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Abstract. This is the notes taken from talks given by Ziyu Zhang, Junliang Shen, and Xiaolei
Zhao at the algebraic geometry summer school of Fudan University in July 2023. These talks feature
an introduction to derived category, the P = W conjecture for the Hitchin moduli space on a curve,
and Bridgeland moduli spaces for K3 categories. Basic knowledge about slope/Gieseker stability for
sheaves is assumed.
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1. Derived categories

1.1. Motivation. Let us recall the sheaf cohomology of a sheaf of abelian group F on a topological
space X. We compute H i(X,F ) as the i-th derived functor of Γ(X, ·).

• Step 1: Take an injective resolution of F :

0! F ! I0 ! I1 ! . . . ,

• Step 2: Apply Γ(X, ·) to I•:

0! Γ(X, I0)! Γ(X, I1)! . . . ,

• Step 3: Take cohomology of this sequence

H i(X,F ) = H i(Γ(X, I•)).

Looking at this computation, one might ask the following questions:

(i) Why use an injective resolution?
(ii) When we take Γ of I•, why did we throw away the F term?
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We first consider question (ii) by taking a different approach. View F as a complex and the injective
resolution as a map f between complexes:

. . . 0 F 0 0 . . . = F •

. . . 0 I0 I1 I2 . . . = I•

f

Then f induces isomorphisms H i(F •) ∼= H i(I•). Such a morphism f is called a quasi-isomorphism
(q.i.). To build on this new perspective, we would like to look for a theory which deals with
complexes, and considers quasi-isomorphic complexes to be “the same”.

Let A be an abelian category. We consider the Category of complexes:

C(A) =

{
objects: {A• = [. . .

d
−! An−1 d

−! An d
−! An+1 d

−! . . . ] with d2 = 0},
morphisms: {f• : A• ! B• compatible with d.}

The naive way to construct a category D(A) where quasi-isomorphic complexes are isomorphic is
by manually inverting the quasi-isomorphisms in C(A). That is setting

HomD(A
•, B•) := HomC(A

•, B•)[q.i.−1].

This way, the morphisms between A• and B• in this new categories are of form

A• ! C•
1  C•

2 ! · · · C•
n ! B•

for arrows in HomC(A
•, B•), and the left arrows are quasi-isomorphisms. This is not what we want

as this chain of arrows can be arbitrarily long and is difficult to control.

1.2. Homotopy categories.

Definition 1.1. A morphism f : A• ! B• in C(A) is homotopic to 0, write f ∼ 0, if there exist
hi : Ai ! Bi−1, forming the following diagram (not necessarily commutative):

. . . An−1 An An+1 . . .

. . . Bn−1 Bn Bn+1 . . .

fnhn−1
hn+1

such that

fn = hn+1 ◦ d+ d ◦ hn

for all n.

Definition 1.2. The homotopy category associated to an abelian category A is

K(A) =

{
objects: obj(C(A)),

morphisms: HomC(A)(A
•, B•)/(f ∼ 0).

Definition 1.3. The derived category associated to an abelian category A is

D(A) =


objects: obj(C(A)),

morphisms:

equivalent classes of roofs

C•

A• B•

q.i.


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where two roofs C•
1 , C

•
2 over A•, B• are equivalent if there exists C• ! C•

1 , C
•
2 making the following

diagram commuative in K(A):

C•

C•
1 C•

2

A• B•

.

The bounded derived categories D+(A), D−(A), Db(A) are defined by as the full subcategory whose
objects are complexes with H i(·) = 0 for large, small, or all but finitely many i, respectively.

The original category A embeds into the derived category by viewing A ∈ A as a complex where
we put it in the 0-th position, denote

A[0] = [. . .! 0! A! 0! . . . ] ∈ D(A).

In general, we define a shift functor [n] that shifts complexes n slots to the left.

[n] : D(A)! D(A)

A• = [Ai] 7! [Ai+n].

We also have the truncation functor that cuts a complex off at the m-th position.

τ≤m : D(A)! D(A)

A• 7! [. . .! Am−1 ! ker(d : Am ! Am+1)! 0! . . . ].

The truncation functor τ≥m is defined similarly with the left most term replaced by coker(d : Am !
Am+1). We observe natural morphisms

τ≤mA• ! A•, A• ! τ≥mA•.

Definition 1.4. Let A,B be abelian categories, and F : A ! B a left exact additive functor.
Suppose A has enough injectives. Then the right derived functor RF : D+(A)! D+(B) is defined
as

RF (A•) := F (I•)

where I• consists of injective objects and is quasi-isomorphic to A•. Set RiF (A•) := H i(RF (A•)).

Recall the sheaf cohomology is the same as taking the derived functor of the global section functor.
Back to the question we had before: do we have to take injective resolutions? We look at this
computation of in another perspective. In the category K+(A), consider all quasi-isomorphisms
A• ! C•. Then we may define

RF (A•) := lim−!
A•!C•

F (C•), if it exists.

In the case when A has enough injectives, the resolution A• ! I• is a final object among all
quasi-isomorphisms, so the above limit exists and agrees with our previous definition.
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1.3. Perverse sheaves. A triangulated category consists of a triplet (D, ([n])n∈Z, T ) such that

• D is an additive category.
• [n] : D ! D are additive functors with [n] ◦ [m] = [n+m].
• T is the set of exact triangles of form

X ! Y ! Z ! X[1]

such that
(1) Any triangle isomorphic to an exact triangle is exact.

(2) X
id
−! X ! 0! X[1] is exact.

(3) For all f : X ! Y , there exists some exact triangle of form X ! Y ! Z ! X[1].

(4) X ! Y ! Z ! X[1] is exact if and only if Y ! Z ! X[1]
−f [1]
−−−! Y [1] is exact.

(5) Given two exact triangles and morphisms forming the following diagram, a dotted
morphism exists making the whole diagram commute:

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

f f [1] .

(6) Given exact triangles X ! Y ! Q1 ! X[1], X ! Z ! Q2 ! X[1], Y ! Z ! Q3 !
Y [1], the dotted triangle induced by the previous condition Q1 ! Q2 ! Q3 ! Q1[1] is
exact, with the following commutative diagram:

X Y Q1 X[1]

Z Q2

Q3

Q1[1] Y [1]

.

Theorem 1.5. The derived category D(A) is a triangulated category.

Proof. (Sketch) The exact triangles are of form X• f
−! Y • ! C(f)! X•[1], where C(f) is the cone

of f , defined by

C(f)n = Y n ⊕Xn+1

dn : Y n ⊕Xn+1 ! Y n+1 ⊕Xn+2

(y, x) 7!

[
dnY fn+1

0 dn+1
X

]
·
[
y
x

]
.

□

Definition 1.6. Let D be a triangulated category. Let D≤0, D≥0 be two of its full subcategories.
Write D≤n := D≤0[−n] and D≥n := D≥0[−n]. The pair (D≤0, D≥0) is called a t-structure if

(1) D≤−1 ⊊ D≤0 and D≥1 ⊊ D≥0.
(2) If X ∈ D≤0, Y ∈ D≥1, then HomD(X,Y ) = 0.
(3) For all X ∈ D, there exists exact triangle X0 ! X ! X1 ! X0[1] with X0 ∈ D≤0,

X1 ∈ D≥1.
4



Our motivation for defining triangulated categories is so that we may generalize the derived
category and can consider different t-structures on triangulated categories. For example, we have
the standard t-structure on D(A) where D≥0(A) are those complexes with H<0(A•) = 0 for i < 0,
and D≤0(A) for those with H>0(A•) = 0. We also have the perverse t-structure defined in the next
section.

Theorem 1.7. If (D≤0, D≥0) is a t-structure of a triangulated category D, then D≤0 ∩D≥0 is an
abelian category, which we call the heart of this t-structure.

The motivation for perverse sheaves was to recover Poincaré (Verdier) duality for “singular
manifolds”. The use of intersection cohomology was later developed into perverse sheaves.

Definition 1.8. Let X be an algebraic variety or analytic space over C. A locally finite partition
X = ⊔α∈IXα by locally closed subspace is a stratification of X if for every α,

Xα =
⊔
β∈J

Xβ

for some subset J ⊆ I.

