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Let f ∈ C[x1, . . . , xn] and X = {f = 0} an isolated singularity at the origin.

the contact locus of arcs intersecting the singularity at a specific order (of algebraic
nature)

the Milnor fiber – a nearby smooth locus of the singularity (of topological natrue)

The arc-Floer conjecture:

the cohomology of contact loci ∼= Floer homology on Milnor fiber
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Contact loci

Contact locus is a subset of the arc/jet space.

An arc in Cn is a map
SpecC[[t]] → Cn

storing infinitesimal information in all degrees.

Each arc corresponds to
γ : C[x1, . . . , xn] → C[[t]]

xi 7→ γi (t)

Definition
The m-th restricted contact locus is

Xm :=

{
γ : SpecC[t]/(tm+1) → Cn

∣∣∣∣ γ(0) = 0,
f (γ(t)) = tm mod tm+1

}
.
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Definition
For f ∈ C[x1, . . . , xn] and 0 < ε ≪ 1, we have the Milnor fibration

f

|f |
: Sε \ X → S1.

The fiber F is called the Milnor fiber. The generator of π1(S1) defines a monodromy

φ : F → F .

Example
F is homotopic to a bouquet of µ(f ) spheres. If f is homogeneous, F is diffeomorphic to
f −1(ε), and H∗(X ) is concentrated in degree n − 1 of rank µ(f ).
So the “nearby locus” F stores information about the singularity X .
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Begin with the Riemann zeta function

ζ(s + 1) =

∫ ∞

0

xs

ex − 1
dx

Generalize to multi-variable case by integrating over Rn

Z(s; f ; g) =

∫
Rn

|f (x)|sg(x)dx .

Generalize to p-adic Igusa zeta function

Zp(s; f ) =

∫
Qn
p

|f (x)|s |dx | =
∫
Qn
p

p−sνp(f )|dx |

Generalize to motivic zeta function

Zmot(s; f ) =

∫
J∞Cn

L−s ord f dµ
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Relation between zeta function Z(s) and the monodromy φ on the Milnor fiber:

s0 is a pole of Z(s) ⇒ e2πis0 is an eigenvalue of φ : H i (F ) → H i (F )

The Monodromy Conjecture states the same for Zp(s), and more generally, for Zmot(s).

The (motivic) Monodromy Conjecture [DL98]
We have

Zmot(s) ∈ K0(SchC)[(1− L−Ns−n)−1](n,N)∈M

such that
exp

(
2πi

n

N

)
is an eigenvalue of φ for (n,N) ∈ M
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Since motivic integration is defined using the contact loci, we expect a relation between
contact loci and monodromy.

A direct relation is found between

m-th restricted contact locus ↔ Lefschetz number of φm

Λ(φ) =
∑
i≥0

(−1)i Tr(φ,H i (F ))

Theorem [DL00]

Let f ∈ C[x1, . . . , xn]. For every m > 0,

Λ(φm) = χ(Xm).
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As a 2(n − 1) dimensional real manifold with boundary, F is given the structure Louville
domain.

φ is a symplectomorphism which means we can study its Floer theory.

From Floer theory we know Λ(φ) = χHF (φ), therefore

χ(Xm) ∼= χHF (φ)

We expect a coincidence of (co)homologies, evidence from them admitting spectral
sequences with the same E1 page.

The arc-Floer conjecture [BFdBLN22]

Let f ∈ C[x1, . . . , xn] be an isolated singularity at 0. For every m > 0, the two spectral
sequences are isomorphic, and

H
∗+(n−1)(2m+1)
c (Xm,Z) ∼= HF∗(φ

m,+).
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For all f , and m = mult f .[BFdBLN22]

For all f ∈ C[x , y ], and for all m.[dlBdLP23]

X has a minimal (m-separating) resolution with good combinatorial
property.
Xm decomposes into components labelled by numerical invariants.
Components of Xm correspond to components of Fixφm.
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Let f ∈ C[x1, . . . , xn] be homogeneous.

Suppose S = {f = 0} ⊆ Pn−1 is a smooth hypersurface.

