obstruction space Ext2(F, F ). When X is a curve, Ext2(F, F ) vanishes
for dimension reason, and the moduli space is smooth. When X is a surface, we obtain a
perfect obstruction theory. We give a sketch of the proof below.

Define DF the deformation functor at F by

DF (A) := {(F , ϕ)|F is an A-flat family of bundles on X and ϕ : F ⊗A (A/m) ∼= F}
where m is the maximal ideal of the Artin ring A. Let A′ ↠ A be a small extension. Let
(F , ϕ) ∈ DF (A). The fiber of DF (A

′) → DF (A) are the deformations over A′ that restrict
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to F . Let Ui be a open cover of X such that the restrictions Fi is free over Spec(A)×Ui, so
the extension to Spec(A′) × X are necessarily free over each Spec(A′) × Ui. Let F ′

i be the
corresponding free sheaves, and gij : Fi|Uij

→ Fj|Uij
the gluing maps. To obtain a lift F ′, we

need gluing maps

g′ij : F ′
i |Uij

→ F ′
j|Uij

that and lift each gij and satisfy the cocycle condition. Choose any such lifting, and set

δijk = (g′ik)
−1g′jkg

′
ij.

Since the maps gij satisfy the cocycle condition, we know δ lifts the identity on Fi|Uijk
. The

“obstruction” is described by how far away δijk is from the identity on F ′
i |Uijk

. Tensor the
exact sequence 0 → I → A′ → A → 0 by F ′

i |Uijk
, we get

0 → I ⊗ Fi|Uijk
→ F ′

i |Uijk
→ Fi|Uijk

→ 0

where first term on the left is obtained by I⊗A/m = I/mI = I. Therefore the map δijk− Id
sends F ′

i |Uijk
to I ⊗ Fi|Uijk

and we have

δijk − Id ∈ Hom(F ′
i |Uijk

, I ⊗ Fi|UijK
) = Hom(Fi|UijK

, Fi|UijK
)⊗ I,

and the equality is again obtained from I ·m = 0. Moreover, these maps satisfy the 2-cocycle
condition and give a class

o(F , ϕ) := {δ − Id} ∈ Ext2(F, F )⊗ I.

In particular, one can check that this class does not depend on the lifting g′ij or the covering
{Ui}. Thus we obtain an obstruction map

o : DF (A) → Ext2(F, F )⊗ I.

If o(F , ϕ) = 0, then we can modify the liftings g′ij so that they satisfy the cocycle condition,

thereby giving a lifting F ′ on Spec(A′)×X. Hence Ext2(F, F ) is the obstruction space.
For the tangent space, we need to consider the fibers of D(A′) → D(A). Suppose

(F ′, ϕ′), (F ′′, ϕ′′) ∈ D(A′) are two liftings of (F , ϕ). Choose local isomorphisms gi : F ′
iF ′′

i and
set δij = g−1

j ◦gi. By a similar argument as before we obtain a class {δij−Id} ∈ Ext1(F, F )⊗I,
and the vanishing of this class corresponds to isomorphism between F ′ and F ′′. Hence the
elements in the fiber D(A′) → D(A) are in bijection with Ext1(F, F ) ⊗ I, which gives us a
torsor structure and the tangent space is Ext1(F, F ).

2.3. Virtual pullback. An example of dealing with virtual classes is via the virtual pull-
back. We recall the construction and application introduced in [Man08]. Let X be a Deligne-
Mumford stack and E a vector bundle stack of virtual rank d. Suppose f : X → Y is a
morphism of Deligne-Mumford stacks (more generally, a Deligne-Mumford type morphism of
algebraic stacks) and the relative intrinsic normal cone i : CX/Y ↪→ E is a closed embedding.
The virtual pullback f !

E is given by

A∗(Y )
σ−→ A∗(CX/Y )

i∗−→ A∗(E)
0!E−→ A∗−d(X)

where the first map is given by σ([Vi]) = [CV×Y X/V ], and the last map is the canonical
isomorphism for vector bundle stacks.
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In the case of a fiber diagram

X ′ Y ′

X Y

f ′

p q

f

the virtual pullback f !
E is

A∗(Y
′)

σ−→ A∗(CX′/Y ′) ∼= A∗(p
∗CX/Y )

i∗−→ A∗(p
∗E)

0!
p∗E−−→ A∗−d(X

′).

This is a generalized version of Gysin morphism, and in the case where E arise from a perfect
obstruction theory, it satisfies similar properties as the Gysin morphism described below.