In general we write the derived category of coherent sheaves on X as D(X) = D(coh(X)). We
shall focus on constructable sheaves defined as follows.

Definition 1.9. Let CX be the constant sheaf on X. A CX -module F is a constructable sheaf if
there exists a stratification X = ⊔Xα such that FXα is locally constant for all α. Denote Db

c(X) the
bounded derived category of constructable sheaves.

Definition 1.10. The perverse t-structure, denoted by (pD≤0
c (X), pD≥0

c (X)) on the triangulated
category Db

c(X) is defined by

F • ∈ pD≤0
c (X) if dim suppHj(F •) ≤ j for all j,

F • ∈ pD≥0
c (X) if dim suppHj(DF •) ≤ j for all j

where DF • denotes the dualizing complex of F •. A sheaf is a perverse sheaf if it is in the heart of
the perverse t-structure.

Example 1.11. Let X be proper and smooth over C of dimension d. We ask when L[n] is perverse
for a locally constant sheaf L. Here from smoothness we have D(·) = RH om(·,CX [2d]). Now
dim suppL = d, and

Hj(L[n]) =

{
L, j = −n,

0, j ̸= −n.

So L[n] ∈ pD≤0
c (X) if d ≤ n, and L[n] ∈ pD≥0

c (X) if d ≥ n. Therefore L[n] is a perverse sheaf if
and only if n = dimX.

Example 1.12. A similar argument shows that a skyscraper sheaf Cp on a point is a perverse sheaf
(viewed as a complex), and if L is supported on a curve C, then the complex L[1] is perverse.

2. P = W conjecture

Let X be a topological space. We have the following three cohomology theories: singular
cohomology H∗

sing(X,Q
X
), de Rham cohomology H∗

dR(X,RX), and sheaf cohomology H∗(X,Q
X
).

The singular cohomology is computed by taking a flasque resolution of pre-sheaves Ci of i-simplices

0! Q
X
! C0 ! C1 ! . . . .

One can show that H i(X,Q
X
) = RiΓ(C•) = H i

sing(X,Q
X
).
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The de Rham cohomology is computed by taking a resolution of fine sheaves Ai(X), which are
the sheaves of i-forms on X

0! RX ! A0 ! A1 ! . . . .

We have H i(X,RX) = RiΓ(A•) = H i
dR(X,Q

X
).

2.1. Mixed Hodge structures. Let X be a compact Kähler manifold. We can forget the C-
structure and get the de Rham cohomology from sheaf cohomology

H i
dR(X,C) = H i(X,CX).

Consider the Kähler differential Ω on X. The cohomology of Ωp = ∧pΩ gives us the Dolbeault
cohomology

Hq(X,Ωp).

This can be computed using Ap,q, the sheaf of differential forms of type p, q, locally given by∑
fi1,...,ip,j1,...,jqdzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq

for smooth functions f . We have maps Ap,q ! Ap,q+1 by taking partial derivatives on zj1 , . . . , zjq ,
giving us a fine resolution

0! Ωp ! Ap,0 ! Ap,1 ! . . . .

Taking its cohomology, we obtain

Hp,q(X) := Hq(X,Ωp).

Theorem 2.1 (Hodge Theorem). We have the decomposition

Hk(X,C) =
⊕

p+q=k

Hp,q(X)

with symmetry

Hp,q(X) = Hq,p(X).

We call the decomposition from above a weight k Hodge decomposition. For differential k-forms,
we can locally decompose them by dzi1 . . . dzipdzj1 . . . dzjq for p+ q = k. The above theorem says
that such a decomposition is possible even on the level of cohomology.

Remark 2.2. If k is odd, the dimension of Hk must be even by the symmetry.

Recall that we were under the assumption of X a compact Kähler manifold. Let us now see what
could happen when X is smooth but non-compact.

Example 2.3. Let X = C∗ = A1
C − {0}. We have

dimCH0(C∗,C) = 1 with generator 1,

dimCH1(C∗,C) = 1 with generator dz/z,

so it is impossible for C∗ to have a weight 1 Hodge decomposition as H1 has odd dimension.

Let us complete C∗ to P1 by adding in the points 0 and ∞. We have P1 = A1
0 ∪ A1

∞ with
A1
0 ∩ A1

∞ = C∗. Using the Mayer-Vietoris sequence

. . .! H1(P1)! H1(A1)⊕H1(A1)! H1(C∗)! H2(P1)! . . .

where H(A1) = 0, we get H1(C∗) ∼= H2(P1), so H1(C∗) admits a weight 2 Hodge structure.
We would like to obtain a Hodge theory on smooth non-compact algebraic variety U . Take a

compactification U ↪! X with X smooth such that the boundary divisor D = X − U is a simple
normal crossing. This is possible by results from minimal model program. We need to obtain
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the cohomology of X and D =
∑

Di in order to get H∗(U). This will give us a “mixed Hodge
structure”.

Let V be a finite dimensional real vector space. A R-Hodge decomposition of weight k is a
decomposition

V ⊗R C = ⊕p+q=kV
pq

such that V pq = V qp. Such a decomposition is equivalent to a R-Hodge filtration

V ⊗R C = F 0 ⊋ F 1 ⊋ . . .

such that Fp ∩ Fq = 0 for any p+ q = k + 1. The correspondence is given by F p = ⊕s≥pV
st, V pq =

F p ∩ F q.

Definition 2.4. A Z-Mixed Hodge structure on a finitely generated Z-module V consists of two
filtrations:

• an increasing filtration W• on V ⊗Z Q,
• a decreasing filtration F • on V ⊗Z C

such that for each k, the gradient piece

GrWk (V ⊗Q) := Wk/Wk−1

has a Hodge structure of weight k.

Recall for f : X ! Y a continuous map on topological spaces, the pushforward functor f∗ :
Sh(X)! Sh(Y ) is left exact. We have right derived functor

Rf∗ : D
+(Sh(X))! D+(Sh(Y ))

with
Rif∗ : Sh(X)! Sh(Y )

F 7! H i(Rf∗(F )).

The sheaf Rif∗(F ) is exactly the associated sheaf of the pre-sheaf given by U 7! H i(F |f−1(U)). In

the case f is the map from X to a point, we have f∗F = Γ(X,F ), so Rf∗ = RΓ, Rif∗ = H i.
Given a map f : X ! Y , we manually add on a map g : Y ! pt, which gives us a commutative

diagram

D+(Sh(X)) D+(Sh(Y )) D+(Sh(pt))
Rf∗

R(g◦f)∗

Rg∗
.

Note that this diagram is in general not commutative for composition of maps f ◦ g. From this we
obtain

H∗(Y,Rf∗F ) = H∗(X,F )

so we can forget the map g and use this identity in general. Here H denotes hypercohomology
of a complex, computed by taking a quasi-isomorphism to an injective resolution, then taking
cohomology of global sections. We can also write

Hp(Y,Rqf∗(F )) ⇒ Hp+q(X,F )

as a spectral sequence.

Suppose U
f
↪−! X with X − U = D1 ∪ · · · ∪Dk simple normal crossing. Then from above we have

H∗(U,CU ) = H∗(X,Rf∗CU ).

It is known that the resolution
CU ! Ω0

U ! Ω1
U ! . . .
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is enough to compute Rf∗CU (though not enough for H∗(U,CU ). Thus we would like to compute

H∗(X, [f∗Ω
0
U ! f∗Ω

1
U ! . . . ])

Define the logarithmic poles Ωp
X(logD) on X as a sheaf with stocks(

Ω1
X(logD)

)
x
= OX,x

dz1
z1

⊕ · · · ⊕OX,x
dzk
zk

⊕OX,xdzk+1 ⊕ · · · ⊕OX,xdzn,

Ωp
X(logD) =

p∧
Ω1
X(logD)

where n = dimX and x is a closed point in D locally given by {z1 . . . zk = 0}.

Proposition 2.5. There exists a quasi-isomorphism

Ω•
X(logD)! f∗Ω

•
U .

