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Overview
[ ]

@ Let f € C[xi,...,xn] and X = {f = 0} an isolated singularity at the origin.

@ the contact locus of arcs intersecting the singularity at a specific order (of algebraic
nature)

@ the Milnor fiber — a nearby smooth locus of the singularity (of topological natrue)

@ The arc-Floer conjecture:

the cohomology of contact loci = Floer homology on Milnor fiber
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Definitions

Contact loci

@ Contact locus is a subset of the arc/jet space.
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Definitions

Contact loci

@ Contact locus is a subset of the arc/jet space.

@ A l-jet in C" is a map
SpecC[t]/(t?) — C"

storing degree 1 infinitesimal information (a tangent direction).
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Definitions

Contact loci

@ Contact locus is a subset of the arc/jet space.
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SpecC[t]/(t™1) - C"

storing degree m infinitesimal information.
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Definitions

Contact loci

@ Contact locus is a subset of the arc/jet space.
@ Anarcin C" is a map
SpecC[t] — C"
storing infinitesimal information in all degrees.
@ Each arc corresponds to

v : Clxi, ..., xn] = C[t]

xi > i(t)

Definition

The m-th restricted contact locus is

A 7= {’y : Spec C[t]/(t™!) — C" ;Y((SES)O:’ M mod tm+1 } J
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Definitions

For f € C[x1,...,xn] and 0 < € < 1, we have the Milnor fibration

f
— S .\ X — St
7S \X =

The fiber F is called the Milnor fiber. The generator of 71(S') defines a monodromy

¢:F—F.
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oe
Definition

For f € C[x1,...,xn] and 0 < € < 1, we have the Milnor fibration

f
— S .\ X — St
7S \X =

The fiber F is called the Milnor fiber. The generator of 71(S') defines a monodromy

¢:F—F.

Example

F is homotopic to a bouquet of u(f) spheres. If f is homogeneous, F is diffeomorphic to
f~1(e), and H*(X) is concentrated in degree n — 1 of rank u(f).
So the “nearby locus” F stores information about the singularity X.
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Conjecture
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@ Begin with the Riemann zeta function

c(s+1):/00o Xy
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Conjecture
€000

@ Begin with the Riemann zeta function

<(s+1):/0oo .

ex—1

S

dx
@ Generalize to multi-variable case by integrating over R”
2(sifig) = | IFGOI()a
@ Generalize to p-adic lgusa zeta function
Z(sif) = [ 1FGOFlaxd = [ pmereaxd
Qn Qp
@ Generalize to motivic zeta function

Zmot(si f) — / ]L—sord fd}t
T

o C"
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@ Relation between zeta function Z(s) and the monodromy ¢ on the Milnor fiber:

27isg

sg is a pole of Z(s) = e is an eigenvalue of ¢ : H'(F) — H'(F)
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Conjecture
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@ Relation between zeta function Z(s) and the monodromy ¢ on the Milnor fiber:

27isg

sg is a pole of Z(s) = e is an eigenvalue of ¢ : H'(F) — H'(F)

@ The Monodromy Conjecture states the same for Z,(s), and more generally, for Zpot(s).

The (motivic) Monodromy Conjecture [DL98]

We have
Zmot(s) € Ko(Sche)[(1 — L"), nyem

such that n
exp (27riﬁ) is an eigenvalue of ¢ for (n, N) € M
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Conjecture
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@ Since motivic integration is defined using the contact loci, we expect a relation between
contact loci and monodromy.
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Conjecture
0000

@ Since motivic integration is defined using the contact loci, we expect a relation between
contact loci and monodromy.

@ A direct relation is found between
m-th restricted contact locus <> Lefschetz number of

Np) =D _(=1) Tr(p, H'(F))

i>0

Theorem [DLOO]

Let f € C[x1,...,xn]. For every m > 0,

Ae™) = x(Xm).
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@ As a 2(n— 1) dimensional real manifold with boundary, F is given the structure Louville
domain.
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Conjecture
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@ As a 2(n— 1) dimensional real manifold with boundary, F is given the structure Louville
domain.

@ ¢ is a symplectomorphism which means we can study its Floer theory.

@ From Floer theory we know A(¢) = xHr(p), therefore

X(Xm) = xHF(@)

@ We expect a coincidence of (co)homologies, evidence from them admitting spectral
sequences with the same E; page.

The arc-Floer conjecture [BFdBLN22]

Let f € C[xq, ..., xn] be an isolated singularity at 0. For every m > 0, the two spectral
sequences are isomorphic, and

HHO=DEmD) () 7y o E, (o7, 4).
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Our work
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@ For all f, and m = mult f.[BFdBLN22]
@ For all f € C[x,y], and for all m.[dIBdLP23]

o X has a minimal (m-separating) resolution with good combinatorial
property.

e X, decomposes into components labelled by numerical invariants

e Components of X, correspond to components of Fix ™.
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@ Let f € C[xi,...,xn] be homogeneous.
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Our work
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@ Let f € C[xi,...,xn] be homogeneous.
@ Suppose S = {f = 0} C P"~! is a smooth hypersurface.
@ Then X = {f =0} C C" is the affine cone of S, and has isolated singularity at origin

Theorem (de Lorenzo Poza, H.)

Let f be an isolated homogeneous singularity in C". The arc-Floer conjecture holds.
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— resolutions for the homogeneous case is simpler.
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X does not have minimal resolution in general,

— resolutions for the homogeneous case is simpler.

Decomposition of X, no longer holds, it is in fact connected,

— HX(Xm) is computed using a spectral sequence induced by a filtration by closed
subsets.

F is (real) 2(n — 1)-dimensional and Floer trajectories are hard to control,

— a specific almost complex structure is chosen to control trajectories using
pseudo-holomorphic properties

Components of X, no longer correspond to components of Fix ¢™,

— so the isomorphism is only at the level of (co)homologies.

As of now no conceptual explanation is given for why the conjecture holds.
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Our work
0000

Eo1

Eo
Ei3 / \ Exs
Eia Ess Ess E3q

Blow up the origin, call the exceptional divisor Ej; and strict transform Ep; = X.
Blow up Ep1 N E11 and get exceptional divisor Ejs.
Repeat until p1 + p2 + k1 + k2 > m for any E, adjacent to Ej.

This is a subtree of the Stern-Brocot tree with good combinatorial properties.
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@ Let Y — C" be the resolution of X and E the pre-image of X.

@ F can be thought of as an oriented real blowup. Then rounded using the F7_ part.
@ The fixed components of ¢™ consists of F, such that p; + p2|m.
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