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Motivation

1. How does a drop of water travel along a sphere?
• “flow of water” is described by Morse functions and their critical

points & “flows”

2. The flows cover the entire sphere ⇒ they detect the shape of the sphere

3. “Shape” is described by homology, which can be retrieved from a
Morse function on it, e.g. height function on a sphere

• The homology we retrieve should not depend on the Morse function we
choose
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(Non)examples of Manifolds

The 3−dimensional sphere, S2, is a
smooth manifold (as is every Sn).

The 3−dimensional cube, however, is
not a smooth manifold, as its vertices

and edges are “too pointy.”
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Manifolds and Charts

• A manifold is a geometric shape: locally, it looks flat

• A sphere is a manifold because it can be covered by a bunch of
overlapping paper disks, without any sharp edges.

• Each paper disk on the sphere is described using the notion of “charts”:

DefinitionA chart φ is a continuous bijection from an n-dimensional
disk Dn to an open neighbourhood of M.

• A manifold is a shape represented by a collection of local charts:

Definition A topological space M is a manifold (of dimension n)
if M is locally homeomorphic to the disk Dn. That is, there exist
a collection of charts S = {φ : Dn → V ⊆ M} such that⋃

φ∈S

φ(Dn) = M.
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Example of a Manifold

• Because every neighbourhood V can be covered by a disc Dn, the
sphere M is a manifold.

• For our purposes, manifolds are smooth
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Morse Functions

• We can define (smooth) functions on manifolds

• We want functions whose “flows” detect the entire shape
• Formally, we need the critical points to be non-degenerate.
• Such functions are called Morse functions, and they satisfy the Morse

Lemma:

Lemma (Morse Lemma:) If f : M → R is a Morse function,
then for every c ∈ Crit(f), there exists a chart φ : Dn → M such
that

f ◦ φ : Dn → R

is given by

(x1, . . . , xn) 7→ f(c)−
k∑

i=1

x2
i +

n∑
i=k+1

x2
i .

Remark The value of k is dependent on c and is called the index
of c.
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A (Non)-example of a Morse Function

The height function on the sphere has
only a maximum, a, and minimum, b,

as critical points. Both are
non-degenerate critical points.

The height function, on any manifold
containing this ”flat ridge” portion, is
not a Morse function. The critical

point a is degenerate.
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Trajectories

How do we define the flow of a drop of water, mathematically?

Definition (Morse Trajectory:) A Morse trajectory is a map
γ : R → M such that

γ′(t) = −Gradγ(t)(f)

Here, Gradx(f) is the vector in the tangent space pointing in the
direction of steepest increase of f at x.

Remark Assuming M is compact, the endpoints of γ given by
γ(±∞) = limt→±∞ γ(t) are critical points of f .
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Unstable manifold

Definition The unstable manifold of a critical point c ∈ Crit(f) is

Wu(c) =
⋃

γ morse trajectory
γ(−∞)=c

{γ(t) : t ∈ R}

Definition The stable manifold of a critical point c ∈ Crit(f) is

W s(c) =
⋃

γ morse trajectory
γ(∞)=c

{γ(t) : t ∈ R}

• The unstable manifold describes all the possible flows downward from
c, while the stable manifold describes all possible flows upward.
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Unstable manifold in S2

The unstable manifold of a, denoted
Wu(a), as well as some flows
γ1, γ2, γ3 in Wu(a).

Note that b is not contained in
Wu(a), since any flow starting from a
can not reach b in finite time.
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What is Homology?

• Invariant under homotopy equivalence

• H0(X) ∼= Z if and only if X is path-connected

• Easier to compute than higher homotopy groups in general
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Singular Homology Examples

• H0(S
n) = Z

Hn(S
n) = Z

Hm(Sn) = 0 for all m ̸= n, 0

• H0(T
2) = Z

H1(T
2) = Z2

H2(T
2) = Z

Hm(T 2) = 0 for all m ̸= 0, 1, 2
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The Morse Complex

• A complex admits a chain of abelian groups and boundary maps.

Definition (Morse Complex:) Let f : M → R be a Morse
function. Define Critk(f) to be the set of critical points with index
k. Then for each k, we define an abelian group

Ck(f) =

 ∑
c∈Critk(f)

acc : ac ∈ Z


where the ac are signed, and a differential map

∂k : Ck → Ck−1, a 7→
∑

b∈Critk−1

n(a, b) · b,

where n(a, b) counts the (signed) number of trajectories from a to
b. The (chain) complex

· · · → Ck
∂k

→ Ck−1
∂k−1

→ . . .
∂1

→ C0

is called the Morse complex.
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Morse Homology

Lemma The Morse complex is a chain complex, i.e. that

(∂k−1 ◦ ∂k)(a) =
∑

b∈Critk−2

 ∑
c∈Critk−1

n(a, c) · n(c, b)

 b = 0

for all a ∈ Critk.

Definition (The Morse Homology:) Let f : M → R be a
Morse function, with critical points of index k contained in Critk(f).
Then the k-th Morse homology group is

Hk(C⋆, f) = (ker ∂k)/(im ∂k+1).
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Main Theorem

Theorem (Equivalence of Homologies:) Let f, g : M → R be
Morse functions. For each function, define Morse complexes C⋆(f), C⋆(g).

1. For any f, g, then Hk(C⋆, f) = Hk(C⋆, g) for each k. That is, the
Morse homology does not depend on the function chosen.

2. For the simplicial complex Csimp
⋆ and any Morse function f, then

Hk(C
simp
⋆ ) = Hk(C⋆, f) for each k. That is, the Morse homology

and singular homology are equivalent.

We can then write Hk(M) to represent the homology of M.
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Example: height function on 2-sphere

• Consider f : S2 → R

• Crit2(f) = {a}, Crit0(f) = {b}, and Critn(f) = ∅ for n ̸= 0, 2

• The complex is · · · → C2
∂2

→ C1
∂1

→ C0
∂0

→ 0

• Then Cn(f) is trivial for n ̸= 0, 2, and C0(f) = C2(f) = Z, the free
abelian group on one generator

• ∂n : Cn(f) → Cn−1(f) is zero for all n

• HMorse
0 (S2) = ker ∂0/im ∂1 = Z/0 = Z

• HMorse
2 (S2) = ker ∂2/im ∂3 = Z/0 = Z

• HMorse
n (S2) = ker ∂n/im ∂n+1 = 0/0 = 0 for all n ̸= 0, 2


