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Abstract. This is the notes taken from talks given by Joshua Jackson, Jacopo Stoppa, and David
Rydh at the Equivariant Methods in Geometry workshop of Cambridge university in January 2024.
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1. Reductive and non-reductive geometric invariant theory

Let k be an algebraically closed field of characteristic 0 (so that reductive and linearly reductive
coincide). Suppose G acts on a scheme X. The quotient space X/G is in general not a scheme,
and the method of GIT follows the strategy of throwing away bad orbits and gluing together some
orbits. Locally, if G acts on SpecA, then we would want the quotient to be

φ : SpecA ! SpecAG.

In general, φ : X ! W is a good quotient if

(1) φ is G-invariant, surjective and affine.
(2) OW

∼= φ∗OG
X , meaning locally the quotient is a map to the invariants, of form SpecA !

SpecAG.
(3) If W1,W2 are distinct, closed and G-invariant, then so are φ(W1) and φ(W2). This means

we only glue minimally.

Note that good quotients are categorical, and when all orbits are closed, the quotient W agrees
with the naive quotient X/G. In the case W = X/G, we say φ is a geometric quotient.
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Example 1.1. An example of a quotient which is spec of invariants, but is not good, is Ga on the

affine variety X = SL(2) by α =

[
1 α
0 1

]
acting on

[
a b
c d

]
∈ SL(2) by multiplication. In this case

we have AG = k[c, d], so the quotient is X ! A2, but the image does not contain the origin, so it is
not surjective. Furthermore, there also exists a Ga-action on A3 where AG does not separate closed
orbits. These are problems that occour when G is non-reductive.

Definition 1.2. A linear algebraic group is an affine group scheme. It is reductive if every finite
dimensional representation V is completely reducible, meaning that there exists a decomposition
V = ⊕Vi where Vi is irreducible. It is unipotent if it is isomorphic to a closed subgroup of the group
of upper triangular matrices with 1 in the diagonal.

Every linear algebraic group H has a decomposition H = U ⋊ R with U unipotent, called its
unipotent radical, and R reductive.

Example 1.3. For a filtration 0 ⊊ V0 ⊊ ... ⊊ Vm = V , let P ⊆ GL(n) be the parabolic subgroup
preserving each Vi, so P is block upper triangular. The unipotent radical of P is the block upper
triangular with identities on the diagonal blocks, and the reductive part are the block diagonal
matrices.

1.1. Mumford’s GIT for reductive groups. We first recall the usual GIT on reductive groups.

Theorem 1.4 (Affine reductive GIT). The affine GIT quotient for reductive G acting on X = SpecA
is given by

φ : X ! SpecAG =: X // G.

To generalize to projective GIT, knowing good quotients are local on target, we need to find an
invariant affine covering, and then glue using affine GIT. For this approach, we use the following
notion.

Definition 1.5. A linearization of an action G on X is an equivariant embedding X ↪! Pn such
that G acts on Pn = P(V ) for some representation V of dimension n+ 1.

Remark 1.6. If X is normal and L is ample, then there exists linearization i : X ↪! Pn such that
i∗O(1) = Ln for some n > 0.

Theorem 1.7 (Projective reductive GIT). Let G act on X = ProjA linearly. Then AG ↪! A
determines a rational map φ : X 99K X // G =: ProjAG, where φ is defined on the semi-stable locus

Xss = {x ∈ X| there exists f ∈ AG such that f(x) ̸= 0}.
The map φ : Xss ! X // G is a good quotient. When restricted to the stable locus

Xs = {x ∈ Xss : Gx is closed in Xss and stabG(x) is finite},
the quotient is a geometric quotient φ : Xs ! Xs/G. The quotient X //G is projective and Xs/G is
quasi-projective.

A classical application of GIT is on the space W ∼= P(k[x0, . . . , xn]∗d) of hypersurfaces in Pn of
degree d. The group G = Aut(Pn) = PGL(n+ 1) acts on W . Except for some low n, d, the moduli
space of smooth hypersurfaces is given by W sm/G, and such surfaces are stable. Thus W // G is a
reasonable compactification of W sm/G. It is often difficult to compute invariants directly, so to find
out what is added in this compactification, the Hilbert-Mumford criteria is commonly used.

When T is a torus acting on X ↪! P(V ), decompose V = ⊕Vαi where αi ∈ LieT ∗ are the weights
of the representation. For x = [x0 : · · · : xn], define

Conv(x) = convex hull{αi|xi ̸= 0} ⊆ LieT ∗.
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Then the Hilbert-Mumford criterion states x ∈ X(s)s if and only if 0 is in (the interior of) Conv(x).
More generally, we have the following.

