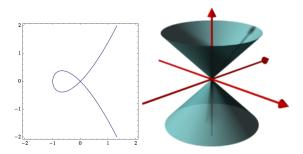
Overview 0	Definitions 00	Conjecture 0000	Our work 00000	References 0
The	arc-Floer con	jecture for isola	ated homoger	
THE		singularities	ated nonloger	ieous
		Singularities		
	joint wo	Jiahui Huang rk with Eduardo de Lore	nzo Poza	

University of Waterloo

June 6, 2024

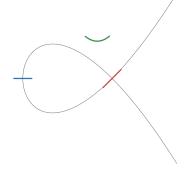
Overview	Definitions	Conjecture	Our work	References
•	00	0000	00000	0

• Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ and $X = \{f = 0\}$ an isolated singularity at the origin.



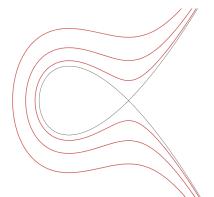
Overview •	Definitions 00	Conjecture 0000	Our work 00000	References 0
• Let $f \in$	$\mathbb{C}[x_1,\ldots,x_n]$ and $X=$	$\{f=0\}$ an isolated sin	ngularity at the origin.	

• the contact locus of arcs intersecting the singularity at a specific order (of algebraic nature)



Overview •	Definitions 00	Conjecture 0000	Our work 00000	References 0
• Let $f \in$	$\mathbb{C}[x_1,\ldots,x_n]$ and $X =$	$\{f=0\}$ an isolated sin	ngularity at the origin.	
the con	tact locus of arcs inters	secting the singularity a	t a specific order (of a	algebraic

• the Milnor fiber – a nearby smooth locus of the singularity (of topological natrue)



nature)

Overview •	Definitions 00	Conjecture 0000	Our work 00000	References O
• Let $f \in$	$\mathbb{C}[x_1,\ldots,x_n]$ and $X=$	$\{f=0\}$ an isolated sin	ngularity at the origin.	
the cor	tact lacus of ares inter	socting the cingularity a	+ a charific order (of a	Jachraic

- the contact locus of arcs intersecting the singularity at a specific order (of algebraic nature)
- the Milnor fiber a nearby smooth locus of the singularity (of topological natrue)
- The arc-Floer conjecture:

the cohomology of contact loci $\quad\cong\quad$ Floer homology on Milnor fiber

Overview o	Definitions ●0	Conjecture 0000	Our work 00000	References 0
Contact loci				

• Contact locus is a subset of the arc/jet space.

Overview O	Definitions ●0	Conjecture 0000	Our work 00000	References O
Contact loci	i			

- Contact locus is a subset of the arc/jet space.
- A 1-jet in \mathbb{C}^n is a map

$$\operatorname{\mathsf{Spec}} \mathbb{C}[t]/(t^2) o \mathbb{C}^n$$

storing degree 1 infinitesimal information (a tangent direction).

Overview	Definitions	Conjecture	Our work	References
O	●0	0000	00000	O
Contact loc	i			

- Contact locus is a subset of the arc/jet space.
- An *m*-jet in \mathbb{C}^n is a map

 $\operatorname{\mathsf{Spec}} \mathbb{C}[t]/(t^{m+1}) \to \mathbb{C}^n$

storing degree m infinitesimal information.

Overview o	Definitions ●0	Conjecture 0000	Our work 00000	References 0
Contact loci				

- Contact locus is a subset of the arc/jet space.
- An arc in \mathbb{C}^n is a map

 $\operatorname{Spec} \mathbb{C}[\![t]\!] \to \mathbb{C}^n$

storing infinitesimal information in all degrees.

Overview	Definitions	Conjecture	Our work	References
o	●0	0000	00000	O
Contact	loci			

- Contact locus is a subset of the arc/jet space.
- An arc in \mathbb{C}^n is a map

 $\operatorname{Spec} \mathbb{C}[\![t]\!] \to \mathbb{C}^n$

storing infinitesimal information in all degrees.

• Each arc corresponds to

$$\gamma : \mathbb{C}[x_1, \dots, x_n] \to \mathbb{C}\llbracket t \rrbracket$$

 $x_i \mapsto \gamma_i(t)$

Overview O	Definitions ●0	Conjecture 0000	Our work 00000	References 0
Contact loo	ci			

- Contact locus is a subset of the arc/jet space.
- An arc in \mathbb{C}^n is a map

 $\operatorname{Spec} \mathbb{C}[\![t]\!] \to \mathbb{C}^n$

storing infinitesimal information in all degrees.

