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Talk 0: Introduction

Valentin Bosshard, Patricia Dietzsch

Quasimorphisms are a tool to understand automorphism groups better. We start by
giving definitions of different automorphism groups, state some well-known facts, then
look at normal subgroups and define norms on these groups. The main reference for
automorphism groups in this introduction is the book [Ban97] and the survey [Man21].

Let M be a connected smooth manifold throughout this introduction.

A. Automorphism groups

Let us first introduce several automorphism groups that we want to study. We can
equip our manifold M with extra structure and study the group of isomorphisms that
preserve this structure:

• Homeo(M), the group of homeomorphisms is defined for any topological space.
• Diffr(M), the group of Cr-diffeomorphisms for 1 ≤ r ≤ ∞. For r =∞ we simply

write Diff(M) for the group of smooth diffeomorphisms.
• Diff(M, vol), the group of diffeomorphisms that preserve a given volume form on
M .

• Iso(M, g), the group of diffeomorphisms that preserve a given Riemannian metric
on M .

• Symp(M,ω), the group of diffeomorphisms that preserve a given symplectic form
on M .

• Ham(M,ω), the group of Hamiltonian diffeomorphisms of (M,ω).

When we put a topology on these groups one can do topology and for example try to
find the homotopy type or the homotopy groups of these topological groups. For example
Diff(S1) is homotopy equivalent to O(2). However, we are more interested in the algebraic
structure in this seminar.

These groups are huge (except for Iso(M, g) which is compact for compact M). To
mention one result of how large these groups are:

Theorem 0.1. If dim(M) ≥ 2, then Diff(M) acts transitively on k-tuples of points in M
for every k > 0.

Moreover, many questions remain open, like:

Open question 0.2. If dim(M) ≥ 2, is there a finitely generated, torsion-free group that
is not isomorphic to some subgroup of Homeo(M)?

Another important question: Does the automorphism group determine the manifold
and its structure?

Theorem 0.3 ([Whi63]). Let M and N be compact manifolds both with or without bound-
ary. If there is a group isomorphism Φ : Homeo(M)→ Homeo(N) then there is a homeo-
morphism w : M → N such that Φ(ψ) = wψw−1 for all ψ ∈ Homeo(M).

Theorem 0.4 ([Fil82]). Let M and N be manifolds without boundary. If there is a
group isomorphism Φ : Diffr(M) → Diffs(N) then r = s and there is Cr-diffeomorphism
w : M → N such that Φ(ψ) = wψw−1 for all ψ ∈ Diffr(M).

Similar statements hold for the volume-preserving and symplectic case (see [Ban97]).

B. Normal subgroups, simplicity and perfectness

Our main focus in this seminar lies on the algebraic analysis of automorphism groups.
After some first thoughts we locate some proper normal subgroups:

• If M is non-compact one can restrict to compactly supported automorphisms (in
this case we write subscripts Diffc(M)).

• If M has boundary one can restrict to automorphisms preserving a neighbourhood
of the boundary (in this case we write subscripts Diff∂M (M)). A topological group
may be connected or not.
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• The connected component that contains the identity is simple (we denote this
component by Diff(M)0).

Recall that a group G is simple when it contains no non-trivial proper normal subgroup.
For any group G the commutator subgroup [G,G] is normal. If G = [G,G] then we say G
is perfect.

Theorem 0.5 (Anderson, Chernavski, Kirby, Edwards). For compact manifolds M the
group

Homeo(M)0

is perfect and simple.

Theorem 0.6 (Herman, Mather, Thurston, (A shorter proof: Mann [Man16])). The
group

Diffrc(M)0

is perfect and simple for 1 ≤ r ≤ ∞, r 6= n+ 1, where n is the dimension of M .

The simplest case that is not covered by the theorem is still not settled.

Open question 0.7. Is the group Diff2(S1)0 simple?

In this seminar we will use the statement about the group of Hamiltonian diffeomor-
phisms:

Theorem 0.8 ([Ban78, Ban97]). The group Ham(M) is perfect and simple for closed
symplectic manifolds M .

In the case of more structure we have the following results:

Theorem 0.9 (Thurston). Suppose M is closed and vol a volume form on M . Then the
group

[D̃iff(M, vol)0, D̃iff(M, vol)0]

is perfect and

[Diff(M, vol)0,Diff(M, vol)0]

is simple.

Theorem 0.10 ([Ban78]). Suppose M is closed and ω a symplectic form on M . Then
the group

[S̃ymp(M,ω)0, S̃ymp(M,ω)0]

is perfect and

[Symp(M,ω)0, Symp(M,ω)0]

is simple.

For manifolds with boundary we have the following result:

Theorem 0.11 ([Fat80]). The group

Homeo∂Bn(Bn, vol)

is simple for n ≥ 3.

(Note that we omitted the subscript 0 as the group is arcwise connected due to the
Alexander trick.) However, only very recently it was proved that:

Theorem 0.12 ([CGHS20]). The group Homeo∂B2(B2, vol) is not simple.

Open question 0.13. Is the group Homeo(S2, vol)0 simple?

When we do not restrict to compactly support McDuff proved:

Theorem 0.14 ([McD80]). The group Diff(Rn)0 is perfect when n ≥ 3.
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C. Fragmentation property

One important ingredient in the simplicity proofs is fragmentation. It is interesting
itself as it leads to a norm on the automorphism groups, but usually it is very hard to
compute explicitly.

Definition 0.15. A group of diffeomorphisms G ⊂ Diff(M) has the fragmentation prop-
erty if for any open cover U of M and any g ∈ G, there are g1, . . . , gs ∈ G with support
supp(gj) ⊂ Uj ∈ U and g = g1 · · · gs.

Theorem 0.16. The group Homeoc(M)0 and Diffrc(M)0 have the fragmentation property
for all 1 ≤ r ≤ ∞.

D. Word norms

Suppose a group G is generated by a subset S ⊂ G. That is, any element g ∈ G can be
written as a product of finitely many elements s1, . . . , sn ∈ S: g = s1 . . . sn. Then there
is a norm on G associated to S, called the word norm || · ||S , defined by

||g||S = inf{n ∈ N|∃s1, . . . , sn ∈ S : g = s1 . . . sn}

Example 0.17. If G is perfect and simple, then G = [G,G] is generated by the set
of commutators: S = {aba−1b−1|a, b ∈ G}. The corresponding word norm is called
commutator length cl.

Example 0.18. If G has the fragmentation property, G is generated by the set

S = {g ∈ G | g is supported in an embedded ball}.
The corresponding word norm is called fragmentation norm frag.

Example 0.19. ([BKS18]) A diffeomorphism Ψ ∈ Diff0(M) is called autonomous if there
exists a vector field X with flow Ψt : M → M and Ψ1 = Ψ. The set Aut(M) of all
autonomous diffeomorphism generates Diff0(M). The word norm associated with S =
Aut(M) is called the autonomous norm.

An interesting question is, whether || · ||S is bounded or not. Here is a list of some
known results:

Theorem 0.20 ([Ghy01, Theorem 6.2]). cl(Homeo0(S1)) = 1.

Theorem 0.21 ([GG04]). The commutator length cl(Diff0(S2, vol)) is unbounded.

More advanced methods yield

Theorem 0.22 ([BIP08]). The commutator length of the sphere Sn is uniformly bounded
by

cl(Diff0(Sn)) ≤ 4.

For any closed connected 3-dimensional manifold M ,

cl(Diff0(M)) ≤ 10.

Theorem 0.23 ([Mil14]). The commutator length on Diffr(A)0 where r 6= 3 and A de-
notes the annulus is unbounded.

Theorem 0.24. [BKS18, GG04] For g ≥ 1 the norm aut is unbounded on the group
Ham(Σg).

The proofs of the unboundedness statements involve quasimorphisms.

E. Quasimorphisms

Definition 0.25. A quasimorphism on a group G is a map

µ : G −→ R
for which there exists a constant R ≥ 0 such that for all g, h ∈ G

|µ(gh)− (µ(g) + µ(h))| ≤ R.

The existence of unbounded quasimorphisms is not always easy. If they exist however,
they can be of help to analyze the group.
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Proposition 0.26. Suppose G admits an unbounded quasimorphism µ that is bounded on
S. Then the word norm || · ||S is unbounded.

Proof. The quasimorphism property implies that for all s1, . . . , sn ∈ S
|µ(s1 . . . sn)| ≤ nL

for some constant L. It follows that

||g||S ≥
|µ(g)|
L

and hence || · ||S is unbounded whenever µ is unbounded. �

Any quasimorphism µ on G is bounded on commutators. Therefore, the proposition
becomes simpler in case of the commutator length:

Corollary 0.27. Suppose G is perfect and simple. If there exists an unbounded quasi-
morphism on G, then cl : G→ N is unbounded.

This motivates the construction of (unbounded) quasimorphisms! Here is a list of some
existence results we will study in this seminar:

Theorem 0.28. [Ghy01] There is a unique quasimorphism on H̃omeo0(S1).

Theorem 0.29. [GG04] For any closed oriented surface Σ of genus at least 1, the vector
space of unbounded quasimorphisms on Diff0(Σ, vol) is infinite dimensional.

Theorem 0.30. [Py06b, Py06a] For any closed oriented surface Σ, the vector space of
homogeneous Calabi quasimorphisms on Ham(Σ) is infinite dimensional.

Theorem 0.31. [EP03] There exists a continuous homogeneous Calabi quasimorphism
on Ham(S2), Ham(S2 × S2, ω ⊕ ω) and Ham(CPn, ωFS).

Open question 0.32. Do there exist more than one continuous homogeneous Calabi
quasimorphisms on Ham(S2)?
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Talk 1: Introduction to Quasimorphisms

Jonathan Clivio, Julian Huber

A. Homogeneous Quasimorphism

In this section we follow closely section 3.1 in [Car13].

Definition 1.1. For a quasimorphism µ : G→ R, we define the defect as

C := C(µ) := sup
g,h∈G

|µ(gh)− µ(g)− µ(h)|

For a fixed group G, we denote the set of quasimorphisms by QM(G). Note that QM(G)
is a R-vector space. One way how µ : G → R can trivially satisfy the quasimorphism
inequality is if µ ∈ L∞(G). Hence, we can consider L∞(G) as a subspace of limited
interest. Hence, dividing out the ”uninteresting” quasimorphisms, we come to the space
QM(G)/L∞(G). The question whether there is a particular representative of this quotient
classes leads us to this definition:

Definition 1.2. A quasimorphism µ : G → R is called homogeneous if the following
holds:

∀g ∈ G, ∀n ∈ Z : µ(gn) = nµ(g).

Or equivalently, for all g ∈ G, the map µ|〈g〉 : 〈g〉 → R is a group homomorphism.

We denote the set of homogeneous quasimorphisms by QMh(G). It turns out homoge-
neous quasimorphisms are the representations, we were looking for:

Definition 1.3. For a quasimorphism µ : G→ R, we define the homogenization of µ by

µ̄(g) := lim
n→∞

µ(gn)

n
.

To prove that this limit exists and defines a homogeneous quasimorphism we need this
lemma

Lemma 1.4 (Fekete). Let (an)n≥1 be a subadditive sequence of non-negative real numbers.
By subadditive, we mean that for all n,m ≥ 1, we have:

an+m ≤ an + am.

Then

lim
n→∞

an
n

= inf
n

an
n
.

Proposition 1.5. Let µ : G → R be a quasimorphism. For each g ∈ G the limit µ̄(g)
exists, the map µ̄ : G → R defines a homogeneous quasimorphism and µ − µ̄ ∈ L∞(G).
Moreover, for two homogeneous quasimorphisms µ′ and µ′′, we have µ′ = µ′′ or µ′−µ′′ /∈
L∞(G).

Proof. We first prove that the limit limn→∞
µ(gn)
n

exists. Fix g ∈ G. W.l.o.g., we may
assume that µ(g) ≥ 0. We define the sequence an := µ(gn) + (n + 1)C where C is the
defect of µ. We prove an ≥ nµ(g) + 2C ≥ 0 by induction:

a1 = µ(g) + 2C ≥ 0

ak+1 = ak + µ(gk+1)− µ(gk) + C ≥ ak + µ(g) = (k + 1)µ(g) + 2C

We used the quasimorphism property |µ(gk+1)− µ(gk)− µ(g)| ≤ C as:

µ(gk+1)− µ(gk)− µ(g) ≥ −C

=⇒ µ(gk+1)− µ(gk) + C ≥ µ(g)

Further, we can use the quasimorphism property for any k, l ≥ 1:

µ(gk+l)− µ(gk)− µ(gl) ≤ C

=⇒ µ(gk+l) ≤ µ(gk) + µ(gl) + C
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Therefore, we find that (an) is a subadditive sequence:

ak+l = µ(gk+l) + (k + l + C) ≤ µ(gk) + µ(gl) + C + (k + l + 1)C = ak + al

We can hence apply the Lemma by Fekete:

µ̄(g) = lim
n→∞

µ(gn)

n
= lim
n→∞

an − (n+ 1)C

n
= lim
n→∞

an
n
− C = inf

n

an
n
− C

To prove µ− µ̄ ∈ L∞(G), we compute:

|µ(gn)− nµ(g)| ≤ |µ(gn)− µ(gn−1)− µ(g)|+ · · ·+ |µ(g2)− µ(g)− µ(g)| ≤ (n− 1)C

Therefore, we find:

|µ(g)− µ̄(g)| = lim
n→∞

1

n
|nµ(g)− µ(gn)| ≤ lim

n→∞

(n− 1)C

n
= C

Thus, we find also that µ̄ is a quasimorphism with defect ≤ 4C:

|µ̄(gh)− µ̄(g)− µ̄(h)| ≤ |µ̄(gh)− µ(gh)|+ |µ̄(g)− µ(g)|+
+ |µ̄(h)− µ(h)|+ |µ(gh)− µ(g)− µ(h)| ≤ 4C

To prove that µ̄ is homogeneous, we compute:

|µ̄(gn)− nµ̄(g)| = lim
k→∞

1

k
|µ̄(gkn)− nµ(gk)| ≤ lim

k→∞

(n− 1)

k
C = 0

Now, let µ′ and µ′′ be homogeneous quasimorphism. Assume that |µ′(g)−µ′′(g)| =: ε > 0.
Then we find:

lim
n→∞

|µ′(gn)− µ′′(gn)| = lim
n→∞

nε =∞

�

Another perspective is that this result gives us the following isomorphism.

Corollary 1.6. For any group G:

QM(G)/L∞(G) ∼= QMh(G)

A nice fact about homogeneous quasimorphism is the following.

Proposition 1.7. Let µ be a homogeneous quasimorphism. Then µ is a class function
i.e. for g, h ∈ G, we have:

µ(hg) = µ(g),

where use the notation hg := hgh−1.

Proof. We compute:

µ(hgn) = µ((hg)n) = nµ(hg)

µ(gn) = nµ(g)

µ(h−1) = −µ(h)

For any n, we therefore find:

|µ(hg)− µ(g)| = 1

n
|µ(hgn)− µ(gn)|

=
1

n
|µ(hgn)− µ(h)− µ(h−1)− µ(gn)|

≤ 1

n
|µ(hgn)− µ(h)− µ(gnh−1)|+ 1

n
|µ(gnh−1)− µ(gn)− µ(h−1)|

≤ 2C

n

Taking the limit with respect to n on both sides, we find the desired result. �

Proposition 1.8. Let µ be a homogeneous quasimorphism and let g, h ∈ G be such that
gh = hg. Then it follows that µ(gh) = µ(g) + µ(h).
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Proof. Denote by C the defect of µ. Using the fact that µ is homogeneous we obtain that

|µ(gh)− µ(g)− µ(h)| = | 1
n
µ((gh)n)− 1

n
µ(gn)− 1

n
µ(hn)|

=
1

n
|µ(gnhn)− µ(gn)− µ(hn)|

≤ C

n
.

By sending n→∞ it follows that |µ(gh)−µ(g)−µ(h)| = 0, which completes the proof. �

B. Simple and perfect groups

In this section we follow section 4.1 in [Pin20] and [Bar].
Let G be any group.

Definition 1.9. Suppose a, b ∈ G then the commutator of a and b is defined by

[a, b] := aba−1b−1.

Definition 1.10. The commutator group of G is defined by

[G,G] := 〈{[a, b] : a, b ∈ G}〉,

i.e. the subgroup generated by all commutators of G.

Definition 1.11. Let g ∈ [G,G]. The commutator length of g is defined by

comm(g) := min

{
k ∈ N : g =

k∏
i=1

[ai, bi], ai, bi ∈ G

}
.

Definition 1.12. A group G is called perfect if G = [G,G].

Example 1.13 (Rose). The special linear group SL2(Fpr ) with p prime number, r ≥ 1
and pr > 3 is perfect.

Definition 1.14. A non trivial group G is called simple if the trivial group {1G} and G
are the only normal subgroups of G.

Example 1.15.

• For n ≥ 5 the alternating group An is simple .
• For n ≥ 2 and any field F the group

PSL(n, F ) := SLn(F )/{λIn | λ ∈ F×, λn = 1}

is simple except in the case where n = 2 and |F | ≤ 3.

Proposition 1.16. Suppose G is simple and non-abelian then it follows that G is perfect.

Proof. Note that since G is non-abelian and not trivial, [G,G] is not trivial. It follows
directly from the definition that [G,G] is normal in G. So G being simple implies that
G = [G,G], i.e. G is perfect. �

Remark 1.17. Note that the converse of Proposition 1.16 not true in general. A coun-
terexample would be G := SL2(Fpr ) with p ≥ 3 prime number and r ≥ 1. The group G is
perfect as seen in Example 1.13. Note that the center of any group is always normal and
that the center of G consists of the elements I2 and −I2 which are distinct because the
characteristic of our field Fpr is not 2. So the group center is not trivial. This shows that
G is not simple.

C. Quasimorphisms and commutator length

The following proposition yields a strategy to prove unboundedness of the commutator
length. It is almost the same as Proposition 0.26 and the following version is taken from
[GG04].

Proposition 1.18. Let Φ: G → R be a non-trivial homogeneous quasimorphism then
commutator length comm : [G,G]→ N is an unbounded function.
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Proof. Denote by C the defect of Φ. Since by assumption Φ is non-trivial, C > 0. Let
g ∈ [G,G] be arbitrary. Then we can write g = a1b1a

−1
1 b−1

1 . . . akbka
−1
k b−1

k with all
aj , bj ∈ G and k = comm(g). Using the triangular inequality and the properties of
homogeneous quasimorphisms we obtain the following estimate:

|Φ(g)| = |Φ(g)− (Φ(a1) + Φ(b1)− Φ(a1)− Φ(b1) + . . . )|

= |Φ(g)− (Φ(a1) + Φ(b1) + Φ(a−1
1 ) + Φ(b−1

1 ) + . . . )|
≤ (4k − 1)C

So we obtain that

comm(g) = k ≥ 1

4

(
|Φ(g)|
C

+ 1

)
which implies that

comm(g) ≥ |Φ(g)|
4C

.

Using this inequality with gp and the fact that Φ is homogeneous we obtain

comm(gp) ≥ p |Φ(g)|
4C

.

This shows that comm is an unbounded function. �

D. Examples of Automorphism groups

In this section we explain the tilde-notation that appears in theorems 0.9 and 0.10 for
this we follow [Row].

Definition 1.19. A universal cover of a connected topological space X is a simply con-

nected space X̃ with a covering map f : X̃ → X.

Proposition 1.20. A universal cover exists if and only if X is connected, locally path-
connected and semilocally simply connected.

In this case we can explicitly construct the universal cover: let X be connected, locally
path-connected and semilocally simply connected with x0 ∈ X define

Y := {paths starting at x0} = {γ : [0, 1]→ X | f(0) = x0}.
We define the following equivalence relation on Y :

γ ∼ γ′ :⇐⇒ γ(1) = γ′(1) and γ, γ′ are homotopy equivalent with respect to {0, 1}.

Then we set X̃ := Y/ ∼ with the map

f : X̃ → X

[γ]∼ 7→ γ(1).

In the explicit example of a connected automorphism group G of an object X, we can
choose the identity idX ∈ G as base-point. Further we define the set

Y := {f : [0, 1]×X → X | f(0, x) = x ∧ ∀t ∈ [0, 1] : f(t, ·) ∈ G}
and the equivalence relation

f ∼ g :⇐⇒ f(1, x) = g(1, x) ∧ ∃F : [0, 1]× [0, 1]×X → X continuous with

F (0, t, x) = f(t, x) ∧ F (1, t, x) = g(t, x) ∧ F (s, 0, x) = x ∧ F (s, 1, x) = f(1, x)

This construction explains the notation used in the theorems 0.9 and 0.10.
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Talk 2: The Homeomorphism group of the circle

Yilin Ni, Reto Kaufmann

The goal of today’s talk is to show that the group of homeomorphisms of the circle
Homeo0(S1) is simple and perfect. To do so, we are first going to exhibit that any
topological group, hence in particular Homeo0(M) for any manifold M , is generated by a
neighbourhood of the identity. Next we are going to define the fragmentation property and
show that for any Homeo0(M) this property implies perfectness and simplicity. Finally
we will conclude by showing that Homeo0(S1) indeed has the fragmentation property.

A. Topological Groups

Definition 2.1. A topological group G is a group endowed with a topology with respect
to which the group operations are continuous.

Definition 2.2. A neighbourhood U of the identity e ∈ G is symmetric if

g ∈ U ⇔ g−1 ∈ U
or equivalently if U = U−1.

Remark 2.3. Any neighbourhood V of the identity contains a symmetric neighbourhood.
Concretely we might take

U = V ∩ V −1

which clearly satisfies U = U−1.

Lemma 2.4. Every open subgroup of a topological group is also closed.

Proof. Let H < G be an open subgroup. Since left translation Lg is a homeomorphism,
Lg(H) = gH is open. It follows that G\H is open as well since its the union of such open
sets

G\H =
⋃

g∈G\H

gH

Hence H is closed. �

Proposition 2.5. Any connected topological group G is generated by any neighbourhood
V of the identity i.e.

G =

∞⋃
n=1

V n

Proof. Let U ⊂ V be a symmetric neighbourhood of the identity. Then

H =

∞⋃
n=1

Un

is an open subgroup. By the Lemma it is also closed and since G is connected it follows
that H = G. �

B. The Fragmentation Property

The standard reference for the fragmentation property of various automorphism groups
is [Ban97].

Definition 2.6. The support of a homeomorphism f : M → M is the closure of the
points which are not fixed by f , i.e.

supp(f) = {x ∈M : f(x) 6= x}

Definition 2.7. A group G ⊂ Homeo0(M) has the fragmentation property if for any finite
open cover U of M and any element g ∈ G, there is a decomposition

g = g1 ◦ g2 ◦ · · · ◦ gn
with gi ∈ G and where the support of each gi is contained in some set of U .

The following proposition is due to Anderson [And58]. We follow the exposition given
in [Man15].
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Proposition 2.8. If Homeo0(M) has the fragmentation property, then it is perfect.

Proof. If Homeo0(M) has the fragmentation property, we can reduce to the case of con-
sidering homeomorphisms whose support is contained in some small open ball B.

Let thus B be such an open ball in M and f ∈ Homeo0(M) such that supp(f) ⊂ B. We
can then choose b ∈ Homeo0(M) such that bn(B)∩ bm(B) = ∅ for n 6= m. To see that this
is indeed possible, consider a chart containing the open ball B and identify the codomain
with all of Rn. b can then be taken to be any translation by at least the diameter of the
ball.

Define then

a(x) =

{
bnfb−n(x) if x ∈ bn(B) for n > 0

x otherwise

and observe that a ∈Homeo0(M) is simply a copy of f in each bn(B) for n > 0 and the
identity in B as well as outside all balls. Note also that a−1 is exactly the same for f−1.

Finally, we consider the commutator of a with b

[a, b] = a−1b−1ab.

Outside of all bn(B) the action of this commutator is the identity so we focus only on the
ball B and its copies bn(B). There it acts as the composition of the following actions:

(1) Every ball bn(B) gets sent to its successor bn+1(B).
(2) We apply a, that is, we apply f in all balls bn(B) except B.
(3) Every ball bn+1(B) gets sent back to its predecessor.
(4) We apply a−1, that is, we apply f−1 in all balls except B.

There are now two important cases to consider:

n ≥ 1: The action of a in bn+1(B) is f and the action of a in bn(B) is f−1 so that the
net action of the commutator on x ∈ bn(B) is x 7→ f−1 ◦ f(x) = x.

n = 0: The action of a in b1(B) is f and the action of a in bn(B) is the identity so that
the net action of the commutator on x ∈ B is x 7→ f(x).

Hence we conclude that
f = [a, b]

which finishes the proof. �

Remark 2.9. Inspecting the previous proof we have shown that any element in Homeoc(Rn)
can be written as a commutator, that is cl(Homeoc(Rn)) = 1.

Remark 2.10. Note that we do not require the full strength of the fragmentation prop-
erty. For this proof it is sufficient to require that there exists an open cover U such that
any homeomorphism can be decomposed into a product of elements with support in an
open set of that open cover. It is this weaker form of the fragmentation property that we
are going to prove for S1.

The following discussion focuses on the relative simple case Homeo0(S1). We recall the
definition:

Definition 2.11. Let M be a connected compact manifold. Then Homeo0(M) is de-
fined as the path-component of Homeo0(M) containing the identity. We further assume
M is orientable, then define Homeo+(M) to be the group of all orientation preserving
homeomorphisms.

Proposition 2.12. If M = Sn, then Homeo+(M) = Homeo0(M).

Proof. We use the following theorem without proof:

Theorem 2.13 (Hopf). Let M be a connected oriented compact n-manifold. Then two
continuous maps f, g : M → Sn are homotopic if and only if f and g have the same degree.

