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Jet and arc spaces

An m-jet of a scheme X is a morphism

ω : Spec k[t]/(t
m+1

) → X .

• When m = 0, a 0-jet is a geometric point of X.

• When m = 1, the ring k[t]/(t
2
) is the ring of dual numbers, so a 1-jet is a

tangent vector of X.

• When m > 1, a m-jet records higher infinitesimal information of X, up to

order m.

An arc of a scheme X is a morphism

ω : Spec k[[t]] → X .

• The arc space records infinitesimal information of all orders.
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Jet and arc spaces

Fix n. For X = Cn
, an m-jet is

ω : Spec k[t]/(t
m+1

) → Spec k[x1, . . . , xn]

determined by the images of x1, . . . , xn in k[t]/(t
m+1

), so such a morphism

corresponds to n terms

ω
i
(t) = ω

i
0 + ω

i
1t+ · · ·+ ω

i
mt

m
↑ C[t]/(tm+1

), i = 1, . . . , n .

The space of m-jets is the m-th jet space

Lm := LmCn
:= SpecC[ωi

j ]
i=1,...n
j=0,...,m .

The arc space of Cn
is the projective limit L→ = lim

↓↔n
Lm, parameterizing

n-tuples of power series.
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Jet and arc spaces

Intuitively, capturing all infinitesimal information of a scheme should be su!cient

to retrieve invariants of a scheme even at singular points.

Jet schemes and arc spaces are used in birational geometry and singularity theory

mainly through motivic integration.

Let f ↑ C[x1, . . . , xn] cut out a potentially singular hypersurface in Cn
. The

restricted contact locus of order m associated to f at the origin is

Xm := Xm(f, 0) := {ω ↑ Lm | ω(0) = 0, f(ω(t)) = t
m
(mod t

m+1
)} .

Remark The condition ω(0) = 0 means the jet ω is centered at the origin.

We want the contact order ordf ω to be m, meaning f(ω(t)) = ct
m

for some

c ↗= 0. Then the locus is restricted in the sense that we further want c = 1.
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Homogeneous singularities

Let f ↑ C[x1, . . . , xn] be a homogeneous polynomial of degree d, then

isolated singularity at 0 ↘≃ S = {f = 0} is a smooth hypersurface in Pn↑1

We study the geometry of the contact loci Xm for such f , and resolve

• arc-Floer conjecture (ACF),

• embedding Nash problem (ENP)

for such singularities (up to a mild constraint on the degree of f).

Previously ACF was only known for plane curves and some special cases of m, and

ENP was only known for curves in a surface, hyperplane arrangement, and toric

varieties.
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Order filtration

The contact locus Xm admits a natural increasing filtration by closed subsets

FpXm = {ω ↑ Xm | ordt ω ⇐ ↔p} .

The graded pieces are locally closed subsets given by

F(p)Xm = Fp \ Fp↑1 .

This filtration induces a spectral sequence

ordE
p,q
1 = H

p+q
c (F(p)Xm) =≃ H

p+q
c (Xm) .

↑

O
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Structural theorem

An essential step is to describe the structure of each filtered piece, which allows

for computation of the spectral sequence.

Proposition

1. F(p)Xm is non-empty only for ↔m/d ⇒ p ⇒ ↔1, in which case, the
following hold. (Write ε = ↔p for simplicity.)

2. If ω ↑ F(p)Xm, then the variables ω0, . . . , ωω↑1 are zero and
ωm↑(d↑1)ω+1, . . . , ωm are free.

3. The variable ωω is subject to only one equation, namely

f(ωω) =

{
0, ε ↗= m/d;

1, ε = m/d.

4. For ε ⇒ a ⇒ m↔ (d↔ 1)ε, denote ϑ = a+ (d↔ 1)ε; then ωa is cut out by

Df(ωω) · ωa + C(ω0, . . . , ωa↑1) =

{
0, ϑ ↗= m;

1, ϑ = m,

U= 0. + O,t +... Until
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#
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Structural theorem

Rephrasing of the proposition The piece F(p)Xm looks like the following:

Fip. Am Fip+e) Xm

O
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Structure theorem

The following is the main result that we apply to the Arc-Floer conjecture.

Theorem The spectral sequence ordE
p,q
1 degenerates at the first page.

This means all di”erentials

d
p,q
ε : H

p+q
c (F(p)Xm)

︸ ︷︷ ︸
Ep,q

ω

→ H
p+q+1
c (F(p+ε)Xm)

︸ ︷︷ ︸
Ep+ω,q→ω+1

ω

are zero for ϖ ⇐ 1. Taking the dual in the Borel-Moore homology, this map can be

thought of as the boundary morphism for cycles, and one intuitively to expect the

map to be zero.
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Vanishing of di!erential

Consider an auxiliary space Z which is the same as X, except we remove the

hyperplane constraint on the last variable. Let i : Xm ϱ→ Z be the inclusion.

H
p+q
c (F(p)Z) H

p+q+1
c (F(p+ε)Z)

H
p+q
c (F(p)Xm)

︸ ︷︷ ︸
Ep,q

ω

H
p+q+1
c (F(p+ε)Xm)

︸ ︷︷ ︸
Ep+ω,q→ω+1

ω

dp,qω

i↑↓= i↑

dp,qω

O
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Vanishing of di!erential

It then su!ces to show the vanishing of

i
↔
: H

p+q+1
c (F(p+ε)Z) → H

p+q+1
c (F(p+ε)Xm)

The inclusion F(p+ε)Xm → F(p+ε)Z is a inclusion of vector bundles given by a

natural pullback of the bundle inclusion

TCS↓ → i
↔
CS↓TCn

where CS
↗
is the punctured cone

CS
↗
= {f = 0} \ {0} ϱ→ Cn

.