Then X = {f = 0} ⊆ Cn is the affine cone of S , and has isolated singularity at origin

Theorem (de Lorenzo Poza, H.)
Let f be an isolated homogeneous singularity in Cn. The arc-Floer conjecture holds.
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X does not have minimal resolution in general,
→ resolutions for the homogeneous case is simpler.

Decomposition of Xm no longer holds, it is in fact connected,
→ H∗

c (Xm) is computed using a spectral sequence induced by a filtration by closed
subsets.

F is (real) 2(n − 1)-dimensional and Floer trajectories are hard to control,
→ a specific almost complex structure is chosen to control trajectories using
pseudo-holomorphic properties

Components of Xm no longer correspond to components of Fixϕm,
→ so the isomorphism is only at the level of (co)homologies.

As of now no conceptual explanation is given for why the conjecture holds.

39 / 46



Overview Definitions Conjecture Our work References

X does not have minimal resolution in general,
→ resolutions for the homogeneous case is simpler.

Decomposition of Xm no longer holds, it is in fact connected,
→ H∗

c (Xm) is computed using a spectral sequence induced by a filtration by closed
subsets.

F is (real) 2(n − 1)-dimensional and Floer trajectories are hard to control,
→ a specific almost complex structure is chosen to control trajectories using
pseudo-holomorphic properties

Components of Xm no longer correspond to components of Fixϕm,
→ so the isomorphism is only at the level of (co)homologies.

As of now no conceptual explanation is given for why the conjecture holds.

40 / 46



Overview Definitions Conjecture Our work References

X does not have minimal resolution in general,
→ resolutions for the homogeneous case is simpler.

Decomposition of Xm no longer holds, it is in fact connected,
→ H∗

c (Xm) is computed using a spectral sequence induced by a filtration by closed
subsets.

F is (real) 2(n − 1)-dimensional and Floer trajectories are hard to control,
→ a specific almost complex structure is chosen to control trajectories using
pseudo-holomorphic properties

Components of Xm no longer correspond to components of Fixϕm,
→ so the isomorphism is only at the level of (co)homologies.

As of now no conceptual explanation is given for why the conjecture holds.

41 / 46



Overview Definitions Conjecture Our work References

X does not have minimal resolution in general,
→ resolutions for the homogeneous case is simpler.

Decomposition of Xm no longer holds, it is in fact connected,
→ H∗

c (Xm) is computed using a spectral sequence induced by a filtration by closed
subsets.

F is (real) 2(n − 1)-dimensional and Floer trajectories are hard to control,
→ a specific almost complex structure is chosen to control trajectories using
pseudo-holomorphic properties

Components of Xm no longer correspond to components of Fixϕm,
→ so the isomorphism is only at the level of (co)homologies.

As of now no conceptual explanation is given for why the conjecture holds.

42 / 46



Overview Definitions Conjecture Our work References

X does not have minimal resolution in general,
→ resolutions for the homogeneous case is simpler.

Decomposition of Xm no longer holds, it is in fact connected,
→ H∗

c (Xm) is computed using a spectral sequence induced by a filtration by closed
subsets.

F is (real) 2(n − 1)-dimensional and Floer trajectories are hard to control,
→ a specific almost complex structure is chosen to control trajectories using
pseudo-holomorphic properties

Components of Xm no longer correspond to components of Fixϕm,
→ so the isomorphism is only at the level of (co)homologies.

As of now no conceptual explanation is given for why the conjecture holds.

43 / 46



Overview Definitions Conjecture Our work References

E01

E11

E12

E13 E23

E14 E25 E35 E34

Blow up the origin, call the exceptional divisor E11 and strict transform E01 = X̃ .

Blow up E01 ∩ E11 and get exceptional divisor E12.

Repeat until ρ1 + ρ2 + κ1 + κ2 > m for any Eρ adjacent to Eκ.

This is a subtree of the Stern-Brocot tree with good combinatorial properties.
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F. . . . . .

E ⊆ Y. . . . . .

F◦
ρ F◦

τF◦
ρτF◦

10 F◦
11

E◦
ρτ E◦

τE◦
ρE◦

10 E◦
11

Let Y → Cn be the resolution of X and E the pre-image of X .

F can be thought of as an oriented real blowup. Then rounded using the F◦
ρτ part.

The fixed components of φm consists of Fρ such that ρ1 + ρ2|m.
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