If f ∈ Homeo(Sn), then it can only have degree 1 or −1, since

1 = deg(id) = deg(f ◦ f−1) = deg(f) deg(f−1).

Therefore Homeo(Sn) consists of exactly 2 path-components. The groups of orientation-
preserving maps are exactly the path-component containing the identity. �
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Then we turn to prove the (weak) fragmentation property of S1. The following intuition
may be useful: the compact-open topology on Homeo0(S1) agrees with the topology of
uniform convergence, hence a map is close to identity if it doesn’t move any point far.

Proposition 2.14 (weak fragmentation property of S1). Let n ≥ 3, U = {I1, I2, . . . , In}
a family of successive open intervals (balls) covering S1 such that the intersection of neigh-
bouring intervals is nonempty, and the intersection of any three intervals is empty. Then
Homeo0(g) has fragmentation with respect to U .

Proof. We prove the case for n = 3. The proof can be easily generalized. Note that this
is already sufficient for the proof of perfectness and simplicity.

Let G1, G2, G3 be subgroups of Homeo0(S1) supported by I1, I2, I3, respectively. Since
Homeo0(S1) is generated by a neighborhood of identity, it suffices to find a neighborhood
U of identity such that all maps in U can be decomposed into element in G1, G2, G3. Let
x1,2, x2,3, x3,1 be points in the interior of Ii ∩ Ij . Let U ∈ Homeo0(S1) be a neighborhood
of identity such that for all f ∈ U , f(xi,j) ∈ Ii ∩ Ij . Let f ∈ U . Let g12, g23, g31 be maps
supported by Ii ∩ Ij and agree with f on a neighborhood of xij .

Then h = g−1
12 g

−1
23 g

−1
31 f fixes a neighbourhood of xij . This however implies h can be

decomposed into elements in G1, G2 and G3. �

Remark 2.15. Does the property hold for n = 2? We may need the orientation preserving
property. Does the weak fragmentation property hold for Sn in general (given possibly
stronger assumptions)?

Corollary 2.16. Homeo0(S1) is simple.

Proof. Let n 6= id be an element of Homeo0(S1). Then there exists an interval I ∈ B such
that n(I)∩I = ∅. We would like to show that all f ∈ Homeo0(S1) is in the normal closure
of n. First suppose supp(f) ⊂ I, then as seen in proposition 2.8, we can write f = [a, b] for
some a, b supported by I (slightly modify the proof, take some proper sub-interval I ′ ⊂ I
and make bn(I ′) ⊂ I).

Now let g ∈ Homeo0(S1) be such that g |I= id and g(n(I)) ∩ n(I) = ∅. Then

f = [[a, n], [b, gng−1]].

Now if the support of f is contained in some other interval Î, we can construct some map

h such that h(Î) ⊂ I. Then supp(hfh−1) is contained in I. �

Remark 2.17. The proof is in fact valid for a any manifold that satisfies the fragmentation
property.
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Talk 3: Rotation and Translation Numbers

Arthur, Moritz

A. The Universal Cover H̃omeo0(S1)

Define S1 := R/Z and let Homeo(S1) denote the set of all homeomorphisms of S1. Then
d∞ : (f, g) 7→ supx∈S1 d(f(x), g(x)) endows Homeo(S1) with a metric structure. Recall

that the metric space (Homeo(S1), d∞) has exactly two arcwise connected components.
The connected component containing the identity function id, which shall be denoted by
Homeo0(S1), coincides with the set of all orientation preserving homeomorphisms of S1.

Remark 3.1. The metric space (Homeo0(S1), d∞) is not simply connected.

Proof. Define for all t ∈ [0, 1], ωt : S1 → S1, x̄ 7→ x̄ + t̄, the rotation by t, and let
γ : [0, 1] → Homeo0(S1), t 7→ ωt. Since γ(0) = γ(1) = id and the ωt are all orientation
preserving, γ is a loop in Homeo0(S1).

Suppose now that there exists a homotopy H from γ to id relative to {0, 1}. Then for
all s ∈ [0, 1], H(0, s)(0) = H(1, s)(0) = id(0) = 0. Hence H̄ : (x, s) 7→ H(x, s)(0) is a
homotopy rel.{0, 1} from α : t 7→ H(t, 1)(0) = γ(t)(0) = t̄ to 0. This is a contradiction. �

Henceforth, we shall denote the quotient map from R to S1 by p. Recall that R p−→ S1

is the universal cover of S1. Furthermore, τ1 shall denote the translation by 1.

Definition 3.2. Let f̃ ∈ Homeo(R). We say that f̃ commutes with integral translations

if for all x ∈ R, f̃(x + 1) = f̃(x) + 1, i.e. τ1f̃ = f̃ τ1. The set of all f̃ ∈ Homeo(R) that

commute with integral translations will be denoted by ˜Homeo0(S1).

Take f̃ ∈ ˜Homeo0(S1). Then f̃ − id is continuous and 1-periodic. Hence, in particular

f̃ − id is bounded. It follows that for any f̃ , g̃ ∈ ˜Homeo0(S1), f̃ − g̃ is bounded. Thus

d∞ : (f, g) 7→ supx∈R d(f̃(x), g̃(x)) is well-defined and endows ˜Homeo0(S1) with a metric
structure.

One can easily check that the composition of functions endows ˜Homeo0(S1) with a

topological group structure. In fact, take f̃ ∈ ˜Homeo0(S1) and x ∈ R. Then, f̃(f̃−1(x +

1)) = x + 1 = f̃(f̃−1(x)) + 1. Now f̃ is bijective and we know that f̃(f̃−1(x)) + 1 =

f̃(f̃−1(x) + 1). Thus, f̃−1(x) + 1 = f̃−1(x+ 1).

Lemma 3.3. Let f̃ ∈ ˜Homeo0(S1). Then f̃ induces a homeomorphism π(f̃) ∈ Homeo0(S1).

Furthermore, for all x, x′ ∈ R, with |x− x′| ≤ 1, we have |(f̃(x)− x)− (f̃(x′)− x′)| ≤ 1.

Proof. Let f̃ ∈ ˜Homeo0(S1) and take x, y ∈ R such that there exists k ∈ Z such that

x− y ∈ Z. Then p ◦ f̃(x) = p ◦ f̃(y). Hence, p ◦ f̃ induces a continuous map π(f̃) from S1

to S1. Since π(idR) = idS1 , π(f̃−1) = π(f̃)−1, hence π(f̃) is homeomorphism.

For the second point, we first notice that f̃ is strictly increasing. Take x, x′ ∈ R, with
|x− x′| ≤ 1, w.l.o.g x′ > x. Then, x < x′ < x+ 1. Hence, f̃(x) + 1 > f̃(x′) > f̃(x), thus

0 < f̃(x′)− f̃(x) < 1. Hence, 0 < f̃(x′)− x+ x− f̃(x) < 1. Finally 0 < x < x′ < 1, thus,

−1 < f̃(x′)− x′ + x− f̃(x) < 1 and the proof is complete. �

Next we will see that the map π is actually the covering map of the universal cover of
Homeo0(S1).

Proposition 3.4. The metric space ˜Homeo0(S1) endowed with d∞ is simply connected.
Furthermore, the map

π : ˜Homeo0(S1)→ Homeo0(S1)

f̃ 7→ (p(x) 7→ p(f̃(x)))
(1)

is a group homomorphism and ˜Homeo0(S1)
π−→ Homeo0(S1) is the universal cover of

Homeo0(S1).
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Proof. The first point is a direct consequence from the fact that ˜Homeo0(S1) is a convex
subset of the vector space RR and the continuity of the addition and the scalar multipli-

cation with respect to d∞ on ˜Homeo0(S1).

Explicitly, take γ : [0, 1] → ˜Homeo0(S1) a loop based at id. Then for all t, λ ∈ [0, 1],

λf̃ +(1−λ) id is a bijective and continuous map from R to R and thus a homeomorphism.

Hence, it is easy to see that λf̃+(1−λ) id ∈ ˜Homeo0(S1) and we may define the homotopy

H : [0, 1]× [0, 1]→ ˜Homeo0(S1)

(t, s) 7→ sγ(t) + (1− s) id .
(2)

from f̃ to id relative to {0, 1}. Hence, ˜Homeo0(S1) is simply connected.
Now it remains to prove that π is indeed a covering map. Let us start with the most

delicate part, the surjectivity of π.
Take f ∈ Homeo0(S1). Then f ◦ p is a continuous map from R to S1. Now, since

R p−→ S1 is the universal cover and R is simply connected, f ◦ p can be lifted to a map
f̃ : R→ R i.e. there exists a map f̃ that satisfies p ◦ f̃ = f ◦ p.

Let g̃ be another lift of f . Since p ◦ f̃ = p ◦ g̃, Im(f̃ − g̃) ⊂ Z and by continuity of f̃ − g̃,

we conclude that there exists k ∈ Z such that f̃ = g̃ + k.

Next we shall prove that f̃ ∈ ˜Homeo0(S1). Let g ∈ Homeo0(S1). The above shows
that there exists a lift g̃ : R→ R of g. Since

p ◦ g̃ ◦ f̃ = g ◦ p ◦ f̃ = g ◦ f ◦ p, (3)

g̃ ◦ f̃ is a lift of g ◦ f . In particular, if we choose g = f−1, we get that g̃ ◦ f̃ is a
lift of the identity. Since idR is obviously another lift of idS1, there exists k ∈ Z such
that g̃ ◦ f̃ = id +k. Hence, g̃ − k = f̃−1 and f̃ is a homeomorphism and increasing
since f is orientation preserving. Now, f̃ ◦ τ1 is another lift of f , hence for all x ∈ R,

f̃(x+ 1) = f̃(x) + 1. Thus, f̃ ∈ ˜Homeo0(S1).

Finally, by construction of π, it is easy to see that π(f̃) = f for every lift f̃ of f . We
conclude that π is surjective. A posteriori, (3) yields that π is a group morphism.

Now it just remains to prove that there exists an open cover (Ui)i∈I of S1 such that for
every i ∈ I, π−1(Ui) is a union of disjoint open sets (Vi,j)j∈J and such that π : Vi,j → Ui
is a homeomorphism for all j ∈ J .

This follows from the following observation: take f, g ∈ ˜Homeo0(S1) such that d∞(f, g) <
1
2
. Then for all x ∈ R, d(f(x), g(x)) = d(π(f)(x), π(g)(x)). Hence d∞(f, g) = d∞(π(f), π(g)).

Thus choose f ∈ ˜Homeo0(S1), let f̃ be a lift of f and set U := Bd∞(f, 1
3
). Then π−1(U)

is a disjoint union of open sets, namely
⊔
n∈Z(Bd∞(f̃ , 1

3
) + n). Finally, take k ∈ Z.

By the observation above, π : Bd∞(f̃ , 1
3
) + k → Bd∞(f, 1

3
) is a surjective isometry and

hence a homeomorphism. Therefore, ˜Homeo0(S1)
π−→ Homeo0(S1) is the universal cover

of Homeo0(S1). �

B. Translation and Rotation Numbers

We recall that Homeo0(S1) = Homeo+(S1). Let f̃ ∈ H̃omeo+(S1), i.e. a homeomor-
phism of R which commutes with integral translations. If two points in R differ by at
most 1, so do their images by f̃ .

|(f̃(x)− x)− (f̃(x′)− x′)| ≤ 1. (4)

We define
T (f̃) = f̃(0) = f̃(0)− 0. (5)

T is a quasimorphism, because, given f̃1, f̃2 ∈ H̃omeo+(S1), we see that∣∣∣f̃1(f̃2(0))− f̃2(0)− f̃1(0)
∣∣∣ =

∣∣∣(f̃1(f̃2(0))− f̃2(0)
)
−
(
f̃1(0)− 0

)∣∣∣ ≤ 1

by Equation (4).

Definition 3.5 (Translation Number). The translation number τ(f̃) is defined as the

homogenisation of T (f̃).
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Remark 3.6. We could also have defined T (f̃) as f̃(x)−x for an arbitrary x ∈ [0, 1]. Since

f̃(0)−0 and f̃(x)−x differ by at most 1 by Lemma 3.3 and QM(G)/L∞(G) ∼= QMh(G) by
Proposition 1.5, both quasi-morphisms have the same homogenisation i.e. the translation
number does not depend on the choice of x ∈ [0, 1].

Example 3.7. Consider the translation by a number k ∈ R: f̃ = x + k. Then T (f̃) =

f̃(0)− 0 = 0 + k = k. The translation number evaluates to

τ(f̃) = lim
n→∞

T (f̃n)

n
= lim
n→∞

nk

n
= k. (6)

Proposition 3.8. The translation number τ is a homogeneous quasimorphism from

H̃omeo+(S1) to R.

Proof. Since the translation number has been defined as the homogenisation of T , the
result follows from Proposition 1.5. �

We will show that τ is the unique non-trivial homogeneous quasimorphism τ : H̃omeo+(S1) −→
R. For this, we need the following lemmata: 9

Lemma 3.9. Let f ∈ Homeo0(S1). Then there exist fi ∈ Homeo0(S1) such that f =
[f1, f2][f3, f4] i.e. f is a product of two commutators.

Proof. Take f ∈ Homeo0(S1). Then there exist g, h ∈ Homeo0(S1) such that supp(g) and
supp(h) are strictly contained in S1 and f = gh. Hence, the result follows from Remark
2.9. �

Proposition 3.10. The translation number is the unique homogeneous quasimorphism

τ : H̃omeo+(S1) −→ R which takes the value 1 on the translation by 1.

Proof. Suppose there exist two such quasimorphisms ϕ and ψ. Take f̃ ∈ ˜Homeo0(S1).

We know that f̃ commutes with integral translations, i.e. f̃ ◦ τ1 = τ1 ◦ f̃ . Now, since ϕ
and ψ are homogeneous they act on the group generated by ta1 and f̃ as homomorphisms.
In particular, for all n ∈ Z,

(ϕ− ψ)(τn1 f̃) = n(ϕ(τ1)− ψ(τ1)) + (ϕ− ψ)(f̃)

= (ϕ− ψ)(f̃)
(7)

since ϕ(τ1) = ψ(τ1) = 1. Hence, for all g̃ ∈ π−1({π(f̃)}), (ϕ−ψ)(f̃) = (ϕ−ψ)(g̃). Since π
is a group morphism, ϕ−ψ induces thus a homogeneous quasimorphism on Homeo0(S1).
Now by Lemma 3.9, Homeo0(S1) has uniformly bounded commutator length. Hence, we
conclude by Proposition 1.18 that ϕ− ψ is trivial. �

If we consider an element f in Homeo+(S1) , the translation numbers of its lifts in

H̃omeo+(S1) differ by integers so that the element ρ(f) = τ(f̃) mod Z ∈ R/Z is well-
defined.

Definition 3.11 (Rotation Number). We call ρ(f) the rotation number of f .

Example 3.12. If f in Homeo+(S1) has a fixed point x and f̃ is a lift of f , then T (x) =

x + k for some k ∈ Z. Hence T (f̃) = f̃(x) − x = k (see Remark 3.6). So f has rotation
number ρ(f) = 0.
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Talk 4: Quasimorphisms on the automorphism group of the disc

Jiahui, Konstantin

A. Ruelle’s invariant on Diff0(D2, ∂D2, area)

Definition 4.1. Diff0(D2, ∂D2, area) denotes the group of C∞-diffeomorphisms on the
unit disk D2 ⊆ R2, that preserve the area form area = dx ∧ dy, and are identity in a
neighbourhood of the boundary ∂D2.

Our first goal is to construct a non-trivial quasimorphism on Diff0(D2, ∂D2, area).
Recall that if a non-trivial quasimorphism exists, then the commutator length is un-
bounded. The area form can in fact be any volume form by a result of Moser [Mos65].
A fact we assume about this group is that it is contractible [Sma59], which implies any
g ∈ Diff0(D2, ∂D2, area) is isotopic to id, which justifies our notation Diff0 instead of
Diff. This space is often studied before looking at diffeomorphisms on the sphere S2.

We shall construct Ruelle’s invariant r : Diff0(D2, ∂D2, area) → R, and show that
it is a non-trivial quasimorphism. Let g ∈ Diff0(D2, ∂D2, area), together with an iso-
topy (gt)t∈[0,1] between g0 = id, g1 = g. Consider the differential of gt at x ∈ D2,

dgt(x) : TxD
2 → Tgt(x)D

2. With the trivial coordinate chart of the disk we have a natural

trivialization of the tangent bundle, so dgt(x) can be viewed as a linear map on R2. Since
gt are all area preserving, we in fact have dgt(x) ∈ SL(2,R).

Let u ∈ R2−{0}, then dgt(x)u is a non-zero vector because dgt(x) ∈ SL(2,R), and thus
varying t gives us a curve in R2−{0}. Let (Agt(x, u))t∈[0,1] be a curve in R that represents
the angle of (dgt(x)u)t∈[0,1] with Ag0(x, u) = 0, which exists by lifting property. Write
Angg(x) := Ag1(x, ∂1). Note that if we pick two different paths from id to g, then they
are homotpic by contractibility, resulting a homotopy between the curves of angles. Since
homotopies fix endpoints, Angg(x) stays the same. Therefore Angg(x) is independent of
the path (gt), and our notation is justified.

Next we shall showAngg(x) is ”almost” a quasimorphism. Let g, h ∈ Diff0(D2, ∂D2, area)
with isotopies (gt), (ht). Consider the path from id to gh by first going from id to h via
(ht), then go from h to gh via (gth). We have

Anggh(x) = Agh(x, ∂1) = Ah(x, ∂1) +Ag(h(x), dh(x)∂1)

|Anggh(x)−Angh(x)−Angg(h(x))| = |Ag(h(x), dh(x)∂1)−Ag(h(x), ∂1)| < π

where the inequality follows from the following lemma applied to (dgt(h(x)))t∈[0,1].

Lemma 4.2. Let (Ut)t∈[0,1] be a curve in GL(2,R). If u, v ∈ R2 − {0}, then angle of
variation of (Ut(u)) and (Ut(v)) do not differ by more than π.

Proof. If u, v ∈ R2 − {0} are scalar multiples of each other, then the angle variation of
the curves (Ut(u)), (Ut(v)) are the same. On the other hand, if u, v are linearly inde-
pendent, then Ut(u), Ut(v) are linearly independent at each t. This means the difference
between angle variations of the two curves (Ut(u)), (Ut(v)) can not exceed π, otherwise by
intermediate value theorem Ut(u) and Ut(v) must lie on the same line at some time t. �

To get the desiered quasimorphism, we need to eliminate the variable x in Angg(x).
This is easily done by taking

r(g) =

∫
D2

Angg(x)d area(x)

|r(gh)− r(h)− r(g)| =
∣∣∣∣∫
D2

(Anggh(x)−Angh(x)−Angg(x)) darea(x)

∣∣∣∣
=

∣∣∣∣∫
D2

(Anggh(x)−Angh(x)−Angg(h(x))) darea(x)

∣∣∣∣ , since h preserves area

≤
∫
D2

|Anggh(x)−Angh(x)−Angg(h(x))|darea(x)

≤ π

∫
D2

darea = π2

(8)
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Homogenize r and get Ruelle’s homogeneous quasimorphism

Ruelle(g) = lim
p→∞

1

p
r(gp)

It remains to show that this is non-trivial, which is expected as r measures ”how much
g rotates the disc on average”. Let ω : [0, 1] → R be a smooth map that is zero on some
neighbourhoods of 0 and 1. Define area-preserving diffeomorphism Fω on the disc (in
polar coordinates) by

Fω(R, θ) = (R, θ + ω(R))

Then we see

r(Fω) =

∫ 1

0

∫ 2π

0

AngFω (R, θ)RdθdR = 2π

∫ 1

0

ω(R)RdR

Thus Ruelle is non-trivial for r is unbounded.

B. The pure braid group Pn(D2)

Fix n distinct points x0
1, ..., x

0
n in D2. Let Xn(D2) be the space of n-tuples of distinct

points in D2. The fundamental group of Xn(D2) based at (x0
1, ..., x

0
n) is the pure braid

group, denoted Pn(D2). We will use it to create an infinite set of linearly independent
homogeneous quasimorphisms.

Elements of Pn(D2) are loops based at (x0
1, ..., x

0
n) with distinct coordinates, which

correspond to n disjoint loops in the solid torus D2 × S1. Thus we can associate a
collection of n oriented circles in R3, known as a link in knot theory, to each pure braid.
Such a link associated to pure braid γ, denoted γ̂, is called a closed pure braid.

C. More Quasimorphisms on the Disc

Theorem 4.3. For every closed oriented surface Σ, there exist homogeneous quasimor-
phisms Φ : Diff∞0 (Σ, area) → R which are non-trivial, even when restricted to the kernel
of Calabi’s homomorphism (for Σ 6= S2). Moreover, the vector space of these homogeneous
quasimorphisms is infinite dimensional.

The goal of this section is to construct quasimorphisms on Diff∞0 (D2, ∂D2, area). We
will not only construct infinitely many of them but also prove that they are linearly
independent.

C.1. The signature of a pure braid

In order to construct these quasimorphisms we will first describe a very important
invariant of an oriented torus link, its signature.

Definition 4.4. At a crossing point c between two braids of an oriented regular diagram,
there are two possible configurations. In case (a) we assign s(c) = +1 to the crossing
point, while in case (b) we assign s(c) = −1. We call the crossing point in case (a) positive
and in case (b) negative.

Figure 1. (a) s(c) = +1 Figure 2. (b) s(c) = −1

Suppose now that we have an oriented regular diagram D of a torus link with two
components K1,K2. Moreover, suppose that the crossing points of the projections of K1

and K2, so where the projections intersect, are c1, . . . , cn. Then we call

lk(K1,K2) :=
1

2
(s(c1) + · · ·+ s(cn))

the linking number of K1 and K2.

Remark 4.5. The linking number is always an integer.
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Let γ̂ ⊂ R3 be a torus link. We can choose a Seifert surface Sγ̂ for γ̂. A Seifert surface
for γ̂ is an oriented surface embedded in R3 whose oriented boundary is γ̂. A theorem
(1930) by Frankl and Pontryagin assures the existence of a Seifert surface for a torus link.
We will now equip the first homology group H1(Sγ̂ ,Z) with a bilinear form Bγ̂ in the
following way: For two closed oriented curves x and y on the surface Sγ̂ , Bγ̂(x, y) is just
the linking number between x and ỹ, where ỹ is the curve obtained by pushing the curve
y a little bit away from the surface in the positive normal direction to Sγ̂ (to ensure that
the curves x and y do not intersect). It is easy to see that Bγ̂(x, y) only depends on
the homology classes of the curves x and y, hence Bγ̂ is a well-defined bilinear map on
H1(Sγ̂ ,Z). By the Universal Coefficients theorem, tensoring H1(Sγ̂ ,Z) with R gives the
vector space H1(Sγ̂ ,R) ≈ H1(Sγ̂ ,Z) ⊗ R (since R is a field) and we can turn Bγ̂ into a

symmetric bilinear form B̃γ̂ by B̃γ̂(x, y) := Bγ̂(x, y) +Bγ̂(y, x) on this vector space.

Definition 4.6. For a symmetric bilinear form B with non-zero eigenvalues λ1 ≥ . . . λp >
0 > µ1 ≥ · · · ≥ µq we define the signature of B as sign(B) := p− q.

One can actually show that the signature of our symmetric bilinear form B̃γ̂ defined
above does not depend on the Seifert surface we choose. Therefore for every pure braid γ
and the associated closed torus link γ̂ we can define sign(γ̂) := sign(B̃γ̂) ∈ Z.

Proposition 4.7. The mapping sign : Pn(D2)→ Z, γ 7→ sign(γ̂) is a quasimorphism.

Proof. Let α ∈ Pn(D2) be a pure braid. We can find a Seifert surface Sα̂ so that outside
of a cylinder in R3 the surface consists of n disjoint surfaces Dα,x01

, . . . Dα,x0n all homeo-

morphic to disks. Now take another pure braid β ∈ Pn(D2) and its Seifert surface Sβ̂ .
An easy way to construct a Seifert surface Sα̂.βfor the pure braid α.β is by glueing the

surfaces Dα,x0i
and Dβ,x0i

along an interval along their boundary. Since α.β ∈ Pn(D2) Sα̂.β
has n boundary components and by the Mayer-Vietoris exact sequence applied to the two
subsets A,B (essentially corresponding to Sα̂, Sβ̂ ⊂ Sα̂.β respectively) whose intersection

are n disjoint neighborhoods of all the intervals along which we glued the Seifert surfaces
of α and β in the first place, we know that the first homology group of Sα̂.β contains a

copy of the sum of the first homology groups of Sα̂ and Sβ̂ with codimension, at most,
n− 1.
Now we can conclude the proof by observing that if we restrict a symmetric bilinear form
to a subspace of codimension q, the signature of the restriction can change by, at most, q.
Therefore |sign(α.β)− sign(α)− sign(β)| ≤ n− 1. �

C.2. Constructing quasimorphisms on the disk

Now we are ready to actually construct many linearly independent homogeneous quasi-
morphisms on the group Diff∞0 (D2, ∂D2, area). We do this by using the motion of n points,
where n ∈ N is fixed, but arbitrary.

Let us therefore first fix n distinct points (x1, . . . , xn) in the disk D2, an element
g ∈ Diff∞0 (D2, ∂D2, area), as well as an isotopy gt, t ∈ [0, 1] from g0 = id to g1 = g. We
get a pure braid γ in Pn(D2) by the concatenation of the following three parts:

• t ∈ [0, 1
3
] 7→ ((1− 3t)x0

i + 3txi)i=1,...,n ∈ Xn(D2)

• t ∈ [ 1
3
, 2

3
] 7→ (g3t−1(xi))i=1,...,n ∈ Xn(D2)

• t ∈ [ 2
3
, 1] 7→ ((3− 3t)g(xi) + (3t− 2)x0

i )i=1,...,n ∈ Xn(D2)

For almost all choices of points (x1, . . . , xn) this gives indeed a loop in Xn(D2) and
therefore defines a pure braid γ. Moreover, since Diff∞0 (D2, ∂D2, area) is contractible
the constructed braid does not depend on the isotopy gt, and we denote this braid by

γ(g;x1, . . . , xn) and the associated closed torus link again by ̂γ(g;x1, . . . , xn).