• Each arc corresponds to

$$\gamma: \mathbb{C}[x_1, \dots, x_n] \to \mathbb{C}\llbracket t \rrbracket$$
$$x_i \mapsto \gamma_i(t)$$

Definition

The m-th restricted contact locus is

$$\mathcal{X}_m := \left\{ \gamma : \operatorname{Spec} \mathbb{C}[t]/(t^{m+1}) \to \mathbb{C}^n \ \middle| \ \begin{array}{c} \gamma(0) = 0, \\ f(\gamma(t)) = t^m \ \text{mod} \ t^{m+1} \end{array} \right\}$$

Overview	Definitions	Conjecture	Our work	References
O	○●	0000	00000	0

Definition

For $f \in \mathbb{C}[x_1, \ldots, x_n]$ and $0 < \varepsilon \ll 1$, we have the *Milnor fibration*

$$rac{f}{f|}:\mathbb{S}_{arepsilon}\setminus X
ightarrow\mathbb{S}^{1}.$$

The fiber *F* is called the *Milnor fiber*. The generator of $\pi_1(\mathbb{S}^1)$ defines a monodromy

 $\varphi: F \to F.$

Overview	Definitions	Conjecture	Our work	References
O	○●	0000	00000	0

Definition

For $f \in \mathbb{C}[x_1, \ldots, x_n]$ and $0 < \varepsilon \ll 1$, we have the *Milnor fibration*

$$rac{f}{f|}:\mathbb{S}_{arepsilon}\setminus X
ightarrow\mathbb{S}^{1}.$$

The fiber F is called the *Milnor fiber*. The generator of $\pi_1(\mathbb{S}^1)$ defines a monodromy

 $\varphi: F \to F.$

Example

F is homotopic to a bouquet of $\mu(f)$ spheres. If *f* is homogeneous, *F* is diffeomorphic to $f^{-1}(\varepsilon)$, and $H^*(X)$ is concentrated in degree n-1 of rank $\mu(f)$. So the "nearby locus" *F* stores information about the singularity *X*.

Overview o	Definitions 00	Conjecture ●000	Our work 00000	References 0

$$\zeta(s+1) = \int_0^\infty \frac{x^s}{e^x - 1} dx$$

Overview	Definitions	Conjecture	Our work	References
O	00	●000	00000	0

$$\zeta(s+1) = \int_0^\infty \frac{x^s}{e^x - 1} dx$$

• Generalize to multi-variable case by integrating over \mathbb{R}^n

$$Z(s;f;g) = \int_{\mathbb{R}^n} |f(x)|^s g(x) dx.$$

Overview	Definitions	Conjecture	Our work	References
O	00	●000	00000	0

$$\zeta(s+1) = \int_0^\infty \frac{x^s}{e^x - 1} dx$$

• Generalize to multi-variable case by integrating over \mathbb{R}^n

$$Z(s; f; g) = \int_{\mathbb{R}^n} |f(x)|^s g(x) dx.$$

• Generalize to *p*-adic Igusa zeta function

$$Z_p(s; f) = \int_{\mathbb{Q}_p^n} |f(x)|^s |dx| = \int_{\mathbb{Q}_p^n} p^{-s\nu_p(f)} |dx|$$

Overview	Definitions	Conjecture	Our work	References
O	00	●000	00000	O

$$\zeta(s+1) = \int_0^\infty \frac{x^s}{e^x - 1} dx$$

• Generalize to multi-variable case by integrating over \mathbb{R}^n

$$Z(s;f;g) = \int_{\mathbb{R}^n} |f(x)|^s g(x) dx.$$

• Generalize to *p*-adic Igusa zeta function

$$Z_p(s;f) = \int_{\mathbb{Q}_p^n} |f(x)|^s |dx| = \int_{\mathbb{Q}_p^n} p^{-s\nu_p(f)} |dx|$$

• Generalize to motivic zeta function

$$Z_{\mathrm{mot}}(s;f) = \int_{\mathcal{J}_{\infty}\mathbb{C}^n} \mathbb{L}^{-s \operatorname{ord} f} d\mu$$

