{ "cells": [ { "cell_type": "markdown", "id": "e4171351-b7e2-4078-b0db-a66d41f5ed1d", "metadata": {}, "source": [ "### Some background\n", "\n", "Let $k$ be an algebraically closed field.\n", "\n", "**Defn:** *Affine $n$-space over $k$*, denoted $\\mathbb{A}^n$, is the set of $n$-tuples of elements of $k$. An element of $\\mathbb{A}^n$ is called a *point*.\n", "\n", "**Defn:** *Projective $n$-space over $k$*, denoted $\\mathbb{P}^n$, is defined as the set of equivalence classes of $n+1$-tuples $(a_0, ... a_n)$ with entries from $k$, under the equivalence relation $(a_0, ... a_n) \\sim (\\lambda a_0, ... \\lambda a_n)$, for $\\lambda \\ne 0$. Essentially, $\\mathbb{P}^n$ takes each line passing through the origin of $\\mathbb{A}^n$ as one point. \n", "\n", "**Defn:** A set $Y \\subset \\mathbb{A}^n$ (resp. $Y \\subset \\mathbb{P}^n$) is *algebraic* when it is the zero set of some set of polynomials (resp. homogenous polynomials) $T$. (We'll denote the zero set of $T$ by $Z(T)$). \n", "\n", "**Defn:** The *Zariski topology* is defined by taking the open sets to be the complements of the algebraic sets. Note that it is indeed a toplopgy, i.e. the intersection of two open sets is open (since the union of two algebraic sets is algebraic) and the union of any family of open sets is open (since the intersection of any family of algebraic sets is algebraic).\n", "\n", "**Defn:** A subset $Y$ of a topological space is *irreducible* when it cannot be expressed as the union of two proper subsets both closed in $Y$.\n", "\n", "**Defn:** An affine or projective *variety* is an irreducible set under the Zariski topology. Varieties are basically the zero sets of irreducible polynomials." ] }, { "cell_type": "code", "execution_count": 1, "id": "0f3a0cb3-d588-4853-9599-ccb223b8ac81", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle -x^{7} + y^{2}\\)" ], "text/latex": [ "$\\displaystyle -x^{7} + y^{2}$" ], "text/plain": [ "-x^7 + y^2" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "reset()\n", "%display latex\n", "Partitions.options.latex=\"list\"\n", "load(\"blowup.sage\")\n", "# p = y^2-x^2*(x+1)\n", "p = y^2-x^7\n", "c = Curve(p)\n", "show(p)" ] }, { "cell_type": "markdown", "id": "827bc01c-2d2b-4192-9e83-d025abfec49d", "metadata": {}, "source": [ "### Singularities\n", "For a plane curve given by the equation $f(x, y) = 0$, the regular points are the points where the curve is smooth. This is equivalent to the points on the curve where the partial derivatives of $f$ do not both vanish. The singular points (a.k.a. singularities) are the points on the curve that aren't regular, namely where $$\\frac{\\partial f}{\\partial x} = 0, \\ \\ \\ \\ \\frac{\\partial f}{\\partial y} = 0,\\ \\ \\ \\ f(x, y) = 0.$$ The code below computes and prints these points for the curve given above:" ] }, { "cell_type": "code", "execution_count": 2, "id": "e782582b-5cda-4010-8536-2636ab015147", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\left[\\left[x = 0, y = 0\\right]\\right]\\)" ], "text/latex": [ "$\\displaystyle \\left[\\left[x = 0, y = 0\\right]\\right]$" ], "text/plain": [ "\\left[\\left[x = 0, y = 0\\right]\\right]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show(latex(c.getSingularities()))" ] }, { "attachments": { "6ceb61e9-394a-43e0-90f0-44a4a8fb12ab.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcYAAAD+CAYAAACgPKVdAAAMP2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnluSkEBoAQSkhN4EESkBpITQQu9NVEISIJQYA0HFji4quHaxgA1dFVGw0iwoYmdR7H2xoKCsiwW78iYFdN1XvjffN/f+958z/zlz7txyAFA7wRGJclF1APKEBeKYID96UnIKndQDCAADALgAOw43X8SMigqDV2Do/Pf27gZApOer9lKtf47/16bB4+dzAUCiIE7n5XPzID4EAF7JFYkLACBKebOpBSIphh1oiWGAEC+S4kw5rpTidDneJ7OJi2FB3AaAkgqHI84EQPUy5OmF3EyoodoPsaOQJxACoEaH2DsvbzIP4jSIraGNCGKpPiP9B53Mv2mmD2tyOJnDWL4WWVPyF+SLcjnT/890/O+WlysZ8mEJu0qWODhGumaYt1s5k0OlWAXiPmF6RCTEmhB/EPBk9hCjlCxJcLzcHjXg5rNgzoAOxI48jn8oxAYQBwpzI8IUfHqGIJANMdwh6DRBATsOYl2IF/HzA2IVNlvEk2MUvtD6DDGLqeDPccQyv1JfDyQ58UyF/ussPluhj6kWZcUlQkyB2LxQkBABsSrEDvk5saEKm3FFWayIIRuxJEYavznEMXxhkJ9cHyvMEAfGKOxL8/KH1ottyRKwIxT4QEFWXLA8P1gblyOLH64Fu8wXMuOHdPj5SWFDa+Hx/QPka8d6+ML4WIXOB1GBX4x8Lk4R5UYp7HFTfm6QlDeF2Dm/MFYxF08ogBtSro9niAqi4uRx4kXZnJAoeTz4chAGWMAf0IEE9nQwGWQDQUdfQx+8ko8EAg4Qg0zAB/YKZmhGomxECI+xoAj8CREf5A/P85ON8kEh5L8Os/KjPciQjRbKZuSApxDngVCQC68lslnCYW8J4AlkBP/wzoGdC+PNhV06/u/5IfY7w4RMmIKRDHmkqw1ZEgOI/sRgYiDRBtfHvXFPPAwefWF3whm4+9A6vtsTnhI6CY8I1wldhNuTBMXin6IMB11QP1CRi/Qfc4FbQk0X3A/3gupQGdfB9YE97gz9MHEf6NkFsixF3NKs0H/S/tsKfrgbCjuyIxkljyD7kq1/nqlqq+oyrCLN9Y/5kceaPpxv1vDIz/5ZP2SfB8+hP1tii7CD2FnsJHYeO4o1ADrWgjVi7dgxKR7eXU9ku2vIW4wsnhyoI/iHv6E7K81kvmONY6/jF/lYAX+a9B0NWJNF08WCzKwCOhN+Efh0tpDrMIru5OjkDID0+yJ/fb2Jln03EJ3279z8PwDwahkcHDzynQtpAWC/G3z8m75z1gz46VAG4FwTVyIulHO49ECAbwk1+KTpASNgBqzhepyAK/AEviAAhIBIEAeSwUQYfRbc52IwFcwE80AJKAPLwRqwAWwG28AusBccAA3gKDgJzoCL4DK4Du7C3dMNXoB+8A58RhCEhFARGqKHGCMWiB3ihDAQbyQACUNikGQkDclEhIgEmYnMR8qQlcgGZCtSjexHmpCTyHmkE7mNPER6kdfIJxRDVVAt1BC1REejDJSJhqJx6AQ0E52CFqEL0KXoOrQK3YPWoyfRi+h1tAt9gQ5gAFPGdDATzB5jYCwsEkvBMjAxNhsrxcqxKqwWa4b3+SrWhfVhH3EiTsPpuD3cwcF4PM7Fp+Cz8SX4BnwXXo+34Vfxh3g//o1AJRgQ7AgeBDYhiZBJmEooIZQTdhAOE07DZ6mb8I5IJOoQrYhu8FlMJmYTZxCXEDcS64gniJ3Ex8QBEomkR7IjeZEiSRxSAamEtJ60h9RCukLqJn1QUlYyVnJSClRKURIqFSuVK+1WOq50RemZ0meyOtmC7EGOJPPI08nLyNvJzeRL5G7yZ4oGxYriRYmjZFPmUdZRaimnKfcob5SVlU2V3ZWjlQXKc5XXKe9TPqf8UPmjiqaKrQpLJVVForJUZafKCZXbKm+oVKol1ZeaQi2gLqVWU09RH1A/qNJUHVTZqjzVOaoVqvWqV1RfqpHVLNSYahPVitTK1Q6qXVLrUyerW6qz1Dnqs9Ur1JvUb6oPaNA0xmhEauRpLNHYrXFeo0eTpGmpGaDJ01yguU3zlOZjGkYzo7FoXNp82nbaaVq3FlHLSoutla1VprVXq0OrX1tT21k7QXuadoX2Me0uHUzHUoetk6uzTOeAzg2dTyMMRzBH8EcsHlE74sqI97ojdX11+bqlunW613U/6dH1AvRy9FboNejd18f1bfWj9afqb9I/rd83Umuk50juyNKRB0beMUANbA1iDGYYbDNoNxgwNDIMMhQZrjc8ZdhnpGPka5RttNrouFGvMc3Y21hgvNq4xfg5XZvOpOfS19Hb6P0mBibBJhKTrSYdJp9NrUzjTYtN60zvm1HMGGYZZqvNWs36zY3Nw81nmteY37EgWzAssizWWpy1eG9pZZloudCywbLHSteKbVVkVWN1z5pq7WM9xbrK+poN0YZhk2Oz0eayLWrrYptlW2F7yQ61c7UT2G206xxFGOU+SjiqatRNexV7pn2hfY39QwcdhzCHYocGh5ejzUenjF4x+uzob44ujrmO2x3vjtEcEzKmeEzzmNdOtk5cpwqna2OpYwPHzhnbOPaVs50z33mT8y0Xmku4y0KXVpevrm6uYtda1143c7c0t0q3mwwtRhRjCeOcO8Hdz32O+1H3jx6uHgUeBzz+8rT3zPHc7dkzzmocf9z2cY+9TL04Xlu9urzp3mneW7y7fEx8OD5VPo98zXx5vjt8nzFtmNnMPcyXfo5+Yr/Dfu9ZHqxZrBP+mH+Qf6l/R4BmQHzAhoAHgaaBmYE1gf1BLkEzgk4EE4JDg1cE32QbsrnsanZ/iFvIrJC2UJXQ2NANoY/CbMPEYc3haHhI+KrwexEWEcKIhkgQyY5cFXk/yipqStSRaGJ0VHRF9NOYMTEzY87G0mInxe6OfRfnF7cs7m68dbwkvjVBLSE1oTrhfaJ/4srErqTRSbOSLibrJwuSG1NIKQkpO1IGxgeMXzO+O9UltST1xgSrCdMmnJ+oPzF34rFJapM4kw6mEdIS03anfeFEcqo4A+ns9Mr0fi6Lu5b7gufLW83r5XvxV/KfZXhlrMzoyfTKXJXZm+WTVZ7VJ2AJNgheZQdnb85+nxOZszNnMDcxty5PKS8tr0moKcwRtk02mjxtcqfITlQi6priMWXNlH5xqHhHPpI/Ib+xQAv+yLdLrCW/SB4WehdWFH6YmjD14DSNacJp7dNtpy+e/qwosOi3GfgM7ozWmSYz5818OIs5a+tsZHb67NY5ZnMWzOmeGzR31zzKvJx5vxc7Fq8sfjs/cX7zAsMFcxc8/iXol5oS1RJxyc2Fngs3L8IXCRZ1LB67eP3ib6W80gtljmXlZV+WcJdc+HXMr+t+HVyasbRjmeuyTcuJy4XLb6zwWbFrpcbKopWPV4Wvql9NX126+u2aSWvOlzuXb15LWStZ27UubF3jevP1y9d/2ZC14XqFX0VdpUHl4sr3G3kbr2zy3VS72XBz2eZPWwRbbm0N2lpfZVlVvo24rXDb0+0J28/+xviteof+jrIdX3cKd3btitnVVu1WXb3bYPeyGrRGUtO7J3XP5b3+extr7Wu31unUle0D+yT7nu9P23/jQOiB1oOMg7WHLA5VHqYdLq1H6qfX9zdkNXQ1Jjd2NoU0tTZ7Nh8+4nBk51GToxXHtI8tO045vuD4YEtRy8AJ0Ym+k5knH7dOar17KunUtbboto7ToafPnQk8c+os82zLOa9zR897nG+6wLjQcNH1Yn27S/vh311+P9zh2lF/ye1S42X3y82d4zqPX/G5cvKq/9Uz19jXLl6PuN55I/7GrZupN7tu8W713M69/epO4Z3Pd+feI9wrva9+v/yBwYOqP2z+qOty7Tr20P9h+6PYR3cfcx+/eJL/5Ev3gqfUp+XPjJ9V9zj1HO0N7L38fPzz7heiF5/7Sv7U+LPypfXLQ3/5/tXen9Tf/Ur8avD1kjd6b3a+dX7bOhA18OBd3rvP70s/6H3Y9ZHx8eynxE/PPk/9Qvqy7qvN1+Zvod/uDeYNDoo4Yo7sV0Bau6IZGQC83gkANRkAGqzPKOPl9Z+sIfKaVYbAf8LyGlHWXAGohf/v0X3w7+YmAPu2w/IL6qulAhBFBSDOHaBjxw73oVpNVldKGxHWAVtivqbnpYN/0+Q15w9x/3wGUlVn8PP5X+YMfHZPLCCaAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAABxqADAAQAAAABAAAA/gAAAABBU0NJSQAAAFNjcmVlbnNob3SSqtl6AAAACXBIWXMAABYlAAAWJQFJUiTwAAAB1mlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4yNTQ8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+NDU0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+ChUSV9wAAAAcaURPVAAAAAIAAAAAAAAAfwAAACgAAAB/AAAAfwAAHvXUNQjlAAAewUlEQVR4AeydB5QURReFH2JABRUFMQESVFDRI0lFEREBwRwxRzyoxxwwZ8UcwICIWUkmFAVRgoqgAqKCGEBABBUzyYCg9P/u+62xdndmd2ZneqZ759Y5s9Pb011d/VV3365Xr15VCzQJEwmQAAmQAAmQgBGoRmHklUACJEACJEAC/xGgMP7HgkskQAIkQAIkIBRGXgQkQAIkQAIk4BGgMHowuEgCJEACJEACFEZeAyRAAiRAAiTgEaAwejC4SAIkQAIkQAIURl4DJEACJEACJOARoDB6MLhIAiRAAiRAAhRGXgMkQAIkQAIk4BGgMHowuEgCJEACJEACFEZeAyRAAiRAAiTgEaAwejC4SAIkQAIkQAIURl4DJEACJEACJOARoDB6MLhIAiRAAiRAAhRGXgMkQAIkQAIk4BGgMHowuEgCJEACJEACFEZeAyRAAiRAAiTgEaAwejC4SAIkQAIkQAIURl4DJEACJEACJOARoDB6MLhIAiRAAiRAAhRGXgMkQAIkQAIk4BGgMHowuEgCJEACJEACFEZeAyRAAiRAAiTgEaAwejC4SAIkQAIkQAIURl4DJEACJEACJOARoDB6MLhIAiRAAiRAAhTGPF4Db7zxRtKjrbfeerLnnnsm/Y0rSYAESIAE8kuAwhgi759//lleeOEFmThxoh3liy++SHq0tddeWxo3bix33nmn1KtXL+k2XEkCJEACJJAfAhTGEDh/++23gtbh66+/LlOnTpV58+ZJs2bNZJ111pGWLVtKnTp1ZMGCBQLhxMelESNGSIMGDdy//CYBEiABEigAAQpjjqFD8Hr37i0ffvihfPXVV3LAAQeYmXSHHXYwYdxqq61k/fXXl8WLF8vvv/9uH1eE3XbbTdZdd133L79JgARIgAQKQIDCmEPoc+bMkcsvv1xGjhwpTZo0kXPPPVfatm1rZlKI4RprrJHDozErEiABEqjaBNC4+Oeff6Rp06Z5PVEKY45wr1y5Us477zx59NFHpUuXLnLBBRfIXnvtJWuttVaOjsBsSIAESKA4CCxfvlzeeust6d+/v7Ro0UJuu+22vJ44hTFHuN977z058MADzUz6zDPPSPv27XOUM7MhARIggeIhACfFp556SkaPHi0fffSRdOvWTUaNGpVXABTGHOE+4YQTBIKIFuPxxx8v8DRlIgESIAESyIzAlVdeKc8995x8+eWXtiOF0eMH2/KyZcu8NWUXMcShVq1aZX4ob9/mzZvnXLTgaLPvvvvKRhttZF6om2yySZkycQUJFBMBmMJw/2655ZY5PW20JuDhXSwJ5/vXX39VeLrgDOb4jvtL+YQJE8yT/8ILLzQnRQqjV/14Y4CN+fPPP/fW/reIQfH9+vUzx5b/1or88ccfNh4Q+/rJDaLv1auX1K5d2/8p6+XHHntMTjvtNDn55JNl4MCBsuaaa2adJzMggTgTuPvuu2XKlCkydOjQjE8DQ51cMAwMbYITG7y9X3rpJXn77bet7x5OblU5QRDd+aYjjPXr15elS5cKvt2wsEMOOUTw3EuW8DI/ePBg+wkv8uAJxnimuoRx1YVKK1asEDRi5s+fXxBTqgQRTbNnzw705gjUiSXQN6BAK6jEZ9iwYcGSJUvKlF6dYIJ33nkn6NChQ2J7HTsY3HHHHYHeqMGff/5ZZp9sV+y///52rCeeeCLbrLg/CcSewPfffx9svfXWdt8OHz484/PBvaqWIPtsttlmwcsvvxzst99+QcOGDQP17A6w7uOPP8443zjtAIZjx44NOnbsmHiOlX4GnnjiiYH7qE9DoC8RgXq/GzcVleCoo44KbrrppkBNkmVO/d57700wPvroo22bk046KdAAI4n1Og67zH7+Ch1uFuDjJxXx4O+//7ZVv/76a4DzwAfLmSb1RLVz1xZjprtmvX3k+xi/+eYbuf766+WRRx4p8fKiZ17i/9L/HHzwwdZ5e9xxx4lWvLRp0ybnLUV3zG222UYwVAMdxGj2M5FAMRPQl1a758BAX1DllVdeSdrlkYoRWjK4b11q1aqVdO/eXRYtWpR4DhTLvfbqq6+aU59j4b7RknYRtbDuhx9+MPPjzTffbM8itx0iacE7vk+fPiWGPKBF3rVrV9sMdYThZTBRw4yJYyKhHo455hhb9v9gDDaex6gPpM033zzxM37DWOwaNWrIZ599ZqZQ/AgrHXwvOnXqlNi2ogX3XC2EKTWyLUZf8t98881ATQIl3pz830sv401Hbe3BJZdcEqDluWrVqtKb5PR/92ajN2tO82VmJBBHAmi96EPPPvqQDCZPnpzRaeA+cvvj+9hjj7VWx1133WXr8SyA9acYkopLCRaOy6GHHlrm9GENQ0vQbeO+VaQCbP/1118n9nn88ccT22244YaBmlKDH3/8MTjnnHMS6xcuXJjY3l/QvuNATa7BkUceaR/tQgrcR4U0UAG0/0899dRAzbmBmsKD+++/P/jggw/8bCpcds/VQrQYYyGMMJl27tw5UWGo8FTNfNxUe+yxh1VYqoqtsEYy3ECj21jZKIwZguPmVY4ATKeluz7OP//8jM5T+ycT9zoeju6BClMf7n2NHpW0GyWjg8RkY5ggncD533geJkvacgy05VdmH9SJ+kIkdrnooosS26DbSR0W7Tf1lbD1yCNV0gH3gbYW7eUELyipPhB1mLwhyBDTTLuxKIypasBbr+aYREXiAsFNUjpBLHfffffgiCOOCGbMmFH659D+V1OvlQ32fCYSKGYCGtyixH2KexUP2Uz6mNBCxH54mD/44IMB/AbQd6Uz0Nj6Hj16FBViXxDdspoZUzJAi81t53+jblxC48H99sADD7jVQaNGjWw98ih0ojCmUQO//fZboAG2E5UJU6l6rCb2hChqrFETxnx3zKv3mJVr7733LtMZnSggF0igihPA/ahDlhL3qHvwwpSnXuJpnz1MZ9gX97gG2bf91NcgUO9JW3/LLbeknVdV2NBx9L/r1q2b8tR8c6i/D4TGJTjp4De8bPiWNbc9HKAKnSiMadbAtddem7jp4J0GOzcS+iBbt25tH3XnTjO33G0G8wX6PWCrhyctEwmEQQDefvDwc15/YRwjmzwvvvhi8xp1D1f/O90WCM5viy22sPv8rLPOShQHnpUuP1hm0ILMVcJLNcr35JNPZsQWZYDZt2/fvrkqStJ83Hn732hNp0oVCSPO1+WFPkmX/PXwBC50ojCmWQNoCcKN21UqzKa33357gD4+rK+Ma3iah65ws2uuucbKhbL89NNPFW7PDUggUwLfffddoN7WwQ033JDprqFvD1MpTKYYMuDuT/9bvRLTui98AVSvyES5dTxkIl/1UjWnusSPWS7gOCjrdtttF6Q75AotWDgDob8zbOcQn6NbBudUKZUwwqKGhAYF8sEz07euuWcYftOAJSWcdVIdK6z1OlVfwkKA6yrZkJOwjo18Y+F84wDo4P1AZ6tI3CAw0eDtEuObHn744QC/FyrhRoENHyaKM844I62HQKHKyuPGk4DO82nCg7FmGkgiUtcYTKW4HyEWri/QPcTd94svvlgheN9b0jfxoa/R5QNvc2dirTDDNDbAcVy/JsRx0KBBFe6F1jG6dvAJu3Xlztv/TuaV6gq9yy67JFj5+8AzFMkJI56l/jPz6quvTuwHHpn0C7tj5+IbLVeIuwZKsfI4r1qMT89XipUwAso999yTqDxX6TAH+BWcL3j+ceCpBe+sDurhhTcxXLjwUi09ANbfh8skkAkBePXpeLSgevXqAcxMPXv2NNNqJnmEtS1MkegThMgkGzKAe1XH0wV4gSwvoQWDoB540fUTnOkwmB3rfcH0t8lmGR6UyB9sMTg+lVnVmU833XRTqwON0JVTs26yc3DPOf87lVcqzLqlvYKxH4ZMoMsHSaPqBDreMRg/fnyJwznGeMaCR6EShBv+GocffngigAG8ZXWmjby9DMZOGNHBD7OMf5FgrGJUErxn0fRH+WDywU0ON+mKHghRKT/LEW0C6INz0VBgncADA2/YhUzTpk2zexLDMuBBCrOX827071Odgi1IxwcAwod8/IT/8UAvvd7fJttl5H/SSf8fEpLMrOqbT/Fi8uyzz4ZaHnc+PkO3jGcgXiJgcsQzEct4zrh+ObcdRPKUU04pY4pM1RoEAzg6FjKhDIj6A6HGsv/JV9kiH/lGK7hE8mPouR/URCPaQnP/FvRbW4iiTX6L6YhYh4gOoW+XomHpRPsjrGxqfqlSgZARYxHnVF5KZ5vy9i/vtzDzLu+4hfrt/fffF3VEs8OrONp8dYj0hJiiqWJjhlnW6667TtTlX9QJTnbccUdR5yA5/fTTRfvryhz2iiuuEERniWqaNWuWaB+uRX1RcRTtdxM1K1oc0d69ewuml0PSVrFFuVIzX+inUq1ataTH0Bck2WCDDSzIuLZkRYVbMIEC+CMyDp45mAoPEW70RYUxnJNSTL4yVsKImZzV/i9nn322RZJ3p6RxFEXt/JGJKr969WrRKBLyySefmEAiYO/MmTNF33YtyDnCI0Esq0rSAAw2s0h555PONuXtX95vYeZd3nEL+ZsOek8cXj207XpC6C+EY8tn0n5PEwjtV7QA1C6A/pAhQwRTseGe9ZPGUBUIO0KVRTVpC0xuvfVWe9Zsu+22JvLvvvuujBgxwl4AdbiIHHTQQXl73qQSRjX9ipp+Bc8bCDReihB4GyHZatasaTNtbL/99jZHbFRZR7VcsRJGtfsLLkp1thGIjXbAG1e8NSPGH96QopYQwxBvcvio2SMRXxDlLLaWTi7qRvuS7eUCb8SpElrsmCgafDXqhj0scL2oc1SZXdw2uIbc9eTettWEY3m4ndx69z++/TrEMh5O7lgub+0b9HfJyfL06dPL5KMm/JSz0ZTZOEcrYK1BLGK0FnXQeCJXXPfaD2Yvh4mV/y5gxg0dpF96daT+R8sRzxo8c2DpwflAbAYMGCCYtULNwnkrbzJhxLMOsUxdQnnUbGovHPksmzt+VfuOjTDiIoCJA6KIoOK4ubSjOVEfUTfRoKCYFgamVpcQcBetR6b0CaDVrbFvy30LxgsI5uoEX3zQOsGLCUxjpZPbBg8VVzcQSfcwRGvUJbfe/Y9vvw6xjHzcsVzeKG+uE6Y4g/AiQYzxsEYLDdaTfCW8pKjTjegwKQvY74JSYz0CXKsXpAUQL10evLTgRTbqacyYMSVeptSxzs4zH+ZTn00yYdQ4pDYpur8dl3NIoJCdrOkeG1NMwVNshx12MM9PeICiYxZecIrCPpjmBo4JTCRQ1Qk4Zxdc+yqKNqUavAhxX+QzwSkCQS1Qjnbt2tkgeXinYrojBNzAUAZ3f/rfcAiBw0iUE5xT/OELKD/OJ5W3apjn4rNzyxjPyhQegci3GDGdE2zpOgRC0Pntpi3BWzj+Rye4S3Ew0biy8psEKkMAs7TjfoBjF+6JSy+9VDRCTEEsD1dddZX1K6I8aLUmSzD5ukmH/d/Vg1V0WIC/KjLLsEpceeWVZpVC6xCOfWido/8WVgdM6qveq3krb7IWI1rqTz/9dN7KUHQHCk9zs88ZUdkxHhAtw3HjxpXJUPs1SkxHhelumEigKhPAuDlM5YSWIsY0YqqgQiTcm4j6goD9mJkBwQeSfXDfat9smZYjgmBHNUIUomkhLitaiAhKgPNS57kSQQDyOtj8X6uYilOCIwbxM4VHILLjGDEWCjdd/fr1LcpHsilLtP/Hbk53wcTBRBNeVTLnqk4AU/cgVJcznxZKFMFZh2hYIAvthysXO+5blNndo+5bW2JBRfuWm3EIP+KZo8NM7JmC8YClB+/7QQBwTgjgkY+4tY6Z/41nHVN4BCIpjLhAMQkmBgTrTNHlDjjFFDT+BYOoDUwkUBUJqPOWCRICV6caoJ2P84ZA77TTToF6RpZ7b7qyYFoj/x51y+osFHrUGFeGir79Z055g/fRr4ogAHg2IYCHjtWsKOusf3e8Sn9nnTEzSEkgcsLozKd4o0TMxYoiHWAKGv+C2XXXXSNroklZC/yBBNIgoP3qZtaDpaSQyZlztY8/rWIgOksycyrMlTo+MK08wtzIf+Y482kyC5UrA8TRj60aplkVZfOfb/6yKw+/c08gMsKIt1CYJmA+hZkAFwDi5aXqh4AJQwfQW/xF/2KBoCKGJG5GJhIggdwSwD3qglTr0JC0WnyIF4xA//596pYRPxW/FzKhTxHPnGTm01Tl8s2q8IMIKyHMm2NV+jvqnr1hMclHvpEQRrifY0YKmCZgonAXAOIBwlQKJ5vS6dVXXw3UQ7XE9m4/HW9mU8EUchqq0uXl/yQQdwKIyYp71L/P1EMz0DBpKU9Nx3TajBu4J91+pb8RTxgB+AuVEN8YM3ZkGvvUmVX9eSNzdQ4IVo54oW3atEnJTcey2jb+1FG5On6x5xOJ4RoaBFw00ntigLXeOImEEFOIoIHQRn6aPHmyDSL215VeRpgqNa2WXs3/SYAEKkFg0qRJFmQDUVdUFCwHbT1aLM5U95kGBBd9ibXhJRjSgeg8iAyEZXwQbWjzzTcXFUfZeeedK1Gq7HdBYAcE39h4440ttFomOSJCDlKy4BGZ5FN6W8Q+1da56PRiZcLquW11DKkdF4EV8Kxjyh2BSAgjxg3hQkiVEPvPxWB02yCYeEURRdZZZ528xTN05eI3CVRVAhAQNSGKeopbiDScJyI34YMxlckS7lNED4JAqrnSohC5ZfyvPgS2HjFJcZ8z/Z+Ai7cMVhUlRHnS/tqKNuPvGRCIhDBmUF5uSgIkQAIkQAKhEqAwhoqXmZMACZAACcSNAIUxbjXG8pIACZAACYRKgMIYKl5mTgIkQAIkEDcCFMa41RjLSwIkQAIkECoBCmOoeJk5CZAACZBA3AhQGONWYywvCZAACZBAqAQojKHiZeYkQAIkQAJxI0BhjFuNsbwkQAIkQAKhEqAwhoqXmZMACZAACcSNAIUxbjXG8pIACZAACYRKgMIYKl5mTgIkQAIkEDcCFMa41RjLSwIkQAIkECoBCmOoeJk5CZAACZBA3AhQGONWYywvCZAACZBAqAQojKHiZeYkQAIkQAJxI0BhjFuNsbwkQAIkQAKhEqAwhoqXmZMACZAACcSNQNEI48qVK+Xbb7+VRo0axa2OWF4SIIGYE+DzJ14VWDTCOGzYMBkyZIjss88+csghh0iDBg3iVVMsLQmQQGwJuOfPI488InXq1InteRRLwYtGGB9//HHp3bu3rLfeetKiRQvp1KmTHHvssVKvXr1iqWueJwmQQIEInHnmmQJRnDVrljRu3LhApeBh0yVQNML4zTffyNixY2XAgAEyZ84cqVGjhnTt2lV22WUXOfHEE6VWrVrpMuN2JEACJJARgbZt28rUqVPlyy+/lKZNm2a0LzfOP4GiEUagXbFihXzwwQcyc+ZMGThwoL291a1bVzp37izdu3c3E2v+q4BHJAESqOoEDjvsMBk+fDiFMSYVXVTC6Opk+fLlMm3aNHn33XflpZdesou1YcOGgre6c889V5o3by7Vq1d3m/ObBEiABLIigOfKfffdR2HMimL+di5KYXR4Fy9eLJ988olMmjRJHnvsMfn6669lr732kg4dOsiRRx4pzZo1c5vymwRIgAQqTYDCWGl0BdmxqIXREf/ll19kwoQJMmrUKGtBorWIvkcIJDxYKZCOFL9JgAQqQ4DCWBlqhduHwvgve4wzWrBggfU/jh49WgYNGiQ1a9Y0D9Zu3brJySefLLVr1y5cTfHIJEACsSXQpUsXGTNmDE2pMalBCmOSipo3b568/PLLMnLkSHnnnXdk0003lX333VcgkBgHyXFISaBxFQmQQEoCeH6MGzeOwpiSULR+oDCmqI+lS5ea1+qUKVMEg3PhzdqkSRNp1aqVDfOAiRVjIplIgARIoCICp512mvkxcLhGRaSi8TuFsYJ6+P3332X69OkCgYQH6+TJky2s3P777y+77babtSBpYq0AIn8mgSInwD7GeF0AFMY06wsCCQ/WZ555xpx0lixZIltttZW1IHv16mUimWZW3IwESKDICMDChO4ZthjjUfEUxgzraf78+daCRPScfv36yY8//iitW7eWjh07mgdry5YtM8yRm5MACVR1AieccIK9VFMY41HTFMZK1NPff/8tf/75pw3xQIc6TKzLli0zD9Z27drJ4YcfLhTISoDlLiRQRQnQlBqviqUwZllfiMEKEys8WDEOEibWNm3amBdr+/btaWLNki93J4GqQIDCGK9apDDmqL6ciXX8+PHy4IMP2hAPRNFHVH3M4sFEAiRQvAQojPGqewpjDusLJtbvvvtOXn/9dQsYPHHiRHPQweBedL4jFiuHeOQQOLMigZgQ6Nmzpzz66KN0volJfVEYQ6ioVatWyYwZM2yaGZhXMQYSQcp33313wTAPmFjXXnvtEI7MLEmABKJIgNNORbFWUpeJwpiaTda/YIjH7NmzTRgfeughmTt3rmy33XbWcoRI0sSaNWJmQAKxIMBpp2JRTYlCUhgTKMJbgAcrAgNgomSMZULQ8o022khoYg2POXMmgSgRYB9jlGqj4rJQGCtmlLMtfvjhBwtSjrFMffv2lYULF9oQD5pYc4aYGZFAJAlQGCNZLSkLRWFMiSa8H2BiRXDyt99+28ZALlq0yEysRxxxhPTo0UMaNGgQ3sGZMwmQQN4JUBjzjjyrA1IYs8JX+Z1Xr15tUXNcmLkPP/xQli9fLjvuuKN06tTJvFgbNWpU+QNwTxIggcgQoDBGpirSKgiFMS1M4W40a9YsQaAAtCD79+8vNWrUMBMrPFi7d+9uQcvDLQFzJwESCJMAhTFMurnPm8KYe6aVzhF9kBgDiQ/CzGEeyJ133tkmScY4SCYSIIF4EqAwxqveKIwRq68VK1bIV199ZWHm7rzzTvn0009lm222sSEehx56qOy5555Sq1atiJWaxSEBEiiPAIWxPDrR+43CGL06SZRowoQJMmnSJBkxYoRMmzZNdtppJ4vDCoHEUA8mEiCBeBDAmOUhQ4Yw8k08qksojBGvKIx5/Pzzz+XNN9+0aa4wJrJFixZy8MEHm4NOs2bNIn4GLB4JkMAxxxwjQ4cOpTDG5FKgMMakoiCQGOIxevRoi8O6xhprmEB26NDBRLJ58+ZSvXr1mJwNi0kCxUXgjDPOkAEDBlAYY1LtFMaYVJQr5rx58ywGKxx03njjDUHgcgzxwESou+66q7AF6UjxmwSiQwC+AegW4UTF0amT8kpCYSyPTkR/gxjCQQdjHxFmDh6sm2yyiQ3rgEDCg5WzeES08lisoiRQs2ZNQWAPCmM8qp/CGI96SlrKlStXyoIFCyzMHEysgwYNkvr165uJ9aijjpJ99tlHateunXRfriQBEsgfgWrVqtnBKIz5Y57NkSiM2dCL0L4wsSJA+ciRI60vErN4tGrVSrp16yYQSSYSIIHCEaAwFo59ZY5MYawMtYjus3TpUkEUnSlTpsiwYcNsuqsmTZoIpryBebVly5YRLTmLRQJVmwDmY4V1hy3GeNQzhTEe9ZRRKdGXMX36dHn++eet/3HZsmVmXm3Xrp0JJKLpcKLkjJByYxLIisDRRx9tL6sUxqww5m1nCmPeUOf/QIi/iiDlMK+OGjVKlixZkhgDiUDlEEgmEiCB8Akw8k34jHN5BApjLmlGNK/58+dbC/KJJ56wFiSmtYKJFdE4YGKtU6dOREvOYpFA1SBAYYxXPVIY41VflS4thngg7ir6H4cPHy4TJ06UevXqWQuya9euNg6SQzwqjZc7kkC5BCiM5eKJ3I8UxshVSbgFWrVqlcyYMcOCBMC8+tZbb0ndunUteg6muWrfvj37H8OtAuZehAQojPGqdApjvOorZ6WFg87s2bMtxNxTTz0lixYtEgzxaNu2rfTo0cNm8cjZwZgRCRQ5AQpjvC4ACmO86ivnpf3pp5/k448/tkmSMQ4SLuUIMdemTRvrf4RQ0sSac+zMsMgIUBjjVeEUxnjVV2ilxSTJM2fONIF87rnnZOHChdb/iOg5PXv2tHBzoR2cGZNAFSdAYYxXBVMY41VfoZcWAvnRRx/J008/bR6s66+/vmD8IwQSHqzwaC2GBOckBH5mIoFcEKAw5oJi/vKgMOaPdWyOtHr1aouggzGQzz77rLUiYU7FPJAY/wiBbNSoUWzOxy/o4sWLZfz48RaAHUEOLrnkkoSpGEHZX3jhBTMnI8Re48aNpXPnzoKJoWvVquVnw2USyIgAhTEjXAXfmMJY8CqIdgEgjtOmTTMnnXHjxkmNGjVMIM8880zZe++9YyUYEPnXXnvNzgetYCfya621ls1Wgjnzpk6dKhBPl+CQ1LFjR7nxxhs53tNB4XfGBCiMGSMr6A4UxoLij8fBV6xYIXPnzjVBwTyQmOYKgtG6dWvp3r27tSCjfiaDBw+WPn362HkgduwVV1xhQQ4g9H/88Ydcdtll0r9/f2natKmdD4Ie9OvXz1qPMCf36tVL7rrrrqifJssXUQIUxohWTIpi/Q8AAP//qPawwQAAGutJREFU7Z0HjFTV98cPLCBFVHpClQ5K70hTIHREekIJXQlIU9GIEJWIRFBAiiDIKiEivXeQIkV6E1w60kNHUOrK+7/v+f9mMzs7y84MU96b930Jzswr9577ueN+55577rli8CABHwncv3/f+PPPP43Ro0cbFSpUMDJkyGCULVvW6NWrl7Fy5Urjzp07PpYUvtvi4+ONGTNmGCVLljRExChSpIixZ8+eRAasXbvWyJEjh5ExY0YD7y9fvqxt+emnn4x06dLpc3nz5jUuXLiQ6Dl+IAFfCfTr10+/RydOnPD1Ed4XQQISwbpZtU0J3Lx501izZo0xePBgFZq0adMaFStWNHr37m3ExcVZqlWHDh0yihcvrn+UsmTJYsydO9d49OhRIhv79Omj15s1a5bo/D///KM/ACCoaOOCBQsSXecHEvCVAIXRV1LWuI/CaI1+sJ0Vjx8/Ni5evGgsXLjQ6Nmzp5E9e3YjU6ZMRqNGjYyRI0daRiD79u2rogdxq1OnjoFRr+eB0SCuz5kzx/OS0bhx44TnMTLmQQKBEKAwBkItcs+kQtXmHwUeJBAQAXP0JefOnZPDhw/L6tWrZdGiRZI6dWopXbq0mEIkLVq0ENONKTExMQGV/ywPHT16VG24evWqFrN582apXbt2oiJN16k0bNhQ8uTJIzt27BBTJBNdb9KkiaxatUrPtW7dWubPn5/oOj+QgC8EzB+PMn36dDFdqWK68315hPdEkkDkNJk1RxuBU6dOGbNnzzbq1aunc3O5cuXS95iru3btWtibO3DgwITRnvn/mNf6x48fr/eYgpnExfrw4UOjZs2aCWVMmjTJaxk8SQIpEShYsKB+jzjHmBIpa1zniDGSv0qisG4z2EX27dsnu3btEtM1KVu3bhVzjk+qVq0qHTt2lAYNGoSt1eXKlZODBw9qfabAyZYtW5LU3b59ezHnHeWLL76QTz75JNF101UsZnCR3LhxQ8+bAUZiulYT3cMPJOALgVSpUultHDH6Qivy91AYI98HUWnBv//+q6IEgTRHZWJGekqpUqWkRIkS0r9/fxUcM+IzpG0vWrSonDx5Uut45513ZMqUKYnqgxu4TJkyes/y5cvFnB9NdB3nmjdvrucyZ86sIo/7eZCAvwQKFCigUw4URn/JReZ+CmNkuDumVgjkb7/9JitWrBCMuM6cOaPzfDVq1JA333xTqlWrFjIW7sJoBj+oQLtXhpEt5hxfeOEF2b9/v5iuX/fLKooQRxwtW7aUmTNnihlglOgefiABXwgUK1ZM5xcpjL7Qivw9FMbI94EjLPjrr790BLlhwwZZvHixQDARlNOlSxcx10Tqv2CDSEkYv//+ezGXmGgwBP5guR9wAWMECTtxQNxr1arlfgvfk4DPBCpVqiR79+5l8I3PxCJ8ozWmOmmFEwhgicfZs2cNcxRmDBo0yEBAAhbcv/7668aQIUOCHqCDdZbm/176r0ePHkkQm6Ks17CO0f3AQv769evrNSzwh60IxOFBAoES6NSpk36fzB9ggRbB58JIwHuoXhgNYFXOJHD+/HnNlmPO4Rnm/J2BxfdmIIwRGxsbtAwzp0+f1vWVEEeIsHtkrHvE6axZsxI6AeeHDx+uC/ohim3atDFgKw8SeBYCXMf4LPTC/yyFMfzMWaMbAXOez5g6darx1ltvGWnSpDFM96cK5M8//+x2V+Bvv/nmG/2lDnFEZh6XOGJUmC1bNr3mEj6MZt99910jf/78+g8jzgMHDgReOZ8kgf8RoDDa66vAOcYIu7JZvYiZjUaOHz+uSzyQIACRrDlz5hQzzZxgmUXnzp3FzGMaECostRgxYoTOa16/fl1MF6ku6D9y5IhMmDBByzRzqeqSjF9//VWXmmCZR/fu3TUwyHPBf0BG8CHHE0AkNr5vDL6xx1eBwmiPfnKEleYcpJi5TWX37t2aQQdZaQoVKqTZc5o2barBL4Es8TBHh/LHH39oZCyCalDmpk2b5NatW8q1Xbt2GmTz8ssv65KSypUr6zIOMz+qI7izkaEnQGEMPeNg1kBhDCZNlhUUAogEhZAtWbJER3pYA4kkAVWqVBEsyMcoMpADkbFYLoKjbt26+tqhQwdBui4c5jykmLtscEmG0uB/gkmAwhhMmqEvi8IYesasIQACT548EeQ4hUAixylEEjlZkSQAI7oBAwaokAVQtD7iykSyceNGMaNiAy2Gz5GATwSQ2OLYsWN0pfpEK/I3URgj3we0IAUCV65c0STlEMh58+aJGSyjC/PhXkWSb4z0/Dkw14iRIZ6D29YMwvHncd5LAn4TcP0Q4xyj3+gi8gCFMSLYWWkgBCCQyFADgUSaOQToIJcp3KJmVKuY0aQ+FYsAn1atWskbb7whmMc0o2F9eo43kUCgBCiMgZKLzHMUxshwZ60BEnC5WJGJBsm/IZKIWMU2V+auHoI5Q8/Ubp5VmXs0ynfffSfmwn0ZM2aM52V+JoGgE6AwBh1pSAukMIYULwsPJQHMPyLNFvaBxFKL9OnT61IM7AGJeUMk/vZ2IIgHu24sWLBAmjVr5u0WniOBoBKgMAYVZ8gLozCGHDErCCWBBw8eiLkPpAqkmRRAtm3bJkjYjNyUmH+Ei9Xz6Natm66dNPdX5PyiJxx+DgkBCmNIsIasUApjyNCy4HASgEBiBLlu3Tpd4oEgB2z1g9EhdsbAPpAxMTFqEu7DAfcrDxIIBwEKYzgoB68OCmPwWLIkCxDAon0IH0aOS5cu1ZEk9lCEexXbXGFxf3IuVguYTxOilACF0V4dS2G0V3/RWh8JIBVcXFycYJ0itrm6ePGivPLKK5rmDfOPGEHyIIFwEaAwhot0cOqhMAaHI0uxKAEIJEaQs2fP1jWLWAMJFyvmHjGKxJ6QLherRZtAs6KAAIQR6QyPHj3q97rbKGi+7ZpAYbRdl9HgQAiYW1DJyZMnVSCxdjE+Pl6z6NSpU0fatm0ryEzCgwRCRQDCiA25scwoU6ZMoaqG5QaJAIUxSCBZjPUJQAyRK9Xc6krWr1+vLlaMFsuXLy8QSOSzDHQXD+u3nhZGkgCEsXHjxrJy5cpImsG6fSRAYfQRFG+LHgKPHj3SvKuHDx/WNZDIhJM6dWpNM1etWjXp2rWrmBsnR0+D2ZKIE4AwIscvdnXhj6+Id0eKBlAYU0TEG6KZAFysyJe6Zs0awTpIpJnDno34dY9Uc9mzZ4/m5rNtYSIAYcQ+n1u2bJHnn38+TLWymkAJUBgDJcfnooaAy8UKcZwzZ47s2bNHChcurBslN2zYUAN1+Cs/aro7Ig2BMCJZPTIu5cmTJyI2sFLfCVAYfWfFO6OcAPaBxB+uXbt26fwjolmRdxWJAD744ANNWB7IRslRjo3N84EAhBEHd9fwAZYFbqEwWqATaIK1CLg2Skb+VWxzhfWQmHusUaOGJgnAex4k4A8BLBHCfqIURn+oRe5eCmPk2LNmixO4du2a7gO5atUqdbFCMLHuEdtVIYKV848W70ALmZc1a1ZBViYKo4U65SmmUBifAoeXSAAELly4oC5WjCCRRefOnTsawQqRRKIA7AlJFyu/K08jgLWL9+7dozA+DZKFrlEYLdQZNMXaBCCQmHecPHmyjiRv376t849wsXbv3l2KFCli7QbQuogRqF69uuzYsYPCGLEe8K9iCqN/vHg3Ccj+/ft1vmjDhg06goSLtXbt2gnbXNHFyi+JJ4F8+fKp54GuVE8y1vxMYbRmv9AqixPAEo9Lly5pBGtsbKy+IikAIlixxKN169acg7R4H4bTPEalhpP2s9dFYXx2hizBwQQeP34shw4d0iQBSPeFzCY5cuTQLCcQSOziwXVrDv6C/K/pFEZ7fQcojPbqL1prUQJwpx4/flyTA0Agly9frrsoIHE0MukgSIcuVot2XhjMojCGAXIQq6AwBhEmiyKB+/fvq0AiSQBysGIEiREj9oDs2LGjVKlShbkyHfg1oTDaq9MpjPbqL1prEwIuF+uSJUs0SQD2gcT8I6ITmzZtKrVq1eISD5v0ZTDMhHv9+vXrjEoNBswwlEFhDANkVuFcAleuXNEo1s2bN2sE6+XLl6V48eI6chw8eLDkz5/fuXAc1HIkp0fCCEal2qPTKYz26CdaaWMCT548katXr+oaSAgkEpVDIOFerVevns4/FixY0MYtpOkpEXjuuecE251RGFMiZY3rFEZr9AOtcAgBjCCxi/uCBQsEmXTSp0+vLla4V5s0aaIBOw5B4ahmco7RXt1NYbRXf9HaKCDw4MEDOXXqlOzdu1f3gUSaObjakFoOe0AigpUu1ijoaLcmUBjdYNjgLYXRBp1EE6OTAATyzJkz6mKdO3euwM2KfR8RpEMXa3T1OXfXsFd/Uhjt1V+0NkoJIAcrRpCrV6+mizUK+5i7a9irUymM9uovWhvFBOhijd7OhSsVCR6wEXbu3Lmjt6FR0jIKY5R0JJsRPQToYo2evnS1BMKIraeOHDkicKviwLpGuM+bN2/ONa0uUBZ5pTBapCNoBgl4I0AXqzcq1j138eJFFTyMDt1z5LoH3yCwasuWLTJt2jQ5efKk/PLLL1K0aFHrNsqBllEYHdjpbLK9CLhcrPhjijRzW7duZRSrRbtwwoQJ2keIMnbPkesujOjD+fPny759+zTZ/LJlyyRbtmwWbZEzzaIwOrPf2WobErh7964cPXpU3W+IYoVbDiMTVxRrhw4dJFeuXDZsWfSYvHv3bpk4caKmAcSI0bUNWe/evbWRLVq00CArbHqNBPNjx47VvTyjh0B0tITCGB39yFY4iMCtW7d0ice2bdtk6dKlujN83rx5dR9I/OFFRp3MmTM7iIi1mnrs2DEZOXKkzJgxQw0rVKiQnD59OpGRyHQ0ZcoU3ZYs0QV+sAQBCqMluoFGkID/BG7cuCFxcXGyceNGzcOKP8jFihWTSpUqaRYdJArgERkC6AuM6sePH69zju