We will now describe a linear map G : Q(P•(D
2)) → Q(Diff∞0 (D2, ∂D2, area)) which

associates to every quasimorphism on the pure braid group, on arbitrary many strands,
of the disk a quasimorphism on Diff∞0 (D2, ∂D2, area).
So suppose we are given a quasimorphism µ : Pn(D2)→ R with defect Dµ. It is easy to see,
that for almost every points (x1, . . . , xn) and diffeomorphisms g, h ∈ Diff∞0 (D2, ∂D2, area)
we have
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γ(gh;x1, . . . , xn) = γ(h;x1, . . . , xn).γ(g;h(x1), . . . , h(xn))

and hence

|µ(γ(gh;x1, . . . , xn))− µ(γ(h;x1, . . . , xn))− µ(γ(g;h(x1), . . . , h(xn))| ≤ Dµ.
Again, in order to get rid of the dependency of the exact choice of points (x1, . . . , xn),

we define G (µ) on every diffeomorphism g ∈ Diff∞0 (D2, ∂D2, area) as follows

G (µ)(g) :=

∫
· · ·
∫
µ(γ(g;x1, . . . , xn))d area(x1) . . . d area(xn) ∈ R

and we remark that the set of points for which the integrand is not defined is a null-set.
As all the integrals are finite and µ is a quasimorphism on Pn(D2), G (µ) is a quasimor-
phism on the disk. (The calculation is similar to (8) and uses that g preserves area.
Furthermore, note the dependency on n, the number of points we choose.

Definition 4.8. For a fixed n ∈ N and a given quasimorphism µ : Pn(D2)→ R we define
the homogeneous quasimorphism Gh(µ) as the homogenization of G (µ), i.e.

Gh(µ)(g) := lim
p→+∞

1

p
G (µ)(gp)

for every diffeomorphism g ∈ Diff∞0 (D2, ∂D2, area).

Example 4.9. Let us look at the example of µ being sign : Pn(D2)→ R, the quasimor-
phism we constructed in section C.1. Define Signn,D2 := Gh(sign).
We then have

Signn,D2(g) = Gh(sign)(g) = lim
p→+∞

1

p
G (sign)(gp)

= lim
p→+∞

1

p

∫
· · ·
∫
sign(γ(gp;x1, . . . , xn))d area(x1) . . . d area(xn)

=

∫
· · ·
∫

lim
p→+∞

1

p
sign(γ(gp;x1, . . . , xn))d area(x1) . . . d area(xn)

= G (Sign)(g)

where Sign denotes the homogenization of sign.
In particular G commutes with taking the homogenization.

Thus we have constructed an infinite family of quasimorphisms (Signn,D2)n∈N on

Diff∞0 (D2, ∂D2, area), which are supposably all different from each other. Indeed, in
the next subsection we will show that the are even linearly independent, and hence also
non-trivial.

C.3. Linear independence of the constructed quasimorphisms

Proposition 4.10. All homogeneous quasimorphisms Signn,D2 , for n ∈ N, are linearly
independent.

In order to show the linear independence we will evaluate our quasimorphisms on the
family of diffeomorphisms Fω we already considered in section A.

Now let x1, . . . , xn be n distinct points in the disc, such that |x1| < |x2| <, . . . , < |xn|.
For i ∈ 2, . . . , n denote by ηi,n the pure braid in which the loop starting in xi goes
once around x1, . . . , xi−1 in positive direction (see Figure 3). Observe that the ηi,n’s are
commuting pure braids, because if i < j the loop starting in xj ”fully encircles” the loop
starting in xi, no matter which loop we follow first. One can moreover show that the
following holds:

Sign(ηi,n) =

{
1− i, if i is odd

−i, if i is even

To state the subsequent lemma, we need two more notations. First of all, let us denote
with a(r) the spherical normalized are of the disc Dr of radius r centered at the origin
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Figure 3. η4,6 with lk(η4,6) = −4

in C (i.e. if we identify the 2-sphere together with the usual (normalized) area form with

C, the disc Dr can be considered as a disc on the 2-sphere and we choose the area form
a(r) to be the such that the pullback of Dr onto the 2-sphere has exactly total mass a(r).
In other words, we push-forward the usual measure on the 2-sphere, for example with the

standard stereographic projection onto C. An easy computation shows a(r) = r2

1+r2
). If

we now define the function u by the relation a = 1−u
2

and set ω(u(r)) := ω(r) the following
lemma reads as follows:

Lemma 4.11. Signn,D2(Fω) = n
4

∫ +1

−1
(un−1 + (n− 1)u− n)ω̄(u) du.

Proof. There exists a constant M(n) > 0 (depending on n) such that for all p > 0
and x1 . . . , xn with |x1|, . . . , |xn|, the pure braid γ(F pω ;x1, . . . , xn) can be decomposed as
follows:

γ(F pω ;x1, . . . , xn) = γ1.η
[ω(|x2|)p]
2,n . . . η[ω(|xn|)p]

n,n .γ2

where |Sign(γ1)| < M(n), |Sign(γ1)| < M(n) and [−] denotes the integer part. Recall
that homogeneous quasimorphisms restrict to homomorphisms on Abelian subgroups and
since all ηi,n commute, we have

|Sign(γ(F pω ;x1, . . . , xn))−
n∑
i=2

Sign(ηi,n)[ω(|xi|)p]| ≤ 2M(n)+2DSign ≤ 2M(n)+2(n−1).

Therefore we get

Signn,D2(Fω) = (n!)

∫
· · ·
∫
|x1|<···<|xn|

n∑
i=2

Sign(ηi,n)ω(|xi|) d area(x1) . . . d area(xn)

and, hence

Signn,D2(Fω) =

∫ 1

0

n∑
i=2

Sign(ηi,n)i

(
n

i

)
(a(r))i−1(1− a(r))n−iω(r) d a(r)

Now by a change of variables a = (1−u)/2, using the values Sign(ηi,n) = 1− i for odd
i and Sign(ηi,n) = −i for even i, as well as a tedious calculation gives the formula stated
in the lemma.

�

Note that since we have a lot of freedom to choose the function ω, Signn,D2 is definitely
non-trivial. We can finally prove proposition 4.10 from above and hence finish the goal of
this section

Proof of proposition 4.10. It is sufficient to note that for Signn,D2(Fω) the polynomial
in u, in the previous lemma, has a non-zero term of degree n. Hence there cannot be a
vanishing linear combination of this family of quasimorphisms. �
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Talk 5: Quasimorphisms on the automorphism groups of closed oriented

surfaces

Lukas, Adrian

A. Main Result

The main result we are going to prove generalizes last weeks result on the disc to closed
surfaces of genus g ≥ 1. We follow closely [GG04, sections 2.2 and 3].

Theorem 5.1 ([GG04]). For every closed oriented surface Σ of genus ≥ 1, there exist
homogeneous quasimorphisms Φ : Diff∞0 (Σ, area)→ R which are non-trivial.

Remark 5.2. • The same is true for S2, but we won’t prove it.
• There are actually infinitely many linearly independent homogeneous quasimor-

phisms for Σ 6= S2.
• In fact, there is a homomorphism

flux: Diff∞0 (Σ, area)→ H1(Σ,R)

whose kernel is simple. The quasimorphisms we construct will be non-trivial on
this kernel.

For this we treat the cases of genus 1 (the torus) and higher genus separately.

B. Torus

In this section we will view the torus T2 = R2/Z2 with the area form area = dx ∧ dy and
so we can trivialize the tangent space as R2 similarly to how it was done for the disc. By
a result from Moser [Mos65] the choice of area form does not matter.
So we now construct Ruelle’s quasimorphism on Diff0(T2, area) in a manner heavily mir-
roring the construction for the disc. We start with an element g ∈ Diff0(T2, area) and an
isotopy (gt)t∈[0,1] in Diff0(T2, area) from g0 = id to g1 = g and take a point x ∈ T2.

Given our trivialization of TT2 = R2 and the fact that the gt are all area preserving we

may consider dgt(x) ∈ SL(2,R) and can thus observe the path dgt(x)∂x
||dgt(x)∂x|| in S1. We can

now lift this path to the universal cover of S1, namely R, such that dg0(x)∂x = (1, 0) is
lifted to 0 and denote by Angg(x) the endpoint at t = 1 of this path. To show that it is
independent of the choice of isotopy we first need a lemma.

Lemma 5.3. View T2 ⊆ Diff0(T2, area) as the subgroup of translations. This inclusion
is a homotopy equivalence.

A proof can be found in [EE67] and will not be given here. Now we may consider two iso-
topies (gt)t∈[0,1] and (g′t)t∈[0,1] from the identity to g and form a loop ht ∈ Diff0(T2, area)
first going along gt and in reverse along g′t. On the one hand we obtain Angh(x) =
Angg(x)−Angg′(x). On the other hand a loop of translations would result in a constant

curve in S2 as the differentials are constantly the identity, so since h is homotopic to such
a loop (Lemma 5.3) we have Angh(x) = 0. So Angg(x) = Angg′(x) and it is independent
of the isotopy.
As with the disc we now get:

|Anggh(x)−Angh(x)−Angg(h(x))| < π

Which means r(g) =
∫
T2 Angg(x)darea(x) defines a quasimorohism with |r(gh) − r(h) −

r(g)| ≤ π, following the same calculations and we can homogenize it to obtain:

Ruelle(g) = lim
p→∞

1

p
r(gp)

Our next goal is to show that this quasimorphism is non-trivial, for which we will use the
fact that our construction is nearly identical to that of Ruelle on the disc.

We choose a small embedded disc D2 in the torus (e.g. B̄ 1
4
( 1

2
, 1

2
)) and note that since

any element g ∈ Diff0(D2, ∂D2, area) is the identity near the boundary of the disc, g can
be smoothly extended to the whole of the torus via the identity. We now see that the
trivializations of the tangent bundles are the same, so since the rest of the construction
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is the same, we have that Diff0(D2, ∂D2, area) ⊆ Diff0(T2, area) is a subgroup on which
Ruelle is non-trivial.

C. Construction of higher genus surfaces

Before moving on to the surfaces of higher genus we recall a useful construction, which
will allow us to use a similar strategy as in the previous cases of the disc and the torus,
since we cannot trivialize the tangent bundle of higher genus surfaces.

A common construction of a genus g surface is by a side pairing of a 4g-gon, where
each set of 4 sequential sides add one to the genus (for a good visualization of this, see
https://math.stackexchange.com/a/3427810).

Another common construction is the tiling of the hyperbolic plane by any regular
polygons (for the example of the 8-gon, with the pairing from before, see figures 1 and 2
in [Gol12].

The side pairings of such a tiling with the 4g-gon give us a group of isometries acting
on the hyperbolic plane and thus a cover from it to the surface of genus g.

The Poincaré Polygon Theorem gives us that this is a Fuchsian group and since the
genus is at least 2 we have that the cover is indeed a metric cover and we now have a
structure on our genus g surface with curvature of -1.

D. Surfaces of higher genus

The next goal is to construct a quasimorphism on the automorphism group Diff0(Σ, area)
of a closed genus g ≥ 2 surface Σ. As always Diff0(Σ, area) denotes the group of C∞-
diffeomorphisms of Σ onto itself that preserve a specific area form area on Σ and are in
the path-component of the identity. The idea for the construction of a quasimorphism on
this group is again to generalize the Ruelle quasimorphism. However we will see that the
situation in this case cannot be reduced to a computation in Rm, so that we have to take
a slightly different approach. First we introduce some necessary facts:

Lemma 5.4. The group Diff0(Σ, area) is contractible for any closed oriented surface Σ
of genus g ≥ 2.

A proof of this lemma can be found in [EE67] but will not be given here. Another fact that
we will need to use is that any surface1 Σ of genus g ≥ 2 can be given a hyperbolic metric
of constant curvature −1. Even further (a consequence of the Killing–Hopf theorem):

Lemma 5.5. Let Σ be a surface of genus g ≥ 2 with a suitable metric of curvature −1.
The universal cover Σ̃ seen as a Riemannian cover of Σ is the hyperbolic disk D2 with its
usual hyperbolic metric.

x̃

Figure 4. Three geodesics through
a point x̃ ∈ D2 in the hyperbolic
disk.

Lemma 5.5 hints at a way to reduce our situation
to computations on the disk, where we have already
defined a quasimorphism last week, cf. talk 4. In
the following let Σ denote a surface of genus g ≥ 2
with a suitable hyperbolic metric. The idea is the
following: Given g ∈ Diff0(Σ, area) we choose an
isotopy gt : [0, 1] × Σ → Σ with g0 = id and g1 =
g. We now lift to an isotopy of diffeomorphisms of
the universal (hyperbolic) cover Σ̃ = D2: Namely
g̃ : [0, 1]×D2 → D2, were we use the notation g̃t(x̃)
for t ∈ [0, 1] and x̃ ∈ D2. Now that we have found
a way to work on the disk again, we want to count
rotations as before. However we cannot use exactly
the same method as for the usual disk: this would

disregard the metric structure. To make use of the metric, recall how geodesics look
on the hyperbolic disk: they either are straight lines (in the usual sense) that connect
opposite points on the circle bounding the hyperbolic disk or they are themselves circle
segments that meet the boundary circle perpendicularly. Figure 4 shows the situation.
Since we work with a Riemannian cover these geodesics also behave nicely with respect

1For the rest of this talk surface shall mean closed, oriented surface.

https://math.stackexchange.com/a/3427810)
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to the cover. As they all meet the boundary circle ∂D2 these geodesics give us a way to
simplify our setting further. Given any point and a tangent vector we get a unique geodesic
and thus a point on the boundary circle. This is formalized in the following definition:

Definition 5.6. We define the following map

π : TD2 \ 0→ ∂D2 ∼= S1

(x̃, ṽ) 7→ lim
t→∞

expx̃(tṽ).

π(x̃, ṽ)

x̃

ṽ

Figure 5. A pair
(x̃, ṽ) ∈ TD2 and the
point π(x̃, ṽ) on the
boundary ∂D2.

This definition gives us the tools to study (a neighborhood
of) a point x ∈ D2 in the following way: the differential of the
diffeomorphism g̃t : D2 → D2 at x̃ is an isomorphism dg̃t(x̃) :
Tx̃D2 → Tg̃t(x̃)D2. So if we choose any non-zero tangent vector

ṽ ∈ Tx̃D2, we can track how π(g̃t)(x̃), dg̃t(x̃)(ṽ)) moves as we
follow the isotopy g̃t from t = 0 to t = 1. This motivates the
following definition:

Definition 5.7. Let g̃t be as above and (x̃, ṽ) ∈ TD2,
then we define the curve γ(x̃,ṽ) : [0, 1] → S1 as follows:
t 7→ π(g̃t(x̃), dg̃t(x̃)(ṽ)).

Since we are now looking at a curve on ∂D2 ∼= S1 we can
count the number of full turns this curve makes around the
circle by lifting it to the universal cover R. This motivates
the following definition which will later take the role of the
angle in the definition of the Ruelle invariant for the genus g
surface.

Definition 5.8. Let g ∈ Diff0(Σ, area) and (x̃, ṽ) ∈ TD2 \ 0
and let γ(x̃,ṽ) be defined as above for g. Further assume that γ̃(x̃,ṽ) : [0, 1]→ R is a lift of
γ(x̃,ṽ), then we set

r(g, x̃, ṽ) = bγ̃(x̃,ṽ)(1)− γ̃(x̃,ṽ)(0)c.

Lemma 5.9. The map r from definition 5.8 is well-defined, i.e. it does not depend on
the choice of lift γ̃ nor on the choice of isotopy g̃t.

Proof. The independence with respect to the choice of lift γ̃ is clear, so we only need to

show that the choice of isotopy g̃t does not matter. So let g
(1)
t , g

(2)
t be two isotopies from

the identity to g ∈ Diff0(Σ, area). Since the group is contractible there is an isotopy of
isotopies

H : [0, 1]2 × Σ→ Σ

with H(0, t) = g
(1)
t and H(1, t) = g

(2)
t . Then we can lift to the universal cover and obtain

a map

H̃ : [0, 1]2 × D2 → D2.

We can now consider the ”projections” to the boundary circle all at once by looking a the
map

Γ : [0, 1]2 → S1

s, t 7→ π(Hs,t(x̃), dHs,t(x̃)(ṽ)).

Let Γ̃ be the lift of this map to the universal cover R of S1. Now by construction Γ̃(0, ·)
is a valid choice for γ̃(1) and Γ̃(1, ·) for γ̃(2). Since H(·, 0) = id and H(·, 1) = g we have

that Γ̃(·, 0) and Γ̃(·, 1) are constant which finishes the proof. �

The first thing we can say about the behavior of this r is this easy lemma:

Lemma 5.10. Let g ∈ Diff0(Σ, area), x̃ ∈ D2 and ṽ1, ṽ2 ∈ Tx̃D2 \ {0}. Then

|r(g, x̃, ṽ1)− r(g, x̃, ṽ2)| ≤ 1.
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π(x̃, ṽ)

x̃

ṽ

(a) t = 0

π(. . . )

g̃t(x̃)

dg̃t(x̃)ṽ

(b) t = 1
2

π(g̃t(x̃), dg̃t(x̃)ṽ)

g̃t(x̃)

dg̃t(x̃)ṽ

(c) t = 1

Figure 6. Visualization of computing r(g, x̃, ṽ) = 1, the first full turn
is marked in orange.

Proof. We show the lemma by contradiction. Assume that |r(g, x̃, ṽ1)− r(g, x̃, ṽ2)| > 1
for some g ∈ Diff0(Σ, area), x̃ ∈ D2 and non-zero ṽ1, ṽ2 ∈ Tx̃D2. Then there exists a
t ∈ [0, 1] such that dg̃t(x̃)(ṽ1) = dg̃t(x̃)(ṽ2) by uniqueness of the geodesics given the
initial conditions. Since dg̃t(x̃) is an isomorphism this implies ṽ1 = ṽ2 which implies
|r(g, x̃, ṽ1)− r(g, x̃, ṽ2)| = 0 and thus we arrive at a contradiction. �

The natural next step is to show that this r behaves almost like a quasimorphism. This
is achieved by the following lemma:

Lemma 5.11. Let g, h ∈ Diff0(Σ, area) and let (x̃, ṽ) ∈ TD2 \ 0. Then∣∣∣r(gh, x̃, ṽ)− r(h, x̃, ṽ)− r(g, h̃(x̃), dh̃(x̃)(ṽ))
∣∣∣ ≤ 1.

Proof. To show this property we will choose some especially nice isotopies, namely let gt
be an isotopy from the identity to g that remains the identity for all t ∈ [0, 1

2
] and let ht

be an isotopy from the identity to h such that ht = h for all t ∈ [ 1
2
, 1]. Now we clearly get

an isotopy from the identity to gh by considering t 7→ gt ◦ ht. Using this we obtain the
bound from the lemma as follows: We want to count the full turn of the curve

t 7→ π(g̃th̃t(x̃), d(g̃th̃t(x̃))(ṽ)). (9)

If we restrict t in (9) to [0, 1
2
] this simplifies to t 7→ π(h̃t(x̃), dh̃t(x̃)(ṽ)) and thus the number

of full turns our curve above makes before time t = 1
2

is exactly r(h, x̃, ṽ). Now using

the chain rule we obtain that for t ∈ [ 1
2
, 1] that (9) is the same as considering the curve

t 7→ π(g̃t(x̃), dg̃t(h̃(x̃))(dh̃(x̃)ṽ)). So the number of full turns that (9) makes after time

t = 1
2

is exactly r(g, h̃(x̃), dh̃(x̃)(ṽ)). This already implies our bound since that means

that a difference between r(gh, x̃, ṽ) and r(h, x̃, ṽ) + r(g, h̃(x̃), dh̃(x̃)(ṽ)) can only come
from unfinished turns summing up to a full term in the end. Since two unfinished turns
cannot combine to more than a full turn this finishes the proof. �

What is now left to do is to get rid of the dependence of r on ṽ and x̃. We first start by
eliminating ṽ:

Definition 5.12. Let g ∈ Diff0(Σ, area) and x̃ ∈ D2. Then we define

r(g, x̃) = inf
ṽ∈Tx̃D2\{0}

r(g, x̃, ṽ).

Given lemmas 5.11 and 5.10, we get the following corollary:

Corollary 5.13. Let g, h ∈ Diff0(Σ, area) and x̃ ∈ D2. Then∣∣∣r(gh, x̃)− r(h, x̃)− r(g, h̃(x̃))
∣∣∣ ≤ 4.

Now our work on the cover is done and we want to return to Σ. In order to do that, we
note that if we have two points x̃1, x̃2 ∈ D2 that are lifts of the same point x ∈ Σ, there
exists a deck transformation Φ : D2 → D2 s.t. x̃2 = Φ(x̃1). Obviously Φ descends to the
identity on Σ. Thus for any g ∈ Diff0(Σ, area) we obtain r(g, x̃2) = r(g,Φ(x̃1)). Now
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π(x̃, ṽ)

x̃

ṽ

(a) t = 0

π(. . . )

h̃(x̃)

dh̃(x̃)ṽ

(b) t = 1
2

π(. . . )

g̃h̃(x̃)

dg̃h̃(x̃)ṽ

(c) t = 1

Figure 7. Visualization of the proof of lemma 5.11. While r(h, x̃, ṽ) =

r(g, h̃(x̃), dh̃(x̃)(ṽ)) = 0, the two unfinished turns sum up to a full turn
thus giving r(gh, x̃, ṽ) = 1.

let g̃t be any isotopy from the identity on D2 to a lift of g. Then Φ ◦ g̃t = g̃t ◦ Φ and
this isotopy is also an isotopy from the identity on D2 to a lift of g. Thus by definition
we obtain r(g, x̃2) = r(g, x̃1). And thus r is invariant under deck transformations and
therefore descends to a map

r : Diff0(Σ, area)× Σ→ Z.

Now we can already obtain a quasimorphism:

Definition 5.14. We define the map

r : Diff0(Σ, area)→ R

g 7→
∫

Σ

r(g, x)d area(x).

Proposition 5.15. The map r defined in definition 5.14 is a quasimorphism.

Proof. Let g, h ∈ Diff0(Σ, area) be arbitrary. Using the fact that g is area-preserving we
obtain

|r(gh)− r(h)− r(g)| =
∣∣∣∣∫

Σ

r(gh, x)− r(h, x)d area(x)−
∫

Σ

r(g, x)d area(x)

∣∣∣∣
=

∣∣∣∣∫
Σ

r(gh, x)− r(h, x)d area(x)−
∫

Σ

r(g, h(x))d area(x)

∣∣∣∣
≤
∫

Σ

|r(gh, x)− r(h, x)− r(g, h(x))|d area(x)

≤
∫

Σ

4 area = 4 area(Σ) <∞,

which completes the proof. �

The Ruelle quasimorphism is now obtained by homogenization of r:

Definition 5.16. The homogeneous quasimorphism

RuelleΣ(g) := lim
p→∞

1

p
r(gp)

is called the Ruelle quasimorphism.

The following theorem justifies the effort we went through to define RuelleΣ:

Theorem 5.17. Let D ↪→ Σ be a disk embedded with an area-preserving embedding.
Then RuelleΣ restricted to the subgroup Diff0(D, ∂D, area) < Diff0(Σ, area) agrees (up to
area normalization) with the Ruelle quasimorphism on the disk as defined before and in
particular RuelleΣ is non-trivial.
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Proof. Let g ∈ Diff0(D, ∂D, area) < Diff0(Σ, area) be arbitrary. Note that we view g as
an element of Diff0(Σ, area) by extending it to Σ\D by the identity. This directly implies

r(g) =

∫
Σ

r(g, x)d area(x) =

∫
D

r(g, x)d area(x).

Using the fact that homogenous quasimorphisms with bounded difference are equal we
only need to show that Angg(x) − r(g, x) is bounded. But by construction this term is
bounded and only depends on the embedding D ↪→ Σ, thus proving the theorem. �

Remark 5.18. A little bit more could be said with more time: There exists a homomor-
phism Diff0(Σ, area)→ H1(Σ;R) and the subgroup Diff0(D, ∂D, area) < Diff0(Σ, area) is
contained in its kernel. A construction of this homomorphism can be found in section 2.3
of [GG04].
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Talk 6: Introduction to symplectic geometry and the group of Hamiltonian

diffeomorphisms

Huaitao, Patrik

Through out this talk, let’s assume M to be a connected smooth manifold without
boundary.

A. Symplectic manifolds and symplectomorphisms

Definition 6.1 (Symplectic manifold). A sympletic manifold is a pair (M,ω), where M
is a smooth manifold and ω is a closed non-degenerate 2-form on M .

Example 6.2. • The basic example of a symplectic manifold is M = R2n with the
standard symplectic form

w0 =

n∑
i=1

dxi ∧ dyi

where M is equipped with the standard linear coordinates x1, . . . , xn, y1, . . . , yn.
• Assume that M is an orientable manifold with dim(M) = 2 and with volume form
ω ∈ Ω2(M). We see that ω is closed and that it is non-degenerate since it is a
volume form. We deduce that every orientable surface is a symplectic manifold,
i.e. the sphere S2 with the standard area form is a symplectic manifold. One can
see more examples in [MS17].