Overview	Definitions	Conjecture	Our work	References
O	00	○●○○	00000	0

• Relation between zeta function Z(s) and the monodromy φ on the Milnor fiber:

 s_0 is a pole of $Z(s) \Rightarrow e^{2\pi i s_0}$ is an eigenvalue of $\varphi: H^i(F) \rightarrow H^i(F)$

Overview	Definitions	Conjecture	Our work	References
O	00	○●○○	00000	O

• Relation between zeta function Z(s) and the monodromy φ on the Milnor fiber:

 s_0 is a pole of $Z(s) \Rightarrow e^{2\pi i s_0}$ is an eigenvalue of $\varphi: H^i(F) \to H^i(F)$

• The Monodromy Conjecture states the same for $Z_p(s)$, and more generally, for $Z_{mot}(s)$.

Overview	Definitions	Conjecture	Our work	References
O	00	○●○○	00000	O

• Relation between zeta function Z(s) and the monodromy φ on the Milnor fiber:

$$s_0$$
 is a pole of $Z(s) \Rightarrow e^{2\pi i s_0}$ is an eigenvalue of $arphi : H^i(F) o H^i(F)$

• The Monodromy Conjecture states the same for $Z_p(s)$, and more generally, for $Z_{mot}(s)$.

The (motivic) Monodromy Conjecture [DL98]

We have

$$Z_{ ext{mot}}(s) \in K_0(ext{Sch}_{\mathbb{C}})[(1 - \mathbb{L}^{-Ns-n})^{-1}]_{(n,N) \in M}$$

such that

$$\exp\left(2\pi i \frac{n}{N}
ight)$$
 is an eigenvalue of φ for $(n,N) \in M$

Overview	Definitions	Conjecture	Our work	References
O	00	00●0	00000	0

• Since motivic integration is defined using the contact loci, we expect a relation between contact loci and monodromy.

Overview	Definitions	Conjecture	Our work	References
O	00	00●0	00000	0

- Since motivic integration is defined using the contact loci, we expect a relation between contact loci and monodromy.
- A direct relation is found between

m-th restricted contact locus \leftrightarrow Lefschetz number of φ^m

Overview	Definitions	Conjecture	Our work	References
O	00	00●0	00000	0

- Since motivic integration is defined using the contact loci, we expect a relation between contact loci and monodromy.
- A direct relation is found between

٥

m-th restricted contact locus \leftrightarrow Lefschetz number of φ^m

$$\Lambda(\varphi) = \sum_{i \geq 0} (-1)^i \operatorname{Tr}(\varphi, H^i(F))$$

Overview	Definitions	Conjecture	Our work	References
O	00	00●0	00000	0

- Since motivic integration is defined using the contact loci, we expect a relation between contact loci and monodromy.
- A direct relation is found between

m-th restricted contact locus \leftrightarrow Lefschetz number of φ^m

$$\Lambda(\varphi) = \sum_{i \ge 0} (-1)^i \operatorname{Tr}(\varphi, H^i(F))$$

Theorem [DL00]

٥

Let $f \in \mathbb{C}[x_1, \ldots, x_n]$. For every m > 0,

$$\Lambda(\varphi^m) = \chi(\mathcal{X}_m).$$

Overview	Definitions	Conjecture	Our work	References
O	00	000●	00000	0

• As a 2(n-1) dimensional real manifold with boundary, F is given the structure Louville domain.

Overview	Definitions	Conjecture	Our work	References
O	00	000●	00000	0

- As a 2(n-1) dimensional real manifold with boundary, F is given the structure Louville domain.
- φ is a symplectomorphism which means we can study its Floer theory.

Overview	Definitions	Conjecture	Our work	References
O	00	000●	00000	O

- As a 2(n-1) dimensional real manifold with boundary, F is given the structure Louville domain.
- φ is a symplectomorphism which means we can study its Floer theory.
- From Floer theory we know $\Lambda(\varphi) = \chi_{HF}(\varphi)$, therefore

 $\chi(\mathcal{X}_m) \cong \chi_{HF}(\varphi)$

Overview	Definitions	Conjecture	Our work	References
O	00	000●	00000	0

- As a 2(n-1) dimensional real manifold with boundary, F is given the structure Louville domain.
- φ is a symplectomorphism which means we can study its Floer theory.
- From Floer theory we know $\Lambda(\varphi) = \chi_{HF}(\varphi)$, therefore

$$\chi(\mathcal{X}_m) \cong \chi_{HF}(\varphi)$$

• We expect a coincidence of (co)homologies, evidence from them admitting spectral sequences with the same *E*₁ page.