5WYK0qhLNPnz6SJk0a90t8bxECFEaLdATNIIFACUAgEaSzfft2FUjk40TkI7a4atmypdSsWZMjyEDhPsNz6BfMJw4dOlSQCtB19OvXT4YNG6YbWrvO8dVaBCiM1uoPWkMCARNwd7HGxsbK2bNnpUyZMhrggTysdLEGjDbgB7GB9ahRo2T48OFaBuaEsVcnk8YHjDQsD1IYw4KZlZBA+AhgpIJE5YcPH6aLNXzYk60JgTYfffSRzJo1SwYMGCDjxo1L9l5esAYBCqM1+oFWkEBQCWCLI0SxulysiH7E6AVzkHCx9u/fX0qWLCkxMTFBrZeFeSeAuWCk/KtWrZoUKVLE+008axkCFEbLdAUNIYHQEICLde3atbqTB16xN2Tt2rWlTp06Uq5cObpYQ4OdpdqYAIXRxp1H00nAVwLx8fG6kwcWla9fv15drBgtIm9no0aNVBwbNGjga3G8jwSimgCFMaq7l40jgcQE4GI9d+6czj9iJw9smIysLIhixfIOrIOkizUxM35yHgEKo/P6nC0mASWARefI1LJmzRp1tWJUWapUKXWxtm3bVkqUKEFSJOBIAhRGR3Y7G00C/08gORdr+fLlVSAxiqRA8tviNAIURqf1ONtLAl4IuFysmzZt0p0f4GZNnTq15vpEkE779u0ZTemFG09FJwEKY3T2K1tFAgERwJIOrLs7cOCAbouEHT2yZMmiUayVK1eWbt26aeLygArnQyRgEwIURpt0FM0kgXASgIsVEazI0vL777/LwoULJWvWrLqVEoJz6GINZ2+wrnAToDCGmzjrIwEbEcAIElGsWJyOzC07d+7U3eaxnRJdrDbqSJrqFwEKo1+4eDMJOJcAxBGp5lasWKHzkC4Xa5s2baRu3bp0sTr3qxF1LacwRl2XskEkEDoCf//9t2BLJbhY58yZI3v27JHChQtLxYoVdT9IuFixrRIPErAzAQqjnXuPtpNAhAjAxXrw4EEVyMWLF2tO1ly5cmkUa7t27XQEiRElDxKwIwEKox17jTaTgEUIQCCRqBwBOi4Xa/HixXUE2bhxY7pYLdJPNMM/AhRG/3jxbhIgAS8E6GL1AoWnbEuAwmjbrqPhJGA9AnSxWq9PaJH/BCiM/jPjEyRAAikQoIs1BUC8bGkCFEZLdw+NIwF7E3C5WOfPn69RrNgL0hXF2rFjR+FWV/bu32i1nsIYrT3LdpGAhQggzRyiWE+cOKF7QSJgp1ChQpqgHEs8sA6SUawW6jCHm0JhdPgXgM0ngXASCJaL9e7du4KE582bNw+n+azLIQQojA7paDaTBKxEwOViDTRRAJ7r3bu3jB8/XmrWrGmlptGWKCBAYYyCTmQTSMCuBAKNYl21apU0adJEBgwYIOPGjbNr82m3RQlQGC3aMTSLBJxEwF8Xq0sYsRUWRo9WOnbv3i137tyRevXqWcks2uIHAQqjH7B4KwmQQGgJuFysiGJFNp3kcrG6hPGll17S+0qUKBFaw/wovX///poNaMaMGZI/f34/nhTd6gsp9u7du6dJ2VEWdjfBuevXr2seWpzLnj27X+XyZv8IUBj948W7SYAEwkAAUawQBIwGveViRXTrxx9/LKlTp5a+ffvK2LFjJSYmJgyWPb2KM2fO6JwnRGzKlCm6sfPTn0h8df369YJlLPfv35fXXntNPv/8c/nss8/k7NmzuoF0unTpZOnSpXot8ZP8FEwCFMZg0mRZJEACQSWQnIv10aNHussHKkPy8nXr1mkC86BWHkBhmO8cNGiQPok1mmvWrPGrlCtXrkj58uXl8uXLupQFI86qVatKqlSpZPjw4VrWypUrBXloeYSOAIUxdGxZMgmQQJAIuLtYR48enaRUjBonTpyY5Hw4T2CEizWZ+/fv12oDcfMePXpUqlevLrdv35b06dMLdioZNWqUulgRbISDwqgYQvsfgwcJkAAJ2IDAzZs3jffee88w/yIm+ZczZ04jLi4uoq2IjY01TFdngm2mm9fo16+fER8f77NdixYtMvAc2pgnTx7DnGPVZ8eMGaPnzNGxcfHiRZ/L442BEZDAHuNTJEACJBA+AuamyEbXrl2NvHnzJgiPp0CaATnhM8ijJjMK1ahTp04S2yBkly5d8rg7+Y99+vTRMiCww4YNM0yXsfHw4UOjWbNmer5atWrJP8wrQSNAV2poB+QsnQRI4BkJzJo1S7788ks5deqUPHjwICG/Khb2Z8yYMaH09u3biymcCZ/D+QZBQq+//roGzXjW++OPP4op6p6nk3xGJCrKwHIPc7Qo27dv16hWc4QoZcuWlRs3bsiHH34oX331VZJneSK4BCiMweXJ0kiABIJM4Ntvv9U5NgSlYJkCNkLGgVyriNJ0HZkzZ3a9Desr0tP16NFD5s2b57Xepk2byvLly71ecz+JSNxSpUoJ5lPNEaIsW7ZML+NZV+q7zp07y8iRI1U43Z/l++ASoDAGlydLIwESCDKB06dPy+PHj3U0mClTpiCX/uzF7d27V0w3qmTIkEELw1IN9wPJ0bEMo0KFCu6nk7zfsWOHBt7gwqRJk8R0q+o9n376aUJEar58+XS5Rrly5ZI8zxNBJBA0pywLIgESIAEHEjAjYg1zJGtMnjzZaNmyZZJ5RvPPtWGKW4pkTNepPmsu0TDOnz+fcL8ZhZtQ5uDBgw1TeBOu8U1oCHDEGMQfGSyKBEjAWQQwL1iwYEF1fWIN47Zt26RFixaCdZbuR+nSpQXZejB3mNyBOUTcgxEm3K+u4+TJk4LRJA7MQUZqHtVljxNeKYxO6GW2kQRIICQEkPbt7bfflgULFqg4IiFB7dq1dU7UvcK0adPK7NmzpVWrVu6n+d6iBCiMFu0YmkUCJGBtAphLRJAM0tIhUCZbtmxq8IgRI2To0KFJjO/Vq5dMnTo1yXmesB4BCqP1+oQWkQAJ2ICAuaBf87ROmzZNOnXqlGAxEp/XrVtXEK3qfuTOnVu2bt2qrlf383xvPQIURuv1CS0iARKwOAHMIbZu3VqXYZgZeXRe0GUy3KmvvvqqJv52nXO9Itn5wIEDXR/5alECFEaLdgzNIgESsC4BbImFtYUImHn//feTGDp9+nTNd+p5AWsx9+3b53many1GgMJosQ6hOSRAAtYnMGTIEF1oj4QDSBbueWDUiB0yPA8kJDh48KDunOF5jZ+tQ4DCaJ2+oCUkQAI2IYCsOxBFjBaxC4a3A9tEeRsdwpUKlyoP6xKgMFq3b2gZCZCABQkgdysiTH/44Qdp27atpEmTxquVyJHavXv3JNeKFi2qeVAhrDysSYDCaM1+oVUkQAIWJICgm/r168vVq1dl586d8uKLLyZrJeYf69Wrp65T95swwkTKN2+i6X4f30eOAIUxcuxZMwmQgM0IYJQIVyhGjL64Q7GeEesaPQ+sf0RSAPck6J738HPkCFAYI8eeNZMACdiIAOYLu3TpIocPH5bx48eLuQlxitbPnz9f3a2eNyIZAJICVK9e3fMSP1uAAIXRAp1AE0iABKxNAKKIQBss0I+Pj9e0b3CHFihQQJLb7uq///4Tc4Nl6dixo9fGIXXc119/rXstcuToFVHETlIYI4aeFZMACdiBAFK/YT7QtT8ibEbuUwgbAmnMXTWSNOPcuXOCPKorV65MSACe5CbzBMrAHos9e/b0dpnnIkSAwhgh8KyWBEjAHgSwJnHmzJmCV88D+0P27t3b87TcunVLVqxYIVeuXElyzfMENidu2LCh52l+jiABCmME4bNqEiABexCAKD558sSrscm5Uj1zpXp92DyJ5R6uTY6Tu4fnw0uAwhhe3qyNBEiABEjA4gQojBbvIJpHAiRAAiQQXgIUxvDyZm0kQAIkQAIWJ0BhtHgH0TwSIAESIIHwEqAwhpc3ayMBEiABErA4AQqjxTuI5pEACZAACYSXAIUxvLxZGwmQAAmQgMUJUBgt3kE0jwRIgARIILwEKIzJ8L53755kzJgxmas8TQIkQAIkEK0EKIzJ9OylS5ckd+7cyVzlaRIgARIggWglQGFMpmeRAgp5EHmQAAmQAAk4iwCF0Vn9zdaSAAmQAAmkQIDCmAIgXiYBEiABEnAWAQqjs/qbrSUBEiABEkiBAIUxBUC8TAIkQAIk4CwCFEZn9TdbSwIkQAIkkAIBCmMKgHiZBEiABEjAWQQojM7qb7aWBEiABEggBQIUxhQA8TIJkAAJkICzCFAYndXfbC0JkAAJkEAKBCiMKQDiZRIgARIgAWcR+D9v7Z3zoU1dFAAAAABJRU5ErkJggg==" } }, "cell_type": "markdown", "id": "150e62be-ca8d-4348-970a-e625030b7bf9", "metadata": {}, "source": [ "## Resolution of Singularities\n", "We can \"resolve\" singularities (i.e. make them smooth) via blow-ups. \n", "\n", "**Defn:** The *blow-up* of $\\mathbb{A}^n$ at $0$ is the (closed) subset $X$ of $\\mathbb{A}^n \\times \\mathbb{P}^{n-1}$ defined by the equations $\\{x_iy_j = y_ix_j | i, j = 1, ... n\\}$. \n", "\n", "
\n", "\n", "
\n", "There is a natural morphism $\\phi: X \\rightarrow \\mathbb{A}^n$ given by the projection to the affine part of an element of $X$.

\n", "\n", "A few notes:\n", "1. Let $P$ be a point in $\\mathbb{A}^n$. If $P \\ne O$, then $\\phi^{-1}(P)$ is a single point, since we can uniquely determine the homogenous coordinates for the projective part. Indeed, if $a_i \\ne 0$, then for each $j$, $y_j = \\frac{a_j}{a_i}y_i$. We can set $y_i$ to be anything other than 0, and this yields the same homogenous coordinate (any such choice of $y_i$ is just a scalar multiple of any other choice). In particular, setting $y_i = a_i$ gives $(y_1, ...y_n) = (a_1, ... a_n)$.\n", "2. $\\phi^{-1}(O) \\cong \\mathbb{P}^{n-1}$ since the homogenous coordinates of the projective part are subject to no restriction.\n", "3. The blow-up of $\\mathbb{A}^n$ looks like $\\mathbb{A}^n$, except the point $O$ has been replaced by a copy of $\\mathbb{P}^{n-1}$, denoted as the exceptional divisor.\n", "4. Let $L$ be a line passing through $O$, given by parametric equations $x_i = a_it$ with a set of $a_i$ not all 0 and where $t \\in \\mathbb{A}^1$. Let $L' = \\phi^{-1}(L-O) \\in X - \\phi^{-1}(O)$. $L'$ can be written parametrically as $x_i = a_it$, $y_i = a_i$ (which is true because the $y_i$ are homogenous coordinates). For $t = 0$, this parameterization still makes sense, so altogether, it gives the closure $\\bar{L}'$ of $L'$ in $X$. Note that the slope of the line determines $(a_1, ... a_n)$ (i.e. $\\bar{L}$ intersects $\\phi^{-1}(O)$ according to its slope).\n", "\n", "**Defn:** Let $Y$ be a closed subvariety of $\\mathbb{A}^n$ passing through $O$ (we can just think of $Y$ as a polynomial curve passing through $O$). The *blow-up of $Y$ at the point $O$* is given by $\\tilde{Y} = \\bar{\\phi^{-1}(Y-O)}$ (closure of the inverse image of $Y$, analogous to above?????), with $\\phi$ as defined above. $\\tilde{Y}$ is called the *strict transform* (moving forward, we'll denote all strict transforms with tildes), and when we compute the total inverse image of $Y$ under $\\phi$, we also get a copy of $E$, which intersects $\\tilde{Y}$ according to the slope(s) of $Y$ where it passes through $O$. We explore this in more depth in the example below." ] }, { "cell_type": "markdown", "id": "7f795e70-3b07-45b9-8dad-db6cdc3667e4", "metadata": {}, "source": [ "### Blow-ups of $\\mathbb{C}^2$\n", "\n", "Let $[u:v]$ be the homogeneous coordinates in the blow-up of $\\mathbb{C}^2$ at $O$, which we will denote $X \\subseteq \\mathbb{C}^2 \\times \\mathbb{P}^1$. The blow-up of $\\mathbb{C}^2$ is covered by two sets, namely $U = \\{u \\ne 0\\}$ and $V = \\{v \\ne 0\\}$. With respect to this cover, there are two charts: \n", "\n", "$\\phi_1: U \\rightarrow Bl_O\\mathbb{C}^2$ given by $(x, y)[u:v] \\mapsto (x, \\frac{v}{u})$ and $\\phi_2: U \\rightarrow Bl_O\\mathbb{C}^2$ given by $(x, y)[u:v] \\mapsto (y, \\frac{u}{v})$. \n", "\n", "Note that in $\\phi_1$, the choice of coordinates comes from the fact that we can write $y$ in terms of $x$ and $\\frac{v}{u}$ using the equation $xv = yu$ (from the definition of the blow-up). A similar argument applies to the choice of coordinates for $\\phi_2$. Also note that [insert note about which points are \"captured\" by which chart]\n", "\n", "To blow up a curve $C$, consider the map $\\psi: X \\rightarrow \\mathbb{C}^2$ given by $(x, y)[u:v] \\mapsto (x, y)$ (same as $\\phi$ defined above; we changed the name to avoid confusion). We want to compute $\\phi_1(\\psi^{-1}(C) \\cap U)$ and $\\phi_2(\\psi^{-1}(C) \\cap V)$. Note that $\\psi^{-1}(C)$ imbeds $C$ into $\\mathbb{C}^2 \\times \\mathbb{P}^1$ without restricting the homogeneous part, and applying $\\phi_1$ and $\\phi_2$ restricts the imbedding to $X$ since the two charts come from the equation $xv = yu$. $\\mathbb{P}^1$ can be thought of as a circle, and each chart covers all but one point, so the idea is that for each chart, we can remove a point from the circle, flatten it into a line, and treat the homogeonous coordinates as an affine coordinate (hence why the charts map to $\\mathbb{C}^2$). Together, the images of $C$ under these two charts make up $\\tilde{C}$. \n", "\n", "Once we blow up $C$, if singularities still exist in the image of $C$ under either chart, we continue the process. " ] }, { "cell_type": "markdown", "id": "15d4768b-3d0a-4e22-8729-d42642775f3a", "metadata": {}, "source": [ "**Computing the charts**\n", "\n", "The code below computes the equations of the images of $C$ under the two charts at each singularity. Note that in the equations, we perform the change of variables $(x, \\frac{v}{u}) \\mapsto (x_1, y_1)$ and $(y, \\frac{u}{v}) \\mapsto (x_2, y_2)$. This allows us to perform the substitutions $x = x_1, y = x_1y_1$ (which comes from the fact that $y = x\\frac{v}{u}$) into the original polynomial to get the polynomial under the first chart with the change of variables. Likewise, the polynomial under the second chart is given by substituting $y = x_2, x = x_2y_2$ into the original polynomial." ] }, { "cell_type": "code", "execution_count": 3, "id": "da513682-5884-40f2-ab4c-d822c6756cc6", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\verb|Original|\\verb| |\\verb|polynomial:|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Original|\\verb| |\\verb|polynomial:|$" ], "text/plain": [ "'Original polynomial:'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x^{7} + y^{2}\\)" ], "text/latex": [ "$\\displaystyle -x^{7} + y^{2}$" ], "text/plain": [ "-x^7 + y^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Singularity:|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Singularity:|$" ], "text/plain": [ "'Singularity:'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\left[x = 0, y = 0\\right]\\)" ], "text/latex": [ "$\\displaystyle \\left[x = 0, y = 0\\right]$" ], "text/plain": [ "[x == 0, y == 0]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|first|\\verb| |\\verb|chart|\\verb| |\\verb|(first|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|first|\\verb| |\\verb|chart|\\verb| |\\verb|(first|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|$" ], "text/plain": [ "'Polynomial under first chart (first homogenous coordinate is nonzero):'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{1}^{7} + x_{1}^{2} y_{1}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{1}^{7} + x_{1}^{2} y_{1}^{2}$" ], "text/plain": [ "-x_1^7 + x_1^2*y_1^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|second|\\verb| |\\verb|chart|\\verb| |\\verb|(second|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|second|\\verb| |\\verb|chart|\\verb| |\\verb|(second|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|$" ], "text/plain": [ "'Polynomial under second chart (second homogenous coordinate is nonzero):'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{2}^{7} y_{2}^{7} + x_{2}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{2}^{7} y_{2}^{7} + x_{2}^{2}$" ], "text/plain": [ "-x_2^7*y_2^7 + x_2^2" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "chartpolys = c.computeCharts(x1, y1, x2, y2)\n", "chartpolys\n", "img = chartpolys[0][0]" ] }, { "cell_type": "markdown", "id": "40aa31ca-b958-4de4-9bd1-2134f5069e1b", "metadata": {}, "source": [ "**Computing the strict transform and exceptional divisor**\n", "\n", "Next, we can factor the images of $C$ under each chart to get $\\tilde{C}$ and $E$. $E$ will be a factor of $x_n$ raised to some power, and $\\tilde{C}$ is everything else. In the example below, we're looking at the image of $C$ under $\\phi_1$. We can also compute the number $N_E$, which is number of copies of the exceptional divisor we have, and corresponds to the power the factor of $x_n$ is raised to. " ] }, { "cell_type": "code", "execution_count": 4, "id": "04b57b2a-739c-4b77-a67b-21f682bbe4c0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Original polynomial:\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle -x_{1}^{7} + x_{1}^{2} y_{1}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{1}^{7} + x_{1}^{2} y_{1}^{2}$" ], "text/plain": [ "-x_1^7 + x_1^2*y_1^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle E: \\{ x_{1} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle E: \\{ x_{1} = 0\\}$" ], "text/plain": [ "E: \\{ x_{1} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\tilde{C}: \\{ -x_{1}^{5} + y_{1}^{2} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle \\tilde{C}: \\{ -x_{1}^{5} + y_{1}^{2} = 0\\}$" ], "text/plain": [ "\\tilde{C}: \\{ -x_{1}^{5} + y_{1}^{2} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle N_E = 2\\)" ], "text/latex": [ "$\\displaystyle N_E = 2$" ], "text/plain": [ "N_E = 2" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stne1 = computeStrictTransformAndExceptionalDivisor(img, x1, 0)" ] }, { "cell_type": "markdown", "id": "af81a13e-cedc-4d74-bfba-a3dc9c65fd32", "metadata": {}, "source": [ "**Resolving further singularities**\n", "\n", "In this example, $\\tilde{C}$ under $\\phi_1$ still contains a singularity, so we need to blow it up again. Note that when looking for singularities in $\\tilde{C}$, we only need to check points that intersect with $E$ (i.e. points where $x_n$ = 0), since these are the points at the original singularity point. We already know that points away from the singularity were regular to begin with, so even if singularities appear at those points in blow-ups, we can ignore them." ] }, { "cell_type": "code", "execution_count": 5, "id": "3e5fec38-0569-427c-adc0-fdf9d719dbef", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle -x_{1}^{5} + y_{1}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{1}^{5} + y_{1}^{2}$" ], "text/plain": [ "-x_1^5 + y_1^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\left[\\left[x_{1} = 0, y_{1} = 0\\right]\\right]\\)" ], "text/latex": [ "$\\displaystyle \\left[\\left[x_{1} = 0, y_{1} = 0\\right]\\right]$" ], "text/plain": [ "[[x_1 == 0, y_1 == 0]]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "c1 = Curve(stne1[0], x1, y1)\n", "show(c1.polynomial)\n", "c1.getSingularitiesWithConstraint()\n", "show(c1.singularities)" ] }, { "cell_type": "code", "execution_count": 6, "id": "37e41cba-2f1e-4932-8fa2-c7366c1ecb19", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\verb|Original|\\verb| |\\verb|polynomial:|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Original|\\verb| |\\verb|polynomial:|$" ], "text/plain": [ "'Original polynomial:'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{1}^{5} + y_{1}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{1}^{5} + y_{1}^{2}$" ], "text/plain": [ "-x_1^5 + y_1^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Singularity:|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Singularity:|$" ], "text/plain": [ "'Singularity:'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\left[x_{1} = 0, y_{1} = 0\\right]\\)" ], "text/latex": [ "$\\displaystyle \\left[x_{1} = 0, y_{1} = 0\\right]$" ], "text/plain": [ "[x_1 == 0, y_1 == 0]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|first|\\verb| |\\verb|chart|\\verb| |\\verb|(first|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|first|\\verb| |\\verb|chart|\\verb| |\\verb|(first|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|$" ], "text/plain": [ "'Polynomial under first chart (first homogenous coordinate is nonzero):'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{3}^{5} + x_{3}^{2} y_{3}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{3}^{5} + x_{3}^{2} y_{3}^{2}$" ], "text/plain": [ "-x_3^5 + x_3^2*y_3^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|second|\\verb| |\\verb|chart|\\verb| |\\verb|(second|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|second|\\verb| |\\verb|chart|\\verb| |\\verb|(second|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|$" ], "text/plain": [ "'Polynomial under second chart (second homogenous coordinate is nonzero):'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{4}^{5} y_{4}^{5} + x_{4}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{4}^{5} y_{4}^{5} + x_{4}^{2}$" ], "text/plain": [ "-x_4^5*y_4^5 + x_4^2" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "chartpolys = c1.computeCharts(x_3, y_3, x_4, y_4)" ] }, { "cell_type": "code", "execution_count": 7, "id": "1374ac94-cb6f-41d8-b5a2-35a60476d678", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Original polynomial:\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle -x_{3}^{5} + x_{3}^{2} y_{3}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{3}^{5} + x_{3}^{2} y_{3}^{2}$" ], "text/plain": [ "-x_3^5 + x_3^2*y_3^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle E: \\{ x_{3} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle E: \\{ x_{3} = 0\\}$" ], "text/plain": [ "E: \\{ x_{3} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\tilde{C}: \\{ -x_{3}^{3} + y_{3}^{2} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle \\tilde{C}: \\{ -x_{3}^{3} + y_{3}^{2} = 0\\}$" ], "text/plain": [ "\\tilde{C}: \\{ -x_{3}^{3} + y_{3}^{2} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle N_E = 4\\)" ], "text/latex": [ "$\\displaystyle N_E = 4$" ], "text/plain": [ "N_E = 4" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "stne2 = computeStrictTransformAndExceptionalDivisor(chartpolys[0][0], x3, stne1[1])" ] }, { "cell_type": "markdown", "id": "554db928-1362-4472-b5f8-5f509733360d", "metadata": {}, "source": [ "**The function below takes a polynomial curve and goes through all the steps until its singularities are fully resolved.**" ] }, { "cell_type": "code", "execution_count": 8, "id": "6aab0443-d4ea-4bc0-a2f5-39cb7b930989", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\\(\\displaystyle \\verb|Original|\\verb| |\\verb|polynomial:|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Original|\\verb| |\\verb|polynomial:|$" ], "text/plain": [ "'Original polynomial:'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x^{7} + y^{2}\\)" ], "text/latex": [ "$\\displaystyle -x^{7} + y^{2}$" ], "text/plain": [ "-x^7 + y^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Singularity:|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Singularity:|$" ], "text/plain": [ "'Singularity:'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\left[x = 0, y = 0\\right]\\)" ], "text/latex": [ "$\\displaystyle \\left[x = 0, y = 0\\right]$" ], "text/plain": [ "[x == 0, y == 0]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|first|\\verb| |\\verb|chart|\\verb| |\\verb|(first|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|first|\\verb| |\\verb|chart|\\verb| |\\verb|(first|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|$" ], "text/plain": [ "'Polynomial under first chart (first homogenous coordinate is nonzero):'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{1}^{7} + x_{1}^{2} y_{1}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{1}^{7} + x_{1}^{2} y_{1}^{2}$" ], "text/plain": [ "-x_1^7 + x_1^2*y_1^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|second|\\verb| |\\verb|chart|\\verb| |\\verb|(second|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|second|\\verb| |\\verb|chart|\\verb| |\\verb|(second|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|$" ], "text/plain": [ "'Polynomial under second chart (second homogenous coordinate is nonzero):'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{2}^{7} y_{2}^{7} + x_{2}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{2}^{7} y_{2}^{7} + x_{2}^{2}$" ], "text/plain": [ "-x_2^7*y_2^7 + x_2^2" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n", "Original polynomial:\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle -x_{1}^{7} + x_{1}^{2} y_{1}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{1}^{7} + x_{1}^{2} y_{1}^{2}$" ], "text/plain": [ "-x_1^7 + x_1^2*y_1^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle E: \\{ x_{1} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle E: \\{ x_{1} = 0\\}$" ], "text/plain": [ "E: \\{ x_{1} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\tilde{C}: \\{ -x_{1}^{5} + y_{1}^{2} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle \\tilde{C}: \\{ -x_{1}^{5} + y_{1}^{2} = 0\\}$" ], "text/plain": [ "\\tilde{C}: \\{ -x_{1}^{5} + y_{1}^{2} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle N_E = 2\\)" ], "text/latex": [ "$\\displaystyle N_E = 2$" ], "text/plain": [ "N_E = 2" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Original|\\verb| |\\verb|polynomial:|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Original|\\verb| |\\verb|polynomial:|$" ], "text/plain": [ "'Original polynomial:'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{1}^{5} + y_{1}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{1}^{5} + y_{1}^{2}$" ], "text/plain": [ "-x_1^5 + y_1^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Singularity:|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Singularity:|$" ], "text/plain": [ "'Singularity:'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\left[x_{1} = 0, y_{1} = 0\\right]\\)" ], "text/latex": [ "$\\displaystyle \\left[x_{1} = 0, y_{1} = 0\\right]$" ], "text/plain": [ "[x_1 == 0, y_1 == 0]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|first|\\verb| |\\verb|chart|\\verb| |\\verb|(first|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|first|\\verb| |\\verb|chart|\\verb| |\\verb|(first|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|$" ], "text/plain": [ "'Polynomial under first chart (first homogenous coordinate is nonzero):'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{3}^{5} + x_{3}^{2} y_{3}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{3}^{5} + x_{3}^{2} y_{3}^{2}$" ], "text/plain": [ "-x_3^5 + x_3^2*y_3^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|second|\\verb| |\\verb|chart|\\verb| |\\verb|(second|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|second|\\verb| |\\verb|chart|\\verb| |\\verb|(second|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|$" ], "text/plain": [ "'Polynomial under second chart (second homogenous coordinate is nonzero):'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{4}^{5} y_{4}^{5} + x_{4}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{4}^{5} y_{4}^{5} + x_{4}^{2}$" ], "text/plain": [ "-x_4^5*y_4^5 + x_4^2" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n", "Original polynomial:\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle -x_{3}^{5} + x_{3}^{2} y_{3}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{3}^{5} + x_{3}^{2} y_{3}^{2}$" ], "text/plain": [ "-x_3^5 + x_3^2*y_3^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle E: \\{ x_{3} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle E: \\{ x_{3} = 0\\}$" ], "text/plain": [ "E: \\{ x_{3} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\tilde{C}: \\{ -x_{3}^{3} + y_{3}^{2} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle \\tilde{C}: \\{ -x_{3}^{3} + y_{3}^{2} = 0\\}$" ], "text/plain": [ "\\tilde{C}: \\{ -x_{3}^{3} + y_{3}^{2} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle N_E = 4\\)" ], "text/latex": [ "$\\displaystyle N_E = 4$" ], "text/plain": [ "N_E = 4" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Original|\\verb| |\\verb|polynomial:|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Original|\\verb| |\\verb|polynomial:|$" ], "text/plain": [ "'Original polynomial:'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{3}^{3} + y_{3}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{3}^{3} + y_{3}^{2}$" ], "text/plain": [ "-x_3^3 + y_3^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Singularity:|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Singularity:|$" ], "text/plain": [ "'Singularity:'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\left[x_{3} = 0, y_{3} = 0\\right]\\)" ], "text/latex": [ "$\\displaystyle \\left[x_{3} = 0, y_{3} = 0\\right]$" ], "text/plain": [ "[x_3 == 0, y_3 == 0]" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|first|\\verb| |\\verb|chart|\\verb| |\\verb|(first|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|first|\\verb| |\\verb|chart|\\verb| |\\verb|(first|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|$" ], "text/plain": [ "'Polynomial under first chart (first homogenous coordinate is nonzero):'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle x_{7}^{2} y_{7}^{2} - x_{7}^{3}\\)" ], "text/latex": [ "$\\displaystyle x_{7}^{2} y_{7}^{2} - x_{7}^{3}$" ], "text/plain": [ "x_7^2*y_7^2 - x_7^3" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|second|\\verb| |\\verb|chart|\\verb| |\\verb|(second|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|\\)" ], "text/latex": [ "$\\displaystyle \\verb|Polynomial|\\verb| |\\verb|under|\\verb| |\\verb|second|\\verb| |\\verb|chart|\\verb| |\\verb|(second|\\verb| |\\verb|homogenous|\\verb| |\\verb|coordinate|\\verb| |\\verb|is|\\verb| |\\verb|nonzero):|$" ], "text/plain": [ "'Polynomial under second chart (second homogenous coordinate is nonzero):'" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle -x_{8}^{3} y_{8}^{3} + x_{8}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{8}^{3} y_{8}^{3} + x_{8}^{2}$" ], "text/plain": [ "-x_8^3*y_8^3 + x_8^2" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n", "Original polynomial:\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle x_{7}^{2} y_{7}^{2} - x_{7}^{3}\\)" ], "text/latex": [ "$\\displaystyle x_{7}^{2} y_{7}^{2} - x_{7}^{3}$" ], "text/plain": [ "x_7^2*y_7^2 - x_7^3" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle E: \\{ x_{7} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle E: \\{ x_{7} = 0\\}$" ], "text/plain": [ "E: \\{ x_{7} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\tilde{C}: \\{ y_{7}^{2} - x_{7} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle \\tilde{C}: \\{ y_{7}^{2} - x_{7} = 0\\}$" ], "text/plain": [ "\\tilde{C}: \\{ y_{7}^{2} - x_{7} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle N_E = 6\\)" ], "text/latex": [ "$\\displaystyle N_E = 6$" ], "text/plain": [ "N_E = 6" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n", "-----------------------\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle \\text{No singularities for } \\tilde{C} = y_{7}^{2} - x_{7} \\text{ that intersect the exceptional divisor}\\)" ], "text/latex": [ "$\\displaystyle \\text{No singularities for } \\tilde{C} = y_{7}^{2} - x_{7} \\text{ that intersect the exceptional divisor}$" ], "text/plain": [ "\\text{No singularities for } \\tilde{C} = y_{7}^{2} - x_{7} \\text{ that intersect the exceptional divisor}" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n", "-----------------------\n", "Original polynomial:\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle -x_{8}^{3} y_{8}^{3} + x_{8}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{8}^{3} y_{8}^{3} + x_{8}^{2}$" ], "text/plain": [ "-x_8^3*y_8^3 + x_8^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle E: \\{ x_{8} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle E: \\{ x_{8} = 0\\}$" ], "text/plain": [ "E: \\{ x_{8} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\tilde{C}: \\{ -x_{8} y_{8}^{3} + 1 = 0\\}\\)" ], "text/latex": [ "$\\displaystyle \\tilde{C}: \\{ -x_{8} y_{8}^{3} + 1 = 0\\}$" ], "text/plain": [ "\\tilde{C}: \\{ -x_{8} y_{8}^{3} + 1 = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle N_E = 6\\)" ], "text/latex": [ "$\\displaystyle N_E = 6$" ], "text/plain": [ "N_E = 6" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n", "-----------------------\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle \\text{No singularities for } \\tilde{C} = -x_{8} y_{8}^{3} + 1 \\text{ that intersect the exceptional divisor}\\)" ], "text/latex": [ "$\\displaystyle \\text{No singularities for } \\tilde{C} = -x_{8} y_{8}^{3} + 1 \\text{ that intersect the exceptional divisor}$" ], "text/plain": [ "\\text{No singularities for } \\tilde{C} = -x_{8} y_{8}^{3} + 1 \\text{ that intersect the exceptional divisor}" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n", "-----------------------\n", "Original polynomial:\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle -x_{4}^{5} y_{4}^{5} + x_{4}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{4}^{5} y_{4}^{5} + x_{4}^{2}$" ], "text/plain": [ "-x_4^5*y_4^5 + x_4^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle E: \\{ x_{4} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle E: \\{ x_{4} = 0\\}$" ], "text/plain": [ "E: \\{ x_{4} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\tilde{C}: \\{ -x_{4}^{3} y_{4}^{5} + 1 = 0\\}\\)" ], "text/latex": [ "$\\displaystyle \\tilde{C}: \\{ -x_{4}^{3} y_{4}^{5} + 1 = 0\\}$" ], "text/plain": [ "\\tilde{C}: \\{ -x_{4}^{3} y_{4}^{5} + 1 = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle N_E = 4\\)" ], "text/latex": [ "$\\displaystyle N_E = 4$" ], "text/plain": [ "N_E = 4" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n", "-----------------------\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle \\text{No singularities for } \\tilde{C} = -x_{4}^{3} y_{4}^{5} + 1 \\text{ that intersect the exceptional divisor}\\)" ], "text/latex": [ "$\\displaystyle \\text{No singularities for } \\tilde{C} = -x_{4}^{3} y_{4}^{5} + 1 \\text{ that intersect the exceptional divisor}$" ], "text/plain": [ "\\text{No singularities for } \\tilde{C} = -x_{4}^{3} y_{4}^{5} + 1 \\text{ that intersect the exceptional divisor}" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n", "-----------------------\n", "Original polynomial:\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle -x_{2}^{7} y_{2}^{7} + x_{2}^{2}\\)" ], "text/latex": [ "$\\displaystyle -x_{2}^{7} y_{2}^{7} + x_{2}^{2}$" ], "text/plain": [ "-x_2^7*y_2^7 + x_2^2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle E: \\{ x_{2} = 0\\}\\)" ], "text/latex": [ "$\\displaystyle E: \\{ x_{2} = 0\\}$" ], "text/plain": [ "E: \\{ x_{2} = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle \\tilde{C}: \\{ -x_{2}^{5} y_{2}^{7} + 1 = 0\\}\\)" ], "text/latex": [ "$\\displaystyle \\tilde{C}: \\{ -x_{2}^{5} y_{2}^{7} + 1 = 0\\}$" ], "text/plain": [ "\\tilde{C}: \\{ -x_{2}^{5} y_{2}^{7} + 1 = 0\\}" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\\(\\displaystyle N_E = 2\\)" ], "text/latex": [ "$\\displaystyle N_E = 2$" ], "text/plain": [ "N_E = 2" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n" ] }, { "data": { "text/html": [ "\\(\\displaystyle \\text{No singularities for } \\tilde{C} = -x_{1}^{5} + y_{1}^{2} \\text{ that intersect the exceptional divisor}\\)" ], "text/latex": [ "$\\displaystyle \\text{No singularities for } \\tilde{C} = -x_{1}^{5} + y_{1}^{2} \\text{ that intersect the exceptional divisor}$" ], "text/plain": [ "\\text{No singularities for } \\tilde{C} = -x_{1}^{5} + y_{1}^{2} \\text{ that intersect the exceptional divisor}" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "-----------------------\n", "-----------------------\n" ] } ], "source": [ "fullyResolveSingularities(p)" ] }, { "attachments": { "7ea463f6-dded-4e1c-81d6-cc0967f6dc61.jpeg": { "image/jpeg": "/9j/4AAQSkZJRgABAQAASABIAAD/4QBYRXhpZgAATU0AKgAAAAgAAgESAAMAAAABAAEAAIdpAAQAAAABAAAAJgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAD6KADAAQAAAABAAAEggAAAAD/7QA4UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAA4QklNBCUAAAAAABDUHYzZjwCyBOmACZjs+EJ+/8AAEQgEggPoAwERAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/dAAQAff/aAAwDAQACEQMRAD8A/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9H+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//S/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//V/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//Q/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9L+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAK93d2mn2l1f391b2VjZW813eXt3NHbWlpaW0bTXF1dXEzJDBb28KPLNNK6RxRq0kjKik0Afx0f8FOf+DmW48KeJPEHwV/4J3weHtal0a4udJ8QftNeJtMg8Q6JNqMDNFcJ8H/Cl8G0jWrKznXy4/HHi621PQ9XZLn+xfC2o6S+m+Jr3kqYmz5aav8A3nqvkv1cn6Ox0Qo9Z/8AgK/Xt20v38o/zoD/AILFf8FPx4rXxmP22/jp/bC3X2wWZ8SwnwoZfM8zY3gM2P8AwgzWu7j7C3h1rIx/ufI8k7K5vbVd+eXf+vet/wCS/wDbvQ19nD+VH9d3/BEr/gufd/tw63H+zB+1JF4f0H9pa30m81PwH410K0h0Pw78bNN0W0kvNbsJtBhIstA+Iuk6bb3GuXFjoyw6D4h0e11a+0rTNBfR3sLvso1/ae7LSXTs/wAVZ/8AgV7XXLsYVKXL7y1j18j+mCugxCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+MD/AIOQv+CsuoQXutf8E7f2efE0lpDHbwD9qXxnoV4UnuTeQx3Vl8D9Pv7aRTFai0lg1L4nfZ2Y3f2jTvBFxNHDD400e748TV/5dxf+L/L/AD33t1ko9FGH238lb8f8vvP4xq4zoPrf4y/sMftR/s+/Ar4NftG/GL4Va14E+F3x6v8AVrH4c6jrbQW+r3o07TbHV7G81jQPMOq+HbTxTpd1dal4Q/tu3srrxBpej6pqtnatpa2V7e3KnKMVJqylt/w3S/T/AIClKVJNtJ3a7a/1/XY8L+EnxR8ZfBH4ofD34w/DzVZNF8c/DHxj4d8c+FNTjL4ttc8M6pa6tYefGrx/abKaa1WC/spG8i+sZbizuFeCeRGmLcWpLdO6/r+vMbV009mf6+nwl8fW3xW+FXwz+KNnYT6VafEn4feDPH1rpd02650228Y+HNN8RQWFw2yPdPZxaitvM2xMyRsdi5216yd0n3Sf3nC9G12f9d/z+89BpiCgAoAKACgAoAKACgAoAKACgAoAKACgAoA//9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/NP/AIKxft7aR/wTz/Y78dfGK3nsLj4qeI8/D74GeH7wRzjVfiZ4gs7s6fqt1Yuf9K0PwVp1vf8AjDXY5Alve22jxaEbmC91uw351ans4OXXaK7t/nbfdbWurouEeeSXTd+n/B2P8szxH4i13xf4h13xZ4o1fUNf8TeJ9Z1PxD4i17VrqW+1TWtd1q9n1LV9W1K9nZprvUNRv7m4vLy5mZpZ7ieSWRi7MW8tu+vV6naf0p/8G7v/AASn079q34mXP7Xfx78Mx6p+z98FfEUVl4F8K61aCXSfiz8XNPW3v1F/a3CNFqvgj4eRzWWpa1aSodO8QeJbvR9DnbUNN03xbpLdWHpcz55L3U9E+r77rRfNN+jRjVnZcq3e78u3z/rc/tG/bt/Yl+E3/BQD9nPxR+zr8XG1HTNK1S80/wAR+E/FuhrbNr3gLxzoSXSaD4s0aK7R7S5ltoL7UdK1PT7hVi1Xw/q2saULixkvUvrXrnBVIuMvVd0+60f6b76nPGTg7r7u/wCX9d9j+aH4Ef8ABp7Z+Hfi/pOuftA/tQ6Z8QPg34f1q31Gbwb4E8Bar4V8T/EGws7lZo9E1zWNS8Sajb+C9P1FUWLWH0RvEepPZPc2Wl6lpd5Lb61ac8cLaV3O8b7KNm/V876b6fcbOvp7sdfNn9jGnadYaPp9hpOlWdtp2l6XZ2unabp9lDHbWdjYWUCW1nZ2lvEFigtrW3ijgghjVY4okWNAFUCus5y5QAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/0P7+KACgAoAKACgAoAKACgD5k+LXxvvvDOrTeGPCkdr9us1Qapqt1H9pW3nkRZRaWduf3LyxRshnmn81Fd2gEG+NnULjC6u/yv8A+3R/L7vtcB4P/aJ8TWepQReLjbavpE8qx3NxDZwWl/ZRu2DcQCzjgguEhB3vbyQiSVV2pOjY3BTgum/b/g8y/L77H2vFLHNHHNE6yRSoksUiEMkkcihkdGGQVZSGUg4IIIzmgyH0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHzn8XvjRdeD9QPhrw3DbS6xHDFNqN/dIZotO+0IJYLeG3BVZbt4WjuHeYvDFFJEohmd38oLjG+rvb0/wDto/l932vJvDX7RPjGw1CE+JDa67pckirdIlnbWN7BEzfNJZyWcVvC0kY+YR3MMqzAeWZIGYSoFOC9Px/9uj/Xb7X23Y3ttqNlaahZSrPZ31tBeWsy/dlt7mJZoZBnBw8bqwBGRnBwRQZFqgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8F+L/wAYJfAssGhaFb29zr1zbi6nnug0ltplrIzJCTCjKZ7uco7xxu6RwxqkkiSrMiUFxjf0+/8A9uj/AF2t73huhftEeObC/jl1p7LXdOaQfaLQ2VtYTrET85tLmzhhCSqPufaY7hD0IGd6hTgvP7r/APt6t6a+p9t6Rqtlrml2