Theorem 1.8 (Hilbert-Mumford criterion). Let G be reductive acting on X linearly. Let T ≤ G be

a maximal torus in G. Then x ∈ X(s)s if and only if 0 ∈ Conv(◦)(gx) for all g ∈ G.

Equivalently we may phrase this using 1-parameter subgroups λ : Gm ! G. Set x0 = limt!0 λ(t)·x
and µ(x, λ) to be minus the weight of λ on x0. Then x ∈ X(s)s if and only if µ(≥)0 for all such λ.

Exercise 1.9. Consider the natural action of SL(2) on P1. Let X = (P1)n ↪! PN via the Veronese
embedding. This is a linearization. Show that a point p = (p1, . . . pn) is (semi)-stable if and only if
(≤)n2 of the coordinates coincide.

Example 1.10. The moduli of stable curves (with nodes) of a fixed genus can be obtained as a
GIT quotient of some Chow scheme (or Hilbert scheme). The moduli space of semi-stable coherent
sheaves on a projective scheme X can be constructed as a GIT quotient of some Quot scheme.

1.2. Stratification of unstable locus. To study the unstable objects, we would like a way to
measure instability. Considering the Hilbert-Mumford criterion, we could take the distance of the
origin from Conv(gx) for g ∈ G, or find a λ such that µ(x, λ) is minimal. However, µ(x, λ) is not
bounded as we can reparametrize λ, thus we defined the following notion. Let ∥ · ∥ be a positive
definite, Weyl invariant (with respect to a maximal subgroup T of G), integral valued bilinear form
on

χ∗(T ) = {λ : Gm ! T}.

Example 1.11. When G = SL(n+ 1) we can take ∥ · ∥ to be the Killing form.

Being Weyl invariant means that this is a well defined norm on χ∗(G). The Normalized Hilbert
Mumford function is M(x, λ) := µ(x, λ)/∥λ∥ and

Λx := {λ|M(x, λ) is minimal}.

Theorem 1.12. For a fixed unstable point x ∈ X −Xss, we have the following.

(1) There exists some λ achieving infλM(x, λ), so Λx ̸= ϕ.
(2) There exists a parabolic subgroup P (x) ⊆ G such that P (x) = P (λ) for all λ ∈ Λx.Here P (λ)

is defined by
{g ∈ G| lim

t!0
λ(t)gλ(t)−1 exists in G}.

(3) Any λ1, λ2 ∈ Λx are conjugate by and element in P (x).

Example 1.13. When G = SL(n + 1), P (λ) is the parabolic subgroup preserving the weight
filtration of λ.

This way we have associated to a point x a worst λ. When G = T , let β(x) be the closest point
to 0 on Conv(x). Then we take λβ to be such a λ and set Pβ = P (λβ). We have the following loci

Y ss
β = {x ∈ X : β(x) = β}, Zss

β {x ∈ Xλβ : β(x) = β} ⊆ Y

and projection map
pβ : Y ss

β ! Zss
β , x 7! limλβx.

Theorem 1.14 (Hesselink-Kempf-Kirwan-Ness (HKKN) stratification). Let G be a reductive group
with a choice of ∥ · ∥ acting on X ⊆ Pn linearly. Then there exists a G-invariant locally closed
stratification

X =
⊔
β∈B

Sβ

indexed over a finite set B ⊆ LieT ∗, such that
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(1) S0 = Xss.
(2) Sβ = G·Y ss

β
∼= G×Pβ

Y ss
β =: G×Y ss

β /Pβ, where Pβ acts on G×Y ss
β by n·(g, x) = (gn−1, nx).

(3) Sβ ⊆ ∪∥γ∥≥∥β∥Sγ.

Now we may consider the quotient by G even in the unstable locus. Property (2) implies that
quotienting Sβ by G is the same as quotienting Y ss

β by Pβ , which is helpful as P β has more characters.
But the problem is that Pβ is non-reductive, this motivates the study of non-reductive GIT.

Example 1.15. Consider the moduli of n points on P1 with the action of SL(2) as before. We have

Xss = {p ∈ X|at most n/2 of the points coincide},
B = {n, n− 2, n− 4 . . . } ⊆ Z+,

Y ss
β = {p ∈ X|β points coincide at ∞ ∈ P1},

Zss
β = {p ∈ X|β points coincide at ∞, the rest coincide at 0},

Sβ = {p ∈ X|exactly β points coincide}.

Example 1.16. For m ≫ n ≫ 0, the HKKN stratification for the moduli of coherent sheaves on Y
is given by Harder-Narasimhan types. It is conjectured that the stratification for moduli of curves
stabilize for n ≫ 0 in a similar manner.