Now we have H∗(U,C) = H∗(X,Ω•
X(logD)). Consider the following definition

Wm(Ωp
X(logD)) :=


0,m < 0,

Ωp
X(logD),m ≥ p,

Ωp−m
X ∧ Ωm

X(logD), 0 ≤ m ≤ p.

We obtain an inclusion Wm(Ω•
X(logD)) ↪! Ω•

X(logD) which induces a map on their cohomology.
This gives us a mixed Hodge decomposition for H∗(U,C) as follows

WmHk(U,C) := im{Hk(X,Wm−kΩ
•
X(logD))! Hk(U,C)}

F pHk(U,C) := im{Hk(X,F pΩ•
X(logD))! Hk(U,C)}

2.2. Moduli of Higgs bundles. Consider the real manifold (S1)2 × R2, i.e. on each point of R2

we attach a torus (S1)2. The cohomology

H∗((S1)2 × R2) ∼= Q4

is decomposed into

H0 ⊕H1 ⊕H2 ∼= Q⊕Q2 ⊕Q.

We discuss two ways of realizing this space as an algebraic variety:

(i) C∗ × C∗,
(ii) E × C for some elliptic curve E.

Recall the weight filtration from the mixed Hodge structure is of form

W• ⊆ H∗(X)

with each GrWk H∗(X) having a pure Hodge structure of weight k.
For (i), we have

H∗(C∗) = W2 ⊇ W1 = W0,

where Gr2 is generated by dx/x, W0 is generated by the fundamental class. This gives us

H∗(C∗ × C∗) = W4 ⊇ W2 ⊇ W0

where Gr4 is generated by dx
x ∧ dy

y , Gr2 by dx
x , dyy and W0 by the fundamental class.

For (ii), consider the projection

h : E × C! C
giving us

H∗(E × C) = H∗(C, Rh∗QE×C)
8



where Rh∗QE×C ∈ Db
c(C). One can compute

Rh∗QE×C
∼= QC ⊕Q2

C[−1]⊕QC

inducing a Leray filtration L0 ⊆ L1 ⊆ L2 by including term by term from this decomposition.
Observe that Lk(E × C) = W2k(C∗ × C∗) = H≤k((S1)2 × R2).

Note that the cases (i) and (ii) can be viewed as moduli spaces associated with E and GL1(C).
For (i), we can consider C∗ ×C∗ as the set of GL1(C)-representations of the fundamental group of a
torus E, i.e.

C∗ × C∗ = {π1(E)! GL1(C)} = {rank 1 local systems on E}.
For (ii), we view E × C as the set of all Higgs bundles on E, that is pairs (L,Θ) such that L is a
line bundle on E with fixed degree d, and Θ : L! L⊗ ωE

E × C = {(L,Θ) Higgs bundle}.
The map h : E × C ! C can be viewed as trΘ mapping to H0(E,ωE) = C, which we call the
Hitchin fibration.

Now we may generalize this discussion to higher ranks. Let C be a curve with g ≥ 2, and consider
GLn(C) for n ≥ 2. Fix a degree d coprime to n (so we will obtain a smooth moduli space).

(i) (Betti moduli) Let

R =

{
A1, B1, . . . , Ag, Bg ∈ GLn(C)

∣∣∣∣ g∏
i=1

[Ai, Bi] = e
2πid
n Id

}
.

Consider the following GIT quotient

MB =R // (GLn(C) action by conjugation)

=Spec(RGLn(C))

which is a smooth affine variety.
(ii) (Dolbeault moduli) Define

MDol = moduli space of (slope) stable Higgs bundles of rank n, degree d over C.

By (semi)-stability of a Higgs bundle (E.Θ), we mean that for all subbundle F such that

F ⊊ E, imΘ|F ⊆ F ⊗ ωC ,

one has µ(F )(≤)µ(E). Note that n, d coprime means that semi-stability is equivalent to
stability. The Hitchin fibration in this case, mapping to an affine space, is given by

h : MDol ! A =

n⊕
i=1

H0(C,ωi
C)

(E,Θ) 7! (trΘ, tr∧2Θ, . . . , tr detΘ)

i.e. this map records the characteristic polynomial of Θ.

Proposition 2.6. MDol is smooth quasi-projective, and is projective relative to A via h.

Analytically we have MDol
C∞
−−! MB, giving us H∗(MDol) ∼= H∗(MB). One might ask in

algebraic geometry, whether the equality we obtained before,

Lk(h : MDol ! A) = W2k(MB) = H≤k(−)

still holds. The answer is negative for all above equalities. However, we could modify Lk to using
perverse sheaf. The new filtration we obtain, which we call Pk, will give us Pk = W2k. This is the
P = W conjecture by de Cataldo-Hausel-Migliorini which has been proven by Davesh Maulik and
Junliang Shen.
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Denote Perv(X) the category of perverse sheaves on X, i.e. the heart of the perverse t-structure.
Let pτ≤k,

pτ≥k be the perverse truncation functors associated to the t-structure, which are given by
adjoints of the inclusions pD≤k, pD≥k ↪! pD. We shall define the perverse filtration.

Let f : X ! Y be a proper map of smooth varieties. Set r := dimX ×Y X − dimX, so if f is
equidimensional, then r is the relative dimension. We have

Hm(X,Q) =Hm(Y,Rf∗(QX))

=Hm+dX−r(Y,Rf∗(QX)[r − dX]).

where dX = dimX. Set
PK := H∗(Y, pτ≤kRf∗(QX)[r − dX]),

giving us a filtration P0 ⊆ P1 ⊆ . . . ⊆ H∗(X).

Example 2.7. Let (X,L = O(1)) be a smooth projective variety. We get maps

c1(L)
i : HdX−i(X,Q)

∼
−! HdX+i(X,Q).

Let f : X ! Y with L relatively ample, then we have maps

c1(L)
i : GrPr−iH

∗(X,Q)
∼
−! GrPr+iH

∗(X,Q).

2.3. Cohomology on moduli spaces. A common method to study the cohomology of a moduli
space is with its tautological classes. In our case we can use them to under stand the filtrations P
and W .

Example 2.8. Let V be an n+ 1 dimensional complex vector space. We have

P(V ) = {L ⊆ V lines through origin}.
Above this space we have a line bundle O(1) ! P(V ) where the fibre over [L] is L. One then
observes that H∗(P(V )) is generated by c1(O(1)), which we call the tautological class, as an algebra.

Example 2.9. Let E be an elliptic curve with a fixed point 0. Consider the Poincaré line bundle

P ! E × Pic0(E)

where the fibre over (x, L) is Lx. We know E ∼= Pic0(E) by the map x 7! OE(x− 0). Under this
identification, we have P = OE×E(0× E + E × 0−∆). For k ∈ N, γ ∈ H∗(E), we set

ck(γ) :=

∫
γ
chk(P ) = p∗(q

∗γ · chk(P )) ∈ H∗(Pic0(E))

to be the tautological classes, where p, q are projections from E×Pic0(E). One can showH∗(Pic0(E))
is generated by classes of form ck(γ).

Let C be a curve and fix (n, d) = 1. Recall MDol is the moduli of stable Higgs bundles of rank n
and degree d. There exists (non-unique) a universal bundle

U ! C ×MDol

whose fibre at x, (E,Θ) is Ex, and we may define tautological classes

ck(γ) =

∫
γ
chk(U)

for γ ∈ H∗(C) and k ∈ N.

Theorem 2.10. H∗(MDol) is generated by ck(γ) as an algebra.

We recall the proof of a simpler case of the above theorem from the theory of stable bundles on
curves.
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Theorem 2.11 (Atiyah-Bott). Let n, d coprime and N the moduli of stable vector bundles on C of
rank n and degree d. Then H∗(N) is generated by tautological classes.

Proof. Consider N × C ×N with maps p12, p23, p13 onto the corresponding terms. Let

H := RH om(p∗12U, p
∗
23U),

then

Rp13∗H ∈ Db coh(N ×N).

For (E,F ) ∈ N ×N , we have

K := Rp13∗H|(E,F ) = Ext•C(E,F ).

Recall when E ̸= F are stable bundles, we have Hom(E,F ) = 0, so K|N−∆ is a vector bundle of
rank dN = dimN .