Theorem 6.3 (Darboux, [Car13]). Let (M,ω) be a symplectic manifold, not necessarily
compact, and p ∈ M . Then there exist neighborhoods U of p in M and U ′ of the origin
in R2n and a diffeomorphism φ : U → U ′ such that φ∗w = w0, where w0 is the standard
symplectic form on Euclidean space.

A proof of this Theorem can be found in [MS17] but will not be given here.

Remark 6.4 (Symplectic manifolds are orientable, even-dimensional). Darboux’s Theo-
rem says that every symplectic form ω on M is locally diffeomorphic to to the standard
form ω0 on R2n. Hence every symplectic manifold is even-dimensional. Since we know
that M is even-dimensional, we can write n = 1

2
dim(M). Denote L = 1

n!
ωn, called Liou-

ville form. The Liouville form is a non-vanishing top-form and hence a volume form. We
conclude that any symplectic manifold is oriented.

Definition 6.5 (Symplectomorphism). A symplectomorphism of a symplectic manifold
(M,ω) is a diffeomorphism φ ∈ Diff(M) such that

ω = φ∗ω.

So, any symplectomorphism φ preserves the symplectic form ω. We denote the group of
symplectormorhpisms of (M,ω) by

Symp(M,ω) := {φ ∈ Diff(M)|φ∗ω = ω}.

We use the symbol Symp0(M,ω) to denote the identity component of Symp(M,ω), i.e.
the group of symplectomorphisms that are isotopic to the identity through symplectomor-
phisms. We will usually omit ω and write Symp(M) for the group of symplectomorphisms.

B. Symplectic and Hamiltonian vector fields

Let X be a vector field defined over M . Let T be a tensor field defined over M . Let ρt
be the local flow of X at time t. In other words, for every p ∈M, t 7→ ρt(p) is the integral
curve of X starting at p.

Definition 6.6. The Lie derivative of T with respect to X at a point p ∈M is given by

(LXT )p =
d

dt

∣∣∣∣
t=0

((ρt)
∗T )p.

The Lie derivative has some nice properties, but the most useful property is:
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Theorem 6.7 (Cartan’s Formula). We have

LXω = ιX(dω) + d(ιXω).

Remark 6.8. For a vector field X on M the map ιX : Ωp(M) → Ωp−1(M) which sends
a p-form ω to the (p− 1)-form ιXw is defined by

(ιXω)(X1, . . . , Xp−1) = ω(X,X1, . . . , Xp−1)

for any vector fields X1, . . . , Xp−1. ιXω is called the interior product.

Definition 6.9 (Hamiltonian vector field). Let (M,ω) be a symplectic manifold. If
H ∈ C∞(M), then since ω̃ : TM → T ∗M is an linear isomorphism (which follows from
the fact that ω is non-degenerate), there is an unique vector field XH on M such that

ιXHω = dH.

XH is called the Hamiltonian vector field with Hamiltonian function H.

Definition 6.10 (Symplectic vector field). A vector field X on (M,ω) is called symplectic
if ιXω is closed.

Remark 6.11. Every Hamiltonian vector field is a symplectic vector field.

Proof. Let XH be a Hamiltonian vector field. Then it immediately follows that XH is
symplectic since ιXH is exact and so in particular it is closed. �

Remark 6.12. There is an equivalent definition for symplectic vector fields, namely by
defining symplectic vector fields to be a vector field X such that LXω = 0.

Proof. The statement in the remark is equivalent to show d(ιXω) = 0⇔ LXω = 0. Using
Cartan’s Formula we have

LXω = ιX(dω) + d(ιXω) = d(ιXω)

The second equality follows from the fact that ω is closed (dω = 0). �

C. Symplectic and Hamiltonian isotopy

Definition 6.13. Let (M,ω) be a symplectic manifold. A symplectic isotopy of (M,ω)
is a smooth map [0, 1] ×M → M, (t, q) 7→ ψt(q) such that ψt ∈ Symp(M,ω), ∀t ∈ [0, 1]
and ψ0 = id.

Proposition 6.14. If t 7→ ψt ∈ Diff(M) is a smooth family of diffeomorphisms generated
by a family of vector fields Xt ∈ X(M) via d

dt
ψt = Xt ◦ψt, ψ0 = id, then ψt ∈ Symp(M,ω)

for every t if and only if Xt ∈ X(M,ω) for every t.

Proof.

d

dt
|t=t0Ψ∗ω = lim

t→t0

Ψ∗tω −Ψ∗t0ω

t− t0
= Ψ∗t0 lim

t→t0

(Ψ−1
t0

)∗Ψ∗tω − ω
t− t0

= Ψ∗t0 lim
t→t0

(Ψt ◦Ψ−1
t0

)∗ω − ω
t− t0

= Ψ∗t0LXt0ω

So Ψt is symplectic, ∀t⇔ d
dt

Ψ∗ω = 0, ∀t⇔ LXtΨt = 0,∀t⇔ Xt is symplectic, ∀t. �

Remark 6.15 (symplectic isotopy). On a closed manifold, there is a 1-1 correspondence
between isotopies (smooth curves in Diff(M) passing through id at time 0) and time-
dependent vector fields, namely {Ψt} ⊂ Diff(M),Ψ0 = id↔ {Xt} ⊂ X(M). By definition,
a symplectic isotopy is exactly such a curve with image in Symp(M,ω). Then the proposi-
tion above tells us there is also a correspondence between symplectic isotopies and smooth
families of symplectic vector fields, that is, {Ψt} ⊂ Symp(M,ω)↔ {Xt} ⊂ X(M,ω).

This motivates the definition of Hamiltonian isotopy.

Definition 6.16 (Hamiltonian isotopy). A symplectic isotopy {Ψt}0≤t≤1 is called a
Hamiltonian isotopy if its corresponding vector fields {Xt}, such that d

dt
Ψt = Xt ◦Ψt, is

Hamiltonian for any t. In this case, there is a smooth function H : [0, 1] ×M → R such
that for each t, the function Ht := H(t, ·) generates the vector field Xt via ι(Xt)ω = dHt.
The function H is called a time-dependent Hamiltonian.
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Remark 6.17. Time-dependent Hamiltonian is determined by the Hamiltonian isotopy
up to an additive function c : [0, 1] → R. Is M is simply connected, then every closed
1-form is exact, thus every symplectic vector field is Hamiltonian, finally, every symplectic
isotopy is Hamiltonian.

What happens if we are given a time-independent Hamiltonian?

Definition 6.18 (Hamiltonian flow). Suppose (M,ω) is a closed symplectic manifold,
given a time-independent Hamiltonian function H, the isotopy generated by its corre-
sponding Hamiltonian vector field XH is called the Hamiltonian flow associated to H.

Notice, the compactness of the manifold in the definition is only added to guarantee
the existence of global flow associated to the given Hamiltonian. It is totally fine to work
without this assumption.

Remark 6.19. The identity dH(XH) = ω(XH , XH) = 0 shows that the Hamiltonian
vector field XH is tangent to the level sets H−1(c), c ∈ R.

Example 6.20. In the last talk, we mentioned that every orientable surface admits a
symplectic form. On S2 \ {(0,±1)}, in particular, the area form induced by the Euclidean
metric on R3 can be written as ω = dθ ∧ dx3, which is a symplectic form(see figure 8,
the two figures below are borrowed from [MS17]). Consider the height function H = x3 :
S2 \ {(0,±1} → R. Then the level sets of H are exactly circles at constant height. The
corresponding Hamiltonian vector field XH is the one satisfying dθ ∧ dx3(XH , ·) = dx3,
which is obviously ∂

∂θ
. Thus, the Hamiltonian flow ΦtH is the rotation of the sphere about

its vertical axis at constant angular speed.

Figure 8. Polar coordinates (θ, x3) Figure 9. Rotating

Remark 6.21. In this example, we can see that the motion of a point along the Hamilton-
ian flow is within the level set, namely, preserves H. This is the familiar law of conservation
of energy. Actually, the initial motivation for symplectic geometry lies exactly in the study
of classical mechanical systems, such as the planetary system. Under that context, the
Hamiltonian function is the sum of kinetic energy and potential energy. Then by the law
of conservation of energy, any motion of a planet preserves the total energy of the system,
which is just like we did before.

D. Hamiltonian symplectomorphism

Definition 6.22 (Hamiltonian symplectomorphism). A symplectomorphism is called
Hamiltonian if there exists a Hamiltonian isotopy Ψt ∈ Symp(M,ω) from Ψ0 = id to
Ψ1 = Ψ. We denote the space of Hamiltonian symplectomorphisms by Ham(M,ω).

In the case M is not compact, a Hamiltonian function not necessarily generates a global
isotopy, thus, it is also useful to consider a compactly supported Hamiltonian function.

Definition 6.23 (compactly supported Hamiltonian symplectomorphsim). LetH : [0, 1]×
M → R be a compactly supported Hamiltonian, which determines a compactly supported
Hamiltonian isotopy {Ψt}0≤t≤1 and its time-1 map will be denoted by ΦH := Ψ1. Ev-
ery such Hamiltonian symplectomorphism is called compactly supported, and we denote
Hamc(M,ω) := {ΦH |H ∈ C∞0 ([0, 1]×M)}.
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Remark 6.24. If {Ψt}0≤t≤1 is a Hamiltonian isotopy, then Ψt is Hamiltonian for any
t ∈ [0, 1]. This can be shown by re-parameterization, namely consider Φs := Ψst for
∀s ∈ [0, 1]. Hence, by definition Ham(M) is path-connected, and therefor a subset of
Symp0(M).

Actually, Ham(M) is a normal subgroup of Symp(M), to show that, we will need the
following technical lemma.

Lemma 6.25. (i) Let M be a smooth manifold, {Φt}, {Ψt} ⊂ Diff(M) be two isotopies,
then

∂t(Φt ◦Ψt) = (∂tΦt) ◦Ψt + (dΦt) ◦ ∂tΨt.

(ii) Let (M,ω) be a symplectic manifold. For every Hamiltonian function H : M → R and
every symplectomorphism Ψ ∈ Symp(M,ω) we have Ψ∗XH = XH◦Ψ, Ψ∗XH = XH◦Ψ−1 .

Proposition 6.26. Ham(M) is a path-connected normal subgroup of Symp(M,ω).

Proof. Given any Φ,Ψ ∈ Ham(M), then there will be Hamiltonian function Ft, Gt :
[0, 1] ×M → R, and corresponding Hamiltonian isotopies {Φt}0≤t≤1, {Ψt}0≤t≤1, which
join id to Φ,Ψ respectively, that is, d

dt
Φt = XFt ◦ Φt,

d
dt

Ψt = XGt ◦Ψt.
To prove that Φ ◦Ψ is Hamiltonian, consider the isotopy: Φt ◦Ψt, then

d

dt
(Φt ◦Ψt) = (

d

dt
Φt) ◦Ψt + (dΦt) ◦ (

d

dt
Ψt)

= XFt ◦ Φt ◦Ψt + (dΦt) ◦XGt ◦Ψt

= XFt ◦ Φt ◦Ψt + (Φt)∗(XGt) ◦ Φt ◦Ψt

= X
Ft+Gt◦Φ−1

t
◦ Φt ◦Ψt.

Hence, Φt ◦Ψt is a Hamiltonian isotopy with Ft +Gt ◦ Φ−1
t as its Hamiltonian function.

So, Φ ◦Ψ ∈ Ham(M).
To prove that Φ−1 is Hamiltonian, consider isotopy Φ−1

t ,

0 =
d

dt
(Φt ◦ Φ−1

t ) = (
d

dt
Φt) ◦ Φ−1

t + (dΦt) ◦ (
d

dt
Φ−1
t )

= XFt ◦ Φt ◦ Φ−1
t + dΦt(

d

dt
Φ−1
t )

therefore,

d

dt
Φ−1
t = dΦ−1

t (X−Ft) = (Φt)
∗(X−Ft) ◦ Φ−1

t = X−Ft◦Φt ◦ Φ−1
t .

Thus, Φ−1
t is a Hamiltonian isotopy with −Ft ◦ Φt as its Hamiltonian function, so Φ−1 ∈

Ham(M).
Finally, to show that Ham(M) is a normal subgroup, let χ be a symplectomorphism,

d

dt
(χ−1 ◦ Φt ◦ χ) = dχ−1 ◦ (

d

dt
Φt) ◦ χ = dχ−1 ◦XFt ◦ Φt ◦ χ

= χ∗(XFt) ◦ χ
−1 ◦ Φt ◦ χ = χFt◦χ ◦ (χ−1 ◦ Φt ◦ χ).

That tells us χ−1 ◦Φt ◦ χ is Hamiltonian with Hamiltonian function Ft ◦ χ and therefore,
Ham(M) is normal. �

Theorem 6.27 ([Ban78, Ban97]). The group Ham(M) is perfect and simple for closed
symplectic manifolds M .
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Talk 7: The Flux homomorphism

Yilin, Patrik

We would like to characterize Hamiltonian isotopies. In the first step we look at the
relative simple case where the symplectic form is exact.

Definition 7.1. A symplectic manifold (M,ω) is exact if ω is exact, i.e. there exists an
one-form λ such that dλ = ω.

Proposition 7.2. Let (M,ω) be an exact symplectic manifold, φt ∈ Diff(M) an isotopy
starting from the identity φ0 = id. Then φt is a Hamiltonian isotopy is and only if φ∗tλ−λ
is exact, i.e.

φ∗tλ− λ = dFt

for some smooth family of functions Ft. The function Ft is given by

Ft =

∫ t

0

(ιXsλ+Hs) ◦ φsds

Proof. Let φt be a Hamiltonian isotopy, generated by the vector field Xt : M → TM .
Then by the differential rule given in proposition 6.14 we have

∂t(φ
∗
tλ− λ) = ∂tφ

∗
tλ

6.14
= φ∗tLXtλ

Cartan
= φ∗t (ιXtdλ+ d(ιXtλ)) = φ∗td(ιXtλ+Ht) = ∂tdFt.

The one-forms differ only by a constant, but they agree on t = 0, so the equality holds.
Conversely, we construct Ht:

Ht = −ιXtλ+ (∂Ft) ◦ φ−1
t .

Then

0 = ∂t(φ
∗
t − dFt) = φ∗t (ιXtdλ+ d(ιXtλ)) + d∂tF

t = φ∗t (ιXtdλ− dHt)

Hence ιXsω = dHs �

Remark 7.3. A symplectomorphism φ of an exact symplectic manifold (M,ω = dλ) is
called exact (with respect to λ) if φ∗λ− λ is exact.

Corollary 7.4. Let (M, t) be an exact symplectic manifold and φt a symplectic isotopy.
Then φt is Hamiltonian for each t if and only if φt is an Hamiltonian isotopy. The
proposition above shows that every Hamiltonian symplectomorphism is exact with repect
to any (reasonable) 1-form.

Proof. Clearly we can choose Ft smoothly depending on φt. �

After understanding the simple case, we would like to characterize Hamiltonian iso-
topies in a more general setting where the manifold is not necessarily exact. For that

we need the notion of flux homomorphism Flux : S̃ymp0 → H1(M). In the following we
understand an element in the universal cover of Symp(M,ω) as the homotopy class {ψt}
from id to ψ, and the group structure on the universal cover is given by concatenating.

Definition 7.5. The flux homomorphism Flux : S̃ymp0 → H1(M) is defined by

Flux({ψt}) :

∫ 1

0

[ιXtω]dt ∈ H1(M ;R)

where Xt is the unique generating vector field satisfying ∂tψt = Xt ◦ ψt

We need to check the right-hand side is well-defined.

Lemma 7.6 (Well-definedness). The right-hand side depends only on the homotopy class
of ψt.

Proof. We identify H1(M ;R) with Hom(π1(M);R) by the map

[ω]→ ([γ] 7→
∫
γ

ω).
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Then the cohomology class in the definition corresponds to the homomorphism π1(M)→ R
defined by

γ 7→
∫ 1

0

∫ 1

0

ω(Xt(γ(s)), γ̇)dsdt

for representative γ : R/Z→M . Since φt are symplectomorphisms, the 1-forms ιXtω are
closed. So the integral (by Stokes’ theorem) depends only on the homotopy class of γ.

Define β : R/Z by β(s, t) := ψ−1
t (γ(s)). Geometrically β is a cylinder in M starting

with γ and flows along the isotopy {ψ−1
t }. Differentiate both sides of ψt(β(s, t)) = γ(s)

with respect to s and t we get

dψt(β)
∂β

∂s
= γ̇(s), dψt(β)

∂β

∂t
+Xt(γ(s)) = 0

Since ψ∗t ω
Def
= ω, we have

Flux({ψt})(γ) =

∫ 1

0

∫ 1

0

ω(Xt(γ(s)), γ̇)ds =

∫ 1

0

∫ 1

0

ω(
∂β

∂s
,
∂β

∂t
)ds =

∫
R/Z×[0,1]

β∗ω.

The integral (in fact by naturality of pullback) depends only on the homotopy class of
β and hence of ψ, we can prove with following argument:

Define a homotopy u → {ψut } be a homotopy fixing the start point id map and end
point ψ := ψu1 . Define Γ : u→ βu := (ψut )−1(γ(s)) to be a homotopy. For convenience we
take X := R/Z× [0, 1] = S1 × [0, 1], then∫

X

β∗1ω −
∫
X

β∗0ω =

∫
X×{1}

Γ∗ω −
∫
X×{0}

Γ∗ω
Stokes

=

∫
X×I

d(Γ∗ω) =

∫
X×I

Γ∗(dω) = 0

�

Remark 7.7. The result is the same if we use the more natural map β(s, t) := ψt(γ(s)).
The flux is geometrically the symplectic area swept by γ under the isotopy.

Theorem 7.8 ([MS17], Flux characterizes Hamiltonian isotopies). Let (M,ω) be a closed
connected symplectic manifold and ψ ∈ Symp0(M,ω). Then ψ is a Hamiltonian symplec-
tomorphism ⇔ there exists a symplectic isotopy

[0, 1]→ Symp0(M,ω)

t 7→ ψt

such that

ψ0 = id, ψ1 = ψ, Flux({ψt}) = 0.

Moreover, if Flux({ψt}) = 0 then {ψt} is isotopic with fixed endpoints to a Hamiltonian
isotopy.

Proof. If ψ is Hamiltonian, it is the endpoint of a Hamiltonian isotopy ψt corresponding
to some family of Hamiltonian functions Ht : M → R, and

Flux({ψt}) =

∫ 1

0

[ι(Xt)ω] dt =

∫ 1

0

[dHt] dt = 0.

Conversely, let ψt ∈ Symp0(M,ω) be a symplectic isotopy from ψ0 = id to ψ1 = ψ s.t.
Flux({ψt}) = 0, and define Xt ∈ X (M,ω) by

d

dt
ψt = Xt ◦ ψt.

We know that the integral
∫ 1

0
ι(Xt)ω dt is exact, and what we must do is change the

isotopy ψt so that ι(Xt)ω is exact for each t. Equivalently, we must make the integral∫ T
0
ι(Xt)ω dt exact for each T ∈ [0, 1]. Thus, Flux({ψt}0≤t≤T ) = 0 for every T ∈ [0, 1].

The first step is to modify ψt by a Hamiltonian isotopy s.t. the 1-form
∫ T

0
ι(Xt)ω dt is

0 rather than merely exact. To achieve this, note first that since Flux({ψt}) = 0, there
exists a function F : M → R s.t. ∫ 1

0

ι(Xt)ω dt = dF.
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Let φsF be the Hamiltonian flow of F. Since φsF is Hamiltonian for each s ∈ R, it suffices
to prove the Theorem for the composition φ−1

F ◦ ψ instead of ψ. But this is the endpoint

of the juxtaposition ψ
′
t defined by ψ

′
t := ψ2t for 0 ≤ t ≤ 1

2
, and ψ

′
t := φ1−2t

F ◦ ψ1 for
1
2
≤ t ≤ 1. This isotopy ψ

′
t (or a suitable smooth reparametrization) is generated by a

smooth family of vector fields X
′
t s.t.

∫ 1

0
X
′
t dt = 0. Hence, from now on we assume that

ψ = ψ1 for some isotopy with ∫ 1

0

Xt dt = 0.

Next, for every t, let θst ∈ Symp0(M,ω), s ∈ R, be the flow generated by the symplectic
vector field

Yt := −
∫ t

0

Xλ dλ.

Thus,

∂sθ
s
t = Yt ◦ θst , θ0

t = id .

Observe that Y0 = Y1 = 0 and hence θs0 = θs1 = id for all s.
We claim that

φt := θ1
t ◦ ψt

is the desired Hamiltonian isotopy from φ0 = id to φ1 = ψ1 = ψ. To see this, note that
because Flux is a homomorphism of groups,

Flux({φt}0≤t≤T ) = Flux({θ1
t }0≤t≤T ) + Flux({ψt}0≤t≤T )

= Flux({θsT }0≤s≤1) +

∫ T

0

[ι(Xt)ω] dt

= [ι(YT )ω] +

∫ T

0

[ι(Xt)ω] dt

= 0.

Here the second step uses the homotopy invariance of the flux, and the third follows from
the fact that θsT is the flow of YT . �

Proposition 7.9 ([MS17], Exact sequences induced by flux). Let (M,ω) be a closed,
connected symplectic manifold. Then:

(1) There is an exact sequence of simply connected Lie groups

0→ H̃am(M,ω)→ S̃ymp0(M,ω)→ H1(M ;R)→ 0,

where H̃am(M,ω) is the universal cover of Ham(M,ω) and the third arrow is the
flux homomorphism.

(2) There is an exact sequence of Lie algebras

0→ R→ C∞(M)→ X (M,ω)→ H1(M ;R)→ 0.

Here the third map is H 7→ XH and the fourth map is X 7→ [ιXω].
(3) There is an exact sequence of groups

0→ π1(Ham(M,ω))→ π1(Symp0(M,ω))→ Γω → 0,

where Γω is the flux group.
(4) There is an exact sequence of groups

0→ Ham(M,ω)→ Symp0(M,ω)
ρ→ H1(M ;R)/Γω → 0,

where ρ is the map induced by Flux. Thus, Symp0(M,ω)/Ham(M,ω) is isomor-
phic to H1(M ;R)/Γω.
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Proof. From Proposition 10.2.12 ([MS17]) we know that every smooth path ψt ∈ Ham(M)
which starts at the identity is a Hamiltonian isotopy and hence has zero flux, i.e Flux({ψt}) =

0. This shows that H̃am(M) ⊂ ker(Flux). Conversely, Theorem 7.8 shows that if
Flux({ψt}) = 0 then the path ψt is homotopic, with fixed endpoints, to a Hamilton-

ian isotopy, and hence {ψt} ∈ H̃am(M). This shows that H̃am(M) ⊃ ker(Flux). We
conclude

H̃am(M) = ker(Flux)

The first statement now follows from the fact that Flux is surjective. The second state-
ment is obvious. For the third statement we have to show that π1(Ham(M)) injects into

π1(Symp0(M)). To see this, it is enough to show that any path [0, 1]→ S̃ymp0(M) with

endpoints in H̃am(M) is isotopic with fixed endpoints to a path in H̃am(M) = ker(Flux)
This is a parametrized version of the first statement. The last statement is obvious. �
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Talk 8: The Calabi homomorphism and Calabi quasimorphisms

Moritz, Arthur

We recall from the last section that the flux induces an exact sequence

0→ Ham(M,ω)→ Symp0(M,ω)
ρ→ H1(M ;R)/Γω → 0,

for a closed, symplectic manifold (M,ω). Banyaga [Ban78] proved that if (M,ω) is closed
and symplectic, the group Ham(M,ω) is simple. We now want to construct a similar
sequence for exact manifolds (M,ω = dλ). In the following we will define the Calabi
homomorphism CAL : Hamc(M,ω) −→ R, which is non-trivial. Hence for exact manifolds
(M,ω), the group Hamc(M,ω) is not simple, but Banyaga [Ban78] proved that the kernel
of CAL is simple.

Consider an exact symplectic manifold (M,ω), for which ω = dλ. In this case, M
cannot be closed, because if it was,

vol(M) =

∫
M

ωn =

∫
M

d(λ ∧ ωn−1) =

∫
δM

λωn−1 = 0, (10)

contradicting the fact that ωn is a volume form.
By Proposition 7.2, given a compactly supported Hamiltonian diffeomorphism φ of

(M,ω), where ω = dλ, there exists a unique compactly supported function F : M −→ R
such that φ∗λ− λ = dF .

We define

Definition 8.1. CAL(φ) = 1
n+1

∫
M
Fωn.

This number, however, depends , on the choice of the primitive λ for the symplectic
form ω. We derive another formula for this quantity that does not depend on the choice
of λ:

Lemma 8.2. CAL(φ) =
∫ 1

0

∫
M
Htω

ndt.

Proof. By Proposition 7.2, there is a unique compactly supported family Ft such that
φ∗tλ− λ = dFt, given by

Ft =

∫ t

0

φ∗s(Hs + ιXsλ)ds. (11)

Since φt preserves ω, it follows that∫
M

d

dt
Ftω

n =

∫
M

φ∗t (Ht + ιXtλ)ωn

=

∫
M

(Ht + ιXtλ)ωn.

(12)

Then, we compute∫ 1

0

∫
M

Htω
ndt =

1

n+ 1

∫ 1

0

∫
M

(nHt − ιXtλ+Ht + ιXtλ)ωndt

=
1

n+ 1

∫ 1

0

∫
M

(
d

dt
Ft + nHt − ιXtλ

)
ωndt

=
1

n+ 1

∫
M

F1ω
n +

1

n+ 1

∫ 1

0

∫
M

(nHt − ιXtλ)ωndt

= CAL(φ) +
1

n+ 1

∫ 1

0

∫
M

(nHt − ιXtλ)ωndt.