The induced map on cohomology is then the cup product with the euler class of

the quotient bundle e(Q). Let ς : CS
↗
→ S be the projection, then a computation

shows

e(Q) = ς
↔
(e(NS/Pn→1 )) = 0 .

O
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Arc-Floer conjecture

The Milnor fiber Mf associated to f is the fiber of the Milnor fibration

f

|f |
: Sϑ \ f

↑1
(0) → S1.

which admits a monodromy action φ : Mf → Mf .

An application of the m-th contact locus is by Denef and Loeser, stating that

↼c(Xm) = #(φ
m
) .

Seidel noted that the right hand side is the Euelr characteristic ↼Floer(φ
m
).

Conjecture (Arc-Fleor conjecture) We have an isomorphism on the level
of cohomology

HF
↔
(φ

m
,+) ⇑= H

↔+(n↑1)(2m+1)
c (Xm).
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Spectral sequences

McLean constructed a Floer theoretic spectral sequence using the action filtration

on the Floer complex, giving

McLeanE
p,q
1 =≃ HF

p+q
(φ

m
,+).

Budur, Fern´andez de Bobadilla, Lê, and Nguyen constructed another spectral

sequence on the contact locus,

BFLNE
p,q
1 =≃ H

p+q
c (Xm).

The two spectral sequences are shown to be isomorphic on the first page, further

hinting the conjecture.

In particular,

Both sequences degenerate at first page =≃ (AFC) is true.

↳
-

OH
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Our result on ACF

We have shown an equivalence of spectral sequences

ordE
p,q
ε

⇑=BFLN E
p,q
ε

and its degeneration on the first page.

We further show the degeneration of McLeanE
p,q
1 under some assumptions about

the degree d of f , and conclude

Theorem Let f : (Cn
, 0) > (C, 0) be a semihomogeneous germ of degree d in

n ⇐ 3 variables. If
d < n/2 or 2n↔ 2 < d,

then (AFC) holds.
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Resolution of homogeneous singularities

A (semi)homogeneous isolated singularity is resolved after one blow-up at the

origin, with the exceptional divisor S = {f = 0} ⇓ Pn↑1
such that

NE = ordE f = d.

We may further blow up S, and obtain a new divisor E
↘
, then NE↔ = d+ 1.

Blon

↳Dep

i-
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m-separating resolution

Suppose µ : X → (Cn
, Y, 0) is a log resolution of the singularity Y , with

exceptional divisor E =
∑

NiEi that is SNC.

Definition µ is m-separating if for any i ↗= j such that Ei ⇔ Ej ↗= ↽, we

have

Ni +Nj > m.

After repeatedly blowing up intersections, we can make a log resolution

m-separating. For homogeneous singularities, we get a chain:

P
-

-

- 00-

↑ 4

Ns +Na

F
↑
m = ordft : order .W
T
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Embedded Nash problem

Now suppose µ : X → (Cn
, Y, 0) is a m-separating log resolution. The contact

locus decomposes

Xm,E = {ω ↑ Xm | ω̃(0) ↑ E}

where E is an exceptional component, and ω̃ is the lift of ω by evaluative criterion.

This is only non-empty if NE |m, (we call that an m-divisor) because the contact

order of the lift has to be m/NE for ω to contact f at order m.

Say E is the set of exceptional components (plus the strict transform), then

Xm =

⊔

E≃E
NE |m

Xm,E

This is set theoretically disjoint, but not topologically, i.e. the closure of some

components might intersect others.
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Embedded Nash problem

For every irreducible component C of Xm, there is an exceptional divisor E such

that

C = Xm,E .

The Embedded Nash problem asks

For which E ↑ E is Xm,E an irreducible component?

We provide a complete answer for semi-homogeneous isolated singularities.

-

0-
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m-valuations

The Nash problem can be solved by describing valuations ordE corresponding to

each E ↑ E.

Definition

1. A divisorial valuation v on Y is an m-valuation if v = ordE for some

divisor E ↑ E such that NE |m.

2. v is a dlt m-valuation if v = ordE such that E appears in a dlt

modification of Y .

3. v is a contact m-valuation if v = ordE such that Xm,E is an

irreducible component of Xm.

4. v is an essential m-valuation if v = ordE such that E appears in

every m-separated log resolution of Y .

Proposition
{dlt} ⇓ {contact} ⇓ {essential}
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Our results describing valuations

Let Y be a semi-homogeneous isolated singularity of degree d in Cn
.

Theorem (Answer to ENP)

1. If d < n, then the only contact valuation is the exceptional divisor
obtained from blowing up the origin.

2. If d ⇐ n, every m-divisor of a m-separating resolution gives a contact
valuation.

Theorem

1. If d < n, then are no dlt valuations.

2. If d ⇐ n, every m-divisor of a m-separating resolution gives a dlt
valuation.

Theorem
Every m-divisor of a m-separating resolution gives an essential valuation.

O
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