Now over p = (E,E) ∈ ∆, we have K = [K0 ! K1] where H0(K) = Hom(E,F ) and H1(K) =
Ext1(E,F ), i.e. we have the following exact sequence

0! C = Hom(E,E)! (K0)p ! (K1)p ! Ext1(E,E)! 0.

Now by Porteous formula (Fulton 14.4) and Grothendieck-Riemann-Roch, we obtain

[∆] = cdN (Rp13∗H)

as an expression in terms of p∗12 ch(U), p∗23 ch(U), tdC . From the commutative diagram

H∗(N) H∗(N)

H∗(C)

[∆]=id

Φ

we see imΦ = H∗(N). □

Exercise 2.12. Consider C with g = 2, n = 2, d = 1. Let M be the moduli of stable Higgs bundles
of rank n and degree d, and N be the moduli of stable vector bundles of rank n and degree d.

(1) Show that T ∗N embeds into M by sending (E, ξ) to some (E,Θ).
(2) After attaching the Hitchin fibration, is

T ∗N !M ! A

surjective?
(3) Try computing e(M)− e(N) equivariantly using the C∗ action on M by

λ(E,Θ) = (E, λΘ),

where the fixed locus is MC∗
= N ⊔ T with

T =

{
stable Higgs bundles of form

(
E = L1 ⊕ L2,Θ =

[
0 ϕ
0 0

])}
.

Exercise 2.13. Let n, d be coprime to each other.

(1) Suppose F ∈ coh(T ∗C) with proper support over C. Say p : T ∗C ! C is the projection.
Show F can be recovered from some Higgs sheaf (E = p∗F,Θ : E ! E ⊗ ωC).

(2) Suppose Cα ↪! T ∗C is some integral curve with pα : Cα ! C having finite degree n. Show
that if F is torsion free, generically rank 1 on Cα, then pα∗ gives a stable Higgs bundle on
C of rank n.

11



(3) Denote JCα the compactified Jacobian, which parametrizes torsion free sheaves on Cα

generically of rank 1 for some fixed degree. Note that if Cα is smooth, then J = J is the
usual Jacobian. Show that

JCα M

{α} A

is a Cartisian diagram, where α ∈ A is a point determined by the curve Cα, which we call
the spectral data.

2.4. Support theorems. In the study of the P = W conjecture, the support of a morphism became
an important topic. To define support, we first look at the widely known Beilinson–Bernstein–Deligne–Gabber
decomposition theorem.

Let f : X ! Y be a proper morphism with X,Y smooth. The BBDG decomposition calculates
Rf∗QX

:

Rf∗QX
∼= ⊕i

pH i(Rf∗QX
)[−i]

where pH i = pτ≤i ◦ pτ≥i is the cohomology induced by the perverse t-structure. Every summand

pH i(Rf∗QX
)[−i] ∈ Perv(Y )

is semisimple in the sense that it can be written as a finite sum of form

⊕α∈IICZα(Lα).

For a closed subvariety Zα
i
↪−! Y , say Uα

j
↪−! Zα is open in Zα and Lα is an irreducible local system

on Uα, we define

ICZα(Lα) := i∗
pj!∗(Lα[dimZα])

where pj!∗ is certain abstract map from Perv(Uα) to Perv(Zα). A fact from BBDG is that every
perverse sheaf arrises in this way. We define the support of f to be

supp(f) := {Zα|α ∈ I}.

Note that an ideal situation would be if supp(f) = {Y }, but in general, it is very difficult to
compute the support. The Goresky-MacPherson inequality gives some restrictions to the support.

Theorem 2.14 (Goresky-MacPherson). Suppose f : X ! Y has equi-dimensional fibre of dimension
d.

(1) Z ∈ supp(f) only if codimZ ≤ d.
(2) Equality holds only if Z can be detected by R2df∗QX

, i.e. there exists some V ⊆ Y open with

R2df∗QX
|V ∼= iZ∗LZ ⊕ something else

for some local system LZ and inclusion iZ : Z ∩ V ↪! V .

Example 2.15. Suppose f : S ! B is a map from a surface to a curve with elliptic fibration. Say
the general fibre is a torus. Say at a point P , the fibre is a curve with two components; at a point
R, the fibre is a cuspidal curve; and at Q a nodal curve. Then by the above theorem, Q,R must
not be in the support of f because

R2f∗QX
= Q

B
⊕Q

P

as the H2 of the fibre here counts the number of irreducible components. One can show we have
supp(f) = {B,P}.

12



Example 2.16. Suppose now B is a surface, where on a certain curve of in B the fibre is nodal,
and at a point P on that curve the fibre has 2 components. We again have R2f∗QX

= Q
B
⊕Q

P
,

so the only possible supports are B and P . By the theorem, P can not be in supp(f) as it has
codimension 2. Hence supp(f) = {B} in this case.

Note that the GM inequaltiy is not as useful in the case d = dY = dimY , which is always greater
than or equal codimZ, for example in a Symplectic setting.

Proof. (Sketch) Suppose Z ∈ supp f . Define

Ind(Z) := {i ∈ Z| pH i(Rf∗QX
) has Z as one of its support}.

By Verdier duality, Ind(Z) is symmetric with respect to dX = dimX. Thus we can take some
m ∈ Ind(Z) with m ≥ dX . Now pH i(Rf∗QX

) having a summand supported on Z means that there
is some U open with local system L such that

LU [dimZ][−m]

is a summand of Rf∗QX
|U . Also, we know Rf∗QX

∈ D[0,2d] with respect to the standard t-structure,
so

m− dimZ ≤ 2d.

This gives the desired result. □

Next we consider the Ngo Support Theorem regarding the Dolbeault moduli. Denote M = MDol

with Hitchin fibration h : M ! A. Define A0 := {α|Cα ⊆ T ∗C integral} to be the set of points which
are spectral data of integral curves from Exercise 2.13, and let Asm be those points corresponding to
smooth curves. Let M0 = h−1(A0), and M sm = h−1(Asm). We see hsm : M sm ! Asm has support
Asm. Denote C ! A0 the spectral curve where the fibre over α is Cα.

Theorem 2.17. The support of h0 : M0 ! A0 is supph0 = A0.

Proof. (Sketch)

(1) Symmetries: P 0 := Pic0(C/A0) is a commutative group scheme over A0, which acts on M0

by the fibrewise action Pα ↷ JCα where

Lα · Fα = Lα ⊗ Fα.

(2) δ-function: For all α ∈ A0, the abelian group scheme Pα decomposes into a maximal affine
part and abelian variety part

1! Rα ! Pα ! Abα ! 1

where Abα = Pic0(C̃α) for a normalization C̃α ! Cα. Consider the function

δ : A0 ! N

α 7! dimRα.

For any Z ⊆ A0 closed and irreducible, we set δ(Z) := δ(β) for a general β ∈ Z.
(3) Serveri inequality: This is a classical result for curves. Suppose C ! A0 is a family of integral

locally planar curves. Assume JC/A′ is smooth, then for all closed irreducible subvariety

Z ⊆ A0, we have δ(Z) ≤ codimZ.
(4) Enhanced GM inequality: The original GM inequality says Z ∈ supph0 implies codim(Z) ≤

d. The result of Ngo improved this bound to codim(Z) ≤ δ(Z), with equality holding if and
only if Z is detected by R2df∗Q.

13



Combine (3) and (4), and a fact that C is integral and locally planar, we see Z ∈ supph0 means it
must be detected by R2df∗Q. But R2df∗Q is the top degree cohomology of the fibres. Using the

fact that JC is irreducible, we get R2df∗Q is a rank 1 local system on A0, which means the only

element of the support is A0. □

2.5. Betti moduli space. Recall that a mixed Hodge structure is given by an increasing filtration
W• on H∗(X,Q) and a decreasing filtration F • on H∗(X,C). Define

kHdgd(X) := (W2k ∩ F k) ∩Hd(X).

Theorem 2.18 (Shende). Let MB be the Betti moduli space. We have

(1) H∗(MB) = ⊕ kHdgd(MB).