(13)
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To show that the last term is zero, we consider the form ωn ∧ λ, which is zero since
dimM = 2n.

0 = ιXt(λ ∧ ω
n)

= (ιXtλ)ωn − λ ∧ ιXt(ω
n)

= (ιXtλ)ωn − nλ ∧ ιXtω ∧ ω
n−1

= (ιXtλ)ωn − ndHt ∧ λ ∧ ωn−1

= (ιXtλ)ωn − nd(Htλ) ∧ ωn−1 − nHtdλ ∧ ωn−1

= (ιXtλ− nHt)ω
n + nd(Htλ ∧ ωn−1).

(14)

Hence, for every t, ∫
M

(ιXtλ− nHt)ω
n = 0, (15)

giving the proposed result. �

With this, we get a well defined map

CAL : Hamc(M,ω) −→ R, (16)

when ω = dλ.

Theorem 8.3. CAL is a homomorphism, called the Calabi homomorphism.

Proof. Let φ and ψ be Hamiltonian diffeomorphisms. Then,

(ψ ◦ φ)∗λ− λ = φ∗(ψ∗λ− λ) + (φ∗λ− λ)

= φ∗dG+ dF,
(17)

by Proposition 7.2. Hence,

CAL(ψ ◦ φ) =
1

n+ 1

∫
M

(G ◦ φ)ωn +
1

n+ 1

∫
M

Fωn

= CAL(ψ) + CAL(φ),

(18)

since φ preserves ω. �

Lemma 8.4. CAL is continuous and its kernel is simple.

Proof. See [Ban97] for a proof. �

The next lemma shows that CAL is indeed unique up to rescaling.

Lemma 8.5. For M an exact manifold without boundary, CAL is the only continuous
homomorphism from Hamc(M,ω) to the real numbers, up to rescaling.

Proof. Let K be the kernel of CAL. By Lemma 8.2, the Calabi homomorphism is sur-
jective, so CAL induces an isomorphism CAL : Hamc(M,ω)/K −→ R. Given another
continuous homomorphism f , K ∩Kerf a normal subgroup of K, which is hence trivial
or equal to K itself, since K is simple by Lemma 8.4. If K ∩Kerf is trivial, the map

f ⊕ CAL : Hamc(M,ω) −→ R⊕ R (19)

would be injective, contradicting the fact that the Hamiltonian group is non-abelian. If
Ker f ⊃ K then f also factors through a homomorphism f on Hamc(M,ω)/K. The

composition f ◦ CAL
−1

is a continuous automorphism of R, which is a multiplication by
a constant. �
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A. Calabi-homomorphism on non-exact symplectic manifolds

In this section, (M,ω) is no longer supposed to be exact. Furthermore, M shall be
non-compact and without border. Take ϕ ∈ Hamc(M,ω), let (ϕt)t∈[0,1] be a compactly
supported Hamiltonian isotopy from id to ϕ and Ht the unique corresponding compactly

supported Hamiltonian. Then in general
∫ 1

0

∫
M
Htω

ndt is not independent of the choice
of (ϕt)t∈[0,1]. Hence, the Calabi homomorphism cannot be defined on Hamc(M) like in

the exact case. However, a natural generalisation is to define it on ˜Hamc(M) instead:

Proposition 8.6. The map

C̃AL : ˜Hamc(M)→ R

(ϕt)t∈[0,1] 7→
∫ 1

0

∫
M

Htω
ndt

(20)

is a well-defined continuous and surjective homomorphism.

At some point in the proof we will need the following lemma, which is somehow a
generalization of the theorem of Schwarz.

Lemma 8.7. Let hs,t be a smooth family in Diff0(M) with h0,0 = id. Define for all

x ∈M , Xs,t(x) =
dhs,t
dt

(h−1
s,t (x)) and Ys,t(x) =

dhs,t
ds

(h−1
s,t (x)). Then

dXs,t
ds

=
dYs,t
dt

+ [Xs,t, Ys,t]. (21)

Now let us move on to the proof of the proposition.

Proof. First, define the linear map

c : XH 7→
∫
m

Hωn, (22)

where XH is a Hamiltonian vector field and H is the unique compactly supported Hamil-
tonian associated to XH . We will show that c is a Lie-algebra homomorphism, i.e. for all
Hamiltonian vector fields X and Y , c([X,Y ]) = 0, since R is abelian. In fact,

LX i(Y )ω = i(Y )LXω + i([X,Y ])ω = i([X,Y ])ω (23)

since X is a symplectic vector field and

LX i(Y )ω = d(i(X)i(Y )ω) (24)

by Cartan’s formula, since i(Y )ω is exact. Hence, the Hamiltonian H[X,Y ] associated to
[X,Y ] is given by i(X)i(Y )ω. Finally,

i(X)(i(Y )ω ∧ ωn) = (i(X)i(Y )ω)ωn − i(Y )ω ∧ i(X)ωn

= H[X,Y ]ω
n − n(dHY ∧ dHX ∧ ωn−1) = 0,

(25)

since M is of dimension n. Hence, H[X,Y ]ω
n = d(nHY ∧ dHX ∧ ωn−1). Therefore, Stokes

yields that c([X,Y ]) = 0.

Let us now prove that C̃AL is well-defined. Take h1 ∈ Hamc(M) and let (ht)t∈[0,1]

and (h̄t)t∈[0,1] be two isotopies from id to h1 such that there exists a smooth 2-parameter

homotopy with fixed borders h : [0, 1]2 → Hamc(M) such that h(t, 0) = ht and h(t, 1) = h̄t
for all t ∈ [0, 1]. Define Xs,t and Ys,t like in Lemma 8.7. Notice that c commutes with d

dt

and d
ds

, since for all Y we have

d(
d

ds
HXs,z )(Y ) =

d

ds
dHXs,z (Y ) =

d

ds
ω(Xs,t, Y )

= ω(
d

ds
Xs,t, Y ) = dH d

ds
Xs,t

(Y ).

(26)
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Hence, Lemma 8.7 yields

d

ds

∫ 1

0

c(Xs,t)dt =

∫ 1

0

c(
d

ds
Xs,t)

=

∫ 1

0

c(
d

dt
Ys,t) +

∫ 1

0

c([Xs,t, Ys,t])

=

∫ 1

0

c(
d

dt
Ys,t) = c(Ys,1)− c(Ys,0),

(27)

since c vanishes on commutators. But now Ys,1 = Y s, 0 = 0 since h is a homotopy with

fixed border. It follows that d
ds

∫ 1

0
c(Xs,t)dt = 0 and thus,

C̃AL((ht)) =

∫ 1

0

c(X0,t)dt =

∫ 1

0

c(X1,t)dt = C̃AL((h̄t)). (28)

Therefore, C̃AL is well-defined on ˜Hamc(M). The surjectivity and the homomorphism
property follow from arguments similar to those used to prove the same properties for the
flux homomorphism. �

Now let Λ denote the image of π1(Hamc(M)) ⊂ ˜Hamc(M) under C̃AL. The snake

lemma implies that C̃AL induces a homomorphism

CAL : Hamc(M)→ R/Λ,

the Calabi homomorphism.

Remark 8.8. In general, it is hard to compute Λ explicitly, however, two ”extreme” cases
are well-studied. As we have seen before, Λ is just trivial when (M,ω) is exact. On the
other hand, we shall see in the next section that in the case where M is closed - which
has been excluded here - Hamc(M) is simple and hence Λ = R.

Let us end this section with a result due to Banyaga.

Theorem 8.9. The kernel of CAL is simple.

B. On the group of Hamiltonian symplectomorphisms: simplicity, normal sub-

groups and quasi-morphisms

Let (M,ω) be a symplectic manifold. In the following section, we will study the group
of Hamiltonian symplectomorphisms of M in the two ”extreme” cases mentioned before.
To justify the distinction between exact and compact recall that:

Proposition 8.10. Let (M,ω) be an exact symplectic manifold. Then M is not closed.

Proof. Let n ∈ N such that M is of dimension 2n and take λ ∈ Ω1(M) such that ω = dλ.
Then

d(λ ∧ ωn−1) = dλ ∧ ωn−1 + λ ∧ d(ωn−1) = ωn, (29)

since ω is closed. Hence, ωn is exact. Suppose now that M is compact without border.
We know that ωn defines a volume form on M . Therefore, Stokes’ theorem yields a
contradiction. �

Recall further that we have a short exact sequence

0→ H̃amc(M,ω)→ ˜Sympc,0(M,ω)→ H1
c (M ;R)→ 0, (30)

where the third arrow is the flux homomorphism. Furthermore, if Γω := Flux(π1(Sympc,0(M,ω))) ⊂
H1(M ;R) denotes the flux group, the previous short exact sequence induces the short ex-
act sequence of groups

0→ Hamc(M,ω)→ Sympc,0(M,ω)→ H1
c (M ;R)/Γω → 0. (31)

Remark 8.11. The flux group Γω is generally even harder to construct then the group
Λ from the previous section. However, it has been proven that Γω is a discrete subgroup
of H1

c (M ;R) if and only if Hamc(M,ω)is locally connected.

Let us next study what these short exact sequences become when (M,ω) is exact.
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B.1. The exact case

In the following let (M,ω) denote an exact symplectic manifold and take λ ∈ Ω1(M)
such that ω = dλ.

Lemma 8.12. The map

Flux : ˜Sympc,0 → H1
c (M)

(ψt)t∈[0,1] 7→ [ψ∗1λ− λ]
(32)

is well-defined, independent of λ and coincides with the Flux morphism defined in ???. In
particular, Flux factorizes to a surjective morphism

Flux : Sympc,0 → H1
c (M)

ψ 7→ [ψ∗λ− λ]
(33)

and yields a short exact sequence

0→ Hamc(M,ω)→ Sympc,0(M,ω)
Flux→ H1

c (M ;R)→ 0. (34)

Proof. First, for all ψ ∈ Sympc,0, d(ψ∗λ − λ) = ψ∗dλ − dλ = ψ∗ω − ω = 0. Since ψ is
supposed to be compactly supported, ψ∗λ−λ is a compactly supported closed 1-form and
[ψ∗λ− λ] is indeed well-defined.

Now, let (ψt)t∈[0,1] be an isotopy in Sympc,0 starting at the identity and let (Xt)t∈[0,1])
denote the corresponding variation vector-fields. Then

ψ∗1λ− λ =

∫ 1

0

d

dt
ψ∗t λdt =

∫ 1

0

ψ∗tLXtλdt =

∫ 1

0

ψ∗t i(Xt)ωdt+ d(

∫ 1

0

ψ∗t i(Xt)λdt), (35)

by Cartan’s formula. Hence,

[ψ∗1λ− λ] =

∫ 1

0

[ψ∗t i(Xt)ω]dt, (36)

and the map is well-defined. Now, let λ′ ∈ Ω1(M) be a closed 1-form. This time, (37)
becomes

ψ∗1λ− λ = d(

∫ 1

0

ψ∗t i(Xt)λdt). (37)

Thus, ψ∗1λ − λ is exact. Now, if λ′ also satisfies dλ′ = ω, λ − λ′ is closed. Thus ψ∗1(λ −
λ′)− (λ−λ′) = (ψ∗1λ−λ)− (ψ∗1λ

′−λ′) is exact and [ψ∗1λ−λ] = [ψ∗1λ
′−λ′]. Furthermore,

it follows that
∫ 1

0
[ψ∗t i(Xt)ω]dt =

∫ 1

0
[i(Xt)ω]dt. Thus, Flux is independent of the choice of

λ and coincides with the flux morphism defined in ???.
Since [ψ∗1λ − λ] depends only on ψ1, Flux induces a morphism on Sympc,0. Since we

have a long exact sequence

0→ H̃amc(M,ω)→ ˜Sympc,0(M,ω)→ H1
c (M ;R)→ 0,

the induced homomorphism is surjective. �

Hence, in the exact case Λ and Γω are trivial.

Example 8.13 (The discD2). Let ω be a symplectic form onD2. SinceD2 is contractible,
H2
c (D2,R) = 0 and thus ω is exact. Furthermore, H1

c (D2,R) = 0. Hence, the short exact
sequence (34) implies Hamc(D

2, ω) ' Sympc,0(D2, ω) and by definition Sympc,0(D2, ω) =

Diff∞0 (D2, ∂D2, area).
Now, in Example 4.9 we have constructed a family of linearly independent homogeneous

quasi-morphisms, (Signn,D2). One can show that the signature quasi-morphism which is

used to define the Signn,D2 is a homomorphism on P2(D2) and hence, Sign2,D2 is a
continuous homomorphism itself. Thus Lemma 8.5 implies that Sign2,D2 is a multiple

of the Calabi homomorphism on Hamc(D
2, ω) and it is then easy to show that Sign2,D2

actually is the Calabi homomorphism.
Finally, Theorem 8.9 yields that Ker(Sign2,D2) is a simple subgroup of Hamc(D

2, ω).
Since the restrictions of all (Signn,D2) for n > 2 are non-trivial on Ker(Sign2,D2), we have
even constructed a countable family of non-trivial quasi-morphism on Ker(Sign2,D2).
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B.2. The compact case

Let (M, c) be a closed symplectic manifold. The following result immediately extin-
guishs all our hope to construct a Calabi homomorphism on Ham(M).

Theorem 8.14. Let (M, c) be a closed symplectic manifold. Then Ham(M) is simple.

Example 8.15 (The torus T2). Let ω be a symplectic form on T2 (exists since T2 is
orientable). This time one can show that the sequence (31) becomes

0→ Ham(T2, ω)→ Symp0(T2, ω)→ H1(T2;R)/Z2 → 0.

Theorem 8.14 yields that Ham(T2, ω) is simple and hence, there exists no non-trivial
homomorphism from Ham(T2, ω) to R.

Let D ⊂ T2 be diffeomorphic to the disc D2 and denote by SympDc,0 the subgroup
of Symp0 consisting of all symplectomorphisms with compact support in D. Then by
a similar argument as before, we have again SympDc,0 ⊂ Ham(T2). Now Ruelle defines a

quasi-morphism on Symp0(T2, ω), which is non-trivial on SympDc,0, sinceD is diffeomorphic

to D2 (see Talk 4).

C. Outlook on Calabi-quasimorphisms

In this section, (M,ω) will again denote a closed symplectic manifold. In the last
section, we have seen that there exists no non-trivial homomorphism from Ham(M) to R,
but on the other hand, we have managed to construct a non-trivial homogeneous quasi-
morphism on Ham(T2) by looking at contractible submanifolds of T2.

More generally, if U is an orientable 2-dimensional open submanifold of M that satisfies
H2
c (U,R) = 0, then the restriction of any symplectic form ω to U is exact on U . Hence,

the Calabi morphism can be defined on the subgroup Hamc(U) of Ham(M) consisting of
all Hamiltonian symplectomorphisms with compact support in U . This is in particular
the case for submanifolds diffeomorphic to discs - which have the interesting property
that the Hamiltonian symplectomorphisms with compact support in U are already all
symplectomorphisms with compact support in U - but also for annuli.

Hence, our next aim will be to not only construct a quasi-morphism that is non trivial
on all these sub-groups, but which coincides with the respective Calabi morphism of each
subgroup. Such a quasi-morphism shall be called a Calabi quasi-morphism. Of course,
asking for this property to hold on any 2-dimensional open submanifold of M that satisfies
H2
c (U,R) = 0 would be too restrictive in most cases. Hence, a first possibility is to ask

for it to hold only on subspaces diffeomorphic to discs (or annuli). Another approach is
to define the so called displacable sets.

Definition 8.16. An open set U ∈ M is called displacable if ω is exact on U and there
exists f ∈ Ham(m) such that f(U) ∩ Ū = ∅.

Note finally that neither of these two conditions is stronger than the other one, in
general they are incompatible.
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Talk 9: Calabi quasimorphisms on HamT 2

Huaitao, Lukas

A. Definition of Calabi quasimorphisms on Ham(T2)

For this section, we again focus on the torus. As the torus is compact, by Theorem
8.14, we know that Ham(T2, ω) is simple, and hence, there’s no nontrivial homomorphism
from Ham(T2, ω) to R. While, there’s indeed a nontrivial C1-continuous homomorphism
on Hamc(D

2, ω), namely, the Calabi homomorphism, which is unique up to rescaling
(by Lemma 8.5). So we could try to construct a quasimorphism on Ham(T2, ω), which
locally agrees with Calabi homomorphism. We call such a quasimorphism a Calabi quasi-
morphism. Unfortunately, there does not seem to be a unified definition for ”Calabi
quasimorphism”, so in this talk, in the case of the torus, we define it as follows:

Definition 9.1. Let φ : Ham(T2) → R be a quasimorphism. Suppose that for any disc
D ⊂ T2, φ|Hamc(D,ω) is a homomorphism (where Hamc(D,ω) is regarded as a subset of

Ham(T2)) or equivalently (by Lemma 8.5), suppose for each D ⊂ T2, there exists k ∈ R,
such that φ|Hamc(D,ω) = kCALD. Then φ is called a Calabi quasimorphism.

The goal of this talk is to describe a mechanism to construct a Calabi quasimorphism
Cφ on Ham(T2) from a homogeneous quasimorphism φ : π1(T2 \ {0})→ R, and calculate
the values of Cφ, when restricted to a specific subgroup Γ ⊂ Ham(T2), with the help of
Reeb graph. We follow closely [Py06a].

Throughout this section, we always view T2 = R2/Z2.

B. A general mechanism to construct quasimorphisms on Symp0(Σ, ω)

Attention: The goal of this subsection is to summarize the idea we adopted in talks 4 and
5 to construct quasimorphisms on Symp0(Σ, ω) (or Sympc,0(Σ, ω) if Σ is not compact),

where Σ = D2,T2,Σg(g ≥ 2). It means to give a sketch and to describe in general, for
that, accuracy is sacrificed. This technique comes from [GG04].

Step 1: For f ∈ Symp0(Σ), choose a symplectic isotopy ft joining id to f .
Step 2: For n distinct points {x1, · · · , xn} ⊂ Σ, consider the paths ft(x1), · · · , ft(xn).

We may call {x1, · · · , xn} the ”starting points”.
Step 3: Associate these paths with a ”nice” quantity q(f ;x1, · · · , xn). A ”nice” quan-

tity should be independent of the choice of ft, and well compatible with path concatena-
tion, i.e.

|q(g ◦ f ;x1, · · · , xn)− q(g; f(x1), · · · , f(xn))− q(f ;x1, · · · , xn)| ≤ D,
where D is a non-negative number independent of f, g, x1, · · · , xn.

Example 9.2. For n = 1, we can consider the change of angle of an initial vector along
the path, namely Angf (x), which finally leads to Ruelle’s homogeneous quasimorphism
(see Part A of talk 4).

Example 9.3. For n ≥ 2, fix n distinct points (x0
1, · · · , x0

n) ∈ Xn(Σ), consider the
concatenation

γ(f ;x1, · · · .xn) = (((1− t)x0
i + txi) ∗ (ft(xi)) ∗ (txi + (1− t)f(xi)))i=1,··· ,n,

which gives us n loops. In knot theory, this is called a pure braid, use γ̂ to denote its
associated link. Then Sign(γ̂(f ;x1, · · · , xn)), where Sign stands for homogenized signa-
ture, is such a ”good” invariant. This finally gives us linearly independent homogeneous
quasimorphisms Signn,D2 . (See Part C.1 of talk 4)

Step 4: Integrating to get rid of the starting points. The integration

f 7→
∫
Xn(Σ)

q(f ;x1, · · · , xn)dx1 · · · dxn,

where
Xn(Σ) := {(x1, · · · , xn)|xi ∈ Σ, xi 6= xj when i 6= j},

turns out to be a quasimorphism (for a typical proof, see Part A of section 4).
Step 5: Homogenization.
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Remark 9.4. If D = 0 in Step 3, then Step 4 actually defines a homomorphism, Step
5 is then unnecessary. This is exactly the case for Sign(γ̂(f ;x1, x2)), thus Sign2,D2 :

Hamc(D
2, ω)→ R is a homomorphism.

Remark 9.5. When n ≥ 2, we usually restrict ourselves to paths on D2 or S2. Paths
on other surfaces are much more complicated. However, for Σg, g ≥ 2, by the Poincaré
Polygon Theorem, Σg can be regared as the quotient manifold of a hyperbolic disc, hence
we can lift paths on Σg to D2 and apply the mechanism above. The torus, unfortunately,
does not admit a Riemannian metric with constant negative curvature, however, it is
indeed a quotient manifold of R2. So in talk 5, when n = 1, we lifted the paths to R2 and
again defined Ruelle’s homogeneous quasimorphism. In this section, we focus on the case
when n = 2, and take advantage of the Lie group structure (inherited from R2) to modify
the mechanism described above to suit the torus.

C. Modified mechanism for T2

For this subsection, we mean to associate a Calabi quasimorphism Cφ defined on
Symp0(T2, ω) to each homogeneous quasimorphism φ : π1(R2 − {0}) → R. Let a, b be
the usual generators of the group π1(R2 − {0}) (' Z ∗Z). We wish to prove the following
theorem from [Py06a, Theorem 0.1]:

Theorem 9.6. Suppose φ([a, b]) = 1. Then for any disc D ⊂ T2 and any diffeomorphism
f ∈ Hamc(D,ω), one has Cφ = 2 CALD(f).

We first explain the construction of Cφ. As n = 2, we can use x and y to denote the
starting points.

Step 1: For f ∈ Symp0(T2, ω), choose a symplectic isotopy ft joining id to f .
Step 2 (The trick): View T2 as the quotient space of R2, i.e. T2 = R2/Z2. For

(x, y) ∈ X2(T2), consider the paths ft(x) − ft(y), which is a path on T2 − {0} (as x 6=
y, ft(x) 6= ft(y) for any t).

Step 3: Notice that, there is a natural parameterization of the punctured torus,
namely, σ : T2\{0} → ([0, 1)× [0, 1)) \{(0, 0)}. Fix the base point x∗ = σ−1( 1

2
, 1

2
) ∈

T2 − {0}. For v ∈ T2 − {0}, define αv(t) := σ−1(tσ(v) + (1 − t)σ(x∗)), t ∈ [0, 1], which
is a geodesic (under Euclidean metric) going from x∗ to v. Define α(f ;x, y) to be an
element in π1(T2\{0}), represented by αx−y ∗ (ft(x)− ft(y)) ∗ ᾱf(x)−f(y). Now, for any

quasimorphism φ : π1(T2\{0})→ R, define Vf (x, y) := φ(α(f ;x, y)).
To show that Vf (x, y) is independent of the choice of isotopy, let f ′t be another isotopy

joining id to f . Then ft ∗ f̄ ′t forms a loop in Symp0(T2, ω). By Lemma 5.3, ft ∗ f̄ ′t ' ht,
where ht is a loop consisting of translations, so ft ' ht ∗ f ′t . Notice that ht(x)− ht(y) ≡
x− y, hence, f ′t(x)− f ′t(y) ' ft(x)− ft(y), meaning that α(f ;x, y) is independent of the
choice of isotopy, and naturally, so is Vf (x, y).

To consider the compatibility of Vf (x, y) with path concatenation, for g ∈ Symp0(T2, ω),
choose a symplectic isotopy gt joining id to g ◦ f , then ft ∗ (gt ◦ f) is an isotopy joining id
to g ◦ f . Observe that

α(g ◦ f ;x, y) = α(f ;x, y)α(g; f(x), f(y)),

so we have

|φ(α(g ◦ f ;x, y))− φ(α(f ;x, y))− φ(α(g; f(x), f(y)))| ≤ Dφ
i.e.

|Vg◦f (x, y)− Vf (x, y)− Vg(f(x), f(y))| ≤ Dφ.
where Dφ is the defect of φ.

Step 4: We integrate to get rid of the starting points, which gives us a quasimorphism
from Symp0(T2, ω) to R:

f 7→
∫
X2(T2)

Vf (x, y)dxdy.

Step 5: Homogenization. Define Cφ : Symp0(T2, ω)→ R:

Cφ(f) = lim
p→∞

1

p

∫
X2(T2)

Vfp(x, y)dxdy =

∫
X2(T2)

Ṽf (x, y)dxdy
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where Ṽf (x, y) = limp→∞
1
p
Vfp(x, y).

To prove that Cφ is a Calabi quasimorphism, let’s first note that the Calabi invariant
on Hamc(D) can be constructed via the general mechanism in a similar fashion as above.

Back to the general mechanism described in subsection B, assume now Σ = D, as
in Example 9.3, we can define γ(f ;x, y), a pure braid with two strands, and denote its
associated link by γ̂. We use n(f ;x, y) to denote the linking number of γ̂(f ;x, y), i.e.
n(f ;x, y) = lk(γ̂(f ;x, y)) (See Definition 4.4).

An equivalent way to define n(f ;x, y) is to regard it as the multiplicity of γ(f ;x, y)
with respect to ξ, that is, γ(f ;x, y) = n(f ;x, y)ξ, where ξ is the generator of P2(D) :=

π1(X2(D)) (' Z), and lk(ξ̂) = 1. As γ(g ◦ f ;x, y) = γ(f ;x, y)γ(g; f(x), f(y)) (in P2(D)),
we have n(g ◦ f ;x, y) = n(f ;x, y) + n(g; f(x), f(y)).

Then by Remark 9.4, the integration
∫
X2(D)

n(f ;x, y)dxdy defines a homomorphism

on Hamc(D,ω). Due to the uniqueness of homomorphism on Hamc(D) (up to rescaling,
by Lemma 8.5), there is k ∈ R, s.t.