Theorem 2.4 ([Man08]Theorem 4.1). In the setting above, suppose we have fiber diagram

X ′′ Y ′′

X ′ Y ′

X Y

f ′

g h

f

p q

the virtual pullback satisfies the following property.

(1) If p is proper and α ∈ Ak(Y
′′), then

f !
Ep∗(α) = q∗f

!
E(α) ∈ Ak−d(X

′).

(2) If p is flat or of relative dimension n, α ∈ Ak(Y
′), then

f !
Ep

∗(α) = q∗f !
E(α) ∈ Ak+n−d(X

′′).

(3) If α ∈ Ak(Y
′′), then

f !
Eα = (f ′)!g∗Eα ∈ Ak−d(X

′′).

The virtual pullback allows the computation of virtual classes on a complicated space
through the virtual class on a simpler space. Suppose f : X → Y and a distinguished
triangle of (relative) perfect obstruction theories

f ∗E•
Y → E•

X → E•
X/Y → f ∗E•

Y [1]

compatible with the natural distinguished triangle of cotangent complex

f ∗L•
Y → L•

X → L•
X/Y → f ∗L•

Y [1].

Then by [Man08, Corollary 4.9], the virtual class for F is

[F ]vir = f !
EF/G

[G]vir.

Example 2.5. In application Manolache first showed that for P a homogeneous space and P̃
a blow up, the virtual class of the moduli space M0,n(P̃, β̃) of stable maps with n marked

points, of genus 0 and homology class β̃, pushes to the virtual class of M0,n(P, β) where

β̃ lifts β. Using virtual pullback, it then follows that this holds for any smooth projective
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subvariety X of P. More precisely, if Z is another subvariety intersecting X transversely and
p : X̃ → X is the blow up of X along X ∩ Z, then

p∗[M0,n(X̃, β̃)]vir = [M0,n(X, β)]vir.

As a consequence, one obtain the equality between the Gromov-Witten invariants of coho-
mology classes γi on X and that of p∗γi on the blow up X̃. ⋄

2.4. Virtual localization. Other than virtual pullbacks, localization is also often used in
computation of virtual invariants. This is the virtual version of the equivariant localization
[EG95] which states that if X is a toric variety, for a cycle α in the equivariant Chow ring
AT

∗ (X), we have ∫
X

α =
∑
F

∫
F

α|F
eT (NF )

where the sum goes through the components of the fixed locus of X, π is the pushforward
to a point, and eT is the equivariant Euler class. This is well defined as eT (NFX) can be
shown to be invertible in the localized ring AT

∗ (X,Q)[t−1], where ti are the generators of the
equivariant ring of T .
Suppose X is a toric variety with a perfect obstruction theory (E•, ϕ) such that E• and ϕ

are equivariant. In the construction of the virtual fundamental class, the cones used are T -
equivariant, which give us an equivariant virtual fundamental class in the equivariant Chow
group AT

d (X). The T -fixed part of E• is a perfect obstruction theory when restricted to each
component of the fixed locus, and induces virtual classes. The virtual localization formula
is ∫

[X]vir
α =

∑
F

∫
[F ]vir

α|F
eT (Nvir

F )

where the virtual normal bundle NvirF is given by the T -moving part of the virtual tangent
bundle T vir|F .
In the computation of Gromov-Witten invariants, the fixed loci for the moduli space of

stable maps are described by graphs, the virtual class on each loci coincides with the usual
fundamental class, and the Euler class of Nvir is expressed by tautological classes, making
the localized integrals very computable. In the case of Donaldson-Thomas invariants, the
fixed loci of Quot schemes are locally described by coloured partitions, allowing the use of
many combinatorial methods.

3. Oh-Thomas Virtual fundamental classes

3.1. Virtual fundamental class. In the study of moduli of sheaves on Calabi-Yau 4-
folds, the obstruction theory are often not perfect, but has 3 terms. J.Oh and R.P.Thomas
constructed virtual fundamental classes using local models of derived stacks from shifted
symplectic structures. We follow the construction given in [OT23, Section 4].

Let (X,OX(1)) be a smooth projective Calabi-Yau 4-fold and M = M s(c) the projective
moduli space of OX(1)-Gieseker stable sheaves with Chern character c, where c is a class such
that all semi-stable sheaves are stable. An obstruction for M is given by [HT14, Theorem
4.1]

E• = Rπ∗RH om(F ,F)0[3]
At−→ L•

M
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where π : M × X → M is the projection, F is the universal sheaf and (·)0 denotes the
trace-free part. By Serre duality, the complex E• is self dual in the sense that we have an
isomorphism

θ : E• → E∨[2].