1.3. Non-reductive GIT. Given a ∈ Nn+1, the weighted projective space is

P(a) = An+1 − {0}/Gm

where the Gm action has weight a. A hypersurface in P(a) of degree d is cut out by a homogeneous
f ∈ k[x0, . . . , xn] of degree d, where the degrees on xi are given by a. There are parameterized by

Hypd(P(n)) = P(k[x0, . . . , xn]∗d ∼= PN .

The moduli space is then the quotient by the automorphism group, but this group is not reductive.

Example 1.17. The space P[x,y,z](1, 1, 2) has automorphisms z 7! z+ax2+bxy+cy2 for a, b, c ∈ G3
a,

and G3
a is a normal subgroup in Aut (it is in fact its unipotent radical).

We recall the properties of reductive GIT and outline the problems for non-reductive groups. Let
G be reductive acting on X.

(1) For X = SpecA, φ : X ! X // G = SpecAG is a good quotient and A finitely generated
implies AG finitely generated.

(2) For X ⊆ Pn projective and G acting linearly, φ : Xss ! X // G = ProjAG is a projective
good quotient. The stable locus Xs ! Xs/G gives a quasi-projective geometric quotient.
The (semi)-stable locus can be computed using Hilbert-Mumford criterion.

Now let H be non-reductive.

(1) (Nagata) AH might not be finitely generated.
(2) SpecA ! SpecAH might not be surjective and its image not necessarily a scheme.
(3) SpecAH might not separate orbits.
(4) There might be no non-trivial maps Gm ! H, so we do not have Hilbert-Mumford criterion.

If H acts on A and U is a normal subgroup, then R ∼= H/U acts on AU . So let us consider the case
when our non-reductive group is unipotent.

Theorem 1.18. If U is unipotent, acting on a quasi-affine X, then all orbits are closed.

Corollary 1.19. If X ! Y is a good U -quotient, then it is geometric.

This is very restrictive as we now need a constancy condition on dim stabU (x) for all x ∈ X,
otherwise the quotient would not be geometric. Let us consider the case when the action is free.
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Definition 1.20. A linear algebraic group H = U ⋊R has graded unipotent radical if there exists
λ : Gm ! Z(R) such that the adjoint representation of λGm acting on LieU has strictly positive
weights.

Remark 1.21. If H is a subgroup of GL(n) such that matrices in U are upper triangular, and
λ(Gm) consists of diagonal matrices with strictly decreasing weights, then λ grades U .

Example 1.22. In HKKN stratification, λβ grades the unipotent radical Uβ of Pβ. The automor-
phism group Aut(P(a)) also has graded unipotent radical.

1.4. The Û theorem. Let H ∼= U ⋊R have graded unipotent radical by λ. Suppose H acts on X
linearly by ρ : H ! GL(V ), where X ↪! Pn is given by the choice of a very ample bundle. Write
Vmin ⊆ V the minimal λ(Gm) weight space. Define

Zmin = P(Vmin) ∩X

which is a closed projective subvariety of X. Consider the open subset

X◦
min = {x ∈ X| lim

t!0
λx ∈ Zmin}

with projection pλ : X◦
min ! Zmin given by x 7! limλx. Let

Û := U ⋊λ Gm ≤ H.

Theorem 1.23 (Bérczi, Doran, Hawes, Kirwan 2016). Assume stabU (z) = {e} for all z ∈ Zmin.
Then

(1) There exists projective geometric quotient Xs,Û := X◦
min − UZmin ! X // Û , where X // Û is

the Proj of the invariants of some “well-adapted” linearization.
(2) The usual GIT quotient by R gives a good quotient

Xss,H ! (X // Û) // (R/λ) =: X // H

where X // H is also the Proj of some invariants.

Remark 1.24. In the above setting, we also have a non-reudctive version of Hilbert-Mumford
criterion.

The version of the proof we present uses twisted affine GIT as follows. Suppose G is reductive,
acting on X = SpecA with character χ : G ! Gm. Say f ∈ A is a χn invariant, meaning
gf = χn(g)f . Let Aχn

be the semi-invariants with respect to χn. Then we have a graded ring
⊕nA

χn ∼= A[w]G where G acts on wn by χn. The twisted affine quotient is the birational map
X 99K X //χ G =: Proj⊕Aχn

induced by A[w]G ↪! A[w], which is projective over SpecAG. The
domain of this map is

Xχ−ss = {x ∈ X|∃n > 0, f ∈ Aχn
, f(x) ̸= 0}

which can be computed by a variant of the Hilbert-Mumford criterion.
Every unipotent group has a sequence of normal subgroups

{e} ◁ U1 ◁ · · · ◁ U ℓ = U, U i/U i−1 ∼= Ga.