(2) ck(γ) ∈ kHdg∗(MB) for any tautological class.

Exercise 2.19. Prove (1) for torus C∗ × · · · × C∗.

Proof. (Key ingredients) Using that the filtrations W•, F
• are multiplicative, and that ck(γ) generate

H∗, it suffices to prove (2).

(1) We use the fact that H∗(BGLn) = ⊕ kHdg2k(BGLn), where we have H∗(BGLn) =

Q[c1, . . . , cn] for ck ∈ kHdg2k(BGLn). When n = 1, we have H∗(BGm) = H∗(CP∞) = Q[c1],
so this is similar to a pure Hodge structure.

(2) Obtain functoriality of W•, F
•, ck(γ) from the ck of the previous step.

(3)

Theorem 2.20 (Mellit). There exists w ∈ W4H
2(MB) satisfying the Lefschetz symmetry,

i.e. the map
wi : H•(MB)! H•+2i(MB)

induces a map

wi : GrWdMB
−2iH

•(MB)! GrWdMB
+2iH

•+2i(MB)

The idea of the proof of this theorem is to first show for C∗ × C∗, then show MB admits
a “cell decomposition” into (C∗)ℓ.

□

Proposition 2.21. The P = W conjecture is true if and only if for any set of tautological classes
{cki(γi)}, we have ∏

cki(γi) ∈ P∑
kiH

∗(MDol)

Proof. For two filtrations with Lefschetz symmetry, if one is contained in the other, then they are
equal. □

To end the discussion on P = W conjecture, we give the steps of showing∏
cki(γi) ∈ P∑

kiH
∗(MDol).

Step 1: Let h : M ! A be the Hitchin fibration. For any element α ∈ Hℓ(M,Q) =
Hom(Q

M
,Q

M
[ℓ]), we have an induced map

α : Rh∗(QM
)! Rh∗QM

[ℓ].

Consider the universal family U ! C ×M , we have ck(U) ∈ H2k(C ×M), giving us

chk(U) : Rh∗(QM
)! Rh∗QM

[2k].

Under this map, elements of form pτ≤i(. . . ) are sent to elements of form pτ≤i−2k(. . . ).
14



We claim that if we show that such images are of form pτ≤i−k, i.e. bring the bound from i− 2k
to i− k, then we are done. Because if this holds, then we have

· ∪ ck(γ) : Pi ! Pi+k

(where as the trivial bound is Pi+2k). Now apply this to the fundamental class 1 ∈ P0H
0(MDol)

and we find ∏
cki(γi) =

∏
cki(γi) · 1 ∈ P∑

kiH
∗(MDol).

Step 2: We consider an ideal situation. Say f : X ! Y is smooth and α ∈ Hℓ(X) inducing
α : Rf∗QX

! Rf∗QX
[ℓ]. For now let us make the assumptions (which we shall see is too good to

be true in practice) that supp(f) = {Y } and that we only want to push the bound by 1 instead of
by k. So we have

α : pτ≤i(. . . ) 7!
pτ≤i−1(. . . )

if and only if the induced map on the i-th degree

α : pH i(Rf∗QX
)! pH i(Rf∗QX

[ℓ]) = pH i+ℓ(Rf∗QX
)

is 0. Since we have full support, we have a map

α : ICY (Li)! ICY (Li+ℓ)

so the above map vanishes if and only if for some U ⊆ Y open, α|U : Li ! Li+ℓ is 0. Now this can
be verified by hand.

The problem is that in our case for the Hitchin fibration, supp(h) is really large. Though we
know that supp(h0) = A0, there can still be many supports in A−A0. Also, the goal is to push the
bound to k, not 1. For the latter problem, the “Global Springer theory” of Zhiwei Yun was used.

Step 3: It is possible to reduce to the ideal situation above using a stronger version of support
theorem by Chaudouard-Laumon, and a critical chart construction by Maulic-Shen.

Consider a new moduli. For a point p ∈ C, let Mp be the moduli of slope stable bundles (E,Θ)
where Θ : E ! E ⊗ ωC(p). This gives us

hp : Mp ! Ap := ⊕h0(C, (ωC(p))
⊗i)

which we call the twisted Hitchin fibration.

Theorem 2.22 (Chaudouard-Laumon). We have

supp(hp) = {Ap}.

Example 2.23. The basic idea when g = 2, n = 2, d = 1 is that a subscheme of form Z =
{non-reduced spectural curve} is might be a support for h, but never for hp. In this case, we have
dimM = 10, dimA = 5,dimZ = 2, and δ(Z) = 3 = codimZ, so Z might be a support. On the other
hand, with a point p, we have dimMp = 13,dimAp = 7,dimZp = 2, and δ(Zp) = 4 < codimZ, so
it is not in the support by Ngo’s support theorem.

3. Bridgeland stability

The references for this talk are Fourier-Mukai Transforms in Algebraic Geometry by Huybrechts,
Lectures on Bridgeland Stability by Macr̀ı-Schmidt, Lectures on non-commutative K3 surfaces,
Bridgeland stability, and moduli spaces by Macr̀ı-Stellari.

Definition 3.1. A K3 surface is a smooth projective surface S/C such that ωS = OS and
π1(S) = {1}.

Basic examples of K3 surfaces are hypersurfaces of P3 of degree 4, and double covers of P2 ramified
over a degree 6 curve.

15



Definition 3.2. A hyperKähler (HK) variety is a smooth projective variety X with π1(X) = 1 and
H0(X,Ω2

X) = C · ω for some holomorphic symplectic form ω.

Remark 3.3. HyperKähler implies dimX is even with ωX = OX .

Example 3.4. • K3 surfaces are HK.
• Hilbert schemes X = S[n] of a K3 surface S are HK.
• MH(S, ν) the moduli of Geiseker-stable (with respect to some H ∈ |O(1)|) sheaves on K3
surfaces of a fixed class ν (where ν is primitive and H is ν-generic) is HK. We know

T[E]M ∼= Ext1(E,E),

and the map

Ext1(E,E)× Ext1(E,E)! Ext2(E,E)! Ext0(E,E)∨ = C,

where the first arrow is the Yoneda map, and the second by Serre duality, gives us the 2-form
for the HK structure.

• Let Y be a cubic 4-fold in P5. The Fano variety

F (Y ) = {[l] ∈ Grass(2, 6)|l ⊆ Y }

is a HK 4-fold which is deformation equivalent to S[2] for some K3 surface S.

In this section we will construct a moduli of stable objects for a cubic 4-fold, which will be a HK
variety.

3.1. Derived category of coherent sheaves. From now on we denote D(X) = Db(coh(X)). Let
X,Y be smooth projective varieties over C. For f : X ! Y , recall derived functors

Rf∗ : (F
q.i.
−−! I•) 7! f∗(I

•),

Lf∗ : (E• ! F ) 7! f∗(E•),

where E• is a resolution by locally free sheaves (we do not have enough projective objects). For
F,G ∈ D(X), we also have F ⊗L G ∈ D(X). For simplicity, we will omit the letters L and R from
now on.

Definition 3.5. For K ∈ D(X × Y ), the Fourier-Mukai functor associated to K is

ΦK : D(X)! D(Y )

F 7! pr∗(pr
∗F ⊗K).

Example 3.6. For f : X ! Y , if Γf ⊆ X × Y is the graph of f , then ΦOΓ
= f∗.

Theorem 3.7. If F : D(X) ! D(Y ) is an equivalence, then there exists a unique K such that
F = ΦK .

Theorem 3.8. The following are preserved under derived equivalences:

(1) dimX,
(2) ⊕m≥0H

0(X,±mKX),
(3) ⊕p+q=kH

p,q(X).

We consider some non-trivial examples of derived equivalence.

• Let A be an abelian variety, and Â be its dual. Consider the Poincaré line bundle P ! A×Â.

A result of Mukai states D(A)
ΦP−−! D(Â) is an equivalence.
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• Let S be a K3 surface. The Mukai cohomology

H̃(S,Z) := H0(S,Z)⊕H2(S,Z)⊕H4(S,Z)
has a weight 2 Hodge structure given by

H̃2,0 = H2,0, H̃0,2 = H0,2, H̃1,1 = H0 ⊕H1,1 ⊕H4.