Overview	Definitions	Conjecture	Our work	References
O	00	000●	00000	O

- As a 2(n-1) dimensional real manifold with boundary, F is given the structure Louville domain.
- φ is a symplectomorphism which means we can study its Floer theory.
- From Floer theory we know $\Lambda(\varphi) = \chi_{HF}(\varphi)$, therefore

$$\chi(\mathcal{X}_m)\cong\chi_{HF}(\varphi)$$

• We expect a coincidence of (co)homologies, evidence from them admitting spectral sequences with the same *E*₁ page.

The arc-Floer conjecture [BFdBLN22]

Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ be an isolated singularity at 0. For every m > 0, the two spectral sequences are isomorphic, and

$$H_c^{*+(n-1)(2m+1)}(X_m,\mathbb{Z})\cong HF_*(\varphi^m,+).$$

Overview	Definitions	Conjecture	Our work	References
O	00	0000	●0000	O

• For all f, and m = mult f.[BFdBLN22]

Overview	Definitions	Conjecture	Our work	References
O	00	0000	●0000	O

- For all f, and m = mult f.[BFdBLN22]
- For all $f \in \mathbb{C}[x, y]$, and for all m.[dlBdLP23]

Overview	Definitions	Conjecture	Our work	References
O	00	0000	●0000	O

- For all f, and m = mult f.[BFdBLN22]
- For all $f \in \mathbb{C}[x, y]$, and for all m.[dlBdLP23]
 - X has a minimal (*m*-separating) resolution with good combinatorial property.

Overview	Definitions	Conjecture	Our work	References
O	00	0000	●0000	O

- For all f, and m = mult f.[BFdBLN22]
- For all $f \in \mathbb{C}[x, y]$, and for all m.[dlBdLP23]
 - X has a minimal (*m*-separating) resolution with good combinatorial property.
 - \mathcal{X}_m decomposes into components labelled by numerical invariants.

Overview	Definitions	Conjecture	Our work	References
O	00	0000	●0000	O

- For all f, and m = mult f.[BFdBLN22]
- For all $f \in \mathbb{C}[x, y]$, and for all m.[dlBdLP23]
 - X has a minimal (*m*-separating) resolution with good combinatorial property.
 - \mathcal{X}_m decomposes into components labelled by numerical invariants.
 - Components of \mathcal{X}_m correspond to components of Fix φ^m .

Overview	Definitions	Conjecture	Our work	References
O	00	0000	o●ooo	O

• Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ be homogeneous.

Overview	Definitions	Conjecture	Our work	References
O	00	0000	o●ooo	O

- Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ be homogeneous.
- Suppose $S = \{f = 0\} \subseteq \mathbb{P}^{n-1}$ is a smooth hypersurface.

Overview	Definitions	Conjecture	Our work	References
O	00	0000	○●○○○	0

- Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ be homogeneous.
- Suppose $S = \{f = 0\} \subseteq \mathbb{P}^{n-1}$ is a smooth hypersurface.
- Then $X = \{f = 0\} \subseteq \mathbb{C}^n$ is the affine cone of S, and has isolated singularity at origin

Overview	Definitions	Conjecture	Our work	References
O	00	0000	o●ooo	0

- Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ be homogeneous.
- Suppose $S = \{f = 0\} \subseteq \mathbb{P}^{n-1}$ is a smooth hypersurface.
- Then $X = \{f = 0\} \subseteq \mathbb{C}^n$ is the affine cone of S, and has isolated singularity at origin

Theorem (de Lorenzo Poza, H.)

Let f be an isolated homogeneous singularity in \mathbb{C}^n . The arc-Floer conjecture holds.

Overview	Definitions	Conjecture	Our work	References
O	00	0000	○○●○○	0

X does not have minimal resolution in general,
 → resolutions for the homogeneous case is simpler.