Thus we focus on the quotient of a Ga action on X = SpecA. This is the same as a co-action

σ∗ : A ! A⊗ k[t].

Definition 1.25. A derivation D : A ! A is a k-linear map satisfying the Leibniz rule. It is locally
nilpotent if there is some f ∈ A such that Dnf = 0 for some n.
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Proposition 1.26. There exists a bijective correspondence between

{Ga-actions on A} ↔ {locally nilpotent derivations}(
σ∗ : f 7!

∑ Dn(f)

n!
tn
)

↔ D

σ∗ ! ↔

(
D : f 7!

∂

∂t
|t=0σ

∗(f)

)
AGa ↔ kerD.

Example 1.27. The action Ga on A3 given by x 7! x+ ay+ a2z/2, y 7! y+ az, z 7! z corresponds
to the derivation D(x) = y,D(y) = z,D(z) = 0.

Note that if f ∈ kerD = AGa , then we have induced map

Df : Af ! Af D(g/fn) = D(g)/fn.

Given I ⊆ A with D(I) ⊆ I, we also have D : A/I ! A/I. One can check that x ∈ XGa if and only
if D(A) ⊆ mx.

Definition 1.28. A slice for the action Ga on X is an element s ∈ A with D(s) = 1.

The reason for the name can be seen in the following proposition.

Proposition 1.29. The following are equivalent.

(1) There exists a slice s ∈ A.
(2) A ∼= AGa [s] and D = d

ds .

(3) There exists an equivariant isomorphism X ∼= X ′ × A1 for some affine X ′.

If there exists a slice, then by (2), the ring A ∼= AGa [s] is graded with An := s−nAGa for n < 0.
So the Ga action extends to a Ga⋊Gm action where Gm grades Ga in the sense of graded unipotent
radical. Since all weights are negative, limt!0 λ(t)x exists for all x ∈ X.

Definition 1.30. A local slice is an element s ∈ kerD2−kerD. If s is a local slice with D(s) = t ̸= 0,
we get a slice s/t ∈ At for the induced map Dt : At ! At. So we can construct locally trivial
quotient away from the plinth ideal

pl(A) = kerD ∩ imD.

Suppose Ga⋊Gm acts on X with Gm acting on LieGa with weight ℓ > 0, then we have a grading
A ∼= ⊕An and D : An ! An+ℓ.

Proposition 1.31. Suppose limλx exists for all x, then there exists a slice if and only if XGa = ϕ.

Proposition 1.32. Let Ga act on X. Then there exists a slice if and only if the action extends to
Ga ⋊Gm such that all limits exists and stabGa(z) = {e} for all z ∈ Z = {limλx}.

Sketch of proof of the Û theorem. We have p : X◦
min ! Zmin = P(Vmin) ∩X. The proof follows the

following steps.

(1) Work affine locally on Z = SpecA0 ⊆ Zmin. We have p−1(z) = SpecA =: Y as p is affine,
and A = ⊕m≤0Am, graded by λ.

(2) By construction Gm acts on Y and Z = {limλy}.
(3) Choose {e} ≠ U1 ◁ · · · ◁ U ℓ with U i/U i−1 = Ga.

(4) Consider Û1 = Ga ⋊Gm acting on Y , so it satisfies the above proposition, which gives us a

slice s1 ∈ A and A ∼= AGa [s] is finitely generated. Therefore SpecAÛ1
= Y/Ga. Now U2/U1

acts on Y/Ga, and by induction, AU is finitely generated.
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(5) Consider the twisted affine quotient by Û

ProjA[w]Û

where Û acts on w by the character χ : Û ! Û/U ! Gm corresponding to λ. Note that
unipotent groups do not have any characters.

(6) As A0 is U -invariant by D : A0 ! A0+ℓ = 0, one can show A0 = AÛ .
(7) The weighted quotient is projective over Z, so they glue to something projective over Zmin,

and thus projective over k.
(8) One can show Y χ−ss = Y − UZ, which gives X◦

min − UZmin after gluing.
(9) Obtain a projective geometric quotient for X◦

min − UZmin.

□

1.5. Applications.

(1) Using non-reductive GIT (repeatedly), we may take quotients of the HKKN strata to classify
unstable objects. For example, one can obtain the moduli spaces of unstable sheaves on
projective schemes.

(2) We can obtain the moduli of hypersurfaces of the weighted projective space.
(3) Enumerative geometry on Hilbert schemes of Cn.