We define a pairing on H̃

⟨(a, b, c), (a′, b′, c′)⟩ := bb′ − ac′ − a′c.

Define Mukai vector
v : K0(S)! H̃(S,Z)
[E] 7! ch(E)

√
td(S)

where K0 is the Grothendieck group. Then one has ⟨v(E), v(F )⟩ = −χ(E,F ).

Theorem 3.9. For K3 surfaces S, S′, we have D(S) ∼= D(S′) if and only if H̃(S,Z) ∼=
H̃(S′,Z). The second ∼= refers to a Hodge isometry with respect to the decomposition and
pairing..

Proof. (Sketch, assuming the ⇒ direction is proven) Suppose we have φ : D(S)
∼
−! D(S′).

Consider (0, 0, 1), (−1, 0, 0) ∈ H̃(S), which are mapped to v, v′ by ϕ. The intersection matrix
of these two vectors is then

U =

[
v · v v · v′
v′ · v v′ · v′

]
=

[
0 1
1 0

]
.

A result of Mukai states that there is a non-empty moduli of stable sheaves on S’ of class v,
and M is a K3 surface. Since we have found a v′ such that v · v′ = 1, one can show M has a
universal family E !M × S′. Using some results from homological algebra, we can show

D(S′)
ΦE−−! D(M)

is an equivalence. This induces a map ΦM : H̃(S′) ! H̃(M) where ΦM (v) = (0, 0, 1).
Thus we conclude H2(S) ∼= H2(M) is a Hodge isometry, and a general statement about K3
surfaces of Torelli implies S ∼= M . □

3.2. Semi-orthogonal decomposition.

Definition 3.10. A semi-orthogonal decomposition of D(X) is a sequence of triangulated subcate-
gories ⟨A1, . . . , An⟩ such that

(1) Hom(F,G) = 0 if F ∈ Ai, G ∈ Aj for i > j,
(2) for all F ∈ D(X), there exists “filtration”

0 = Fn ! Fn−1 ! . . .! F0 = F

with Cone(Fi ! Fi−1) ∈ Ai.

Observe that the category D(C) = D(SpecC) is equivalent to the category of finite dimensional
graded vector spaces over C by

V • 7! ⊕H i(V •).

For E ∈ D(X), define
ϕE : D(C)! D(X)

V 7! V ⊗ E = ⊕Vi × E[−i].

One can check that ϕE is fully faithful if and only if Hom(E,E) = C and Ext>0(E,E) = 0. We call
such an E an exceptional object. Define ⟨E⟩ = im(ϕE).
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Example 3.11. The sheaf O(i) on Pn viewed as a complex is exceptional.

Definition 3.12. A triangulated subcategory A ⊆ D(X) is right admissible if α : A ↪! D(X)
admits a right adjoint α! : D(X)! A.

Example 3.13. If E is exceptional, ⟨E⟩ is always right admissible. We also have

ϕ!
E(F ) = RHom(E,F ) ∈ D(C).

Lemma 3.14. If A ⊆ D(X) is right admissible, then we have a semi-orthogonal decomposition

D(X) = ⟨A⊥, A⟩
where

A⊥ = {F ∈ D(X)|Hom(E,F ) = 0 for all E ∈ A}.

Proof. Say α : A ↪! D(X) is the inclusion. Let F ∈ D(X). We have an element

Id ∈ Hom(α!(F ), α!(F )) ∼= Hom(αα!(F ), F ).

We can complete αα!(F )! F to an exact triangle

αα!(F )! F ! B

where B is the cone, so it suffices to prove B ∈ A⊥. From this triangle, we get a long exact sequence
for E ∈ A as follows

. . .! Hom(α(E), αα!(F ))! Hom(α(E), F )! Hom(α(E), B))! . . .

Note that Hom(α(E), αα!(F )) ∼= HomA(E,α!(F )) ∼= Hom(α(E), F ). One can also show that
Ext1(α(E), αα!(F )) ∼= Ext1(α(E), F ). This gives us Hom(α(E), B) = 0. Since E ∈ A is arbitrary,
we conclude B ∈ A⊥. □

Corollary 3.15. Given exceptional objects E1, . . . , En ∈ D(X) with Ext·(Ei, Ej) = 0 for i > j, we
call this an exceptional collection, and obtain semi-orthogonal decomposition

D(X) = ⟨KuX , E1, . . . , En⟩
where KuX = ⟨E1, . . . , En⟩⊥ is the Kuznetsov component.

Example 3.16. Let X be a Fano variety with −KX = rH for some r > 0. Then

OX ,OX(H), . . . ,OX((r − 1)H)

is an exceptional collection. So

D(X) = ⟨KuX ,O, . . . ,O((r − 1)H)⟩.

Let X = Pn, we know KPn = (−n− 1)H.

Theorem 3.17. We have SOD D(Pn) = ⟨O, . . . ,O(n)⟩.

Lemma 3.18. There exists a resolution on Pn × Pn

0! Ωn(n)⊠O(−n)! . . .! Ω1(1)⊠O(−1)! O(Pn × Pn)! O∆ ! 0.

Proof. We need to find a section s ∈ H0(Pn × Pn, TPn(−1)⊠O(1) that vanishes on ∆, then take
Koszul resolution.

Consider Pn = P(V ) where x ∈ P(V ) corresponds to a one dimensional subspace ⟨x⟩ ⊆ V .
Consider

O ⊠O(−1)! V ⊠O ! TPn(−1)⊠O
where on the fibre over (x, y) we have ⟨y⟩ ! V ! V/⟨x⟩, which means the composition vanishes
exactly on (x, y) ∈ ∆.

□
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Proof of theorem. Write O∆
∼= K in D(Pn × Pn). For F ∈ D(Pn), we have

F ∼= ΦO∆
(F ) ∼= ΦK(F ) ∈ ⟨ΦK0(F ), . . .ΦK−n(F )⟩

since each K−i is a vector space.
Manually computing gives us

ΦK−i(F ) = RΓ(F ⊗ Ωi(i))⊗O(−i) ∈ O(−i).

□

3.3. Calabi-Yau categories.

Definition 3.19. A Serre functor for a triangulated category D is an auto-equivalence SD such
that

Hom(E,F )∨ ∼= Hom(F, SD(E))

where the isomorphism is functorial in E and F .

Remark 3.20. If SD exists, it is unique.

Example 3.21. Let X be a smooth projective variety of dimension n, then

SD(X) = −⊗ ωX [n].

Note that if E is a vector bundle on X, the

H i(X,E) =HomD(X)(OX , E[i])

=HomD(X)(E[i], ω[n])∨

=HomD(X)(OX , E∨ ⊗ ω[n− i])∨

=Hn−i(X,E∨ ⊗ ω)∨.

So SD(X) is indeed given by the usual Serre duality.

Definition 3.22. A triangulated category D is Calabi-Yau of dimension n if SD = [n]. It is
fractional Calabi-Yau of dimension p/q if Sq

D = [p].

Remark 3.23. Note that being fractional CY of dimension 4/2 is not necessarily CY of dimension
2.

Theorem 3.24 (Kuznetsov). Let X ⊆ Pn be a smooth Fano hypersurface of degree d ≤ n. We have

D(X) = ⟨KuX ,OX , . . . ,OX(n− d)⟩.
Then KuX has Serre functor with

Sd/c =

[
(n+ 1)(d− 2)

c

]
where c = gcd(d, n+ 1).

Example 3.25. For a cubic 3-fold, we have S3
KuX

= [5]. For a cubic 4-fold, we have SKuX = [2].

We shall prove the above theorem for cubic 4-folds in the remainder of this section. First we
remark a theorem related to the previous example, as [2] is the Serre functor for a K3 surface.

Theorem 3.26 (Kuznetsov). Let X be some cubic 4-folds in P5. For a K3 surface S, we can find
such X that KuX = D(S). For a very general choice of X (away from countably many divisors) we
have KuX ̸∼= D(S) for any surface S.

