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A. δ-hyperbolicity

The notion of hyperbolicity is usually associated with curvature in the study of man-
ifolds. We would like to generalize this condition to metric spaces in geometric group
theory, to apply properties to, for example, the Cayley graph of a group.

One observes that a hyperbolic triangle has sides very close to each other.[insert picture]
This illustrates the property that two geodescis starting at the same vertex diverge quickly:
the shortest path between two vertices is one that has to backtrack to somewhere near
the third vertex.

Definition 1.1. Let X be a geodesic metric space. A geodesic triangle [x, y, z] is δ-thin
if for each point p on the edge [x, y], there is a point q on edges [x, z], [y, z] such that
d(p, q) ≤ δ, and the property holds similarly for the other edges. X is δ-hyperbolic if every
triangle is δ-thin. A group is hyperbolic if its Cayley graph is hyperbolic.

The specific value of δ is not important since the point is about the existence of some
δ. We will see next week that quasi-isometries preserves hyperbolicity.

Example 1.2. The triangles in trees are in shape of three legs attached to a single vertex.
Each side of a triangle is contained in the union of the other two sides. Therefore trees
are 0-hyperbolic. In particular, the Cayley graph of a free group is hyperbolic.

Example 1.3. Since any finite group has bounded Cayley graph, they are all hyperbolic.

Example 1.4. Some metric spaces, for example the p-adic numbers, satisfy the property
that the longest two sides of any triangle have equal length. Spaces with such property
are all 0-hyperbolic. This can be shown using Gromov product.

Example 1.5. R2 is not hyperbolic. Therefore Z2 is not hyperbolic since its Cayley graph
is quasi-isometric to R2. It is well known that if a group contains Z2 as a subgroup, then
it is not hyperbolic.

Example 1.6. Draw the Cayley graph of the projective special linear group

PSL(2,Z) = SL(2,Z)/{I,−I}
where

SL(2,Z) = {M ∈ M2Z : det(M) = 1}
Observe the Cayley graph is quasi-isometric to a tree, implying PSL(2,Z) is hyperbolic.
Since it is the quotient of SL(2,Z) by a finite subgroup, the quotient map induces a
quasi-isometry between their Cayley graphs. Therefore SL(2,Z) is also hyperbolic.

Example 1.7. Draw fundamental group of T 2 and see that it is hyperbolic.

Example 1.8. Recall from previous talks that if a group acts geometrically on a space X,
then it is quasi-isometric to X. Therefore if a group acts geometrically on any hyperbolic
space, it is itself hyperbolic.

We know SL(2,Z) acts on the upper half plane model of the hyperbolic space by[
a b
c d

]
· z =

az + b

cz + d

Can we conclude from this that SL(2,Z) is hyperbolic? [insert picture here]

B. Word problem for hyperbolic groups

Recall the word problem is solvable if there is an algorithm to determine whether a
word represents the identity. One can easily construct such an algorithm for groups such
as F2 = ⟨a, b⟩ or Z2 = ⟨a, b|aba−1b−1⟩ because of their simple presentation. We shall
define a specific way to present a group, give an algorithm to solve the word problem for
groups of that form, and show hyperbolic groups have such presentation.

Definition 1.9. Let S be a generating set of group G. A word in S is reduced if it does
not contain any occurrences of aa−1 for a ∈ S ∪ S−1. A finite presentation G = ⟨S|R⟩ is
a Dehn presentation if it is of the following form
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• R = {r1, ..., rm} consists of words of form ri = uiv
−1
i (vi may be empty).

• For each i, the word vi is (strictly) shorter than ui.
• If w is a reduced word in S that represents the identity,it is either empty or

contains some ui or u
−1
i as a sub-word.

Example 1.10. F2 = ⟨a, b⟩ is a Dehn presentation because any word that represents the
identity can be reduced to the empty word by removing occurrences of aa−1, bb−1, a−1a, b−1b.

Example 1.11. PSL(2,Z) = ⟨a, b|α2, b3⟩ is a Dehn presentation. We take u1 = a2, v1 =
1, u2 = b2, v2 = b−1. The third condition is satisfied because we see from the Cayley
graph that a reduced word that represents the identtity, removing all the occourances of
u1 = a2, gives loop which must contain a loop around one of the triangles. This implies
a subword of form u2 = b2.