∫
X2(D)

n(f ;x, y)dxdy = kCALD(f), for any f ∈
Hamc(D,ω). To calculate the coefficient k, let µ : [0, 1] → R be a smooth map that is
zero on some neighborhood of 0 and 1 (in Section 4, we use the notation ω, here to avoid
the confusion with the symplectic form, we use µ). Define the symplectic diffeomorphism
Fµ on the disc (in polar coordinates) by Fµ(R, θ) = (R, θ+ 2πµ(R)). Then apply Lemma
4.11 and Lemma 8.2, to calculate Sign2,D(Fµ) = −4 CALD(Fµ). A fact in knot theory is

that −2n(f ;x, y) = Sign(γ̂(f ;x, y)), so
∫
X2(D)

n(Fµ;x, y) = 2 CAL(Fµ), meaning k = 2.

Now, it suffices to check for any f ∈ Sympc,0(D), Cφ(f) =
∫
X2(D)

n(f ;x, y)dxdy, or

equivalently,
∫
X2(T2)

Ṽf (x, y)dxdy =
∫
X2(D)

n(f ;x, y)dxdy. Let’s divide the integration on

the LHS into 3 parts, and consider separately.
Case 1: x, y /∈ D.
Then ft(x) ≡ x and ft(y) ≡ y, therefore, α(fp;x, y) = e, where e is the identity of

π1(T2 − {0}). So,

Ṽf (x, y) = lim
p→∞

1

p
Vfp(x, y) = lim

p→∞

1

p
φ(e) = 0.

Case 2: x ∈ D, y /∈ D or x /∈ D, y ∈ D.
Let’s assume that x ∈ D, y /∈ D, then

α(f ;x, y) = αx−y ∗ (ft(x)− ft(y)) ∗ ᾱf(x)−f(y) = αx−y ∗ (ft(x)− y) ∗ ᾱf(x)−f(y).

Consider the lift of α(f ;x, y) in the covering space R2 \Z2. As ft(x)−y is always in a disc,
the lift of it is also within a disc of R2\Z2, which is contractible, so the lift of ft(x)−y is ho-
motopic to a straight line with length less than two times of the radius of the disc (all under
Euclidean metric). Hence, the lift of α(f ;x.y) can always be represented by concatenation
of three straight lines with length less than 1, which means there are only finite possibili-
ties. Actually, a more careful treatment tells us α(f ;x, y) ∈ {e, a, b, a−1, b−1}, where a, b
are the generators of π1(T2\{0}). Let M := max{|φ(e)|, |φ(a)|, |φ(b)|, |φ(a−1)|, |φ(b−1)|},
then

|Ṽf (x, y)| = lim
p→∞

1

p
|Vfp(x, y)| ≤ lim

p→∞

1

p
M = 0.

Case 3: x, y ∈ D.
Consider the map:

u : X2(D)→X2(T2)→ T2\{0}
(x, y) 7→(x, y) 7→ x− y

then it induces a map u∗ : π1(X2(D), (x0, y0))→ π1(T2\{0}, x0 − y0), where

γ(f ;x, y) = ((1− t)x0 + tx, (1− t)y0 + ty) ∗ (ft(x), ft(y)) ∗ (tx0 + (1− t)f(x), ty0 + (1− tf(y)))

7→ ((1− t)(x0 − y0) + t(x− y)) ∗ (ft(x)− ft(y)) ∗ (t(x0 − y0) + (1− t)(f(x)− f(y))).
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Let β(x,y) := ((1−t)x0+tx, (1−t)y0+ty)t∈[0,1]. Then calculate (the reader is encouraged

to assume x∗ = x0 − y0 to avoid the tedious calculation and grab the main idea)

α(f ;x, y) =αx−y ∗ (ft(x)− ft(y)) ∗ ᾱf(x)−f(y)

=αx−y ∗ u(β(x,y)) ∗ u(β(x,y)) ∗ (ft(x)− ft(y)) ∗ u(β(f(x),f(y)))

∗ u(β(f(x),f(y))) ∗ ᾱf(x)−f(y)

=αx−y ∗ u(β(x,y)) ∗ u∗(γ(f ;x, y)) ∗ u(β(f(x),f(y))) ∗ ᾱf(x)−f(y)

=αx−y ∗ u(β(x,y)) ∗ ᾱx0−y0 ∗ αx0−y0 ∗ u∗(γ(f ;x, y)) ∗ ᾱx0−y0 ∗ αx0−y0
∗ u(β(f(x),f(y))) ∗ ᾱf(x)−f(y)

Again, by a similar argument as in Case 2, φ(αx−y ∗u(β(x,y)) ∗ ᾱx0−y0) and φ(αx0−y0 ∗
u(β(f(x),f(y))) ∗ ᾱf(x)−f(y)) have only finite many possible values, and therefore have an
upper bound M independent of x, y, f . So,

Vf (x, y) = φ(α(f ;x, y)) ≤ 2Dφ + n(f ;x, y)φ(u∗(ξ)) + 2M.

Observe that u∗(ξ) is conjugate to [a, b], as φ is homogenous, φ(u∗(ξ)) = φ([a, b]) = 1.
Hence, ∣∣ ∫

X2(D)

Vf (x, y)dxdy −
∫
X2(D)

n(f ;x, y)dxdy
∣∣ ≤ 2(Dφ +M)area(D)2.

Notice that
∫
X2(D)

Vf (x, y)dxdy also defines a quasimorphism on Hamc(D), and∫
X2(D)

Ṽf (x, y)dxdy is its homogenization. By uniqueness of homogeneous representative

of a quasimorphism(See Proposition 1.5),
∫
X2(D)

Ṽf (x, y)dxdy =
∫
X2(D)

n(f ;x, y)dxdy,

which completes the proof.

D. Interlude: Morse Functions

We will now look at an interesting subgroup of Ham(T2, ω), but in order to describe it
we need some prerequisites.

Definition 9.7. A function F ∈ C∞(M) on a smooth manifold M is called a Morse
function if its critical points are non degenerate.

For us the most important fact about the critical points is that they are isolated and
since we are considering T2 here, which is compact, a Morse function will have only finitely
many critical points. However we want some more structure on the critical points.

Lemma 9.8. For every smooth manifold M there exists a Morse function F such that
for any distinct critical points x, y ∈M we have F (x) 6= F (y).

Now we will fix such a function F for the torus, with critical points x1, ..., xn and
critical values λi = F (xi) such that λ1 < ... < λn.

A convenient way of picturing a Morse function is as the height function of a particular
embedding of the torus in R3, see figure 10, where critical points are either valleys (local
minima), peaks (local maxima) or saddles.

Now we move on to defining our subgroup.

Definition 9.9. F := {H ∈ C∞(T2)|ω(XH , XF ) = 0} where XH is the vector field such
that ιXHω = dH.
We also define the subgroup of flows at time t = 1 of these vector fields Γ := {ϕ1

H |H ∈
F} ≤ Ham(T2, ω)

As ω is non-degenerate, we have ∀H ∈ F ∃λ : T2 → R : XH = λXF , so all the
corresponding vector fields are parallel and we obtain that ∀H1, H2 ∈ F : ϕ1

H1
◦ ϕ1

H2
=

ϕ1
H2
◦ ϕ1

H1
, so Γ is an abelian subgroup of Ham(T2, ω).
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(a) Critical points of the

height function

(b) F after the first critical

point
(c) F at the second critical

point

(d) F between the 2nd and
3rd critical points

(e) F between the last criti-

cal points

Figure 10. F as a height function

Figure 11. Cylinders

(a) Side view of construction

of the Reeb Graph
(b) Example with a tree

Figure 12. Reeb Graphs

E. Interlude: The Reeb Graph

In order to define the Reeb graph we will denote by Ki the connected component of
F−1(xi) containing xi (this is either a single point or a figure 8) and note that T2 \∪ni=1Ki

is a collection of disjointed cylinders, see figure 11.
We now construct the Reeb (multi-)graph G: To each Ki/xi/λi we associate a vertex

s, and to each cylinder we associate an edge a connecting si to sj (λi < λj) from the
respective Ki that bound it. We can consider a as the interval ]λi, λj [. See figure 12.
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Figure 13. Cycle in blue, the corresponding cylinders in red, trees in
black with corresponding cylinders in green

As the torus has genus 1, G has a unique cycle G′ of vertices s1, ..., sk with edges
a1, ..., ak where ai connects si to si+1 (with the convention that sk+1 = s1). To see that
G′ must exist, one can picture the torus as a ”loop” of cylinders, which correspond to the
ai. Uniqueness follows from a similar argument showing that a second loop would increase
the genus. The cylinders corresponding to the edges of G′ cannot attach to each other in
order to ”close” the surface, so at each vertex we need to ”cap off” the torus and we get
trees T1, ..., Tk such that Ti intersects G′ only at the vertex si. See figure 13.

In other words G = G′ ∪ki=1 Ti.

F. Expressing Cφ on Γ

Now we can define a projection p : T2 → G such that for any x ∈ a =]λi, λj [ we have
p−1(x) is the connected component of F−1(x) in the cylinder corresponding to a.

As any H ∈ F shares level sets with F we now can find a functions HG : G → R such
that H = HG ◦ p. We can now state the theorem ([Py06a, Theorem 0.2]) that we want to
show.

Theorem 9.10. For any φ : π1(T2 \ {0})→ R and any H ∈ F we have

Cφ(ϕ1
H) = 2

k∑
i=1

∫
p−1(Ti)

(H −HG(si))ω

Particularly interesting is that the right hand side of this equation is completely inde-
pendent of φ, with all quantities being defined by our Morse function F and H.

G. Sketch of Proof

For the proof we need to introduce some more notation: For an edge a we denote by
a+, a− the vertices it borders such that FG(a+) > FG(a−), denote these values by t+a and
t−a respectively. Up to changing the order of G′ we may assume a−1 = s1 and a+

1 = s2. We
can also parametrize p−1(a) as (t, θ) ∈]t−a , t

+
a [×R/Z such that ω = dθ ∧ dt.

With this parametrization we have XF (t, θ) = νF (t) ∂
∂θ

where νF > 0. And for H ∈ F
we also have XH(t, θ) = νH(t) ∂

∂θ
.

Note that we now have
∫ t+a
t−a

νh(t)dt = HG(a+)−HG(a−).

Finally for an edge a, let γ(u) be a loop in p−1(a) along ∂
∂θ

and q a point outside of

p−1(a), so we can define ca = [γ − p] in π1(T2 \ {0}).

Lemma 9.11. For H ∈ F we have
∑k
i=1(HG(a+

i )−HG(a−i ))φ(cai) = 0

Proof. To see this we will turn the sum into a telescoping sum where sk+1 = s1 means it
is 0.

We consider two cases for ai: Case 1: a+
i = si+1. In this case ai is oriented the same

way as a1 and thus we get that cai = ca1 . Case 2: a+
i = si. In this case we note that by

”sliding” the γ1 used in the definition for ca1 along the loop of the torus (represented by G′
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Figure 14. The loop in red is the respective γ for that edge

in the graph) it has the reverse orientation as the γi used for cai . So we have cai = −ca1 .
For both these cases see figure 14.

As φ is homogeneous we get for any ai:

(HG(a+
i )−HG(a−i ))φ(cai) = (HG(si+1)−HG(si))φ(ca1)

�

We now can start proving the theorem by calculating Cφ(ϕ1
H) =

∫
X2(T2)

Ṽϕ1
H

(x, y)dxdy.

We can split this into the parts p−1(a)×p−1(b) for edges a and b. (Note that the preimage
of the vertices has area 0.) We further distinguish 3 cases.

(1) a, b are both edges in G′.
(2) One is in G′ the other in a Ti.
(3) Both are in Ti’s.

Case 1 Let x ∈ p−1(a) and y ∈ p−1(b). Note that we may assume that p(x) 6= p(y).
Now we can note that the paths ϕtH(x) and ϕtH(y) simply move in their level sets in a
along ∂

∂θ
at the rate νH(x) and νH(y) respectively and that these paths do not intersect.

This allows us to write:

(ϕtH(x)− ϕtH(y))t∈[0,n] ' (ϕtH(x)− y)t∈[0,n] ∗ (ϕnH(x)− ϕtH(y))t∈[0,n]

Letting s∗ be the automorphism on π1(T2 \ {0}) induced by u 7→ −u we get:

Ṽϕ1
H

(x, y) = νH(x)φ(ca) + νH(y)φ(s∗(cb))

Integrating over p−1(a)× p−1(b) we get:∫
p−1(a)×p−1(b)

Ṽϕ1
H

(x, y)dxdy = (HG(a+)−HG(a−))φ(ca)area(p−1(b))

+ (HG(b+)−HG(b−))φ ◦ s∗(cb)area(p−1(a))

Thus with the lemma summing over a and b in G′ gives us 0.
Case 2 As the subcases are symmetrical we will only consider a ∈ G′ and b ∈ Ti.

Further, since the intersection of the tree and the cycle is si, we can homotop the path
ϕtH(b) around p−1(Ti) and contract it to a point, see figure 15, and similar to the last case
we have:

(ϕtH(x)− ϕtH(y))t∈[0,n] ' (ϕtH(x)− y)t∈[0,n].

Integrating and summing then gives us 0 again with the lemma.
Case 3 If a and b are in different trees we note that, as in case 2, we can homotop

their respective paths to constant paths as there is no obstruction and get Ṽϕ1
H

(x, y) = 0,

so we only need to consider a = b in the tree Ti.
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Figure 15. Case 2

Figure 16

Now we have again three cases, see figure 16. In the first we can argue as above that
Ṽϕ1

H
(x, y) = 0. The last 2 are symmetric, so we only have to consider the second one.

We will need to introduce some new notation needed for the calculation. Let ε(a) be
equal to 1 if F grows as we approach si (visually this means the tree is ”below” si) and
−1 if F decreases as it approaches si (the tree is ”above” si). See figure 17 for the case
that ε(a) = −1.

As before we homotop the path ϕtH(y) to the constant path at y and then the path
ϕtH(x) circles this point at the rate νH(x), in the positive direction if ε(a) = −1 and in

the negative direction if ε(a) = 1. Thus we have Ṽϕ1
H

(x, y) = −ε(a)νH(x).

For a point u ∈ Ti that is not a vertex, let D(u) be the connected component of
p−1(Ti \{u}) on which F increases, let χ(u) = area(D(u)) and χ(a+) = limu∈a,u→a+ χ(u)

and χ(a−) = limu∈a,u→a− χ(u), note that these latter two may depend on a, not just the
vertices if a is at a fork of Ti, see figure 18.

Thanks to our parametrization ω = dθ ∧ dt we have that ∂
∂t
area(D(p(t, θ))) = ε(a).

A very tedious integration by parts gives us the following:∫
x∈p−1(a),y∈D(p(x))

Ṽϕ1
H

(x, y)dxdy =

∫
p−1(a)

Hω − ε(a)(HG(a+)χ(a+)−HG(a−)χ(a−)).

The only ε(a)HG(a+−)χ(a+−) terms that do not cancel out when summing over a ∈ Ti,
are the leaves of Ti, of which only si as χ(si) = area(Ti) and the others are 0, and it
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Figure 17. If ε(a) = −1

Figure 18. D(u) above and below a fork

appears with the same sign as ε(a). So we have:∫
x∈p−1(Ti),y∈D(p(x))

Ṽϕ1
H

(x, y)dxdy =

∫
p−1(a)

Hω −HG(si)area(Ti)

=

∫
p−1(Ti)

(H −HG(si))ω

Symmetry then gives us:∫
x,y∈p−1(Ti)

Ṽϕ1
H

(x, y)dxdy = 2

∫
p−1(Ti)

(H −HG(si))ω

And summing over the Ti’s gives us the theorem.
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Talk 10: Calabi quasimorphisms on Ham(Σg), g ≥ 2

Jiahui, Konstantin

A. Main theorem and some notations

Theorem 10.1. Let (S, ω) be a closed oriented symplectic surface of genus at least 2.
There exists homogeneous quasimorphsim

CalS : Ham(S, ω)→ R
which is invariant under Symp(S, ω) conjugation, and equal to the Calabi homomorphism
for diffeomorphisms supported on a disc or an annulus.

Recall by Moser’s theorem, any two volume forms of equal total volume can be trans-
formed into each other via some diffeomorphism isotopic to the identity, so the choice of ω
does not matter. Assume ω is the induced area form by some metric of constant curvature
on S.

Let S̃ be the universal cover of S with induced metric. Let M = UT(S), M̃ = UT(S̃)

be the unit tangent bundles. A point (x̃, v) ∈ M̃ , where x̃ ∈ S̃ and v ∈ UTx̃(S̃), identifies

a geodesic ray on S̃ starting at x̃ pointing at direction v, which gives a point in the

boundary at infinity p∞(x̃, v) ∈ S1
∞. Given a path γ : [0, 1] → M̃ , p∞ sends it to a path

on S1
∞ ∼= R/Z and we can lift it to γ̃ : [0, 1]→ R. Define the index of γ to be

n(γ) = bγ̃(1)− γ̃(0)c
which records the ”number of turns” that γ does on the S1

∞. Note that this generalizes
Definition 5.8.

Let X be the vector field on M induced by the S1-action on each fiber. We consider
an 1-form α on M , such that α(X) = 1 and ιX(dα) = 0. Such an α exists, and can be
constructed using partition of unity, where locally it is xdy + dθ.

B. Construction of CalS

Let (ft) be a Hamiltonian isotopy on S with generating vector field Xt and Hamiltonian

functions Ht. Let X̂t be the horizontal lift of Xt to TM that satisfies α(X̂t) = 0. Set

φ(Xt) = X̂t − (Ht ◦ π)X

Let (Φ(ft)) be the flow along φ(Xt) on M , and lift to an isotopy (Ft) on M̃ .

For x̃ ∈ S̃, define

Ãngf1(x̃) = − inf{n(Ft(x̃, v)) : v ∈ UTx̃(S̃)}
Arguments from talk 5 (see (5.10)-(5.13)) shows that this infimum exists, is invariant

under deck transformation, therefore defines a map Angf (x) = Ãngf (x̃), such that

|Angfg(x)−Angg(x)−Angf (g(x))| ≤ 4

Integrating gives us a quasimorphism, as we have seen many times:

CALS(f) =

∫
S

Angfω

Homogenize and get

Definition 10.2.

CalS(f) = lim
p→∞

1

p

∫
S

Angfpω

Remark 10.3. In talk 5, instead of Ft above, we used the map (x̃, v) 7→ (f̃t, df̃t(x̃)(v)).
The same arguments still work. The reason for using Ft is so that the resulting quasimor-
phism satisfies the extra conditions (see [Py06a] (2.1) for more motivation). The index n
is independent of the choice of metric. The quasimorphism is independent of the choice
of the metric, of Ht, and of α.

Since conjugating is the same as computing in the pullback metric (see Prop 6.26),
CalS is invariant under conjugation by symplectomorphisms. Also, we can change Ht by
a constant so that

∫
S
Htω = 0.
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C. Restriction to diffeomorphisms supported on U homeomorphic to disc

Let U ⊆ S be homeomorphic to a disc on which ω = dλ. Recall from Lemma 8.2, for

G(x) =
∫ 1

0
(Hs + λ(Xs))fs(x)ds, we have

CalU (f) =

∫
U

∫ 1

0

Htdtω =
1

2

∫
U

Gω

By subadditive ergodic theorem, the functions 1
p
Angfp converge ω-almost everywhere

to some measurable function Ângf , so

CalS(f) =

∫
S

Ângfω

Proposition 10.4.

Ângf (x) = lim
p→∞

1

p

p−1∑
k=0

G(fk(x))

Proof. Let π : M → S be the bundle projection. Pick a trivialization U×S1 → π−1(U) =
UT(U). We shall write points of UT(U) in form (x, θ). Then X = ∂

∂θ
and we can take α

to be dθ + π∗λ.
Let fp,t be the Hamiltonian isotopy (ft) ∗ (ft ◦ f) ∗ · · · ∗ (ft ◦ fp−1), starting at id and

ending at fp. Let Xp,t be its generating vector field and Hp,t be the Hamiltonian with∫
S
Hp,tω = 0. Note that on the k-th segment, Xp,t = (fk−1)∗Xt, Hp,t = (fk−1)∗Ht.

Recall Φ(fp,t) is the flow of φ(Xp,t) = X̂p,t − (Hp,t ◦ π) ∂
∂θ

. Since α(X̂p,t) = 0 by

definition, we have 0 = dθ(X̂p,t) + π∗λX̂p,t. Therefore for θ ∈ S1 and x ∈ U ,

Φ(fp,t)(x, θ) =

(
fp,t(x), θ +

∫ t

0

(φ(Xp,s)dθ)(fp,s(x))ds)

)
=

(
fp,t(x), θ −

∫ t

0

(λXp,s +Hp,s)(fp,s(x))ds

) (38)

Let v(t), v1(t), v2(t) denote the following paths:

Φ(fp,t)(x, θ), (fp,t(x), θ)(
fp(x),

∫ t

0

(λXp,s +Hp,s)(fp,s(x))ds

)
Let ≈ denote that two elements differ by a bounded quantity (independent of p), then

Angfp(x) ≈ −n(ṽ) ≈ −n(ṽ1 ∗ ṽ2) ≈ −n(ṽ1)− n(ṽ2)

Let K be a compact set that supp(f) ⊆ K. Fix a point x0 ∈ U . For x ∈ K, let αx0x
be a path from x0 to x. By compactness, n(α̃x0x) is bounded. Let γx,fp be the loop
αx0x ∗ (fp,t(x)) ∗ αx0,fp(x). Since U is simply connected, it lifts to a contractible loop

γ̃x,fp , θ. Therefore

−n(ṽ1) ≈ −n(γ̃x,fp , θ)− n(α̃x0x)− n( ˜αx0,fp(x)) ≈ 0

On the other hand,

−n(ṽ2) ≈
∫ 1

0

(λXp,s +Hp,s)(hp,s(x))ds =

p−1∑
k=0

∫ 1

0

(λXs +Hs)fs(f
k(x))ds =

p−1∑
k=0

G(fk(x))

Ângf (x) = lim
p→∞

1

p
Angfp(x) = lim

p→∞

1

p

p−1∑
k=0

G(fk(x))

�

Now it follows from the Birkhoff Ergodic theorem,
∫
U
Âng(x, f)ω =

∫
U
Gω.
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An important difference from talk 5 is that when x /∈ U , although f fixes x, Ang(x, f)
may be non-zero. In fact, in this case Xt = 0 and Ht is some constant which might not
be zero. We have φ(Xt) = Ht ◦ π ∂

∂θ
, so

Ang(x, fp) ≈
p−1∑

0

∫ 1

0

Ht(ft(f
k(x)))dt = p

∫ 1

0

Htdt

Ângf (x) =

∫ 1

0

Htdt

Finally, we conclude that CalS(f) = CalU (f) when (ft) is supported on U , as follows:

CalS(f) =

∫
S

Ângfω

=

∫
S−U

Ângfω +

∫
U

Ângfω

=

∫
S−U

∫ 1

0

Htdtω +

∫
U

Gω

=

∫
S−U

∫ 1

0

Htdtω + 2

∫
U

∫ 1

0

Htdtω

=

∫
U

∫ 1

0

Htdtω = CalU (f)

(39)

Remark 10.5. During the proof we used the path ṽ1, which in our simply connected

case gives n(̃(v1)) = 0 by contractibility. In general, given a loop γ on any connected
open set U and a trivialization U × S1 → π−1(U), we can define φ(γ) = n(γ(t), z0) where
z0 ∈ S1 is fixed. Then φ : π1(U)→ R is a quasimorphism independent of the choice of z0,
the basepoint of the loop, nor the metric. We shall see more use of this in the following
sections.

D. Reminder of the Reeb graph

Recall the definition of a Morse function definition 9.7, which is a smooth function
F ∈ C∞(S) such that all critical points are non-degenerate. So let F : S → R be a Morse
function, for which all critical values are distinct. Denote by x1, . . . , xl the critical points
with corresponding critical values λj = F (xj), j ∈ {1, . . . , l}, such that λ1 < · · · < λl.

Now consider the space

F := {H : S → R | H ∈ C∞, ω(XH , XF ) = 0}

of functions on S which commute with F (XG denotes the symplectic gradient of a function
G). This gives rise to the set

Γ := {φ1
H | H ∈ F}

which is an abelian subgroup of Ham(S, ω) where φtH denotes the flow of XH . Therefore
the restriction of CalS is a homomorphism on Γ, which we will calculate in the following
section explicitly. However, first we have to look at the Reeb graph G of our Morse
function F . (For the construction of the Reeb graph see section E.) We have a natural
map pG : S → G such that for every H ∈ F we can write H = HG ◦ pG , where HG is
defined on G. The reason for this is that all H ∈ G share the level sets with F .

Now we will prune our graph G to obtain another graph G′ as follows. One can check
that G has only vertices of degree 1 or 3. For all vertices v of degree 1 we will contract
v along its incident edge until it coincides with the vertex adjacent to it and we denote
the graph obtained in that way G′. We do this iteratively until there are no more vertices
of degree 1 left. Hence G′ will only consist of vertices with degree 2 or 3. The number of
vertices with degree 3 will be 2g − 2. Indeed, the quantity

∑
v 2− deg(v) is equal to the

Euler characteristic of the surface, which is 2 − 2g and stays invariant under our vertex
contraction. Observe that if we contract a leave of our graph, we loose one vertex, but
also the unique edge incident with it, which hence amounts to no change in the identity
above. Finally denote with V the set of all the (2g−2) vertices with degree 3 in the graph
G′.
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E. Some concrete calculations of the Calabi quasimorphism

Our goal in this section is to prove the following theorem. In the following theorem we
assume that our 2-form ω has total area of (2g − 2).

Theorem 10.6. If H is in F , we have

CalS(ϕ1
H) =

∫
S

Hω −
∑
v∈V

HG(v).