Theorem 3.27 (Bondal). Let X be a smooth projective variety with semi-orthogonal decomposition
D(X) = ⟨A,B⟩. Then A,B are (left and right) admissible subcategories.
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Let α : A ↪! D be admissible, recall that D = ⟨A⊥, A⟩ = ⟨A,⊥A⟩, where
⊥A = {F |Hom(F,E) = 0 for all E ∈ A}.

Definition 3.28. The left, right mutation functors through A are

LA := ii∗ : D ! D where i : A⊥ ↪! D, i∗ ⊣ i,

RA := jj! : D ! D where i : ⊥A ↪! D, j ⊣ j!.

For all F ∈ D, we hav ethe following exact triangles

αα!(F )! F ! LA(F ),

RA(F )! F ! αα∗(F ).

Example 3.29. If A = ⟨E⟩, then the above exact triangles become

RHom(E,F )⊗ E
eval
−−! F ! LA(F ),

RA(F )! F
coeval
−−−−! RHom(F,E)∨ ⊗ E.

Example 3.30. We have D(P1) = ⟨O,O(1)⟩, and LO(O(1)) = O(−1)[1].

Proposition 3.31. The mutation functors satisfy the following properties:

(1) LA(A) = RA(A) = 0,

(2) The two maps ⊥A
RA !
LA

A⊥ are inverse equivalences.

(3) If there exists a Serre functor SD, then

SA⊥ = SD ◦ RA|A⊥ , S−1
A⊥ = LA ◦ S−1

D |A⊥

Proof of (3). By definition, the maps

⊥A
S−1
D −!
SD

A⊥

are inverse equivalences. So by (2), SD ◦ RA|A⊥ and LA ◦ S−1
D |A⊥ are auto-equivalences on A⊥. For

F,G ∈ A⊥, we can check

HomA⊥(F,G) = HomD(F,G) = HomD(S
−1
D G,F )∨ = HomA⊥(LA ◦ S−1

D G,F )∨.

□

Now we go back to X ⊆ P5 a cubic 4-fold. Let A = ⟨O,O(1),O(2)⟩. Then S−1
KuX

= LA · O(3)[−4]
by the above proposition. We shall use the following general fact about Cartier divisors: for
F ∈ KuX , i : X ↪! P5, there exists an exact triangle

i∗i∗F ! F ! F ⊗O(−3)[2].

Apply S−1
KuX

, we have

LAO(3)⊗ i∗i∗F [−4]! S−1
KuX

F ! LAF [−2] = F [−2].

Another fact we use is that i∗i∗F ⊗O(3) is inside A. Thus LA of it is 0, and we obtain SKuX = [2]
as required.
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3.4. Bridgeland stability conditions. Let D be a triangulated category. We will be considering
D = D(X) or D = KuX . Denote K0(D) its Grothendieck group. Fix Λ a finite rank free abelian
group, and v : K0(D)! Λ a group homomorphism.

Example 3.32. • For C a smooth projective curve, we may take D = D(C), Λ = H0(C,Z)⊕
H2(C,Z), with v = (rank,deg). This will give us the usual slope stability in the following
construction.

• For S a K3 surface, let Λ = H̃dg(S,Z) := H̃1,1 ∩ H̃(S,Z). We may take v to be the Mukai
vector.

Definition 3.33. A pair σ = (A,Z) on D is a stability condition if

• Z : Λ! C is a group homomorphism, which we call the central charge,
• A is the heart of some bounded t-structure on D (so it is an abelian category),

such that

(1) for all 0 ̸= E ∈ A, Z(E) := Z(vE) ∈ {z ∈ C| Im z > 0 or Im z = 0,Re z < 0}, i.e. the
upper-half plane with the negative half of the x axis. Denote µσ = −ReZ/ ImZ ∈ (−∞,∞]
the slope. Say E is σ-semi-stable if for all 0 ̸= F ⊊ E, µ(F ) ≤ µ(E).

(2) For all E ∈ A, there exists a Harder-Narasimhan filtration

0 = E0 ! E1 ! . . .! En = E

where Fj = Ej/Ej−1 is σ-s.s. and ϕ+ := µ(F1) > · · · > µ(Fn) =: ϕ−.
(3) There exists a quadratic form Q on ΛR = Λ⊗ R such that Q|kerZ is negative definite and

Q(E) ≥ 0

for all σ-s.s E. This corresponds to the discriminant and Bogomolov inequality for the usual
slope stability.

Remark 3.34. The set of stability conditions on D with respect to some fixed Λ and v, denoted
stab(Λ,v)D, can be considered as a topological space with the coarsest topology such that ϕ+, ϕ−, ∥Z∥
are continuous maps for any E.

Theorem 3.35. The map Z : stabD ! Hom(Λ,C) that sends (A,Z) to Z is a local homeomorphism.

The local injectivity part can be proven using the HN-filtration from definition.

Example 3.36. • Let D = D(C), then (A,Z) = (coh(C),−deg+i rank) is a stability condi-
tion. When g > 1, one can show all stability conditions are usual slope stability conditions.

• For surfaces S, we can not take coh(S) as A because a skyscraper sheaf satisfies deg =
rank = 0, so part (1) of the definition does not hold. To fix this, we need to include data of
higher cohomology into Z.

Definition 3.37. Let A ⊆ D be the heart of some bounded t-structure. A pair of subcategories
(T, F ) is a torsion pair if

• Hom(T, F ) = 0,
• for all E ∈ A− {0}, there exists a unique TE ∈ T , FE ∈ F such that

0! TE ! E ! FE ! 0

is a short exact sequence in A.

Example 3.38. When A = coh(X), we can take T be the torsion sheaves and F be the torsion
free sheaves.
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Lemma 3.39. The tilted heart

A# :=

M ∈ D : Hj
A(M) =


0, j ̸= 0,−1,

∈ T, j = 0

∈ F, j = −1


is the heart of some bounded t-structure.

Note that if the pair (T, F ) decomposes A into the torsion part and torsion free part. For A#,
the definition says it decomposes into T and F [1].

Example 3.40. The complex [E−1 f
−! E0] is in A# if coker f ∈ T, ker f ∈ F .

Example 3.41. Let X be a smooth projective variety, H an ample line bundle. β ∈ R. Set

T β
H := {E ∈ coh(X)| all HN factors of E satisfy µH > β},

F β
H := {E ∈ coh(X)| all HN factors of E satisfy µH ≤ β}

where µH is the Gieseker slope with respect to H. Then (T β, F β) is a torsion pair. Denote the

tilting heart of this pair by cohβ.

Now let X be a surface. We have the following setups

• chβ(E) := e−βH ch(E) the twisted Chern character,
• take λ to be the Lattice generated by (H2 rank(E), H ch(E), ch2(E)) ∈ Q3 for all possible
choices of E.

Theorem 3.42. For α > 0, β ∈ R, σα,β = (cohb(X), Zα,β) where

Zα,β :=
1

2
αH2 chβ0 − chβ2 +iH chβ1

is a stability condition.

Proof for part (1) of definition. For simplicity assume β = 0. For T 0
H , by definition, we always have

Hχ1 ≥ 0 with equality only for some 0-dimensional sheaf A. For F 0
H , we have H ch1 ≤ 0, so for

F 0
H [1], we have H ch1 ≥ 0 with equality on for Gieseker semi-stable torsion free sheaf B. Now in the

H ch1 = 0 case, we have
Zα,0(A) = −1 < 0

and
∆H(B) = −2(H2 ch0B) ch2B + (H ch1B)2 ≥ 0

by Bogomolov inequality. Since H2 ch0(E) > 0, we conclude ch2E ≤ 0 and Zα,0(B[1]) < 0. □

Remark 3.43. On 3-folds, (cohβ(X), Zα,β) is no longer a stability condition, because the skyscraper
sheaves have no ch0, ch1, ch2, so Z(E) might be 0 for E ̸= 0. We call such a stability condition weak.
Similar as before, we need to somehow involve ch3 in Z. It is conjectured that “tilt stable” objects
in (cohβ, Zα,β) satisfy some inequalities regarding ch3 in the 3-fold case.

Now we define a stability condition on Kuznetsov components.