If a group has a Dehn presentation, then the word problem is solvable in linear time
(with respect to word length). The algorithm is as follows: reduce w, find a sub-word ui,
replace ui by vi, and repeat. Since the word length is finite, we either get the empty word
in at most that many steps, or a sub-word of form ui can not be found, in which case w
must not represent identity.

Definition 1.12. Let X be a metric space. A geodesic segment is an isometric embedding
[a, b] → X where the interval [a, b] has the usual metric of the real line. A c-local geodesic
is a path γ : [a, b] → X such that every sub-path of length c is geodesic. This means for
every t, t′ ∈ [a, b] with |t− t′| ≤ c,

d(γ(t), γ(t′)) = |t− t′|

Lemma 1.13. Let X be a δ-hyperbolic space. If γ : [0, L] → X is a 8δ-local geodesic, and
γ′ : [0, L′] → X is a geodesic segment from γ(0) to γ(L), then for every point p on γ, there
is some q on γ′ with d(p, q) < 2δ.

Proof. Let p = γ(t) be the point of γ that is farthest away from γ′. We first assume that t is
at least 4δ away from the endpoints, namely 4δ < t < L−4δ. Let x = γ(t−4δ), y = γ(t+4δ)
and x′, y′ be points on γ′ that are closest to x, y respectively. Now consider the geodesic
quadrilateral with vertices x, y, x′, y′. Connect the diagonal between x and y′ with a new
geodesic to split the quadrilateral with two triangles. Now apply δ-hyperbolicity twice
and get p is at most 2δ away from some point q on one of the edges [x, x′], [x′, y′], [y′, y].
If q ∈ [x′, y′], then we are done since q is now a point on γ′. If q ∈ [x, x′], then use
triangle inequality on the triangle [x, p, q]: the side [x, p] has length 4δ by our choice, the
side [p, q] has length less than 2δ, so [q, x] has length greater than 2δ. Now observe the
path that goes from p to q then to x′ has length strictly less than [x, x′], contradicting the
maximality of our choice of p. The case where q lies on [y, y′] is similar. The case where
t is less than 4δ away from one of the points follows from a similar argument. □

Lemma 1.14. Let X be a δ-hyperbolic space. There does not exist an 8δ-local geodesic
γ : [0, L] → X with L ≥ 8δ and γ(0) = γ(L).

Proof. If such a local geodesic were to exist, we apply the above lemma and see γ lies
in the disk of radius 2δ centered at γ(0). However, since γ is 8δ-local geodesic, we know
d(γ(0), γ(8δ)) = 8δ, a contradiction. □

Remark 1.15. In case X is a Cayley graph, if a path (local isometry [a, b] → X) is not a
c-local geodesic, then it must contains a segment of length > c where if we go pass length
c, the path stops being an isometry. This means there must be some other path of strictly
shorter length that connects back to the satrting point. So we get a subword u, and a
strictly shorter word v, such that the path corresponding to uv−1 form a loop, and u, v
represent the same element.

Theorem 1.16. Let G be a hyperbolic group with finite generating set S. Then G admits
a Dehn presentation G = ⟨S|R⟩.

Proof. Let K > 8δ be an integer and consider the set of reduced words in S of length
at most K. We can check whether each pair of them represent the same elements. Since
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there are only finitely many S-words of length at most K, we get a finite set {(ui, vi)}mi=1

of pairs of words that represent the same element, where vi has length strictly less than
ui. We claim R := {uiv

−1
i } gives us a Dehn presentation. The first two conditions of the

definition for Dehn presentation are satisfied by construction.
Suppose w is reduced, non-empty and represents the identity. If its length does not

exceed K, then we have (w,∅) ∈ R and w itself is one of the ui’s. If w has length greater
than K, then following the path created by each letter of w on the Cayley graph, we get a
loop of length at least K > 8δ at identity. By our previous lemma, this means w must not
be a 8δ-local geodesic. By the remark we have a subword u of length at most 8δ < K and
some v of shorter length that represent the same element, which correspond to a sub-word
of form ui.

Lastly we need to show that R contains all necessary conditions to represent G. This
follows from a similar argument as the last paragraph. □

Exercise 1.17. Show R2 is not hyperbolic.

Exercise 1.18. Prove Z2 = ⟨a, b|aba−1b−1⟩ is not a Dehn presentation.

Exercise 1.19. Give an example of a non-hyperbolic space that has c-local geodesic loops
of arbitrarily large length and c.
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