- X does not have minimal resolution in general,
 → resolutions for the homogeneous case is simpler.
- Decomposition of \mathcal{X}_m no longer holds, it is in fact connected, $\rightarrow H_c^*(\mathcal{X}_m)$ is computed using a spectral sequence induced by a filtration by closed subsets.

Overview	Definitions	Conjecture	Our work	References
O	00	0000	oo●oo	O

- X does not have minimal resolution in general,
 → resolutions for the homogeneous case is simpler.
- Decomposition of \mathcal{X}_m no longer holds, it is in fact connected, $\rightarrow H_c^*(\mathcal{X}_m)$ is computed using a spectral sequence induced by a filtration by closed subsets.
- F is (real) 2(n − 1)-dimensional and Floer trajectories are hard to control,
 → a specific almost complex structure is chosen to control trajectories using pseudo-holomorphic properties

Overview	Definitions	Conjecture	Our work	References
O	00	0000	oo●oo	O

- X does not have minimal resolution in general,
 → resolutions for the homogeneous case is simpler.
- Decomposition of \mathcal{X}_m no longer holds, it is in fact connected, $\rightarrow H_c^*(\mathcal{X}_m)$ is computed using a spectral sequence induced by a filtration by closed subsets.
- F is (real) 2(n − 1)-dimensional and Floer trajectories are hard to control,
 → a specific almost complex structure is chosen to control trajectories using pseudo-holomorphic properties
- Components of \mathcal{X}_m no longer correspond to components of Fix ϕ^m , \rightarrow so the isomorphism is only at the level of (co)homologies.

Overview o	Definitions 00	Conjecture 0000	Our work ○○●○○	References ⊙

- X does not have minimal resolution in general,
 → resolutions for the homogeneous case is simpler.
- Decomposition of \mathcal{X}_m no longer holds, it is in fact connected, $\rightarrow H_c^*(\mathcal{X}_m)$ is computed using a spectral sequence induced by a filtration by closed subsets.
- F is (real) 2(n − 1)-dimensional and Floer trajectories are hard to control,
 → a specific almost complex structure is chosen to control trajectories using pseudo-holomorphic properties
- Components of \mathcal{X}_m no longer correspond to components of Fix ϕ^m , \rightarrow so the isomorphism is only at the level of (co)homologies.
- As of now no conceptual explanation is given for why the conjecture holds.

 E_{12}

 E_{23}

 E_{34}

 E_{35}

- Blow up the origin, call the exceptional divisor E_{11} and strict transform $E_{01} = X$.
- Blow up E₀₁ ∩ E₁₁ and get exceptional divisor E₁₂.

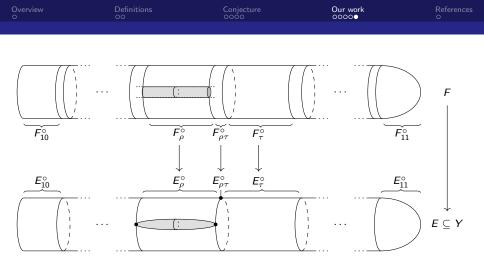
 E_{14}

 E_{13}

Repeat until ρ₁ + ρ₂ + κ₁ + κ₂ > m for any E_ρ adjacent to E_κ.

 E_{25}

• This is a subtree of the Stern-Brocot tree with good combinatorial properties.



- Let $Y \to \mathbb{C}^n$ be the resolution of X and E the pre-image of X.
- F can be thought of as an oriented real blowup. Then rounded using the $F_{\rho\tau}^{\circ}$ part.
- The fixed components of φ^m consists of F_ρ such that ρ₁ + ρ₂|m.

Overvie O	w Definitions 00	Conjecture 0000	Our work 00000	References •
_				
	N. Budur, J. Fernández de Bob	adilla, Q. T. Lê, and H	I. D. Nguyen.	
	Cohomology of contact loci.			
	Journal of Differential Geometr	y, 120(3):389–409, 202	22.	
	J. Denef and F. Loeser.			
	Motivic Igusa zeta functions.			
	Journal of Algebraic Geometry,	7:505–537, 1998.		
	J. Denef and F. Loeser.			

Lefschetz numbers of iterates of the monodromy and truncated arcs. *Topology*, 41:1031–1040, 2000.

J. de la Bodega and E. de Lorenzo Poza. The Arc-Floer conjecture for plane curves. *arXiv e-prints*, page arXiv:2308.00051, 2023.