Denote by U the open set S−{xl} and fix a trivialisation of the fiber bundle π : M → S
over U . Like in the previous section this yields a primitive element λ of ω in U and
a homogeneous quasimorphisms φ on π1(U) like described above. For an arc a of the
Reeb graph G we denote by a+ and a− the nodes incident to a with the convention that
FG(a−) < FG(a+). By construction, we can parametrize the preimage of an arc, p−G 1(a),
by (θ, t) ∈ R/Z× (t−, t+), such that we can write ω = dθ ∧ dt. For any function H in F
we can write the associated hamiltonian vector field XH locally on p−G 1(a) as

ϑ(t)
∂

∂θ
,

where θ is a function satisfying:∫ t+

t−

ϑ(t)dt = HG(a+)−HG(a−).

This follows from the fact that ω(XH , XF ) = 0, so H has to be constant along the level
sets of F .

Now consider a subset D ⊂ U with smooth boundary and denote by 〈[φ], ∂D〉 the sum
of φ evaluated at the conjugacy classes over all boundary components of D. This value
does not depend on the class [φ].

Proposition 10.7. For an arbitrary metric with constant curvature on S, we have 〈[φ], ∂D〉 =
−χ(D) if the boundary of D is geodesic with respect to this metric.

Proof. First of all, since our quasimorphism φ is independent of ω, we can suppose that
our 2-form ω is the one associated to the metric which makes the boundary ∂D geodesic.
We can choose the 1-form α in such a way that it is 0 in the direction of the geodesic flow.
Hence over U , for a trivialisation of the fiber bundle for which the Reeb field X = ∂

∂s
, we

have α = ds+π∗(λ). Let γ be the orbit of a geodesic flow such that the projection π(γ) is
a boundary component of D. Since γ is closed we get φ([π(γ)]) = −

∫
γ
ds =

∫
π(γ)

λ. Now

by summing over all components of ∂D we get:

〈[φ], ∂D〉 =

∫
D

ω = −χ(D)

�

Although for a function H in F an isotopy (ϕtH)t∈[0,1] corresponding to H might not
always have support in U , we can repeat the arguments in the proof of proposition 10.4.
Therefore choose an element x in U , such that pG(x) is not a vertex in G and denote by
[x] the free homotopy class corresponding to the loop p−1

G (pG(x)), oriented in the same

direction as XF . If H̃ is again the function whose integral over S is 0 and which differs
from H only by a constant, we have almost everywhere in U :

Ângϕ1
H

(x) = M(y → λ(XH)(y) + H̃(y))(x)− ϑ(x)φ([x])

(where ϑ(x) is the abbreviation for ϑ(F (x))). When we integrate the function M(y →
λ(XH)(y) + H̃(y)) over S we get

∫
S
Hω− (2g−2)H(xl). For an arc a of G we denote with

[a] the value of the common class [x] for x ∈ pG − 1(a). Then we have∫
S

ϑ(x)φ([x])ω =
∑
a

φ([a])(HG(a+)−HG(a−)).

where the sum goes over all arcs in G. However, if we instead sum over all vertices of
G we get



54 CONTENTS

∑
v

C(v)HG(v),

where we still have to determine the exact value of C(v) for each vertex. We do that
in the following.

Remark 10.8 (Observation). When we have two closed paths x and y with the same base
point in π−1(U), tangent to the horocyclic foliation of S, then φ([π(x ? y)]) = φ([π(x)]) +
φ([π(y)]).

Using this observation we can calculate the values C(v) by a case distinction as follows:

Case 1: v is a local extremum different from the global maximum xl: Then
C(v) must be 0 because the value is equal to the value of φ on an arbitrary small
closed path encircling v. Since this path is entirely inside of U it is contractible,
so null-homotopic in π1(U).

Case 2: v = xl: Here the value C(v) is equal to the value of φ evaluated at the
homotopy class in U of a small closed path encircling xl (oriented in the opposite
direction than the boundary of the subset F ≤ λl − ε). One can easily determine
that this value must be −(2g − 2), for example by interpreting U as the surface
S punctured at xl.

Hence we are left to determine the value C(v) for vertices v which correspond to critical
points of index 1. First of all note that we have

C(pG(xj)) = 〈[φ], ∂{λj − ε ≤ F ≤ λ+ ε}〉

(for small enough ε). Moreover note that the domain {λj − ε ≤ F ≤ λ+ ε} consists of
finitely many cylinders, for whose boundary the homogeneous quasimorphism φ evaluates
to 0, and a single ”pair of pants” P (homeomorphic to the three-holed sphere). We hence
just have to evaluate 〈[φ], ∂P 〉:

Case 3: One of the three components of ∂P is null-homotopic in U .: In this
case φ evaluates to zero on this component. Considering the other two compo-
nents note that they are freely homotopic in U and the values of φ under the
correctly oriented paths corresponding to these components differ exactly by a
sign. Therefore we have C(v) = 0 as soon as one of the components in ∂P is
null-homotopic.

Case 4: None of the components of ∂P is null-homotopic in S: One can proof,
that there is a metric of constant curvature (with the same 2-form ω) which makes
the boundary of P into geodesics (or at least two of the three boundary compo-
nents if two of them are freely homotopic). With a similar argumentation as in
proposition 10.7 we can hence deduce that C(v) = 1 in this case.

Case 5: At least one of the three components of ∂P is null-homotopic in S.:
Denote the component which is null-homotopic in S by α1 and the other two by
α2 and α3. Since α1 is not null-homotopic in U we must have that it encircles
xl, therefore neither α2 nor α3 are null-homotopic in S. We can modify our
pair of pants P into a different one, called P ′, for which the boundary compo-
nents α′1, α

′
2, α
′
3 are freely homotopic to the corresponding one of P and such

that α′1 and α′2 share the same base point. Moreover the path α′1 can be chosen
to be contained in an arbitrarily small neighborhood of xl. We can once more
find a metric of constant curvature which makes α′2 into a geodesic. Denote by
β2 the orbit periodic to the geodesic flow such that π(β2) = α′2. Now we can
find a closed lift β1 of α′1, which is tangent to the horocyclic foliation, start-
ing from the same point as β2. Considering our observation above we hence get
φ([α′1 ∗ α′2]) = φ([α′1]) + φ([α′2]). Since the last component of ∂P ′ defines the
conjugacy class [α′1 ∗ α′2]−1, we therefore have 〈[φ], ∂P ′〉 = 0, so also C(v) = 0.

Now observe those vertices v for which C(v) = 1 holds, are exactly the vertices in V
defined in the previous section. In other words, the vertices in V correspond exactly to
those critical points of index 1 for which none of the boundary components of the associated
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pair of pants P is null-homotopic in S. Moreover, recall that C(xl) = −(2g − 2). To sum
up we get ∑

v∈V

HG(v)− (2g − 2)H(xl)

.
Combining this with our previous result therefore leads to:

CalS(φ1
H) =

∫
S

Ângϕ1
H
ω =

∫
S

Hω −
∑
v∈V

HG(v)

This concludes the proof of the theorem. �
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Talk 11: A Calabi quasimorphism on Ham(S2)

Adrian Dawid, Reto Kaufmann

A. Introduction and Main Result

The goal of todays talk is twofold. The main goal is to show that there exists a Calabi
quasimorphism on the sphere. On the other hand, we want to give a glimpse at the
symplectic machinery that is required to do this proof. In the talks of the last few weeks,
there was always a shortcut or some smart, combinatorial way around these powerful, but
difficult concepts of Quantum homology and (filtered) Floer homology. For the sphere
however, up to today, there is no known proof that does not rely upon these structures.
Of course, these are topics that could fill hours and since we only have 60 minutes, we will
only be able to sketch some of the most important ideas and do not even pretend to give
complete proofs. The exposition follows quite closely the one in [EP03].

As said above, the main goal is to argue for the following theorem:

Theorem 11.1. There exists a homogeneous Calabi quasimorphism µ : Ham(S2)→ R.

Notation. In order to improve lisibility, we will adapt a shorthand notation and writeG =
Ham(S2). We will further denote the identity element sometimes as e, but sometimes also
as id depending on the context. Finally, to give our treatment a more general appearance,
we will often talk about M but mean almost always S2.

As seen several times in previous talks, it proves to be fruitful (and more importantly
it is easier) to first find a quasimorphism on the universal cover. We will thus argue in
two steps:

(1) Find a homogeneous Calabi quasimorphism µ̃ : G̃ → R on the universal cover G̃
and

(2) show that it descends to a homogeneous Calabi quasimorphism µ : G→ R.

The first step is actually a special case of a more general theorem:

Theorem 11.2. Let (M,ω) be a closed connected spherically monotone symplectic man-
ifold. Suppose that the quantum homology algebra QHev(M) is semi-simple. Then there

exists a homogeneous Calabi quasimorphism µ̃ : ˜Ham(M)→ R.

Remark 11.3. • A closed connected symplectic manifold is spherically monotone
if some algebraic condition involving the first Chern class of the symplectic bundle
TM → M is met. We will not look into this any further than saying that the
sphere S2 is spherically monotone, but for the interested reader we will neverthe-
less state the formal definition:

Definition 11.4. A closed connected symplectic manifold (M,ω) is called spher-
ically monotone if there exists a real constant κ > 0 such that

(c1(M), A) = κ · ([ω,A]) for all A ∈ π2(M)

where c1(M) is the first Chern class of the symplectic bundle TM →M equipped
with an ω-compatible almost complex structure J on M .

• Adrian will hint at what the quantum homology algebra is later in this talk,
but for now we just need the result for M = S2. The field k considered for
quantum homology is C[[s] whose elements are formal Laurent series of the form∑M
j=−∞ zjs

j where M ∈ Z, zj ∈ C and s is a formal variable. The Quantum
homology algebra for the sphere is then given as

QHev(S2) = k[P ]�{P 2 = s−1}

=

{
M∑

j=−∞

(zj + Pwj)s
j |M ∈ Z, zj , wj ∈ C, P 2 = s−1

}
In particular we would like to point out that this is a field.
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• A commutative algebra Q over a given field k is semi-simple if it splits into a
directs sum of fields Q = Q1 ⊕ ... ⊕ Qd satisfying some conditions. Again, we
will not look further into this because in our case QHev(S2) is a field and will
automatically satisfy these conditions. Yet again, for the interested reader we
state the formal definition:

Definition 11.5. A commutative algebra Q over a field k is called semi-simple
if it splits into a direct sum of fields as follows:

Q = Q1 ⊕ ...⊕Qd

where
– each Qi ⊂ Q is a finite-dimensional linear subspace over k,
– each Qi is a field with respect to the induced ring structure and
– the multiplication in Q respects the splitting:

(a1, ..., ad) · (b1, ..., bd) = (a1b1, ..., adbd)

Alltogether this means that we can apply Theorem 11.2 to M = S2 and that there is
a homogeneous Calabi quasimorphism µ̃ : G̃ → R. The explicit construction relies upon
the heavy symplectic machinery that we are yet to discover and will be explained later.

For the second step, we now show that µ̃ : G̃ → R descends to a quasimorphism
µ : G→ R. Before doing this, we profit from the occasion and refresh our memory about
the universal cover of a topological group.

Recall. Let G be a topological group and denote by e ∈ G the identity element. For any
g ∈ G define

Pg = {Paths from e to g}
= {γ : [0, 1]→ G | γ(0) = e, γ(1) = g}.

We will consider two paths γ, δ ∈ Pg as equivalent if they are homotopic with fixed
endpoints:

γ ∼ δ if γ 'rel {0,1} δ
The universal cover of G is then the set

G̃ :=
⊔
g∈G

Cg�∼

together with the obvious projection map

p : G̃→ G

[γ] 7→ γ(1).

There is a natural multiplication on G̃. Suppose that g̃, h̃ ∈ G̃ are represented by two
paths {gt}t∈[0,1] and {ht}t∈[0,1] from the identity e to g = p(g̃) and h = p(h̃) respectively.
Then {gt · ht}t∈[0,1] is a path from g0 · h0 = e · e = e to g1 · f1 = f · g. The product of g̃

and h̃ is then defined as the homotopy class (relative endpoints) of this path:

g̃ · h̃ = [{gt · ht}t∈[0,1]].

In particular, we can see that since

ker(p) = Ce�∼ = π1(G).

and the covering map is obviously surjective we obtain

G̃�π1(G)
∼= G.

We will conclude this (not so short) recall by investigating when two elements in G̃
commute. We start by stating a formula which is rather intuitive but that we are not
going to prove formally here:

{gt · ht}t∈[0,1] 'rel {0,1} {ht}t∈[0,s] ∗ {gt · hs}t∈[0,1] ∗ {g1 · ht}t∈[s,1] for all s ∈ [0, 1].
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where ∗ denotes the usual concatenation of paths. Consider now the two special cases
s = 0 and s = 1 with the roles of gt and ht relatively inversed:

s = 0 : {gt · ht}t∈[0,1] 'rel {0,1} {gt}t∈[0,1] ∗ {g1 · ht}t∈[0,1]

s = 1 : {ht · gt}t∈[0,1] 'rel {0,1} {gt}t∈[0,1] ∗ {ht · g1}t∈[0,1]

If we now suppose that g1 commutes with ht for all t ∈ [0, 1], then we get using these
special cases that

g̃ · h̃ = [{gt · ht}t∈[0,1]]

= [{gt}t∈[0,1] ∗ {g1 · ht}t∈[0,1]]

= [{gt}t∈[0,1] ∗ {ht · g1}t∈[0,1]]

= [{ht · gt}t∈[0,1]]

= h̃ · g̃.

In particular, this is true if g1 = e meaning nothing but g̃ ∈ π1(G). Hence the fundamental

group of G lies in the centre of its universal covering group G̃

π1(G) < Z(G̃),

a result that we will need in the proof of the next proposition.

Lemma 11.6. Any homogeneous quasimorphism on a finite group is identically zero.

Proof. Let µ : G → R be a homogeneous quasimorphism on a finite group G. As G is
finite, for every g ∈ G there exists a positive integer n such that gn = e. Hence

0 = µ(e) = µ(gn) = nµ(g)

which implies that µ(g) = 0. �

Proposition 11.7. The homogeneous quasimorphism µ̃ : G̃ → R descends to a homoge-
neous quasimorphism µ : G→ R.

Proof. Since π1(G) is in the centre of G̃, proposition 1.8 implies that for φ ∈ π1(G) and

f̃ ∈ G̃ it holds that
µ̃(φf̃) = µ̃(φ) + µ̃(f̃).

In our case, G = Ham(S2), we have [Pol12]

π1(G) ∼= Z�2Z.
so in particular π1(G) is finite and by lemma 11.6 we have µ̃(φ) = 0. Thus we have

µ̃(φf̃) = µ̃(f̃) showing that there is a well-defined map

µ : G ∼= G̃�π1(G)→ R

π1(G)f̃ 7→ µ̃(f̃).

Finally, we note that µ is homogeneous since µ̃ is homogeneous:

µ((π1(G)f̃)n) = µ(π1(G)f̃n) = µ̃(f̃n) = nµ̃(f̃) = nµ(π1(G)f̃).

�

Remark 11.8. Note that this result goes through for any topological group G as long as
π1(G) is finite.

What remains is to discuss is whether this quasimorphism is a Calabi quasimorphism.
To do so, we will need its explicit expression and therefore have to introduce the symplectic
machinery first.
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B. Symplectic Machinery

We will now introduce some of the necessary machinery from symplectic topology. The
invariant in question is called Floer2 homology. Giving a rigorous definition would surely
take much longer than the allotted time for this talk, therefore the main goal is to give
a summary of the concept and gain some intuition about the key ideas behind Floer
homology. In the following we will only look at the case M = S2. Also as always ω is a
symplectic form on M = S2. Everything can be generalized to more general symplectic
manifolds, but some technical changes have to be made.

C. The Setup

A leading role in the story of Floer homology will be played by the contractible loops
in M .3

Λ = {x ∈ C∞(S1,M) | x(S1) ∼ pt}
The condition of being contractible is of course equal to the loop bounding a disk in M .
In the following we will want to consider loops together with (an equivalence class) of such
disks. This leads us to define

Λ̃ = {(x, u) | x ∈ Λ, u : D2 ↪→M,u |∂D2= x}�∼.
Where we quotient by the relation ∼ defined by (x, u1) ∼ (x, u2) : ⇐⇒ u1#(−u2) =

0 ∈ π2(M). The obvious projection Λ̃ → Λ makes Λ̃ a covering of Λ. In our case we
can see some elements of this space quite visually: We split the sphere along any loop
x ∈ C∞(S1,M), then we get two elements [x, u1] 6= [x, u2] in Λ̃. We can imagine them as
representing the two components of the cut-up sphere. The next step in our recipe is a
Hamiltonian function. However we will only consider Hamiltonians that satisfy a certain
compatibility condition. We collect them in the set F.

F = {F ∈ C∞(S1 ×M,R) |
∫
M

F (·, t)ωn = 0}

To finish our setup we need one more thing: The so-called action functional. For a
Hamiltonian F ∈ F it is defined by

AF (x, u) =

∫
S1

F (x(t), t)dt−
∫
u

ω

where x ∈ Λ, u : D2 ↪→M with u |∂D2= x.

Lemma 11.9. The functional AF descends to a functional AF : Λ̃→ R.

Proof. Assume (x, u1) and (x, u2) represent the same class in Λ̃. Then we have u1#(−u2) =
0 ∈ π2(M) which implies∫

u1#(−u2)

ω =

∫
u1

ω −
∫
u2

ω = 0 =⇒
∫
u1

ω =

∫
u2

ω.

This already gives us AF (x, u1) = AF (x, u2) which concludes the proof. �

To study the properties of AF we introduce a useful operation on Λ̃. First we name
the generator of π2(M), i.e. π2(M) = Z〈S〉. Then we define

s : Λ̃→ Λ̃

[(s, u)] 7→ [x, u#S].

This gives us the following property of AF for any F ∈ F.

AF (s[x, u]) =

∫
S1

F (x(t), t)dt−
∫
u#S

ω =

∫
S1

F (x(t), t)dt−
∫
u

ω −
∫
S

ω

=

∫
S1

F (x(t), t)dt︸ ︷︷ ︸
=AF ([x,u])

−
∫
S

ω = AF ([x, u])− areaω(S2).

2Named after Andreas Floer (∗1956 - †1991)
3Since π1(M) = π1(S2) = 0 that’s all loops in our case, but for more general manifolds the restriction

is important.
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Now we have all the ingredients for Floer homology. So what’s next? Floer described his
idea in 1985 to Clifford Taubes by saying ”I can do infinite-dimensional Morse theory”4.
The basic idea of Morse homology is to compute the homology of a manifold by taking a
suitable function on it and building a chain complex using its critical points. We will go
forth in the same spirit. For that we need to find out what the critical points of AF are.

Lemma 11.10. For F ∈ F we have that

CritAF = {[x, u] ∈ Λ̃ | ẋ(t) = XH(x(t))∀t ∈ S1},

where XH is the Hamiltonian vector field defined by F .

Proof. We can show this using a classical variational argument. Let xss∈(−ε,ε) be a smooth
variation of x with ∂sxs|s=0 = η ∈ Γ(x∗TM) and us a corresponding variation of u. Then
we have

∂

∂s
AF ([xs, us])

∣∣
s=0

=

∫
S1

∂

∂s
F (x(t), t)dt

∣∣
s=0
−
∫
S1

ω(ẋ(t), η(t))dt

=

∫
S1

dFx(t)(∂sx(t)|s=0)dt−
∫
S1

ω(ẋ(t), η(t))dt

=

∫
S1

ω(XF , η)dt−
∫
S1

ω(ẋ(t), η(t))dt =

∫
S1

ω(XF − ẋ(t), η)dt,

which implies our lemma. A derivation for the derivative of the integral of ω over us can
be found in [Flo88]. �

So we know that the 1-periodic orbits of the Hamiltonian vector field XF are the critical
points of AF . We will henceforth use the notation P̃F for them.

Definition 11.11. We call the critical values of AF the spectrum of AF and denote them
by specAF .

Corollary 11.12. The set specAF ⊂ R is areaω(S2)Z invariant.

We will use without proof that specAF is closed.

D. The (Filtered) Floer Chain Complex

Now we are ready to define a chain complex.

Definition 11.13. Let α ∈ R ∪ {∞} with α 6∈ specAF , then we define

Cα(F ) :=

 ∑
y∈P̃F

zyy | zy ∈ C,AF (y) < α,#{y | zy 6= 0,AF (y) > δ} <∞∀δ ∈ R

 .

These groups are graded by an index called the Conley-Zehnder index denoted µCZ :
P̃F → Z. While a definition of this index would be too much for the scope of this talk, the
idea is as follows: In Morse homology the number of negative eigenvalues of the Hessian
at a critical point is used as a grading. In the infinite-dimensional case this index would
usually be infinite and thus useless. The Conley-Zehnder index is a kind of ”relative Morse
index”. It is defined by setting it to zero for a special operator that could play the role of
the Hessian in a setup like ours. Then for any other operator of this form it is possible to
count how many eigenvalues change sign on a ”generic” path to the reference operator and
this count is finite. This procedure allows to define the Conley-Zehnder index of critical
points of AF . More information can be found in [APS76][RS95]. Now that we have a
grading the next thing we need is a differential:

Definition 11.14. (informal) The differential d : C∞(F ) → C∞(F ) is defined by a

(signed) count of negative gradient flow lines from x ∈ P̃F with µCZ(x) = k to y ∈ P̃F
with µCZ(y) = k − 1.

4This story was recalled by Helmut Hofer in a talk called ”The Floer Jungle: 35 years of Floer
Theory” held in the joint IAS/Princeton/Montreal/Paris/Tel-Aviv Symplectic Geometry seminar in
July 2021. (Video recording)

https://youtu.be/kSNyU71MpgQ
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Figure 19. A negative gradient
flow line connecting two Hamilton-
ian orbits.

Since we count negative gradient flow lines, we
get the following corollary:

Corollary 11.15. The differential d : C∞(F ) →
C∞(F ) preserves the filtration.

Please note that our little variational argument
from above does not give us any way to make sense
of the statement negative gradient flow line of AF .
Making sense of that is part of Floer’s seminal con-
tribution, but would again be too much for the
scope of this talk. We just note that these gra-
dient flow lines are maps u : S1 × R → M which
converge to loops in P̃F as the second parameter
goes to ±∞. A visualization can be found in figure
19. The following theorem is at the heart of Floer
homology:

Theorem 11.16.

d2 = 0.

A proof of this theorem is quite difficult and uses many subtle analytic ideas, yet the
basic concept can be seen visually. The basic idea of the proof is to realize that d2 counts

Figure 20. Broken flow-
lines being counted by d2.

Figure 21. A family of
flowlines connecting two
broken flowlines.

the number of ”broken flowlines” between orbits of the relevant Conley-Zehnder indices,
cf. figure 20. The proof strategy is then, to show that families of real flowlines converge to
broken flowlines. This compactness result then allows the conclusion that d2 counts (with
correct signs) the number of boundary points of a 1-manifold. Since that is 0 the result
will follow. This is of course just hand-waving, but gives some intuition on why d2 = 0
holds true. The full details of this argument can be found in chapter 6 of [AD14]. Figure
21 illustrates the argument. Now we finally have Floer homology:

Definition 11.17. For any α ∈ R \ specAF ∪ {∞} we call the homology groups

Vα(F ) = Hev(Cα, d)

the filtered Floer homology of F ∈ F.

We should note that a lot of choices on which (Cα, d) a priori depends have been
hidden here and that the definition above only is possible for a generic F ∈ F. However
the homology is independent of these hidden choices and can be defined for all F ∈ F by a
canonical continuation procedure. Also note that the operation s defined above makes V∞
into a k-vector space, where k is the field from Reto’s talk. If we have two Hamiltonians

F, F ∈ F that generate the same element f ∈ H̃am(M), then there is an isomorphism
between Vα(F ) ∼= Vα(F ′) that preserves the grading. Therefore we just write Vα(f). We
now state a theorem that justifies all our effort:
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Theorem 11.18. There exists a k-vector space isomorphism

V∞(f)→ QHev(M) ∼= Hev(M ;C)⊗C k

that preserves the grading.

E. The Spectral Invariants

As a last part of the symplectic machinery we will now define the spectral invariants.

For this we take any f ∈ H̃am(M) and then use the isomorphism QHev(M) ∼= V∞(f).
Now we note that for any suitable α < β ≤ ∞ we have the natural inclusion

Cα(f) Cβ(f) C∞(f).
iβα i∞β

This map induces a map on homology, thus leading to the following situation:

Vα(f) Vβ(f) V∞(f) QHev(M).
i∗βα i∗∞β ∼=

The idea is now to view an element a ∈ QHev(M) as the corresponding Floer homology
class and track when it shows up in the filtration. Formalizing this intuition we obtain
the following definition:

Definition 11.19. For f ∈ H̃am(M) and a ∈ QHev(M). With ā ∈ V∞(f) being the
corresponding Floer homology class to a we define

c(a, f) := inf{α | ā ∈ Im(Vα(f)→i∗∞α V∞(f))}.
The numbers c(a, f) are called the spectral invariants of f .

Lemma 11.20. The spectral invariants have the following properties

(1) −∞ < c(a, f) <∞
(2) c(a, f) ∈ spec f
(3) c(a ∗ b, fg) ≤ c(a, f) + c(b, g)

for any a, b ∈ QHev(M) and f, g ∈ H̃am(M).

The proofs of these properties can be found in [EP03].

F. Quasimorphism on G̃

We saw earlier that in our case the quantum homology QHev(S2) is a field. Hence there
is a preferred element, namely the unity e which we can feed to the spectral invariant.
This then defines a function G̃→ R. More precisely, we have

Theorem 11.21. The function

r : G̃→ R

f̃ 7→ c(e, f̃)

is a quasimorphism.