2. K-stability and infinite dimensional moment maps

Let M be a compact complex manifold with an almost complex structure J . Say J is integrable if
[T [0,1]M,T [0,1]M ] ⊆ T 0,1. Consider the problem of constructing the space M = M(MC∞) parametriz-
ing complex structures on M , such that the points are complex structures up to isomorphisms and a
family of complex structures would induce a map to M. Such a space M is in general not Hausdorff
as J may jump.

Example 2.1. Let M = P2#(#mP2) where P2 is taken with opposite orientation. For m > 4, M
has a continuous family of distinct complex structures such that M ∼= Blp1,...,pm P2. Choose λ a
one-parameter subgroup of PGL(3), then as we move p1, . . . , pm using λ onto a line, the complex
structure jumps.

A Riemannian metric g on (M,J) is Hermitian if J is a g-isometry. It is Kähler if ∇gJ ≡ 0
for the Levi-Civita connection of g. In this case, we get a symplectic form ω = g(J ·, ·) which

corresponds to a class [ω] ∈ H2
dR(M,R) ∩H1,1

∂
(M). Call (M,J, [ω]) a polarized complex manifold.

The Ricci curvature Ric(g) is determined by a 2-form Ric(ω) called the Ricci form. Similarly
we have the scalar curvature form Scal(ω). Using local holomorphic coordinates one can show

dRic(ω) = 0, and [Ric(ω)] ∈ H2
dR(M,R) ∩H1,1

∂
(M) is independent of the class [ω].

Theorem 2.2 (Schumacher). There exists a Hausdorff complex space M parametrizing manifolds
(M,J, [ω]) such that

[ω] = −[Ric(ω)] = −c1(M) = c1(KM ).

Such spaces are called canonically polarized spaces.

Remark 2.3. The same holds for Calabi-Yau spaces and for those spaces where [Scal(ω)] = c for
constant c is solvable for some ω.
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2.1. Donaldson-Fujiki moment map. Let M be compact, ω0 a Kähler form. The space

Jω0 = J = {ω0-compatible J}
is an infinite dimensional pre-Hilbert manifold. It has a tautological almost Kähler structure J with

a symplectic form given by ΩJ(A,B) =
∫
M tr(JAB)

ωn
0
n! . The group of exact symplectomorphisms

G = Ham(ω0) := {time 1 flow of time dependent Hamiltonian vector fields of ω0}
acts on J by pullback. Our goal is to perform GIT on this space.

Theorem 2.4 (Fujiki, Donaldson). The action is a Hamiltonian action with respect to Ω with a
unique moment map given by the Hermitian scalar curvature, up to a constant shift.

On the integrable locus J int ⊆ J cut out by the condition [T [0,1], T [0,1]] ⊆ T [0,1], the moment
map is given by

s(ω0, J)− ŝ := Scal(ω0(·, J ·))− ŝ

where ŝ is a constant. We have LieG = C∞
0 (M,ω0). Identify LieG ∨ with LieJ using the L2 inner

product ⟨·, ·⟩, so the moment map is a map µ : J ! LieG . The moment map condition is

∂t=0⟨s(ω0, Jt)− ŝ, φ⟩ = −Ω(LX
ω0
φ
J, J)

for any path Jt with J0 = J inside J int.
Even though we can not defined a complexification of G , the orbits of a G C-action on J are

well-defined. For f ∈ G , let O = G · J , we have

Tf∗JO = {LX
ω0
φ
f∗J : φ ∈ C∞

0 (M,ω0)}.

The complexified distribution is

D = Tf∗JO ⊕ JTf∗JO.

Proposition 2.5. The distribution D is formally integrable, namely [D,D] ⊆ D.

For simplicity, we consider the special case [ω0] = c1(L) for some positive line bundle L ! M .
Then we can describe the integral submanifolds of D using the following

F = {(ω ∈ [ω0], f ∈ Diff0(L ! M)|f∗ω = ω0)}.
For any fixed J , we obtain a map

Φ : F ! J

by (ω, f) 7! f∗J .

Proposition 2.6. Φ(F) is an integral submanifold of D through the point J .

Thus we morally have obtained a “complexification” of G acting on J . For f ∈ Diff0(L ! M),
note that s(ω0, f

∗J) = f∗s((f−1)∗ω0, J). Thus solving for µ = 0 is the same as for solving s(J) = ŝ
in the G C orbvits, which is the same as solving s(ω) = ŝ for ω ∈ [ω0].