This induces an isomorphism

Q : det(E•)⊗ det(E•) ∼= OM

and a choice of square root of this isomorphism is called an orientation. Moreover, E• is
quasi-isomorphic to a self dual complex

[T → E → T ∗]

concentrated in degree −2,−1, 0. For a fixed orientation, the middle term E can be regarded
as a SO(r,C) bundle. Truncating the complex to [E → T ∗] will result in a perfect obstruction
theory (but of wrong virtual dimension), so from the usual construction of virtual classes,
we obtain a cone

CE• = CM ×E E
∗ ⊆ E∗ ∼= E.

Using explicit local models of derived stacks with shifted symplectic structure given by
[BBBJ13] (which are versions of Darboux charts for derived stacks), CE• is shown to be
isotropic in the sense that the quadratic form

q : E ⊗ E → OY

vanishes on CE• . For such a cone, a square root Gysin map
√

0!E is defined using the
square root Edidin-Graham class of SO(r,C)-bundles, where the Z[1/2] coefficients are due
to taking “square roots” of a bundle, hence its name. From here, a virtual fundamental class
of dimension 1

2
vdim(E•) is obtained as

[M ]vir =
√

0!E[CE• ] ∈ A 1
2
vdim(M,Z[1/2]).

As the construction only relies on the (−2)-shifted symplectic structure and an orientation,
the virtual structure exists in more generality.

3.2. Basic properties. As the cone CE• is obtained from the truncated complex [E → T ∗],
the virtual structure sheaf is not well defined unless the omitted term is accounted for. Let
Ovir be the virtual structure sheaf obtained from the perfect obstruction theory [E → T ∗],
then the twisted structure sheaf for the obstruction E• is given by [OT23, (105)]

Ôvir = (−1)
1
2
vdimOvir ·

√
Kvir ∈ K0(M,Z[1/2]).

Here Kvir is given by det[Λ → T ∗] where Λ is a maximal isotropic subbundle of E (thought
of as a “square root” of E), and the square root is taken in the Grothendieck group
K0(M,Z[1/2]) with half coefficients.

The Oh-Thomas virtual fundamental class and virtual structure sheaf satisfy similar prop-
erties as the Behrend-Fantechi virtual structures. We shall go over two examples.
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3.2.1. Virtual Riemann-Roch. For a quasi-projective scheme M , [Ful13, Corollary 18.3.2]
provides an isomorphism between K-theory and the Chow homology by

τM : K0(M)Q → A∗(M)Q.

The usual virtual Riemann-Roch theorem is given by [FG07], which states

τM(Ovir) = td(T vir) ∩ [M ]vir.

The Oh-Thomas virtual Riemann-Roch theorem [OT23, Theorem 6.1] states

τM(Ôvir) =
√
td(T vir) ∩ [M ]vir.

where
√
td(T vir) = td((Kvir)∨) ch

√
detKvir. Setting twisted virtual Euler characteristic

χvir(−) := χ(M,−⊗ Ôvir),

we obtain a virtual version of Hirzebruch-Riemann-Roch Theorem: for V ∈ K0(M),

χvir(V ) =

∫
[M ]vir

√
td(T vir) ch(V ).

3.2.2. Virtual localization. When the Calabi-Yau 4-fold X admits a torus action by Y , the
T -action lifts to the universal sheaf, which makes the obstruction theory T -equivariant, and
a virtual localization formula is given by

[M ]vir =
∑
F

ι∗
[F ]vir

√
eT (Nvir)

∈ AT
1
2
vdim

(M,Q)[t−1]

where similar to the Graber-Pandharipande localization, the sum goes through fixed com-
ponents, ι denotes the inclusion in M , Nvir is the moving part of T vir, and

√
eT is the

equivariant version of the square root Edidin-Graham Euler class.
The construction of the virtual structure sheaf allowed K-theoretic invariants for Calabi-

Yau 4-folds to be formalized, as they were only predicted to exist in for instance [CKM22].
An example for virtual localization is the computation of Donaldson-Thomas invariants for
Calabi-Yau 4-folds, where a vertex formalism performed in [CK20, Section 2.4], similar to
that of [MNOP06] for Calabi-Yau 3-fold.
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