Sketch of the proof: (For simplicity we will drop the tilde for elements of G̃ in this proof.)
We saw in Lemma 11.20 that spectral invariants satisfy a triangle inequality

c(a ∗ b, fg) ≤ c(a, f) + c(b, g) for all a, b ∈ QHev(S2).

Using now that e = e ∗ e we get that for f, g ∈ G̃
c(e, fg) = c(e ∗ e, fg) ≤ c(e, f) + c(e, g)

Similarly, we write

c(e, f) = c(e ∗ e, fgg−1) ≤ c(e, fg) + c(e, g−1)

which yields by rearranging that

c(e, fg) ≥ c(e, f)− c(e, g−1).

Using the tools of the symplectic machinery advertised for by Adrian, we can work on the
last term and write c(e, g−1) as some infimum

c(e, g−1) = − inf
b:Π(b,e)6=0

c(b, g)
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for which we can then find (with some more work) a lower bound. Eventually, we get

c(e, fg) ≥ c(e, f) + c(e, g)− C

where C is some positive real constant. In conclusion, we have argumented that{
r(fg)− r(f)− r(g) = c(e, fg)− c(e, f)− c(e, g) ≤ 0

r(fg)− r(f)− r(g) = c(e, fg)− c(e, f)− c(e, g) ≥ −C

which finally shows that

|r(fg)− (r(f) + r(g))| ≤ C
and thereby that r : G̃→ R is a quasimorphism. �

We have thus found a quasimorphism on G̃ and we can obtain from it with the usual
homogenisation a homogeneous quasimorphism µ̃ : G̃→ R, that is,

µ̃(f̃) = − lim
m→∞

r(f̃m)

m
.

G. Calabi quasimorphism on Ham(S2)

Recall. For every non-empty open subset U ( M there is a natural subgroup GU of G
consisting of all elements f ∈ G which are generated by a time-dependent Hamiltonian
Ft : M → R such that supp(Ft) ⊂ U .

For each such U (M , define the map

CalU : GU → R

f 7→
∫ 1

0

dt

∫
M

Ftω
n.

If the symplectic form ω is exact on U , this map does not depend on the choice of the
Hamiltonian Ft generating f . CalU is a homomorphism called the Calabi homomor-
phism.

Definition 11.22. A non-empty open subset U ⊂M is called displaceable (by a Hamil-
tonian diffeomorphism) if there exists h ∈ G = Ham(M) such that

hU ∩ U = ∅.

We denote by D the set of displaceable subsets.

Notation. We are interested in the subset of D for which CalU is a well-defined homo-
morphism, that is, the subsets U ⊂M for which ω is exact. We will denote this by

Dex = {U ∈ D | ω is exact on U}.

Definition 11.23. A quasimorphism on G is called a Calabi quasimorphism if it
coincides with the Calabi homomorphism CalU on any U ∈ Dex.

Remark 11.24. Actually, we need this language adapted to the universal cover G̃.

• For a non-empty open subset U ( M we get a subgroup G̃U < G̃: f̃ ∈ G̃ is in
G̃U if and only if it can be represented by a Hamiltonian flow {ft}t∈[0,1] (with
f0 = Id) which is generated by a Hamiltonian Ft with support in U .

• Almost the same formula as above determines a well-defined homomorphism

C̃alU : G̃U → R

f̃ 7→
∫ 1

0

dt

∫
M

Ftω
n.

if ω is exact on U .
• A quasimorphism on G̃ is called a Calabi quasimorphism if it coincides with

the Calabi homomorphism C̃alU on any U ∈ Dex.

Proposition 11.25. Let U ∈ Dex, f̃ ∈ G̃U and µ̃ : G̃→ R be as above. Then

µ̃(f̃) = C̃alU (f̃).
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Proof. f̃ ∈ G̃U is by definition generated by a Hamiltonian function with support in U .
Explicitely, let

F : M × R→ R
(p, t) 7→ Ft(p)

be the Hamiltonian function which is 1-periodic in time and whose support is contained
in U , that is, Ft|M\U = 0. As usual, this determines a family {Xt} of Hamiltonian vector

fields and this in turn corresponds to a hamiltonian isotopy ΦFt . Recall that this means
that ΦFt is a path in Ham(M) such that ΦF0 = id and ΦF1 = f = p(f̃), or equivalenty

f̃ = [{ΦFt }t∈[0,1]]. Note then that since F is 1-periodic in time, the same holds also for

ΦFt and therefore we may write

f̃m = [{ΦFt }t∈[0,m]] for all m ∈ Z.

Further, we see that ΦFt is the identity outside of U (since supp(Ft) ⊂ U) and hence it
must map U to itself ΦFt (U) = U .

On the other hand, by definition of Dex there exists a hamiltonian diffeomorphism
h ∈ G such that

h(U) ∩ U = ∅.

Write h̃ ∈ G̃ for any lift of h, that is, a path h̃ from the identity to h ∈ G. h maps by
assumption any point of U out of U and therefore the fixed points of the product hΦt are
exactly the fixed points of h:

Fix(hΦFt ) = Fix(h) ⊂M\U.

Next, we define

F ′ : M × R→ R

(p, t) 7→ F ′t (p) = Ft(p)−
∫
M

Ftω
n︸ ︷︷ ︸

:=u(t)

and note right away that

(1) since supp(Ft) ⊂ U this reduces to the second term u(t) on M\U .
(2) The second term u(t) is 1-periodic and does not depend upon p. As they only

differ by a constant, F ′t and Ft generate the same hamiltonian isotopy ΦFt .
(3) Finally, F ′ satisfies the normalisation condition

∫
M
F ′tω

n = 0 and is also 1-
periodic.

In particular, we can now apply the machinery seen in Adrian’s talk: First we note that

Spec(h̃f̃m) = Spec(h̃[{ΦFt }t∈[0,m]]) = Spec(h̃) +

∫ m

0

u(t) dt︸ ︷︷ ︸
:=w(m)

which is important since

r(h̃f̃m) = c(e, h̃f̃m) ∈ Spec(h̃f̃m) = Spec(h̃) + w(m).

More precisely, this means that there exists a s0 ∈ Spec(h̃) so that

r(h̃f̃m) = s0 + w(m).
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Now we are ready for the final computation:

µ̃(f̃) = − lim
m→∞

r(f̃m)

m

= − lim
m→∞

r(h̃f̃m)

m

= − lim
m→∞

w(m)

m

= lim
m→∞

1

m

∫ m

0

u(t) dt︸ ︷︷ ︸
=m

∫ 1
0 u(t) dt

=

∫ 1

0

∫
M

Ftω dt

= C̃alU (f̃)

where going from the first to the second line we use that r is a quasimorphism. �

Corollary 11.26. Let U ∈ Dex, f ∈ GU and µ : G→ R be as above. Then

µ(f) = CalU (f).

Proof. This follows directly from the above proof by noting that

µ(f) = µ̃(f̃) = ... =

∫ 1

0

∫
M

Ftω dt = CalU (f).

�
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Talk 12: Construction of the real numbers by quasimorphisms

Jonathan, Julian

In this talk we follow [A1].

A. Slopes and real numbers

The aim of this talk is to construct the real numbers using a special kind of quasi-
morphisms called slopes. Even though there are many other ways to construct the real
numbers, most of them use the rational numbers to construct real numbers via some sort
of completion. The approach in this talk only uses integers to construct the real numbers.

Definition 12.1. A slope is a map λ : Z → Z such that there exists a constant C ≥ 0
with the property that for all m,n ∈ Z

|λ(m+ n)− λ(m)− λ(n)| ≤ C.

Remark 12.2. Note that the definition of slopes is very similar to the one of quasimor-
phisms on the group Z. The only further assumption we have in the definition of slopes
is that the target space is Z instead of R. This is of course needed, since our aim is to
define a construction of R using slopes and we cannot do this by using quasimorphisms
which have R as target space.

Definition 12.3. Let λ, λ′ be slopes. We say that λ, λ′ are equivalent if the set

{λ(n)− λ′(n) | n ∈ Z}

is bounded.

Proposition 12.4. The equivalence of slopes is an equivalence relation on the set of
slopes.

Definition 12.5. A real number is an equivalence class of slopes. We denote by R the
set of real numbers.

Remark 12.6. For any j ∈ Z, we can define a slope j̄ : Z→ Z, n 7→ nj. So we can identify
an integer j with the equivalence class of its corresponding slope j̄. This identification
allows us to regard Z as a subset of R.

Definition 12.7. For [α], [β] ∈ R we define

[α] + [β] := [α+ β]

and

[α] · [β] = [α ◦ β]

Lemma 12.8. The above operations are well-defined.

Proof. To show that the operations are well-defined, we need to show that the sum and
the compositions of two slopes are slopes again and that the definitions of + and · are
independent of the choice of slopes in the equivalence classes. Let α and β be slopes.
Denote by Cα the defect of α and by Cβ the defect of β. Then we have that for all
m,n ∈ Z

|(α+ β)(m+ n)− (α+ β)(m)− (α+ β)(n)|
= |α(m+ n)− α(m)− α(n) + β(m+ n)− β(m)− β(n)|
≤ |α(m+ n)− α(m)− α(n)|+ |β(m+ n)− β(m)− β(n)|
≤ Cα + Cβ

so α+ β is a slope.
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Also we have that

|(α ◦ β)(m+ n)− (α ◦ β)(m)− (α ◦ β)(n)|
= |α(β(m+ n))− α(β(m))− α(β(n))|
≤ |α(β(m+ n))− α(β(m) + β(n))|+ |α(β(m) + β(n))− α(β(m))− α(β(n))|
≤ |α(β(m+ n))− α(β(m) + β(n))|+ Cα

≤ |α(β(m+ n)− β(m)− β(n) + (β(m) + β(n)))− α(β(m+ n)− β(m)− β(n))− α(β(m) + β(n))|
+ |α(β(m+ n)− β(m)− β(n))|+ Cα

≤ 2Cα + |α(β(m+ n)− β(m)− β(n))|
≤ 2Cα +max{|α(r)| | r ∈ Z, |r| ≤ Cβ},

which shows that α ◦ β is indeed a slope.

Let α′ be a slope which is equivalent to the slope α and β′ be a slope which is equivalent
to the slope β. Denote by A a bound of α− α′ and by B a bound of β − β′
Then it follows that for all n ∈ Z

|(α+ β)(n)− (α′ + β′)(n)| = |α(n) + β(n)− α′(n)− β′(n)|
= |α(n)− α′(n) + β(n)− β′(n)|
≤ |α(n)− α′(n)|+ |β(n)− β′(n)| ≤ A+B.

This shows that α + β and α′ + β′ are equivalent slopes and therefore the addition is
well-defined on R.
Also we obtain that

|(α ◦ β)(n)− (α′ ◦ β′)(n)| = |α(β(n))− α′(β′(n))|
= |α((β(n)− β′(n)) + β′(n))− α′(β′(n))|
≤ |α((β(n)− β′(n)) + β′(n)))− α((β(n)− β′(n))− α(β′(n))|

+ |α((β(n)− β′(n))|+ |α(β′(n))− α′(β′(n))|
≤ Cα + |α((β(n)− β′(n))|+A

≤ Cα +max{|α(r)| | |r| ≤ B, r ∈ Z}+A,

which shows that α ◦ β and α′ ◦ β′ are equivalent slopes. So the multiplication is also
well-defined. �

Lemma 12.9. Let λ be a slope and Cλ be the defect of λ then for any n, k ∈ Z it holds
that

|λ(kn)− kλ(n)| ≤ |k|Cλ.

Proof.

|λ(kn)− kλ(n)| = |λ(n+ (k − 1)n)− λ(n)− (k − 1)λ(n)|
≤ |λ(n+ (k − 1)n)− λ(n)− λ((k − 1)n)|+ |λ((k − 1)n)− (k − 1)λ(n)|
≤ Cλ + |λ((k − 1)n)− (k − 1)λ(n)| ≤ · · · ≤ |k|Cλ

�

Proposition 12.10. The triple (R,+, ·) is a unitary commutative ring and 1 6= 0 in R.

Proof. We first show that multiplication is commutative. Let [α], [β] ∈ R. We want to
show that α ◦ β and β ◦ α are equivalent. Let Cα be the defect of α and Cβ be the defect
of β. Using Lemma 12.9 for n ∈ Z\{0} we obtain that

nα(β(n))− α(nβ(n)) ≤ |α(nβ(n))− nα(β(n))| ≤ |n|Cα

and hence we get that

nα(β(n)) ≤ α(nβ(n)) + |n|Cα.
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Also note that

α(nβ(n)) = α(β(n)n)

≤ α(β(n)n)− β(n)α(n) + β(n)α(n)

≤ |α(β(n)n)− β(n)α(n)|+ β(n)α(n)

≤ |β(n)|Cα + β(n)α(n)

where the last inequality is obtained by applying Lemma 12.9 again. So by combining our
two estimates it follows that

nα(β(n)) ≤ α(nβ(n)) + |n|Cα ≤ |β(n)|Cα + β(n)α(n) + |n|Cα

and therefore we get

nα(β(n))− β(n)α(n) ≤ |n|Cα + |β(n)|Cα.

Now we use the fact that

|β(n)| = |β(n · 1)| ≤ |β(n · 1)− nβ(1)|+ |n||β(1)| ≤ |n|Cβ + |n||β(1)| = |n|(Cβ + |β(1)|)

where the last inequality is obtained from Lemma 12.9. So we can conclude that

nα(β(n))− β(n)α(n) ≤ |n|Cα + |β(n)|Cα ≤ |n|Cα(1 + Cβ + |β(1)|).

In an analogous way by just exchanging the roles of α and β we obtain that

nβ(α(n))− α(n)β(n) ≤ |n|Cβ(1 + Cα + |α(1)|).

We can now use those two estimates to obtain that

|n||(α ◦ β)(n)− (β ◦ α)(n)| ≤ |nα(β(n))− β(n)α(n)|+ |nβ(α(n))− α(n)β(n)|
≤ |n|Cα(1 + Cβ + |β(1)|) + |n|Cβ(1 + Cα + |α(1)|).

After dividing by |n| we obtain that

|(α ◦ β)(n)− (β ◦ α)(n)| ≤ Cα(1 + Cβ + |β(1)|) + Cβ(1 + Cα + |α(1)|)

which shows that α ◦ β and β ◦ α are equivalent and hence the multiplication on R is
commutative.

The proofs of the other ring axioms are much easier. They follow directly from the
definitions of + and · and the fact that Z is a unitary commutative ring. We will prove
distributivity. The other axioms can be shown in an analogous way. Let [α], [β], [γ] ∈ R.
Then we have

([α] + [β]) · [γ] = [α+ β] · [γ] = [(α+ β) ◦ γ] = [α ◦ γ + β ◦ γ]

= [α ◦ γ] + [β ◦ γ] = [α] · [γ] + [β] · [γ].

�

Definition 12.11. A slope λ is called positive if the set {λ(n) | n ∈ N, λ(n) ≤ 0} is finite
and the set {λ(n) | n ∈ Z} is infinite.

Definition 12.12. We say that a slope λ is less than a slope λ′ if the slope λ′ − λ is
positive.

Definition 12.13. A real number is called positive if all the slopes in the equivalence
class are positive.

Definition 12.14. We say that a real number a is less than a real number b if the real
number b− a is positive.
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B. Construction of rational numbers

Unlike other constructions of the real numbers, this construction uses Z instead of Q.
Hence, we also have to construct the rational numbers.
First, we shall think about the motivation behind the construction, using our intuition.
Let p, q ∈ Z with q > 0. Then we want to represent the function f(n) = p

q
n. Of course

we have the problem that the image of f does not lie in Z if q does not divide p. Hence,
we want to approximate p

q
n. We do this as follows: φ(n) := max{k ∈ Z | k ≤ n p

q
}

This is not formal as this definition relies on p
q
. We shall do it formally correct:

Definition 12.15. For p, q ∈ Z with q > 0, define

φ : Z→ Z

n 7→


max{k ∈ Z | kq ≤ np} n > 0

−φ(−n) n < 0

0 n = 0

and denote p
q

as the equivalence class of φ.

Proposition 12.16. This φ defines a slope and q̄ ◦ φ is equivalent to p̄ i.e. q p
q

= p as

desired.

Proof. We find for n ≥ 0

qφ(n) ≤ np
q(φ(n) + 1) > np

and for n < 0

qφ(n) ≥ np
q(φ(n)− 1) < np

Therefore, we deduce |qφ(n)− np| ≤ q. We compute:

q|φ(m+ n)− φ(m)− φ(n)| ≤ |qφ(m+ n)− (m+ n)p|+ |qφ(m)−mp|+ |qφ(n)− np|
≤ q + q + q = 3q

After dividing by q, we find that |φ(m + n) − φ(m) − φ(n)| ≤ 3 is bounded and φ is a
slope.
The same estimates above show that |q̄(φ(n)) − p̄(n)| is bounded by q. Hence, q̄ ◦ φ and
p̄ represent the same slope. �

C. Examples of selected real numbers

Similar to the construction of the rational numbers. We construct our slopes first on
Z>0 and then extend it to Z with φ(n) = −φ(−n) for n < 0 and φ(0) = 0. Then it suffices
to check that |φ(m + n) − φ(m) − φ(n)| is bounded for all m,n > 0 to show that φ is a
slope. In the following, we shall thus do the work only for n > 0.

C.1. Constructing
√

2

Again, we have the motivation that we want to approximate f(n) =
√

2n via ρ(n) :=

max{k ∈ Z | k ≤
√

2n}. We write this without using
√

2 as follows: ρ(n) = max{k ∈
Z | k2 ≤ 2n2}. We denote the equivalence class of ρ as

√
2.

Proposition 12.17. The function ρ is a slope, ρ ◦ ρ is equivalent to 2̄ i.e.
√

2
2

= 2 and
the slope ρ is positive.

Proof. For n > 0, we see n2 ≤ 2n2 ≤ 4n2 and thus n ≤ ρ(n) ≤ 2n, therefore ρ is a positive
slope (if it is a slope).
Moreover, we get ρ(n)2 ≤ 2n2 (this is the usual square for integers) and (ρ(n)+1)2 > 2n2.
Hence, we find

2(n− 1)2 = 2n2 − 4n+ 2 ≤ ρ(n)2 ≤ 2n2 (40)
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and for n,m > 0

4(n− 1)2(m− 1)2 ≤ ρ(n)2ρ(m)2 ≤ 4n2m2

and after taking the root (in Z) we get

2(n− 1)(m− 1) ≤ ρ(n)ρ(m) ≤ 2nm

Now, to estimate −ρ(m+ n) + ρ(m) + ρ(n) we multiply it with ρ(m+ n) + ρ(m) + ρ(n),
note that 2(m+ n) ≤ ρ(m+ n) + ρ(m) + ρ(n) ≤ 4(m+ n). We compute

x := (−ρ(m+ n) + ρ(m) + ρ(n))(ρ(m+ n) + ρ(m) + ρ(n))

= −ρ(m+ n)2 + ρ(m)2 + ρ(n)2 + 2ρ(m)ρ(n)

We can estimate:

−3 ≤ (−8n− 8m− 8)/(4(m+ n))

≤ (−2(n+m)2 + 2(n− 1)2 + 2(m− 1)2 + 4(n− 1)(m− 1)/(4(m+ n))

≤ x/(ρ(m+ n) + ρ(m) + ρ(n))

= −ρ(m+ n) + ρ(m) + ρ(n)

= x/ρ(m+ n) + ρ(m) + ρ(n)

≤ (−2(m+ n− 1)2 + 2m2 + 2n2 + 4mn)/(2(m+ n))

= (2 + 4(m+ n))/(2(m+ n))

≤ 3

Hence, ρ is a slope.
We note 2(ρ(k)− 1)2 ≤ ρ(ρ(k))2 ≤ 2ρ(k)2 with (40) for n = ρ(k). Therefore, we find

4(k − 2)2 ≤ 2(ρ(k)− 1)2 ≤ ρ(ρ(k))2 ≤ 2ρ(k)2 ≤ 4k2

and therefore

2(k − 2) ≤ ρ(ρ(k)) ≤ 2k

or equivalently

−4 ≤ ρ ◦ ρ(k)− 2̄(k) ≤ 0

and therefore, ρ ◦ ρ is equivalent to 2̄. �

C.2. Constructing the root of a polynomial

Consider the polynomial p(x) := x5 + x− 3. We note that p′(x) = 5x4 + 1 ≥ 1 > 0 for
all x ∈ R. Therefore p is strictly monotonously increasing and thus as exactly one root
a in R. But with Galois theory an Abel-Ruffini one can prove that a cannot be written
with radicals in Q. However, constructing a is quite straightforward with slopes.
We define α(n) := max{k ∈ Z | p( k

n
) ≤ 0} = max{k ∈ Z | k5 + n4k − 3n5 ≤ 0}.

Proposition 12.18. The function α defines a slope and the equivalence class of α is a
with p(a)=0 or equivalently n 7→ α◦5(n) + α(n)− 3̄(n) is bounded.

Notation. For e ≥ 1, we define recursively

α◦e =

{
α ◦ α◦(e−1) e > 1

α e = 1

Proof of 12.18. From the definition of α, we find p(α(n)
n

) ≤ 0 ≤ p(α(n)+1
n

).
Take m,n > 0. We define:

a− = max

{
α(n)

n
,
α(m)

m
,
α(m+ n)

m+ n

}
a+ = min

{
α(n) + 1

n
,
α(m) + 1

m
,
α(m+ n) + 1

m+ n

}
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We find p(a−) ≤ 0 ≤ p(a+). By monotonicity of p, we deduce that a− ≤ a+. Now, choose
any A ∈ Q such that a− ≤ A ≤ a+, then we find

α(n)

n
,
α(m)

m
,
α(n+m)

n+m
≤ a− ≤ A ≤ a+ ≤

α(n) + 1

n
,
α(m) + 1

m
,
α(n+m) + 1

n+m

This shows that |α(n)−nA|, |α(m)−mA|, |α(n+m)− (n+m)A| ≤ 1 which gives |α(n+
m)− α(n)− α(m)| ≤ 3 with the trangle inequality. Hence, α is a slope.
To see that α◦5 + α− 3̄ is bounded we use the following claim:

Claim. For all n, e > 0, we have

|ne−1α◦e(n)− α(n)e| ≤ ne−1(1 + |α(1)|+ Sα)e−1

with Sα := max{|α(k + l)− α(k)− α(l)| | k, l > 0}.

Proof of Claim. We prove it via induction on e. For e = 1, we have 0 ≤ 1. For the
induction step, we need the preliminary estimates

|α(n)| ≤ |α(n)−
n︷ ︸︸ ︷

α(1)− · · · − α(1)|+ n|α(1)| ≤ (n− 1)Sα + n|α(1)| ≤ n(|α(1)|+ Sα)

and with the triangle inequality

|α(n)− n| ≤ n(1 + |α(1)|+ Sα).

Now, we can estimate

|neα◦e+1(n)− α(n)e+1| ≤ n|ne−1α◦e(n)− α(n)e|+ |n− α(n)||α(n)e−1|

≤ nne−1(1 + |α(1)|+ Sα)e−1 + n(1 + |α(1)|+ Sα)

≤ n(1 + |α(1)|+ Sα)(ne−1(1 + |α(1)|+ Sα)e−2 + 1)

≤ n(1 + |α(1)|+ Sα)(ne−1(1 + |α(1)|+ Sα)e−1)

where the last inequality uses that (1 + |α(1)|+ Sα) ≥ 2. �

Using this claim, we can replace α◦5 with an equivalent and easier to handle slope,

namely α◦5 is equivalent to bα(n)5

n4 c and α◦5 +α− 3̄ is equivalent to the slope ε defined by

ε(n) := bα(n)5

n4
c+ α(n)− 3n

We compute:

0 ≤ ε(n) = np

(
α(n)

n

)
= np

(
α(n)− 1

n
+

1

n

)
= n

(
p

(
α(n)− 1

n

)
+
p′(ξ)

n

)
≤ n

(
p

(
α(n)− 1

n

)
+
p′(2)

n

)
≤ p′(2) = 81

where we used the mean value theorem in the third line for some ξ ∈
(
α(n)−1

n
+ α(n)

)
and

we used monotonicity of p′ in the last line. Hence, ε is bounded and α indeed represents
a root of p. �

C.3. Constructing π

We want to define π using the formula that a circle with radius r has area πr2. For this
we count the lattice points which are contained in a circle of radius

√
n: β(n) := |{(p, q) ∈

Z× Z | p2 + q2 ≤ n}|.
Unfortunately, β is not a slope as one can for example observe that β(5u) − β(5u − 1) −
β(1) = 4u − 1. For this we define:

β̄(n) :=

⌊
β(n2)

n

⌋
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We note that if we draw squares with centres at the lattice points, these square are

contained in the circle with radius
√
n+

√
2

2
, and contain the circle with radius

√
n−

√
2

2
as

in figure 23. Hence π(
√
n−

√
2

2
)2 ≤ β(n) ≤ π(

√
n+

√
2

2
)2 and thus |β(n)−nπ| ≤ 2

√
2
√
nπ.

Figure 22. The 21 lat-
tice points in the circle
with radius

√
7

Figure 23. The squares
are contained in the cir-
cle of radius

√
7+

√
2

2
but

contains the circle of ra-
dius

√
7−

√
2

2
.

This gives that |β̄(n)−nπ| ≤ 2
√

2π+ 1 which not only shows that β̄ represents π but also
that β̄ is a slope.
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manifold, in Annales scientifiques de l’École Normale Supérieure, 13, 1980, pp. 45–93.
[Fil82] R. P. Filipkiewicz, Isomorphisms between diffeomorphism groups, Ergodic Theory and Dy-

namical Systems 2 no. 2 (1982), 159–171.
[Flo88] A. Floer, The unregularized gradient flow of the symplectic action, Communications on

Pure and Applied Mathematics 41 (1988), 775–813.
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