2.2. K-Stability. Let us try to make sense of the Hilbert-Mumford criterion for the G C-action. Let
X ! C be a family of complex manifolds and a λ = C∗-action. If a C∗-action on X0 = M0 is generated

by X ∈ K := G ∩Aut(M0, J0) and ϕ the Hamiltonian of X , then µ(J0, λ) =
∫
M0

ϕ(s(ω0, J0)− ŝ)
ωn
0
n!

is the Futaki invariant.
A flat family π : X ! C is a test configuration if X is normal with relatively ample line bundle

L ! X which is C∗-equivariant, such that the generic fiber (X1,L1) is isomorphic to (M,L). Gluing
using C∗ action, we compactify to X ! P1. Define

DF (X,L) := nµ

n+ 1
Ln+1 +KX/P1 · Ln
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where µ = c1(M)·Ln−1

Ln . It is conjectured that s(ω) = ŝ is solvable if and only if DF (X,L) ≥ 0
with equality only if X0

∼= M . THis is called K-poly-stability, and is proven for the Fano case by
Chen-Donaldson-Sun.

Suppose now ω0 = c1(L), s(ω0, J) = ŝ. The group of deformations of J is K = G ∩Aut(M,J),

which is compact, and we get a reductive group KC = Aut(M,L). Thus KC acts on H̃1 ⊆ H1(TM),
the first order deformations preserving L.

Theorem 2.7. The small deformations J ′ for which

s(ω, J ′) = ŝ

is solvable correspond to KC-poly-stable orbits of the KC-action on H̃1.

Corollary 2.8. A small deformation (M ′, L′) of (M,L) is solvable if and only if it is K-poly-stable.

Theorem 2.9 (Arezzo-Pacard-Singer). Suppose (M,ω, J) is cscK and s(ω, J) = ŝ. Fix p1, . . . , pm ∈
M and moment map µ : M ! LieK∨. If

∑
µ(pi) = 0 and Aut(Blp1,...,pm M) = {e}, then

(Blp1,...,pm M, [π∗ω − ε2
∑

Ei])

is still cscK for ε ≪ 1 where Ei are the exceptional divisors.

3. Algebraic stacks and moduli spaces

A scheme is a sheaf X : AffSchop ! Set such that there exists a Zariski atlas X = ∪SpecAi. An
algebraic space is as above, but with étale atlas ⊔SpecAi ! X which is étale surjective.

Definition 3.1. An algebraic stack is a sheaf

X : AffSchop ! Gpd
with smooth atlas ⊔SpecAi ! X which are smooth and surjective.

Let Mg(T ) be families of smooth projective genus g curves over T , so it is a groupoid whose
objects are curves C ! T and whose morphisms are isomorphisms relative to T . Then there exists
an atlas that makes Mg an algebraic stack.

There exists a topological space |X| = {Spec k ! X}/ ∼. For any x : Spec k ! X, the group
Aut(x) is a group scheme over k.

Definition 3.2. X is Deligne-Mumford if for all x ∈ |X|, Aut(x) is an étale group scheme (in
characteristic 0, this means they are finite groups). In this case smooth atlas are equivalent to étale
atlas.

3.1. Quotient stacks. Let G act on a scheme X, then we have an algebraic stack X = [X/G] with
atlas X ! [X/G] which is a G-torsor. We have the following correspondences.

Quotient stack [X/G] G-equivariant geometry of X
|X| G-orbits of X
x p−1(x)

p(x) Gx
Aut(p(x)) stab(x)

QCoh(X) QCohG(X)
F p∗F

Γ(X,F) Γ(X, p∗F)G

Remark 3.3. The stack [X/G] does not remember the group G. Writing X = [X/G] is the same
as giving a representable map X ! [∗/G] = BG.
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Example 3.4. X = BG has space |X| = ∗ and Aut(∗) = G. It is given by

X(T ) = {G-torsor E ! T}

Example 3.5. [An+1 − 0/Gm] = Pn.

Example 3.6. Consider Gm-action on An − 0 with weights d1, . . . dn. The quotient is the weighted
projective stack P(d1, . . . , dn) which has finite automorphisms.

Example 3.7. The stack Θ := [A1/Gm] has two orbits. {x = 0} with stabilizer Gm and {x ̸= 0}
with stabilizer {e}. We write

|Θ| = ·1 ⇝ ·0.

3.2. Moduli spaces.

Definition 3.8. A coarse moduli space to X is π : X ! X where X is an algebraic space such that

(1) π is a universal homeomorphism,
(2) π is initial/categorical in the sense that any other X ! Y factors through X uniquely.

Remark 3.9. If X = [X/G] and π : X ! X is a coarse moduli space, then X ! X is a geometric
quotient.