Proposition 3.44. Suppose D⟨D′, E1, . . . , En⟩ where D′ = ⟨E1, . . . , En⟩⊥. Let σ = (A,Z) be a
weak stability condition, A′ = A ∩D′, Z ′ = Z|K0(D′). If the following are satisfied

(1) Ei ∈ A,
(2) SD(Ei) ∈ A[1],
(3) Z(Ei) ̸= 0,
(4) 0 ̸= F ∈ A′ ⇒ Z(F ) ̸= 0,

then σ′ = (A′, Z ′) is a stability condition on D′.
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Proof. (Sketch) The key is to show that A′ is the heart of some bounded t-structure on D′. For
F ∈ D′ we need H i

A(F ) ∈ A′. To show this, let q be minimal such that Hq
A(F ) ̸= 0. Prove for this q

and proceed by induction. Thus we need

Ext•(Ei, H
q
A(F )) = 0.

Using the exact triangle

Hq(F )[−q]! F ! τ>q
A (F )

we get

Ext(Ei, H
q(F )) = Ext(Ei, τ

>q(F )[q − 1]).

On one side, we have

Extp(Ei, H
q(F )) =Hom(Ei, H

q(F )[p])

=Hom(Hq(F )[p], SD(Ei))
∨

=0

for p > 1 because Hq ∈ A and SD(Ei) ∈ A[1]. On the other hand,

Hom(Ei, τ
>q
A (F )[q − 1 + p]) = 0

if and only if −p+ 1 ≥ 0, i.e p ≤ 1 because Ei ∈ A and τ>q[q − 1 + p] ∈ D>−p+1. □

Example 3.45. Let X ⊆ P4 be a cubic 3-fold, KX = −2H, D(X) = ⟨KuX ,O,O(1)⟩. We would like
heart A such that O,O(1) ∈ A, O(−2)[3],O(−1)[3] ∈ A[1]. Start with the weak stability condition

(coh−
1
2 (X), Zα,− 1

2
). For all α > 0, we have O,O(1),O(−2)[1],O(−1)[1] ∈ coh−

1
2 (X), and for a close

to 0, we have

µσ,α,− 1
2
(O(−2)[1]) < µσ,α,− 1

2
(O(−1)[1]) < 0 < µσ,α,− 1

2
(O) < µσ,α,− 1

2
(O(1)).

Tilt coh−
1
2 again with respect to µ = 0 for α closed to 0, we get a new condition that satisfy the

requirements of the above proposition

coh0
α,− 1

2

(X), Z0
α,− 1

2

:= −iZα,− 1
2
.

Hence applying the proposition, we get a stability condition on KuX .

Remark 3.46. For cubic 4-folds, take a line ℓ ⊆ X, we get a conic fibration X ! P3. This gives
us a sheaf of Clifford algebra B0. Now KuX embeds into D(P3, B0) and we can replace D(X) by
D(P3, B0) to obtain a stability condition.

3.5. Moduli of objects in derived category.

3.5.1. Moduli on a variety. Let X be a scheme of finite type over C. An object E ∈ D(X) is a
perfect complex if locally on X, E is isomorphic to a bounded complex of locally free sheaves. Write
Dperf(X) the subcategory of perfect complexes.

Remark 3.47. We can perform derived pullbacks on perfect objects. Note that X is smooth if and
only if Dperf = D(X).

Definition 3.48. Given a scheme T of finite type, E ∈ Dperf(X × T ), say E is universally gluable

over T if for all t ∈ T , Exti(Et, Et) = 0 for all i < 0.

Example 3.49. A vector bundle on X × T is universally gluable.
23



Definition 3.50. Let X be smooth projective, the moduli stack of perfect universally gluable (pug)
complexes is the functor of groupoids

Mpug(X) : Schfin. type/C! Grp

T 7! {pug complexes on T ×X}.
Theorem 3.51. The stack Mpug is an algebraic stack, locally of finite type over C.

3.5.2. Moduli of σ-semi-stable objects. Let X be smooth projective. Fix a stability condition
σ = (A,Z) with respect to Λ, v. Fix w ∈ Λ. Define

Mσ(w) : T 7! {E ∈ Dperf(X × T )|Et ∈ A is σ-s.s., v(Et) = w},
Ms

σ(w) : T 7! {E ∈ Dperf(X × T )|Et ∈ A is σ-s., v(Et) = w}.
One might as whether

Ms
σ(w) ⊆ Mσ(w) ⊆ Mpug(X)

are open or of finite type. This is known to be positive for X is a surface, and σ is constructed via
tilting.

Another question is are there moduli spaces Mσ(w) and M s
σ(w) for the moduli stacks that

parameterize S-equivalence classes and isomorphism classes respectively. General results by Alper–
Halpern-Leistner–Leistner gives good moduli spaces as algebraic spaces.

Say S is a proper algebraic space of finite type, E ∈ Dperf(X × S) is a family of σ-semi-stable
objects of class w. Define the Bayer-Macri divisor Dσ,E on S by setting its intersection number
with projective integral curves to be

Dσ,E · C = Im

(
−Z(pX∗(E|X×C))

Z(w)

)
.

Lemma 3.52 (Positivity lemma). (1) Dσ,E is nef on S.
(2) Dσ,E · C = 0 if and only if on two general points c, c′ ∈ C, we have Ec ∼ Ec′ where ∼

denotes S-equivalence.

On M s
σ(w), the Bayer-Macri divisor is strictly nef. A general result by Villalobos-Paz states

that a proper algebraic space with “mild singularities” and a strictly nef divisor class is in fact a
projective scheme.

3.5.3. Moduli of families of Kuznetsov components.

Definition 3.53. Given f : X ! S, a subcategory D ⊆ Dperf(X) is S-linear if D⊗ f∗(Dperf(X)) ⊆
D. A SOD

Dperf(X) = ⟨D1, . . . , Dn⟩
is S-linear if each Di is.

Example 3.54. Let X ⊆ P5 × S be a family of cubic 4-folds. Then

Dperf(X) = ⟨KuX , f∗Dperf(S), f
∗Dperf(S)⊗O(1), f∗Dperf(S)⊗O(2)⟩

is a S-linear SOD.

Theorem 3.55 (Base change). For s ∈ S, we have

Dperf(Xs) = ⟨D1|s, . . . , Dn|s⟩
for any S-linear SOD.

Definition 3.56. Given f : X ! S smooth proper and D ⊆ Dperf(X) admissible and S-linear. Set

Mpug(D/S) : T/S 7! {E ∈ DT such that E is universally gluable over T} .
Theorem 3.57. Mpug(D/S) is an algebraic stack, locally of finite type over S.
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3.5.4. Mukai’s theorem for K3 categories.

Proposition 3.58. Let X be a cubic 4-fold, there exists Mukai cohomology H̃(KuX ;Z) with
• weight 2 Hodge structure,
• a Mukai vector v : K0(KuX)! H̃,
• a pairing compatible with −χ on K0,
• that if KuX ∼= D(S), then H̃(KuX) = H̃(S).

Theorem 3.59 (BLMNPS). Let 0 ̸= ν ∈ H̃alg(KuX ;Z) (alg here means integral of type (1, 1)) be a
primitive vector. Take σ generic to ν, then Mσ(ν) has a good moduli space Mσ(ν) which is smooth

projective hyperKähler of dimension ν2 + 2, deformation equivalent to S[n] for some K3 surface S.

The first application is for any cubic 4-fold X, take λ1, λ2 ∈ H̃alg(KuX ;Z) where λi = v(i∗(Oℓ(i))),
then Mσ(λi) is a locally complete 20-dimensional family of polarized hyperKähler manifold. Fano
varieties of lines correspond to Mσ(λ1). LLSvS 8-folds from twisted cubics correspond to Mσ(λ1 +

2λ2). OG10 from elliptic quintics correspond to M̃σ(2λ1 + 2λ2).
Another application is the following theorem from Addington-Thomas and BLMNPS.

Theorem 3.60. There exists K3 surface S such that KuX ∼= D(S) if and only if we can find vectors

in H̃alg(KuX ;Z) such that the intersection matrix is

[
0 1
1 0

]
.
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