Example 3.10. Mg ! Mg, BG ! ∗ and P(di) ! P(di) are all coarse moduli spaces. If G is
reductive acting on X projective, then [Xs/G] ! Xs/G is a quasi-projective coarse moduli space.

Definition 3.11. A good moduli space to X is π : X ! X such that

(1) π is quasi-compact and quasi-separated,
(2) π∗ : QCoh(X) ! QCoh(X) is exact,
(3) OX ∼= π∗OX.

Example 3.12. Consider BG ! ∗. It is quasi-separated if and only if G is a finite type group
scheme. π∗ : V 7! V G is exact when G is (linearly reductive). We have π∗(k) = kG = k is always
true.

Example 3.13 (Affine GIT). Suppose G is reductive acting on X = SpecA, then X = [X/G] !
X // G is a good moduli space because π∗ : ModG(A) ! Mod(AG) is exact, and π∗(A) = AG.

Example 3.14 (Projective GIT). [Xss/G] ! X // G is a good moduli space.

3.2.1. Topological properties of good moduli spaces.

(1) π is universally closed.
(2) For all x ∈ X, there exists a unique closed point in x0 ∈ π−1(x) (analogous to orbit separating

for good quotients).

Example 3.15. Consider [A2/Gm] ! A1 with weight 1,−1. The orbits in A2 are cut out by
{xy = t} where the x-axis, y-axis specialize to the origin. X is not separated as we can find sections
X ! X by s(t) = (1, t) or s(t) = (t, 1).

3.2.2. Categorical properties. Any X ! Y, factors through π uniquely.

3.2.3. Finiteness (Hilbert’s 14th problem). If X is of finite type over an Noetherian S, then so is X,
and π∗ preserves coherence.

3.2.4. Base change. For any X′ ! X, X×X X′ ! X′ is a good moduli space.
10



3.2.5. Luna fundamental lemma. If we have

X Y

X Y

f

g

gmsgms

with f étale and x ∈ |X| closed, f(x) ∈ Y is closed in the fiber over Y, and stabx ∼= stab f(x), then

• there exists an open neighbourhood U ⊆ X of π(x) over which g is étale and the diagram is
Cartisian,

• F takes closed points to closed points and stabx′ = stab f(x′) for all x′ in a neighbourhood
of x.

Example 3.16. A non-example is when X = X = P1 and Y = [An/Gm]. Then f does not map
closed point to closed point.

Example 3.17. Another non-example is when X = X = ∗ and Y = BZ2.

Remark 3.18. There are other notions such as adaquate moduli space, which cover GIT for
reductive but not necessarily linearly reductive groups. This is a special case of topological moduli
space which satisfies all above properties except the base change property only holds for flat base
change.

3.3. Local structure theorem. The local structure theorem states that good moduli spaces are
étale locally affine GIT.

Theorem 3.19 (Alper, Hall, Rydh). Let X be an algebraic stack of finite presentation over k and
x ∈ X(k) such that

(1) all automorphism groups are affine,
(2) Gx = Aut(x) is linearly reductive,

then there exists W = [SpecA/Gx] such that

(W, w) (X, x)

SpecAGx

étale

gms

where w is a closed point mapped to x, and stabw = stabx.

Remark 3.20. X does not remember G, be does remember Gx, so localy structure is a canonical
quotient around x. If X = [X/G] for X affine, then one can find SpecA ↪! X where Gx ≤ G acts
on A.

Corollary 3.21. Suppose X ! X is a good moduli space and x ∈ |X|. Let x0 ∈ |X| be the unique
closed point in π−1(x). Then we further have

[SpecA/Gx] = (W, w) (X, x)

SpecAGx = W X

étale

gms

étale

gms
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3.4. Existence theorem for good moduli space.

Theorem 3.22 (Keel-Mori). Let X be an algebraic stack with finite automorphism groups. The
following are equivalent.

(1) There exists coarse moduli space X ! X where π is separated.
(2) The inertia stack is finite (this should be thought of as a weak separation condition).

Remark 3.23. If X is separated, then the inertia IX ! X is separated.

Example 3.24. A non-example to the theorem is the quotient stack of the line with doubled origin,
by Z2 which swaps the origin and act trivially everywhere else. IX ! X is not finite, and we shall
see it is also not S-complete.

Theorem 3.25 (Alper, Halpern-Leistner, Heinloth). Let X be an algebraic stack of finite type with
affine diagonal, then X admits a separated good moduli space if and only if X is Θ-complete and
S-complete.

Remark 3.26. If X has finite stabilizer then the above theorem recovers Keel-Mori. In this case,
Θ-completeness is trivial, and S-completeness is equivalent to separatedness.

Definition 3.27. For a discrete valuation ring R, let ΘR = Θ× SpecR. X ! Y is Θ-complete if it
satisfies the following (dimension 2 version of) valuative criterion.

ΘR − 0 X

ΘR Y

∃!

Example 3.28. X = [P1/Gm] has three orbits, with 1 specializing to ∞ and 0, is not Θ-complete.

Definition 3.29. Let ST = [A2/Gm] with weights 1,−1 which has A1 as a good moduli space. Say
X ! Y is S-complete if it satisfies the valuative criterion for STR.

Sketch of proof of existence theorem. The proof follows the following steps.

(1) Show S-completeness implies Aut(x) are reductive for all x ∈ |X|.
(2) Use local structure theorem to obtain

[SpecA/Gx] = (W, w) (X, x)

SpecAGx = W

étale

gms

Take pullback and obtain

W×X W W

W X

p1

p2

f

f

where p1, p2 are étale. f is affine as X has affine diagonal, which means p1, p2 are affine.
Consider the following notion of affine GIT, which specializes to the usual GIT when

W = BG and W = ∗, where we have

SpecWA W

SpecW π∗A W

gms π gms
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This gives us a good moduli space SpecB with

W×X W W

SpecB W

p1,p2

gms

q1,q2

gms

The goal is to show q1, q2 étale and that the square is Cartisian. Then we can take
X = W/ SpecB to be our good moduli space for X. So we would like to apply Luna
fundamental lemma to p1, p2 at all points.

(3) S-completeness implies that locally on W, f preserves stabilizer, thus so do p1 and p2.
(4) Θ-completeness implies that locally on W ,f maps closed points to closed points, but this

does not immediately imply p1, p2 do the same. One can use Θ-surjectivity to work around
this.

□

Theorem 3.30. The moduli stacks Mg,n(α) of α-stable curves admit good moduli space for α ∈
(23 − ε, 1].

The proof of this theorem follows a similar strategy as the proof of the existence theorem, without
using S and Θ-completeness. More direct applications include good moduli spaces for Gieseker
semi-stable sheaves, Bridgeland semi-stable objects, K-semi-stable log Fano pairs.

3.4.1. Intrinsic method vs GIT. For M a moduli stack, the GIT approach first embed M into
a quotient [X/G].For example, the moduli of stable curves uses Chow scheme; the moduli of
stable sheaves uses Quot scheme. One then study the stability condition with respect to a chosen
linearization, so that the interested objects are included in the (semi)stable locus. Then M ! Xs/G
is a coarse moduli space, and M ! X //G is a projective coarse moduli space, and we know exactly
how Xs/G compactifies to X // G.

The intrinsic approach we looked at uses the following steps.

(1) embed M into an algebraic stack X. For example, the moduli of semi-stable objects with
respect to some Bridgeland stability condition can be embedded into the moduli stack Mpug

of universally gluable perfect complexes.
(2) Show M ⊆ X is open.
(3) Show M is a quasi-compact algebraic stack (boundedness).
(4) If M is Deligne-Mumford (so stable is equivalent to semi-stable), prove separatedness using

the usual valuative criteria. If not, then prove Θ and S-completeness. Then by existence
theorem, we have a coarse moduli space in the first case and good moduli space in the latter.

(5) Verify the existence part of the valuative criteria, which gives properness.
(6) Construct an ample line bundle, making the space projective.

3.5. Back to non-reductive GIT.

Definition 3.31. A topological moduli space to X is π : X ! X such that

(1) π is quasi-compact and quasi-separated,
(2) π is universally closed,
(3) for all x ∈ |X|, there exists a unique closed point x0 ∈ π−1(x).
(4) For any diagram

SpecXA X

SpecX π∗A X

f

p ,
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if f is finite, then p satisfies condition (3).
(5) Condition (4) holds after base change on X.

Topological moduli spaces are categorical, finite, and satisfy Luna fundamental lemma.

Theorem 3.32. If X ! X is a topological moduli space and closed points have reductive stabilizer,
then it is a good moduli space.

Let H = U ⋊R be a non-reductive group acting on projective scheme X linearly. Let λ : Gm !
Z(R) act with positive wights on LieU (so it is a grading). Then

X◦
min/Û ! Zmin

is a topological moduli space. The assumption stabU (x) = {e} for x ∈ Zmin implies all closed points

have reductive stabilizer, giving us a good moduli space quotienting Û . To get the quotient for

H, we have [Xss,R
min /H] ! Zss,R

min // R is a topological moduli space, and again can show that it is a

good moduli space. Furthermore, taking a character χ for λ, one can prove the Û theorem in using
twisted GIT.
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