GsadIZbHUrWG8tnI2sYp0DhZEy2yVMlJYySY5FdDypoMjRoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPBfi/8AGCXwLLBoWhW9vc69c24up57oNJbaZayMyQkwoyme7nKO8cbukcMapJIkqzIlBcY39Pv/APbo/wBdre94boX7RHjmwv45daey13TmkH2i0NlbWE6xE/ObS5s4YQkqj7n2mO4Q9CBneoU4Lz+6/wD7eremvqfbekarZa5pdhrGnSGWx1K1hvLZyNrGKdA4WRMtslTJSWMkmORXQ8qaDI0aACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDwX4v/ABgl8CywaFoVvb3OvXNuLqee6DSW2mWsjMkJMKMpnu5yjvHG7pHDGqSSJKsyJQXGN/T7/wD26P8AXa3veG6F+0R45sL+OXWnstd05pB9otDZW1hOsRPzm0ubOGEJKo+59pjuEPQgZ3qFOC8/uv8A+3q3pr6n23pGq2WuaXYaxp0hlsdStYby2cjaxinQOFkTLbJUyUljJJjkV0PKmgyNGgAoAKACgAoAKACgAoAKACgAoAKACgD/ADWP+C//AO3q/wC2Z+21r/gvwfrRv/gf+zHLrPwp+H62tx5ul694sgvok+KXjyDY0kE/9teI9Og8OaVfW00tpqHhbwh4f1O38p9RuA/nYipzzsneMdFZ6N9XsvTd7aWuddKHLG/WWr9Oi/X/AIY/K39lj9nHx/8AtcftCfCj9nP4Y23neL/ip4tsfDtrdyQyT2egaUBJfeJPFmqxxFZTovhHw5aar4l1jyj5x03S7lbcPcNGjZQi5yUV1f3Lq+my1/zvY0k1FNvp/Vvmf6xv7OHwA+Hf7LPwM+GH7Pvwp0waX4E+FnhTT/DGjIyxC81GWANcav4h1eSFI47nXvE+tXGo+ItfvFRBeazql9chEEoRfVjFRiorZKxwybk231PbKYjxP4u/Fj/hX8Vppml28F54h1GBrmMXW9rXT7Pe8S3U8UbRvPJNKksdtCJETMMskzFUSKcKjHm729L/APt0f67W97550r9ob4gWV8k+pTafrFkZAZrCWwtrP90T8y29zZQQTRSAZ8uSb7Sqty8MoBDBfIv+Dv8AhzK33v8AU+1vDfiCw8U6Hpuv6azGz1K3EyK+PMhkVmint5QuVEttcRywS7SV3xkqWUqaDNqza7f15/n95uUCCgAoAKACgAoAKACgAoAKACgAoAKACgD/0f7+KACgAoAKACgAoAKACgD85vjDoV/ofxA8Qm8jkEOrX9xrFhcMp8u4tdQkaf8AdOeG+zSvJaSDgo8JGNpRmDaPwr+v6/ruedWNjd6neW2n2FvLd3t5PHbWttCu+WaaVgkaIvGSWPUkADlioBNBR+pGgafJpOhaLpc0gll03SdO0+WUEkSSWdnDbvICcEh2jLAkZOecUHOzWoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPz6+OmhX+k/EHVr25ik+x64YNQ066IPlzILaCC4hD/d821uI2jeLO9YjBIQqTJuDaD09P6/rf9I+QwQTXM0VvbxST3E8iQwQQo0ks0sjBI4oo0BZ5HchURQWZiAAScUFH6deCNIudB8IeG9HvT/pmn6PZW90AwYR3CwqZolYZDLDIzRKw4ZUBGAcUGD1bfd/12/L7jqaBBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB8J/tD6Ff2Hjl9aljkbTtdsrJrW42kwrPY2sVlc2m/oJUEEdyUwMpcqw3HftDWG3zPBURpGVEVnd2CIiAszsxwqqoyWZiQAAMknAzxQWfpZ8M9EvfDvgPw1pGoq0d9bWLSXMT/AH7eW9uZ742zjnElsLkW7qCQrxEAsADQYS3fqd1QIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPhP9ofQr+w8cvrUscjadrtlZNa3G0mFZ7G1isrm039BKggjuSmBlLlWG479oaw2+Z4KiNIyois7uwREQFmdmOFVVGSzMSAABkk4GeKCz9LPhnol74d8B+GtI1FWjvraxaS5if79vLe3M98bZxziS2FyLd1BIV4iAWABoMJbv1O6oEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHwn+0PoV/YeOX1qWORtO12ysmtbjaTCs9jaxWVzab+glQQR3JTAylyrDcd+0NYbfM8FRGkZURWd3YIiICzOzHCqqjJZmJAAAyScDPFBZ+lnwz0S98O+A/DWkairR31tYtJcxP9+3lvbme+Ns45xJbC5Fu6gkK8RALAA0GEt36ndUCCgAoAKACgAoAKACgAoAKACgAoA/Jr/gtR+28f2GP2EPiX428Oat/Zvxd+Jy/wDCnPgy0Ewj1Cy8YeMbC+XUfFtptJlik8CeE7XXvFNldmKS0XxBYaBp13gapEGyrT9nBtfE9I+r67PZXeq8tLmlOPNJdlq/l0+bP8u0ksSzEszElmJySTySSckknkknn3rzDsP7hf8Ag1s/YSTwr8PfH37e3j3RguvfEhtT+FfwN+2wfPY+AtD1NF+IXjGx8xWTd4p8WadD4SsbuPyby0tfBviGEM9h4gYS92GhZOb3ekfTr97/ACOatK7UVstX/X9W7u9o/wBeVdRgFAHxP+0loV/b+KdP8QGKR9M1HTILFLgAmOC+spLgyWrkZEbSQSRzw7ivnf6RsB8iQ0GsHo11vf8Ar/h/uPm+gs/Rf4NaFf8Ah74e6JZ6nHJBeTm71CS2lBWS2jvrmSe3hkRsNHJ9naKSWNgrxSyPG4Do24MZO7f9bfd/Xfc9RoJCgAoAKACgAoAKACgAoAKACgAoAKACgD//0v7+KACgAoAKACgAoAKACgDE13w3oPia1Flr+lWeqW6MXjW6iDPA7ABnt5l2z28jKNrPBLE7L8pYjigd2tr/AH2/r+u5k+Hvh/4N8KTNc6B4fsrC6ZWT7X++urtUYYdI7q9luLiJHBw6RSIrjAYMAKAcm+v6f1/T6nY0CCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAyda0HRvEVmdP1zTbTU7QsHEN3CsgjkAIEsLn95BKASBLC0cgViocBiGBptbHP6B8OPBHhi6+3aH4dsrO8G7Zdu1xe3EO7732ea/muJLYsCVYwNHlDsOVJSgHJvr+n/D/wBdztqBBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAZ2q6RpeuWUmnaxp9pqVjKQXtryFJoty52SKHVvLlTJMcqbZIzyjqTmgLtbf5f1/Xc5bRPhn4D8O3q6jpHhqxtr6Nt8NzK1zey27/APPS2N9Pci2kHQPbiJwCQGAJDA+Zvq/6/Pf5/I7qgQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAGdqukaXrllJp2safaalYykF7a8hSaLcudkih1by5UyTHKm2SM8o6k5oC7W3+X9f13OW0T4Z+A/Dt6uo6R4asba+jbfDcytc3stu/wDz0tjfT3ItpB0D24icAkBgCQwPmb6v+vz3+fyO6oEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBnarpGl65ZSadrGn2mpWMpBe2vIUmi3LnZIodW8uVMkxyptkjPKOpOaAu1t/l/X9dzltE+GfgPw7erqOkeGrG2vo23w3MrXN7Lbv8A89LY309yLaQdA9uInAJAYAkMD5m+r/r89/n8juqBBQAUAFABQAUAFABQAUAFABQAUAFAH+db/wAHKH7Zkn7RP7cr/ArwzqxvPhr+yXpVz4CSG2m8yxvvi1r/ANi1T4p6mArD/SdHltvD/wAP7iCaPfZ6l4M1ZoXMd85bz8TPmnyraOnz6/ovl6HXRjaN/wCbX5dP8z8Tv2Y/gB4z/ao/aC+EP7PHw/iL+Kvi3450TwhY3Rhe4g0ayvbjzdd8S38UZWRtK8K6BBqniXWDGd6aXpN5ImWUBsYxcpKK6tL08+m2+/3Gjdk32P8AW4+DXwl8FfAb4TfDj4LfDnTV0jwN8LfBnh7wN4WsRsMqaR4c0y30y2nvJUSP7VqV6Lc3uqX0i+fqGpXF1e3BeeeR69VJRSitkrL5HC3dt93c9LpiCgClqOm6fq9nNp+qWVtqFlcLtmtbyGOeCQDkExyKy7kOGRwN8bgOhVgGoA43SvhZ8PtFvl1LTvC9hFexv5sU0zXV6IJAcrJbw309xBBIhG6N4UjaNgCjKQGYKcm+v6Hf0EhQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/9P+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPmP8AbP8A2kND/ZD/AGVvjt+0hr4tpYPhR8PNb8QaTYXbmO31vxfOiaR4F8OSOGVk/wCEl8aaloOgh1ZSh1EOD8p2zOShGUn0X49PxsVGPNJJdf68/wAvvP8AJA8UeJte8a+JvEXjHxTqd1rfifxbrur+JvEes3r+Zeavr2vahcapq+p3cgAD3V/qF1cXU7gDdLK5wM4ryW769Xqdx/W//wAGqX7HqeIfH/xp/bd8U6Z5un/D20b4JfCae4h3RHxl4lsbLW/iRrlpIyhob7QPCFx4d8PQSxs6T2Xj3XIJArwLXXhYXcpvp7q9Xv8Ahb7zCtLRR76v0/4fuvusf2+V2nMFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5KP+DrX9qCTwp8EfgJ+yToOo+VqPxb8W6h8WPH1vby7Zh4L+HKJpfhTTNQiyA+n+IvGWuXOr2xCsRf8Aw9UlogoWflxUrRjDu7v0X/B/I3oR1cu2n3/5fr5H8MCI0jKiKzu7BERAWZ2Y4VVUZLMxIAAGSTgZ4rhOk/1ev+CXv7K8X7Gn7CX7O/wLudOTTvF2leB7PxV8TEMYW5k+J/jxm8XeOILuX/WXR0XWtWm8NWM8u1xpGh6dAI4Y4Y4U9WnHkhGPZa+r1ffZvv8AfY4py5pN+dl6fhf7vuPvyrICgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8xr/AIL3/tFn9or/AIKdfH2ay1A33hf4LXOlfs++FR5vmpaR/DKKe28Z28bAmPY3xR1Lx7cp5fHlzxhi8gd282vLmqy/u+6vlv26t/8AB1Z201aC89fv/ry/C8vI/wDgjn+zUn7VX/BRv9mX4b6jYi+8JaF43i+K3j2OWLzbJ/CPwngl8c3enamuGP2DxNqej6T4PlwMmTxFEu6IMZUVGPPUintu/l9/l67aXTCpLlg38u+/3f13tY/1Qa9M4goAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPMfjZ8T9I+CXwa+LPxl8QBW0P4TfDXxz8SdYR5BEsum+B/DGp+Jr2HzD91prfTJIlIydzKFBY4pN2TfRJv7vv/AC+8aV2l3aX3n+Pp4s8T61428U+JfGfiS8fUfEXi7X9Z8T6/qEmfMvta1/UbnVdVvJMknfdX13PO2STuc5J615Ld231bv953rTTt/Xn+f3n9fX/Bpj8AUu/Ff7Vv7UOp2Izoeh+EPgV4Ov2j3q83iK9bx38QoY3YbYprSDw98OOY90jw6nKjFEJEvXhY/HL0ivzf6dPuOeu/hXq/6/Hrp53P7X67DnCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPxb/4OCfi5N8Jv+CVn7RIsLlrTWPidN4D+EelyK23zIfGPjXRn8UWzAEFlu/AuleKrYqCP9buYMiujY13alLzsvvf+V/6TNKSvNeWv9arr6+h/mV15p2H+lX/wbpfBhPhF/wAEtfhBrE1qLTWPjb4t+I3xl1qPZtdzqviKXwV4cuHbgyC78E+BPC15GxGFjuEjG4KGb0sPG1KP968v0/JLt+suOq7zflZf18359+to/ubWxmFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//Q/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5ff8Ag648QXFj+wl8DvDkLtHFr/7Vnhu9u9pI86DQvhP8W9lvJ2aI3Wq21ztP/LW1iYA7SV5sU/ciu8vyT/z7/eb0F7zfZfm/+B2+4/gJrgOk/wBbb/gnr4WtfBP7Bn7F/ha0jWOPR/2WPgJBMUAUTX8vwv8ADFzqd2QOBJe6lPdXcmOPMncjtXq01aEF2jH8l6/n95wyd5SfeT/P5fl9x9hVZIUAFABQAUAFABQAUAcl468feBvhf4U1nx38SfGPhfwB4K8O2rX2veLfGevaZ4Z8N6NaIQDcalrWsXVnp1nEWIRWuLiPe7LGmXZVYbSV27Jbt6IEr6LV+R/Lb+3l/wAHQvwa+GTav4B/YZ8GQ/HXxlbtNZyfF7x7aaxoHwe0q5QmNpvD/h1JdH8bfEBopEkjMs03gjRCfJvtM1XxBYvsflqYmK0guZ93dR+W7f8A5LbvLc3hRb1k7Ltu369vv9bWR8af8E+P+DmH9pDxH+0Z4B+GP7ZGifDbxP8ACn4peL9G8Gv438G+GJfBnif4Z6n4m1GDSdG1yWK21O40bXvB9jf3duviKxutOTXrbTGm1aw1i6n046Jq8U8TJySmk03a6Vmrv1aa200fnIqVGNm4tppN27/5f8HyP7iq7TmCgAoAKACgAoAKACgAoAKAP//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/Hj/goF/wAFsP2T/wDgn546t/hH4t0/xv8AFf4w/wBn2Gr634F+G1vojp4L03VYEvNJfxpr+vatpdjpWo6vp8keo6bolhFrGsHTZ7LUtQstO03VNLvb39f4A8FuK+P8DLNsJUwWVZP7SpRo4/MpV08ZUpScKqwWHoUa06tOlUTp1K9R0aPtI1KdOdWpSq04/mXGfirw5wZi1luJhi8xzPkhUq4PAxpP6rCpFTpvFVq1WnCnOrBqcKUFVq8koTnCFOpCc/oD9gH/AIKX/s2f8FGfB3iHX/gnfeIdD8VeCZLGPx38MPHdlYaX418Mx6n566bqwi0vU9Y0jWfDupzWl3DY6zpGp3QSWA22rWuk37xWTeBx94a8SeHeMw9DOqeHr4TGqo8DmeBqTq4LFOlyupSvUpUK1DEUlODnRrUo3UualOtBSmezwbx5kXHGGr1sqnXo4jCOCxeX4yEKeLoKpdU6tqc6tKrQqOMlCrTqys1arGlOSgfoPX5+faBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/Mf/wAHVnhG71n9gP4SeKbSJ5V8G/tS+EH1IqGK22leIPhp8VdLNy5AIA/thdGtBu2jddgBskK3Nil+7T7SX5P+uv43jtRfvNd0/wBP66fhaX+fvXAdR/rLf8EzviJp3xU/4J7fsXeNdMuI7pL39mv4RaPqMkTB0TxF4R8G6V4P8VWoILc2XibQdXs2DHerW5V8OGC+rTd6cH/dX5fLr5fccM1aUl5v+t3+f3H3FVkhQAUAFABQAUAeY/Fz41fCL4B+Db/4hfGz4l+CPhV4I035brxN488SaV4Z0nzyjvHY21xqlxbi/wBTuQjLZaXYi41G+lxBZ2s8zIjJtRV5NJd3p/l+f3XGk5OyV3/X9f8ADn8vf7bv/B0v8HvAn9r+C/2HPhxP8Z/EsXn2kXxe+J1pq/hP4W2c67lS90HwYraX4+8ZwgjBGsTfDuJH2zQtqlsdr808VFaQXM+7ul8tLv8A8l9Hb3do0W9ZO3kt/Tay+XN+h/If+1f+3T+1b+234r/4Sv8AaT+Mvir4hG2upbrQvCslwmj/AA/8JmQPGE8K+A9GSx8L6JILdhazajbaZ/bOowxxtq+p6hcBpn5J1Jzd5Nvy6L0SSX5+pvGMY7K35v8Ar/hup8k1BR+/3/BJL/gif+1B+1V8X/hF8a/ij4A1v4R/ss+GPFnhrx3rHi7xxaTaBrfxN0jw/qVprdv4c+HHhq9WLXNVtPFD2sFhJ41nsrPwpYaVc32oafqmr6pZ2+i3vRSoylJSatFO92t7dEtOvfRLvdRMqlSKTS1flr9//DP0dmf6PVegcgUAFABQAUAFABQAUAFABQB//9L+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/L5/4K/6drml/wDBTT9s628QzXE9/L8aNa1G3e6dpJF0PWLDTNW8MQqzci3t/Dd7pMFog+WO0ihjT5FSv9OfCKpQq+GnBssOoqmsmo05KKsvb0alWliW/wC9LEQqym+s3Jvdn8AeJcK1Pj3imNdyc3mtWcXJ3fsakIVMOv8ADGhOlGK6RSS2R9tf8G1/xEg8F/8ABSrS/DFxfyWq/Fn4KfFLwLa2vnFIdR1DSotE+JcUMkZO2WSGx+H+o3EPBdDG4QgO4b4r6SOXyxnhvUxMaal/ZOdZXjpytd06dV18tbT3SdTMKUXrZ31vofV+BWOWF47p4eU3H+0sqzDBxjeynOmqWPSa2bUMFOS7W03P9Cyv8+z+1AoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/Oj/AIKz/syah+11/wAE9v2l/gz4f099T8aXPgf/AITf4fWUETS31945+Gep2Pj7w/o2nBckXviifw+/hOMkFTHr0qvtRi651Yc9OUetrr1Wq+/b/hi6cuWSfTZ+j+7+u+x/lPkEEggggkEEYII4IIPIIPUH+leWdp/ap/wbD/8ABRzwvD4V1X/gnj8VvENro+v2Wua544/ZtvNUulgtvEFhrskus+PPhfYvMyQprOn6z/aPjvw/ZIZLjW4dd8XqvlPo1pBd9uGqaezfTWPz3X369b+Vve560Ptr5/5/p5fM/sjrrOcKACgBrukaPJI6xxorO7uwVERQSzuzEKqqASzEgAAkkYzQB+XH7Uf/AAWc/wCCc/7JcepWPj39onwv408aab5sbfDf4MSR/FXxm19DnzNLvl8Mzz+GvC+oqBnyPG3iXwyo3KGlJkjDZyq04byV+y1f4fq4+r+zcac300fV6L9fwX3n8zP7Xf8AwdTfHXxxHqfhj9jb4QaF8EdFl863t/iX8TjYfEL4kyQtu8i/0nwokX/CvfCt6uQstprCfEy1baWjmjZxs5p4qT0greb1f3Wsv/Ju9ukto0EtZNvyWi/r0t+kv5nvjl+0X8dv2mPGM3j/AOP/AMWvHnxb8Wy+akOreN/EV/rX9mW0ziR9P0Gwnl/szw7pIcK0Wj6FZabpcG0CG0QABeaUpSd5Nt+f6dvlb0WxsoqOiSXp/X9fceL1Iz9l/wBh3/ghV+3h+2u2keJofAbfAb4Oaj5Fyfiv8abTUfDkOp6ZLtf7V4K8Em3/AOEx8Y/aLctNpmoQ6bpnhG+YCKTxZZbg7bQoTnrblj3f6Ld/gv7z2jnKrGPm+y/pd/8Ah7WP7MP2Ef8Aggv+w3+xQdG8X6l4WP7RXxs03yLkfFD4v6Zp+o6bouqQ4f7X4D+HH+l+FfChhnSO407Ub9fE/i/TJlJtPFqoxSuyFCENbc0u7/RbL8X/AHltLnlVlL+6uy/V/wDDdnteX7Y1sZhQAUAFABQAUAFABQAUAFABQB//0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4Bf8Ag5n+BU3w6/b20L4w2lmU0T9ob4S+GdauL8R7I7jxp8OF/wCFfa9ZAgbZHs/Cum/D66kk3bv+JoisoCq7/wB8fRpzxZjwHXyec71uH82xNGML3ccFmP8AwoUJvsp4qpmEEv8Ap1dN3aj/ABr49ZQ8DxjRzOMbUs7y3D1ZTtZSxWBX1KtDzcMNTwUm7/8ALxbWPxn/AGNvjxc/sw/tVfs//H6B51tvhb8U/CPibXYrYOZ77wlFqkNp400qIRhnLav4Suta0v5VY4vDhGxsb9j4xyKPE3Cuf5DJRcs0yvF4ag5fDDFulKeCqu+n7nFwoVdbfButz8u4YziWQcQ5NnKb5cvzDDYiso3vPDKoo4qmra/vcNKrT6/Fs9j/AFh9Pv7LVbCy1TTLu3v9N1K0tr/T760lSe1vLK8hS4tbu2njJjmt7iCSOaGVCUkjdXUlSDX+U9SnOlUnSqRlCpTnKnUhJWlCcHyzjJPVSjJNNPZq3Q/0ZhOFSEKlOUZwnGM4Ti04zhJJxlFq6cZJppp2ad1e5bqCgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/zsf+DgT/AIJZ65+yD8fdb/aa+FHhuaX9mL4+eJr3WpzpVoxsPhJ8Vdcmn1LxD4L1KO3T7PpnhzxNfNe+IfAMwFvZxQy6n4Sggg/4R6yl1TgxFLklzr4ZPXyl2367rTy0t73XSnzLle6/Fd/Xv95/PNpGr6t4f1XTNe0HVNR0TXNF1Cz1bRtZ0i9udN1XSdV064ju9P1PTNRs5Ybyw1Cxu4YbqzvLWaK5tbiKOaGVJER15jU/o3/Zp/4Oev27Pg14c0vwh8YPC3wz/aY0zSLeG0t/E3i+DVfB3xNube3QRQxap4s8LXH9g6w8cCIr6lqfgm6169mDXeq6xqF1LLK/THFTStJKXn8L+dotP/wFfPcxdGLejcfJar+vn91j7D1D/g7h+IElmU0r9h7wdZahtwLrUPjtrep2YfH3jY23wu0mcrnnYNRU448zvV/W3/J/5P8A/cxewX87t6Hx98WP+Do7/goh43hubH4deGPgB8FbaQOLXU/DvgbWfGPii2LcBpL74g+J/Efhe4aPgx/8UZEhbd5iSKVVYeKqPZRXybf46fn+saVGC3u/1+5Jq/q/wZ+PX7QX/BQb9tn9qdbu2+Pf7Tnxd+IWi3xZrnwjdeKrrQ/AMjOcsy/DzwuNE8DQsR8u6Hw9EwQCMNsVVXGVSpL4pNrtsvuSS+9fN3sWoRjskvz+/f8ArzPjqoKOu8DeAPHfxP8AE2m+Cvht4L8WfEHxjrMvk6R4U8E+HdX8VeJNUlyB5en6HodpfaneOCwytvbSEZBPX5Wk27JNvsv6f5feF0t/8v6/ruf0K/sef8GzP7bfx4bSvEv7Quo+Hv2UPh/deTcy2niVYfGvxcvbOTEi/Yvh/oOpQaZojyxh4Zk8Z+LfD+sabK0Uknhy8UPBXRDDTlZytFffL7ly/i/lG1pYyrRW3vP7l/Xyt6WP6yv2LP8Agif+wL+xI2k+IfB/wsi+KfxX0zyJ0+MHxq+weOPFdnqEO11vfC+lS2Fp4O8EzwTGU2V/4Y8Oadr8dtJ9mvdd1HZ5rdUKMIbK7/mer+XRfL582jjjKpKXWyfRH611qZhQAUAFABQAUAFABQAUAFABQAUAFAH/1P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP54f8Ag5S/Zpf4xfsJ6d8Z9G083Xin9mPx7p3iyeWKLzrr/hXfjt7TwX42tYEUGQRxaxN4G8R38wJS303wzeTzL5aNLB/Qn0buJVk/HVTJq0+XC8TYCphEm7R/tDAqeMwU5dG3SjjsNTT1dTEwS1ajL8U8dsheZ8IU80pQ5sRkGMhiW0ry+o4xxwuLilvpVeErza0jToTb0TlH/P1r+/D+Mj/Sn/4IXftQL+07/wAE6fg3NqeofbvG/wAEIp/gD42Ek3m3Im+HlrYxeDbydnP2id9S+G+oeDbm6vZgxutW/tRfNnkgmdf83fHHhj/VnxEziNOnyYLO3HP8FZWjy5hOo8ZBfZj7PMaeMjGEfhpeydoqSR/dnhHxB/b/AARljqT58XlKeTYu7vK+CjBYWTv7zdTAzwspTd+ar7XVuMmfsDX5CfpgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAcL8Tfhj8P/AIzeAfFfwt+KnhDQ/Hnw98caRc6D4q8JeI7KO/0jWdMugpeG4hcbopoZUiu7G+tngv8ATb+C21HT7q1v7W2uIk0mmmrp7p/0/wAvvGm07rdH8Sf7fX/Br58Y/Bmu6549/YI8Q2PxW8A3c9zqEPwT8d69p3h34m+FlkZphpPhrxdrUun+EfHGk2oDpaTeINU8KeIoLYWljIvim/Fxq0/HUwrTvTd1/K9GvRt2fz5X5u3u9EayeklZ9+n/AAPu+6x/Op8Uf2G/2yvgpf3On/FX9ln4++B3tZHja91v4U+NItEuPLJDS6d4ih0ibQdWtsqwF3pepXdq207ZmwSvO6c1vCS+T/TT8X6vU1U4vZp/P+vxPEbP4YfErUbkWen/AA88c314W2C1s/CWv3VyXyBsEEGnyy7skDbsBzgdTU8suz+4q6/pn038Nv8AgnB+318XZoI/h9+xx+0frlvcsqxavP8ACPxnoXhvcxwok8UeItJ0nw5Dnr++1WLC5cnYC1UqdR7Ql9zX5r9Y+b1TjLnFbyX33/4PT+rH6ofAv/g2Q/4KQfFCWzuvibb/AAl/Z20WUpJdnx548s/F3iZLVyPmsNA+FsXjPTprvaQ/2LV/E2glAGjnnhnAirWOGqPe0fV3f3L9ZeXmQ60FteXp/X+d/wAY/up+zV/wayfsb/DaSw1j9o34m/Ev9pHWrYxSXPh/Tyvwe+HFyeHkgudL8N6lq/j64COPLS4tviPpiTRb2lsVZ1WDeOGgvibl+C+5Xb/8CX4tGTrSeyUfPf8A4H3rXysz+gv4E/sxfs8fsxeHP+ET/Z9+C/w5+EOhvHFHeQ+BvC2l6LfawYf9VceIdagt/wC2vEl6vQ6hr2oajfNgB7l8Lt6FGMVaKSXl/wAMvy+/QycnLVtv1/r+vvPdaYgoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDz/4sfDTwv8Z/hf8AEX4ReNrT7d4Q+J3gnxR4C8TWoCGSTRPFmi3mh6iYGdWWO6jtb2SW0nxvt7lIp4yrojV6GVZlismzTLs3wUuTF5ZjcLj8NLWyr4StCvT5rWbi5U0pxv70W4uyZxZjgMPmmX47LcXHnw2PwmIwdePV0sTSnSnbe0lGbcX9mVmrWTP8mv44/CLxV8AfjJ8Ufgl43h8jxX8KfHnijwFrhETxQ3N74Z1e60s6jZq5Yvp2qR28epaZOrSR3On3drcwyyxSpI3+rmR5vhc/ybK87wUubC5rgMLj6GqcowxNGFX2c7XtUpOTpVYvWNSEouzi0f5yZtluIybNMwynFq2Jy7GYjB1tLKU8PVlT5473hUUfaU5XtKEoyV00f0Cf8Gy/7WC/Cf8Aa08afsz+I9SFt4U/aX8K+f4ajuJttvB8VvhrbanrmjxReaVhtf8AhIPBlz4ysZ2R0m1LVNP8MWASeUWqL+A/SW4U/tXhPBcS4enzYrhrFcuJcV70sqzKdKhWbtdz+r4yODnFNWp0qmKqXinNx/Z/AXiNZdxJishr1OXD59h70E37qzHARqVqSV9I+2wssVCVtalSGHh7zUFH+9Cv4RP7BCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4VP+DnP9kdvht+0n8P8A9rPw1pnleFf2hPD8fhbxzcW8OIbX4rfDrT7Swtrq8kVVihfxV4AGhpYQ4aW5ufBviK9lkZ3IX+5fozcW/wBpcOZhwniat8Vw/iHisDGT96eVZjUnOcIJ6tYTH+3dR6KMcbhoLRXl/Ivj5w08BnuC4koU7YbOqKw+LcVpHMsDCMFKb0SeJwfseRWvKWFrzbd2fzgfCv4leLPg18TPh/8AFvwHqB0rxp8NPGXhvx14WvxvKW2u+F9WtNZ01p40eMz2r3VnHHeWzN5d1avNbShopXVv6MzXLcJnOWZhlOOp+1wWZYPE4HFU9LyoYqlKjU5W01GajNuErXjNRkrNH4bl+PxOV4/BZlg5+zxWAxVDF4efSNbD1I1aba6x5opSjtKLcXo2f6vX7NXx38I/tPfAL4SftAeBZFbwz8V/A+h+LrO185LibR72+tgmt+HL2VAEbU/DGuw6l4d1UINialpd3GuQor/KniTIsXwzn2bZBjl/tOVY6vhJy5eVVoU5Xo4mCeqpYmhKliKV96dWD6n+i2RZxhs/ybLc5wb/ANnzHCUsTGPMpOlOcf31CbVk6mHrKpQq2VlUpySse4V4h6wUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPzw/4KofsgRftu/sRfGP4MWFhFeeP7TSh8QvhDK6p51v8UfA8Vzqfh2ztpZMpbHxVatqvgW8u2V/s2l+Kr+ZUMioV/QvC3i98E8a5PnNSbjgJ1f7PzdJvlllmNcaeInJLWX1WSpY6EVbmq4WCejtL4nxD4ZXFnCeZ5XCCljY0/ruWN2vHMMIpVKEYt6R+sxdXBym78tPE1JJNpI/y654J7Wea1uoZba5tpZILi3njeGeCeFzHLDNFIFkilikVkkjdVdHUqwDAiv8AT2MozjGUJKUZJSjKLTjKLV1KLV0007pp2a1V7n+fzTi3GScZRbUotWaa0aadmmno01p5H9mf/Br1+2aNT8OfFX9hvxjqub3w1LefGb4MJdz8yaBqd1Z6f8TPCtj5hVFTS9cuNG8X6fYQeZcXL+JPGOouFt7Byv8AG/0neDfZYnKuN8HS9zEqGTZy4R2xFKEqmWYqdtb1aEa2EqVJPlj9XwdNXlUR/UX0f+KfaUMx4SxVT3qDlmmVKT1dGpKMMfhoXskqdV0sVCEbyl7fFTdowZ/XhX8kH9KhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/Q/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/OZ/4L8fsXn9lL9ubxL408M6V9g+FH7Tkeo/F/we1vD5Wn6d4uur5I/it4WgICRLLp/iq7TxRDaW0aWunaF410Kwhz5Dhf9E/ATjP/AFq4Hw2CxNX2ma8MunlGMUnepUwkYXyrFNXk2qmFg8K5yk5VK+CrzfxRZ/EHjJwt/q7xdXxWHp8mXZ+p5nheVWhTxMp2zLDrZXhiJLEKMVywo4ujBW5Wfmd+yF+0l4s/ZD/aV+D37RngzzptV+GHjGw1q+0uKY26+I/C9ysuleMvCk8vSO28U+FL/WNBmlIJgW/+0x4lhRl/SuLuG8Jxdw3nHDuMsqWZ4OpRhVceb6vio2q4PFRXWWFxVOjXS15vZ8rTTaPg+Gc9xPDWe5ZnmFu6mX4qFWdNPl9vh5Xp4rDN9I4jDzq0W+nPzLVI/wBWL4bfEPwl8W/h74H+KXgLVodd8E/ETwpoHjXwnrEGPL1Hw/4l0u21fSrrbkmKSSzu4TNA+JbebzIJVWWN1X/K/MsvxeU5hjsrx9J0Mbl2LxGCxdGW9PEYarKjVhfRNKcJWklaStJWTR/ohgMbhsywWEzDB1FWwmOw1HF4aqtp0a9ONWnK2tm4yV47xd07NNHa1xHWFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/9H+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPx//AOC3n7FB/bO/Ya8c2vhnSf7R+L3wQNx8ZPhYLaHzNS1O58O6fc/8Jj4NtfLU3FwfF/hBtTt9P02MhL3xXp/hWSUN9jSv13wT40/1N44wMsTW9nlGd8uT5pzStTpxxFSP1PGTu1GP1PF+ylUqNNwwtTFJW52fmfixwp/rTwli40KXPmeU82aZdZXqTlQhL61hY21f1rDc8YU1pPEww7fwH+avX+kZ/CZ/cd/wbJ/ttD4jfBXxv+xX411fzvF3wNkuvHfwrW7n3XOpfCTxRq4PiDR7YOzyyr4F8c6n57vI6hNM8daPp9nCtrpD7P4h+kvwV/Z2dYLjTBUrYTPFHA5pyRtGlm2Fo/7PWk9EnjsDSskk71cDWqTfNVR/WngJxX9eyrF8K4qpfE5S5YzLuaXvVMtxFT9/Sinq/qeLqczbbXJjKVOKUaR/U1X8un9CBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9L+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/ADUv+C2v7EZ/Yr/bg8cWPhnSP7O+DvxsN18YPhN9mg8rTNMsvEGoTnxd4KtNiiCD/hC/Fh1CysNNRmltPCd94UuJ9rXyBv8ASTwU42/104IwM8VW9pnGS8uUZtzSvUqzw9NfU8bO7cpfXcIoTqVGkp4uGKS0gfwl4rcJ/wCqvFmLhh6fJlma82Z5byxtTpwrTl9ZwkbXivquI54wpp3jhp4ZyvzI+Nv2G/2qfE/7Fn7U/wAH/wBozwz9quU8CeJ4P+Es0O1lEZ8VfD/WUfR/HPhhldlt2m1bw1eahHpkt0Hh0/W00zVghn0+Er9hxxwthuM+Fs34dxPJF47DS+qV5q/1XMKP77A4pW961LEwg6qhaVSi6tL4aklL5fhLiHEcK8Q5ZnmH5pLB4hfWaMXb6xgqqdLGYfX3b1MPOapuSkoVVTqWvCLP9U3wN418L/EnwX4R+IfgjWLXxB4N8deGtD8X+FNdsWL2eseHfEem2ur6NqdsSFbyb3T7y3uEDqrqsm10VwyL/lrjsFistxuLy/G0Z4fGYHE18HiqE9J0cRhqkqNalLpzQqQlF2utNG73P9DcJi8Pj8JhsbhKsa2FxlCjisNWh8NWhXpxq0qketpwlGSvrrrsdTXKdAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9P+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8Xf8Agut+w/8A8NkfsSeJ9X8KaR/aHxl/Z3/tL4ufDf7NB5up6xpWn2H/ABcfwRa7Feeb/hJfC1odS0/T7aN59T8V+F/CtouEd6/ZvAzjf/U7jXC0cVW9nk3EPs8pzHmlanRq1Kn/AAnY2W0V9WxU/Z1Kkny08LisVJ62cfyzxd4T/wBaOE8RVw9PnzTJOfMsDyxvUq04Q/2/CR6v6xh4+0hCKcqmJw2GjorqX+bzX+jR/DR/c7/wbO/txD4o/A7xb+xf451jz/G/wEE/i74X/bJ993rHwc8R6r/xNNKt97PNOfh94z1LynkkkCQaJ4z8N6XYwpa6PIE/h36SvBH9l55hOM8DR5cFn3LhM05I2hRzjDUv3VWVrKP9oYOndJJuVfB4mrUlzVkj+t/Abi3+0MpxPC2Lq3xeT3xOX88ryq5XXqfvKcb6v6liqlrttKji6FOCUaR/UXX8wn9AhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//1P7+KACgAoAKACgAoAKACgD51+KvxwfwfqUnhzw5aWt7q9ukbajeXokks7BpkWRLWOCGSF7i78p0lkdplht9yRmOeTzkiC4wvq9vS/8A7dHz6fd9rhPCH7R+r/2nBa+MbKwl0y4lSKTUNOgltrmw3sF+0SwmWaK6t4+DJHGkU6pudJJmCwMDdPs/vX/27/L7z7DR1kVXRldHUOjoQyurDKsrDIZWBBBBwQcjPFBmOoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPA/ix8aB4Gu10DQ7S21DXjDHPdy3hkay02Odd8EckMLxS3F1NERMIxNEkMTwyOZfNEahcYX1e3pf/wBuj+X3fa8r8NftJeIIdQhTxTYafe6VLIqzzafbyWl/aIxwZolM8sFysYO5rd40kcLgXCnFBTgum/pf/wBvX9a6bR+ybW5t722t7y1lSe1u4Ibm2njOY5reeNZYZUPGUkjZXU45BzxQZE9ABQAUAFABQAUAFABQAUABGeDyDwQe9AH+ab/wWt/YcP7Ef7bPjPTPDGkHTvgz8Zzd/Fv4Qm3g8rTNM03XL+b/AISrwNa7B5EJ8DeKGvNPsdPR5JrbwneeE7q5IfUFFf6S+C3G/wDrtwVg6uKq+0znJuTKc35pXqValCmvquOlf3n9ewvJUqVGkpYuGKjFJQP4R8VeEv8AVPivFU8PS5MrzTmzLLOWNqdOnWm/rGDja6X1PEOVOEL80cNLDSldzR8b/sQ/tU+K/wBiz9qP4RftGeFBc3R8BeJYH8UaFbzCIeLPAWro+keOPCsm91tzJrPhu81CDTp7pZYdO1ldM1dYmuNPgZPseNuFsLxnwvm/DuK5Y/X8M/qteSv9Vx9F+2wOKVk5Wo4mEJVIxs6lF1aLajUkpfL8J8Q4nhXiDLM8w3NJ4PEJ4ijF2+s4OqvZYvDu/u3q0JzVNyuoVfZ1V70IuP8Aql/D7x54U+KXgTwb8S/AmsW3iHwV4/8AC+heMfCeuWZzbat4e8SabbavpF/FnDILmxu4JTFIFliZjFKqyI6r/lpmGBxWV47GZbjqMsPjcBiq+DxVCfxUsRhqsqNam+/LUg1dXT3TaaZ/obgsZhswweFx+Dqxr4TG4ejisNWj8NWhXpxqUprZrmhJOzV1ezs0zr65DpCgAoAKAPE/ix8Xovh/9n0rTLWHUfEN5B9pEdyz/YtPtWd0inu1iaOWaSd45BDaxywnYjTSSopiS4Coxv6X9f8A26P9dre94poX7Sfii3v4z4h07TNR0x3AuEsIJLK+hjJwXtpGnlgkKA7vJniJl27PPgzvoLdNdG/mv/uh9labqNnq+n2WqafMtxZahbQ3drMuQJIJ41kjYg4ZW2th0YB0cFHCspFBkXaACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDxP4sfF6L4f/Z9K0y1h1HxDeQfaRHcs/wBi0+1Z3SKe7WJo5ZpJ3jkENrHLCdiNNJKimJLgKjG/pf1/9uj/AF2t73imhftJ+KLe/jPiHTtM1HTHcC4Swgksr6GMnBe2kaeWCQoDu8meImXbs8+DO+gt010b+a/+6H2Vpuo2er6fZapp8y3FlqFtDd2sy5AkgnjWSNiDhlba2HRgHRwUcKykUGRdoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPE/ix8Xovh/8AZ9K0y1h1HxDeQfaRHcs/2LT7VndIp7tYmjlmkneOQQ2scsJ2I00kqKYkuAqMb+l/X/26P9dre94poX7Sfii3v4z4h07TNR0x3AuEsIJLK+hjJwXtpGnlgkKA7vJniJl27PPgzvoLdNdG/mv/ALofZWm6jZ6vp9lqmnzLcWWoW0N3azLkCSCeNZI2IOGVtrYdGAdHBRwrKRQZF2gAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8g+KvxWtvh3bWtra2seo6/qMbzWlpM7pbWtsjGP7be+XtleN5VaKCCJ42naObM0QiywVGN/T7//AG6P9dre94BpX7SXjC3vkk1fT9H1DTmkHn2ttbzWVwkRPP2S5+0TKrqOguIrgN0JUksoXyLz+7/7dfrvbpc+yNC1vT/Eej6frmlymaw1K3W4gZhtdckpJFKvISaCVZIJ0BISaN1Bbbmgzas7f1+v5/ea1AgoAKACgAoAKACgAoAKACgAoAKACgAoA//V/v4oAKACgAoAKACgAoAKAPzf+LmlX2k/EPxOl8kg+3ancaraSODtmsdQka4t2ibo6RKxtTtJ2SwSRHDIyqG8XdL7vu+7+u+557b2893PDa20Uk9xcyxwQQRKXlmmlcJFFGigszyOyqigEljgA5xQM/Urw9Y3GmaBoem3b+Zdafo+mWNy+7dvuLSyhgmfcMht0kbHcDznPOaDB6tvu/67fl9xsUCCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD88/jjpV9pvxH1ya7STydVNtqFhOwOye1e0ghIjY9fs00Mtqy9VMIOAjIWDaPwr+v6/rueSqrOyois7uwVEUFmZmOFVVGSzMSAABkngZ4oKP058B6ZeaN4M8MaXqAZb2y0Wwhuo35aCYQIz2zds2xb7OcZH7vgkAGgwlu/U62gQUAFABQAUAFABQAUAFABQB+N3/AAXF/YZ/4bU/Yp8Uz+E9H/tH41fAP+0fiz8K/s0HnanrEGnWB/4T3wHabQ003/CYeGLZptP0+Ab7/wAXeH/CUbERo9fsXgjxx/qXxphY4qt7PJs+9nlOac0rUqLqVP8AYMdP7MfqeKmlUqST9nhK+LaTbR+YeLXCX+tXCuIeGpe0zXJ3PMsv5Y3qVVCH+2YOPV/WcPHmhCOtTE0MMnoj/Nor/R4/hY/t+/4Nlv25/wDhYHwn8Y/sP+PNY83xZ8G0vfH3wea9n3XGqfCzXdVU+KfDdsZWZ5n8DeMNUTUbdC7SHRvGUFpaQpp/hx/K/iX6S3A/9n5tg+NsBRthM45MBnChH3aWaUKT+rYmdopJY7B0nTk9F7bBynNyqYm5/WPgLxd9dy7FcJ4yrfE5Xz4zK+d+9Uy+tU/2ihG+reExNRVFq37LFKMUoUGf1VV/LJ/Q4UAFABQB8GftC6VfWXxAn1K4SQ2WsWFhNYTEExYs7WKxubdW+6JIpofOkjzuVbqJyAJVLBtB6en9f1v+kfCqCj9KfhZpV9ovw+8L6dqSvHexWDTSxS5EkAvbq4vobeRTgpJBBcRwvGQGjZChClSKDGTu3/W33f133O/oJCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD4M/aF0q+sviBPqVwkhstYsLCawmIJixZ2sVjc26t90SRTQ+dJHncq3UTkASqWDaD09P6/rf8ASPhVBR+lPws0q+0X4feF9O1JXjvYrBppYpciSAXt1cX0NvIpwUkgguI4XjIDRshQhSpFBjJ3b/rb7v677nf0EhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB8GftC6VfWXxAn1K4SQ2WsWFhNYTEExYs7WKxubdW+6JIpofOkjzuVbqJyAJVLBtB6en9f1v8ApHwqgo/Sn4WaVfaL8PvC+nakrx3sVg00sUuRJAL26uL6G3kU4KSQQXEcLxkBo2QoQpUigxk7t/1t939d9zv6CQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+IP2ktKvrfxjYavIkjafqOj29vaz4JjS4sprj7TabugdVmhuMcBhcZXJV9oaw2+f9f1/wD52oLP0Q+CWlX2kfDnQ4dQSSKa6N5qEcEoIeG1vbqWa1BU8r50JS6C9R9ow2GDKoYz+J/wBf1/XkesUEhQAUAFABQAUAFABQAUAFABQAUAFABQB//9b+/igAoAKACgAoAKACgAoA5bxR4L8M+MraO28RaXDfiDcbafdLBd2xfG77Pd27RzorFVLxeZ5MhVTJG+0bQabW39fLqYnhj4VeB/CN2NR0jRx/aK7hFfXtxPfT24YbT9m8+SSK3cqSplhjjmKMyNKUJSgHJvr+n/D/ANdz0SgQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHOeJfCXh3xfZrY+IdLg1GCNi8DOZIri2dhhntrqB4rmAthfMEcqpKFVZQ6gLQNNrY5bw58IfAXhe+j1PTtG82/hbfbXWoXM981qw5D28U7m3jlU4Mc4h8+MjKSrkhQbm3/X62X/B8r2j6ZQSFABQAUAFABQAUAFABQAUAFABQB/m4/wDBcz9hc/sW/tqeJdQ8J6P/AGd8FP2gjqfxX+F32aDydM0W+vr8f8LC8BWuxUgh/wCES8TXgvNO0+3QQ6d4R8S+E7bc0qzV/o54H8cf658F4ani63tM64f9llWac8r1a0IQ/wCE/Hy1cn9bw0OSpUlZ1MXhsXK1mj+GPFvhH/VbiqvPDUuTKs69pmWX8qtTpTnP/bcHG1kvq2InzwhFJU8NXw0dWj89v2Qv2l/Gn7H37SPwl/aL8BvJJrPw08VWmq3uki4a2g8T+F7tJNM8X+Eb6VQ2yy8UeGL3VdEmlKO9ob1L2ALc2sLp+g8XcNYLi/hzNuHcekqOZYWdKFblUpYXFQtVwmLgnvPC4mFKtFaKfI6cvdlJS+L4az7FcM57lueYO7q4DERqSp83LHEYeSdPE4ab6QxGHnUpN2k48/OlzRR/qqfCX4peC/jf8MPAHxg+HOrR654F+JXhLQ/GfhbU49qtcaPr+nwahaLcwq8htNQtlnNrqVhK32jT9QgubG5VLiCVF/yyzbK8bkmZ4/KMxpOhjstxdfBYqk/s1sPUlTnyv7dOTjzU6ivGpTlGcW4yUpf6HZbmGEzbL8HmeBqKtg8fhqOKw9TZypVoKceZa8s4p8tSD96E4yhK0otHodeedoUAFAGH4g8N6H4psG0zX9Nt9Ssy3mLHMHV4ZAColt54ilxbTBSy+bBLE5VihbYzKwNNrY4rQvg18PfD1/HqdlopnvIJBLbSahd3N9HbSKcrJFBPK9v5iNho5ZIpJYnVXjdHAagbk31/Q9RoJCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAw/EHhvQ/FNg2ma/ptvqVmW8xY5g6vDIAVEtvPEUuLaYKWXzYJYnKsULbGZWBptbHFaF8Gvh74ev49TstFM95BIJbaTULu5vo7aRTlZIoJ5Xt/MRsNHLJFJLE6q8bo4DUDcm+v6HqNBIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAGH4g8N6H4psG0zX9Nt9Ssy3mLHMHV4ZAColt54ilxbTBSy+bBLE5VihbYzKwNNrY4rQvg18PfD1/HqdlopnvIJBLbSahd3N9HbSKcrJFBPK9v5iNho5ZIpJYnVXjdHAagbk31/Q9RoJCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAydb0HR/Eeny6Xrmn2+pWEpDNBcKTtdchZYZEKTW86BmCTwPHMgZgrjcaBptar+v6/rY890r4JfDnSL5NQh0M3U0Ugkgj1C9ur61gcHKkWs0phm2n7ouluAD8ww4V6B88v6/wCGVvx38rnrFBIUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPyh/4LK/sMJ+3T+xb418LeGtKS++M/wAK/tHxV+C8kUQbUL/xLoNhcf2z4It3ULLJH4/8OG/0G2s2mis28Tf8Ixql6WTR02/qvg5xw+BuM8FisTVcMmzXlyrOU3anTw1ea9jjZdE8BiOSvKfK5/VvrNKFvatS/OfFHhH/AFu4VxWHw9PnzXLubMcqsrznXowftcJF7tY2hz0YxuofWPq1Sd1STj/mbujxO8ciNHJGzJJG6lHR0O1kdWwysrAqysMgjBwRX+lSaaTTTTV01qmns0+qaP4Nato9GtGn0P7Pv+DY39uv+2/DXjb9grx/rGdS8JrqvxR+Az3s/wA1x4Zv70T/ABI8C2RkKJu0XW72LxxpNjCJru6t9f8AGl22yy0VAv8AGv0mOBfYYnBceZfR/dYt0srz5Qj8OJhDly7HTtratRg8FWm7RjLD4OK9+u3L+pfAPi/2tDF8HY2r7+G9pmGTub3oTnfH4OF7K9KtNYylBXlJV8XJ2hRR/XRX8lH9JhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP87P/gv/APsJ/wDDJX7Y2ofFDwXo/wBh+DH7UEms/Ebw0LSDy9N8O/ENLqF/ih4PjCKsNvH/AGxqNr4x0m2jjgtYNJ8WRaRp8bx6FcGL/QzwD46/1s4Pp5Xja3PnPDCo5dieeV6mIy/kayzGO7vJ+ypzwdWT5pOrhXVqSbrwcv4l8ZeEf9XOJ55hhaXJlXEDq46hyr3KGNUl/aGFWiS/ezjiqcVGMY0sSqcE1Rkz8jf2c/jx46/Zh+Ofwu+P3w2vPsnjL4V+L9M8VaUjySR2uqQWrtDrHh3UzF+9fRfFGiXGpeHNchjIefSNUvYVZWcMv61xFkWB4nyPNMgzKHPg80wlXC1WknKlKavRxNLmulWwteNPE0JNWjWpQetj82yPN8XkGb5fnOBly4rLsTTxFO7ajUUXarRqW19liKUp0KqWrpVJpbn+qx+zx8dPAv7TXwP+F/x8+Gt79t8F/FTwhpfivR97xvdac95F5eqaBqflFo4ta8NaxDqHh7XLdGYWusaZfW2T5RNf5ZcQ5HjuGs7zTIcyhyY3K8ZVwlayajUUHelXpXs3RxNGVPEUJNe9RqwlpzI/0PyTN8Hn2U5fnGAnz4TMcNTxNK9uaHMrVKNS10qtCqp0K0b+7VpzjrY9mrxj1AoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9H+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD85P+Cqn7Elh+3n+xt8R/hBZ2lo3xM0KH/hYfwU1O48qJrD4neF7S8k0rTTdy4S0sPGOnXGqeCtVnk3w2dl4gfUzE9xp1syfovhZxrU4E4xy7N5Tmstry/s/OqcbtVMsxU6arVORazqYOpGljaUVZznh1Tuo1JqXw/iJwnDjDhfHZZGMfr9FfXcqqSsuTH4eM3Tp8zsowxUJVMJUb0jCv7TWUII/wAv/UtO1DR9Rv8ASNWsbvTNV0q9utO1PTb+3ltL7T9QsZ5La8sb21nSOe2u7S5ilguLeZElhmjeORFdStf6cU6lOtTp1qU4VaVWEalKpTkpwqU5xUoThKN4yhOLUoyTs001e5/AM4TpTnTqQlTqU5ShOE4uM4Tg+WUJxlaUZRkmpRaummnax/W//wAGx37d39jeIfGn7BHxB1nGneKG1b4ofAN76f5bfxHZWgufiR4DsvMLvt1jR7RPHWj2MIhtba40PxtdvvvdZjDfyZ9JjgX22HwXHmX0f3mF9llmfKnHWWHnLly3Hzskv3NWTwNao25yjXwUElCi2f0l4B8X+yr4rg7G1bQxDqZhkznLRV4R5sdg4X/5+0o/XKUFaMXRxcnedVKX9nlfxqf1IFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAGfquraVoOm32ta5qen6No+l2s19qerareW+nabp1lbIZbi8vr67khtbS1t41aSa4uJY4YkUvI6qC1AH4Sftif8ABxV/wT+/Zh/tTw78PPE2oftU/Emy86BNA+DE9nN4Etb6PPlprfxdv93hQ2MjI0b3XgeLx9d28m1bjTEVi64TxFOOz5n2jt99mvu5u9lsaxpSe/urz3+7/O3fyl/Nt8T/APg6G/4KH+K/Hq+IPhvovwU+FHgezuw9j8PU8FSeOPt9ir71tvFXizxDfxaxqN065invPC8PgmJ48GCxtpQZW53iqjeiil2tf77uN/ly99do6qjBbtvz/r/g/ilH+wv/AIJT/wDBQnSv+Ckv7Kel/HI+GrXwT498O+KNU+G/xY8IadcXF1o2leOtD07R9YkvfDc96zahJ4a8QaFr+ja3pkd89xc6ZLeX2gT6hqtxo02qXfXSqKpDmtZ3s15rttunfy21s2YTjySt03Xp57a/L7j9Ka0ICgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Av8A4ONf2Ef+GeP2obT9pzwJo32T4UftRXV/qmvLZQbLDw38b9PjW48ZWcvlqUt18e2bReO7J55PO1HXJfHPkRJa6Wm3+9/o68df6w8MT4Zx1bnzXheNOlQc5XnickqPlwc1fWTwE08DNRXLSoLA3cp1Xy/xt44cIf2JxBHP8JS5cu4glOpW5I2hQzaC5sVF2uo/XItYyLlrUrPF8to07H4GfCf4oeNPgn8TfAXxe+HOry6D46+G3izQ/GfhXVY9zC11rQNQg1GzFzCrxi7sJ5IPs2pWErfZ9QsJ7mxuVe3uJUb95zXK8FnWWY/KMxoqvgcywlfB4qk9OajiKcqc+WVpclSKfNTqJc1OpGE42lFOP47l2YYrKsfg8ywNV0cXgcTRxWHqL7NWjNThzLTmg2uWpB+7ODlCV4yaP9U79jn9p7wX+2R+zX8Jv2jPArRQ6X8RvDFtfaroq3C3E/hTxdYvJpfjHwheuNrm68N+JbPUtLE7ogv7a3ttTt1Nne27v/lpxhwzjeDuJM24dxybq5dipQpVnHljisJNKrg8XBbcuJw06dXlV+SUpU5WnCSP9DeGM/wvFGRZbnmDsqeOoKdSle8sPiYN08VhpvdyoV4VKfM1Hnio1EuWcD6Zr5o94KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPDfj1+0x+z/wDsu+D5PHn7Qnxf8B/CPwuon+y33jPX7PTLrWJ7dBJLY+HNG3ya34o1QRsHXSPDunapqci8x2j87plKMVeTSXn+nf5X9HsNRctEm/T+v6+4/l9/bI/4Oqfhv4a/tXwn+w/8Hb34k6tH51tbfFz4zw6h4X8DJKu5Y77Qvh1plzaeNfEdlKrLJE/iPWPh7eW8qFJ9HuojmueeKS0gr+bul91rv/yX0f2d40HvKXyS/rofyp/tZf8ABRX9sz9tvU5rn9ov46+MPGOgm7+12Hw9sLmPwv8ADDR3STfbHTvh/wCHI9N8MtdWahIotZ1DT77X5kjRr3VbqYPM/JOpOfxPTstEvl/w783e0dowjHZL16/1/XU+J6go+rv2YP2HP2sv2y9eGg/s2/Avx18TRHdpZal4k07TRpngTQJ32nZ4k+IGuy6V4M0CTy385LfVNct7u4jVzaW87KUa4wnP4Yt9L9F6t6fl87WJcox3aX9dt/u/yP8ARz/4I7f8E8tS/wCCb/7Itr8I/GOvaV4l+K3jrxlqnxS+Kmo6DJcT+HtP8TaxpGh6DZ+F/Dt3d29pdX2k+HNB8O6ZavqE9rbHUdam1nUILeCzuraCL0KNP2cLN3bd369vO1vLvZXsctSfPK62Wi/rz/D5n6r1qZhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPiz/goR+x94a/bn/ZN+Kn7PeuCztda1/STrfw38Q3ke5fCXxQ8OpLfeC9f8xUeeGz/tDdo2v/ZQLm78LavrunRsv21t32fh/wAX4ngfivKuIKHPKjh6vsMxw8H/AL3lmIahjaFrxTn7P99Q5nyxxVKhUduRc3yvGnDNDi7hzMclq8satal7XA15f8w2YUE54StdXah7T91W5felh6tWCtz3P8s3xj4R8S/D/wAW+KPAnjLR73w94v8ABfiHWfCninQNRj8m/wBF8Q+HtRudJ1nSr2LLCO60/UbS5tZ1DMokiYKzDDV/qJg8XhswwmFx+DrQxGExuHo4rC16bvTrYfEU41aNWD0vGpTnGUdNnrY/z4xOGr4PE4jB4qlOhicLXq4bEUZq06VehOVOrSmtbSp1IyjLXdPc/pl/4Npv28P+FUfGzxJ+xX4/1nyPAfx7uZvE/wAK5L642WmhfGXR9MVL/RoTIUhgj+I/hXTUtVLylpvEnhXw3plhbtd69cM/81fSS4E/tXJcNxpl9Hmx+QxWGzVQjedfJ61T93Wla8pPLsVUcnZLlw2LxFSb5KCP3nwI4v8A7OzavwrjavLg85k8RlznK0KOaUqfv0lfSKx2GpqOr1r4fD04KU6z5f7oK/h0/rgKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD89P2xf8Agqd+w9+wxa3tt8dfjZoSeOraAy23wi8DFPG/xXvZGj823hl8JaNM7eG47xMmz1Pxte+F9CuCrImrBxsbOdWEPikr9lq/u/4ZeataVxhKWy07vRfr+Cvr1P5MP2zv+Do79pL4onVfCX7HfgHSP2c/B83n2sPxB8WR6Z4/+MF/bNlFurKzu7afwB4KeeF2SazTS/G2oWkqxXOm+KbWVQa5Z4qT0guXzer9dkl06St53N40Yr4nzPtsv6+fre6P5pPij8XPil8bvGGo/ED4xfETxr8UPG+rNm/8VePPEur+KddnjDu8dt/aOs3V3cQ2VuZGSzsIHjsrKIiG0gihVETmcnJ3k233ev8An+f32NUklZKy8jz+OOSWRIokeWWV1jjjjVnkkkdgqIiKCzu7EKqqCzMQACSBSGfs3+xv/wAEGP8AgoT+19/ZXiD/AIVn/wAKC+GGoeTP/wALF+PCaj4N+12EmJPtPhzwJ9iufH+v/abY+fpV6fD2neGdR3RD/hJoIpPtC7QoVJ9OVd5fot3+C68z2jnKpGPW77L/AD0/ra9mj+rr9jr/AINsP2E/2dhpXiT42xaz+1p8RbLybiSb4hwLoHwqtL6LaS+m/CrR725ttTtm/eRzWXj/AMQ+OdOnVlkWwtpFXb1Qw1OOsvffnt/4De33uV+xhKtJ7e6vLf7/APJX063P6A/DPhfwz4L0HS/C3g7w7oXhLwxolqljovhzwzpGn6DoOkWUX+rs9L0jSre00+wtY8nZb2ltDCmflQZJboStotF5GV29/wDP+v67G7QAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+HD/AIOXv2D/APhWXxh8MftufD/RvJ8E/G+4tvB/xdisYNtrovxe0fS3OieIZ1jCxW8PxC8KaY6TFItreIvCWr6jfTvf+JIRL/b30a+O/wC08oxPBOYVubG5JGWMyhzleVbKK1Ve3w0W9ZSy/F1U43emGxdKnTXs8NLl/kvx44Q+oZnh+LMFSthM2lHDZkoR92jmVKn+6rO2iWNw9Np6K9fDVZzbnXifzCeFfFHiHwP4n8OeNPCOr3vh/wAV+ENe0jxP4Z17TZfI1HRfEGg6hb6ro2rWEwB8m807UbW2vLaTB2TQo2DjFf03isLh8dhcTgsXRhiMLi6FXDYmhUXNTrYevTlSrUqkdLwqU5yhJX1Untc/AcPiK2ExFDFYarOjiMNWpYjD1qbtOlWozjUpVYPpOnUjGcX0aT6H+pT/AME6P2yPD37dv7JPwu+P+lNZW3iXU9OPhr4peH7Jvl8K/FTw3Fb2njDSBEWeS3sby4ktvEnh+OZmnk8La9odzNiWd1T/AC98RODsRwLxZmmQVVOWGpVPrOV4ia1xeV4lylg617JSnCKlh8Q4rlWKoV4q6ij/AEF4I4nocX8N5fnNNxVepD6vmFGL/wB3zGgoxxNK28YybjXop+88PWoyesj7hr4g+tCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgBrukaPJI6xxxqzu7sFREQbmd2bCqqqCWYnAAycYoA/E79tb/gvn+wJ+x6dW8M6Z45f9o34taf59t/wrz4IXWneINN03UotyC28W/Eh7j/hCdAWG5R7XU7PTb/xH4p0qVHW48LMww2M69OGl+Z9o629Xsvz6WXxGkaU5eS7vz8rP9F5n8i/7af8AwcMft8ftX/2t4Z8DeJ4P2WvhVf8An26+Evgzf31p4zv9PlyFh8TfFucW3i27uPKeS3uR4RTwJo2oWz+VfaFPgs3JPETnovcXlv8Afo/uSt15tEdEaUY/3n5pf1+ffso/hVdXV1fXVzfX1zcXl7eXE11d3l1NJcXV1dXEjTXFzc3EzPLPcTyu8s00rvJLI7O7MzE1gaHZ/Df4X/En4x+LtL8AfCbwD4x+JfjjWpPL0rwl4F8Oat4p8Q3xDKsj2+k6LaXt60EO9WuLjyRb20Z824ljjBdWk27JNvsv6f5feDdtXovM/pR/Yz/4NeP2ofi0NJ8W/tceONF/Zp8GXHkXUngfQzp/xB+MV/atiQ291Fp94fA3g1rqB1MV3ea94n1bT5vMg1TwhDNE0VdMMNJ2c3yrtvL87L75W+djGVaK+Fc3nsv6+Xpe7P6x/wBjj/gkp+wj+w5Hp2pfBr4K6RqnxEsEj3fGL4meT49+KMl0ihWvdP17VbVdP8ISzqFW4t/AOj+E9Pn2hprOR9zt1QpU4fDHXu9X+X5cv+HVswlUlLd6dlov1/F/efpLWhAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/1f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+cf2uf2afBH7YH7OXxY/Z0+IEapoXxL8L3WlWuqi3S5uvDHiW1ePUvCXi/T4nZA+oeFvEtnpeuW0RdI7s2TWVwWtbm4Rvo+EuJMdwhxFlXEWXt+3y3FRqypc3LHE4aadLF4So+lPFYadWhJ6uPPzxtOKZ4fEuQ4TibI8xyTGq1HH4eVONTlUpYevG08NiYJtXnh68adaKvaXI4SvGUj/Kv+Mnwl8b/Ab4rfEL4MfEnSn0Tx38MvFuteDfE+nne0Sanol7LZyXNjM8cX2zStQSOPUNI1GNBBqWl3VnqFsWt7mJ6/1LybNsDn2VZfnOW1VWwOZ4SjjMNU6ulXgpqM19irTbdOtTdpU6sZ05JSi0f55ZpluLyfMcbleOpuljMBiauFxENWlUozcXKEmlz05pKdKoly1KcozjeMkfud/wAG7n7eX/DM/wC1Y37PHjvWvsfwf/alutK8NWrXtxs0/wAMfGe0L23w/wBYQysUtovF32mfwFqYgSNr3UNT8I3d/OtnoAr8O+kLwJ/rLwquIcDR5834XjVxMuSN6mJyadpY+i7ayeE5Y4+lzN8lOli4U4uddqX634J8Yf2DxF/YmMq8uWcQyp0Iub9zD5pH3cFVV9IrE8zwdTlS551MLOclCgf6CFfwEf2cFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBk69r+heFtG1PxH4n1rSfDnh7RbObUdY17XtSs9H0bSdPtk33F9qeqahNb2NhZwIC811dTxQxIN0jqBmhu2r0XmB/O3+23/wAHK37GX7O39r+EP2dra8/a0+Jtp59qL3wnf/8ACP8AwZ0i+TKb774kXVneS+KUiZormFPAOieINF1OJZbY+LNKnHmJzzxEI3Ufea7aK/8Ait37Rl/iNo0ZP4vdX3t/15v7z+QP9tX/AILDft2/t0vqmjfFH4tXfg/4W6i8qL8FvhMLzwN8OGspCf8AQddtrW+uPEHjiEDa+3x3r/iaKKZfNsbeyG1F5J1qk7pu0X0Wi+e7e/V/JG8acY7avu/kfl7WRZ9Pfsy/sYftR/tj+Kf+ES/Zs+Cnjf4pX8NxFbarqujacLPwh4caYKY38V+ONYl07wf4XjdGDxHXdbsGuB8tss0hVKuMJz+GLfn0Xq3p+Xle1hOUY7u39dj+rj9iz/g1W0ax/snxl+3d8X31u4HkXcnwV+B9zPY6SpG2UWPiv4patYw6pfI6t9m1LTfB/h7RHgmjZ9M8bXkLpK3VDCreb+Uf1l/lFequYSr9Ir5v/LX+tdNj+qD9nj9lP9nH9k7wivgf9nP4NeBPhJ4eZIEvk8KaNFBrGuvbKVgu/FPie7N14n8W6hGjFF1LxNrGrahswhuQiotdMYxirRSS8v17/O/q9zBycndtv+unb5H0FVCCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9b+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+OH/g5w/YN8m48Hft+fDzRv3d0dG+F/7QcdjBwtwirYfDL4h35RST58Sr8O9Zvp3VUaD4fWMCM89w9f2F9Gfju8cZwFmFbWPtsz4fdST1i7zzPL6d9Fyv8A4UKNOKd+bMJt6RUf5h8fOD7SwvGWCpaS9ll+dKC+18GAxs7Lql9Rqzk7e7gYRV3Jn8flrdXVjdW17ZXM9ne2c8N1aXdrNJb3VrdW8iy29zbTxMksE8EqJLDNE6SRyKroysqmv68nCNSMoTjGcJxcJwmlKM4yVpRlF3UoyTaaas07O+p/M8ZShKM4SlGUZKUZRbUoyi7qUWrNSTSaad01dWsj/Ti/4JE/t0Wv7ef7Gvgb4h61qEE/xf8AAYj+GfxuslMaXDeOfD1ja+V4q+zKVKWXj7RJtO8VxSQwx2MGqX+taJaPK2h3G3/M/wAW+B5cCcY47LqNOUcox18yySerj9RxE5XwvN1ngK6qYRptzlTp0a87KtBy/vfw14ujxhwvg8bVqKWZ4O2AzaOil9coQjbEculoYyk4YlNJQjUnVowv7GZ+n9fmJ9+FABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQByfjnx74H+GHhXWPHXxI8Y+F/APgvw9ate674t8Z69pfhnw3o9opANxqetazdWenWURYhFe4uIwzsqLl2RWG0lduyW7eiGk3otz+ZL9uH/AIOgv2dPhGdY8E/sa+Dbj9o7x1befZr8RvEyap4R+Cuk3qZTz7GCRLLxv8QVtrhHjmt7G28G6JewtFeaR4x1CBl3808TFXUFzPvtH8m38tP7z3lrGi3rJ2Xbr+Vl+Pmlb3v5A/2wv+Cj37Y/7dWtSX37RPxm8Q+I/Dkd59s0f4Z6G/8Awi3wr8POjlrY6X4F0ZrfR7i8s0Ihh17XE1jxNLEoF5rV0wL1xzqTn8T07LRL5f8ADvzd7R6IwjHZW/Nnw5UFH6F/sZ/8EtP22/27r20m+BHwb1c+BJbn7Pe/GHx15vgv4TaaEl8m5dfFmp2rHxJPYybVvdI8Eaf4q1+2DrJJpIiLPWkKU6my0/mei/zfy5r9eXRyiU4x3fyW/wDwPmf13fsUf8Gwf7LXwa/snxh+1t4s1L9pzx5b+Rdt4L08ah4I+C2lXi7ZPIl0+zu08Y+OPsk6gJda1rOhaHqcG6HU/BTRyMldcMNCOs3zv7l915X++3912MJVpP4Vyrvu/wCvl6Wsz+lLwL4A8C/DDwtpHgb4beDPC3w/8F6Bbi00Pwl4L0DSvDHhvSLYc+RpuiaLa2enWUZOWZbe3QM5LtuZmaulJJWSslslojFu+r1fmdbQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPLfjd8HfA37Qfwi+I3wS+JeljV/AvxQ8I6z4O8SWY2LcLY6vaPAt/p0zpILPWNJuTBqui6giGbTdWsrK/g2z20bV6mSZxjuH83y7O8tqujjssxdHGYaevK50ZqXs6kU1z0asealXpt8tSjOdOV4yZ5+bZXg86yzHZTj6ftcHmGGq4WvFWUuSpFrnpyafJVpytUpVEr06sYTVnFH+Vd+1d+zf45/ZG/aH+K37O3xEhI8SfDHxVeaKuorA9vaeJNBmWPUPC3i3TYpCzrpfivw3eaX4gsEdmmhttRjt7nbcwyon+pnCvEeB4t4eyriHLn/s2Z4WFb2fMpTw9dXp4rCVGtPa4XEQq0KjVk5U+aN4yiz/PLiPIsXw1neY5Jjl+/wABiJUuflcY16L9/D4mmndqniaEqdeCbvGM1GV5KR+jP/BDT9vL/hif9srQdL8Y61/Z3wN/aCbSvhh8UjdT+VpegalcXsg+H3xCutzxwwjwl4gv5bDVb6d1hsPB/iXxVdlJZ4bZV/OvHDgT/XTg6vVwdH2uecP+1zPK+SN6tekoL+0MvhZOUni8PTVSlTirzxeGwsE0pSR9v4ScYf6qcUUaeKq8mUZ17PL8x5pWp0Zuf+xY2X2f9mrTcKk5O0MLXxMldpH+kVX+ch/cwUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBw/xG+Jvw6+D/AIP1j4g/Fbx14S+HHgbQIPtGteLvG/iDS/DHh3TYj9z7Xq2sXVpZRyTMPLt4DKZrmZlht45ZXRKTaSu2ku7dl+I0m9k36a/1/XY/lv8A26f+Do34OfDz+2PAv7DPgU/G3xbD59mPjB8RLPV/DXwm024XcguvD/hUPpPjnx0I5FZN+oP4C03d5V3ZXmu2bbH5p4qK0guZ93dR/K7/APJfR293aNFv4nbyW/5WX4+aVve/kB/ar/bm/as/bY8Vf8JX+0p8ZvFvxFe3upbrRPDFxdR6R4C8KmUOmzwr4D0WKw8KaE4t2FtNf2elrq2oRIjarqF/OGnfknUnP4pN+XRfJJL8357m8Yxjsrfm/wCv+G6nybUFH6zfsQ/8EV/27v25zpHiLwX8NJPhf8IdSME//C5/jGl/4P8ACF5p0uH+1+EtNexuPFfjxZoRKLO78L6Ff+H2u4xa6lr+lbzKu0KFSeqVo95dfTq/y63fwkSqRj1u+y/Xa359r7H9h/7EX/Bud+w3+y0NI8WfF7TZv2svixY+RcvrPxQ0u2tvhhpeoR4Yt4e+EMNzqGi3UAYDH/Cfal46kWVRc2X9nOREnXDD046v3n57fJar73LtpbmOeVWTvb3V5b/f/lbt5y/fiwsLHSrGz0zTLK007TdPtoLKw0+wt4bOxsbO1iSG2tLO0t0jgtra3hRIoIIUSKGJEjjRUVVrcyLdABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/ld/4OYP2Df8AhZHwn8L/ALcPw90XzfGXwYt7TwX8Y4bGDNzrXwn1bU2/4R7xNOkSNJcT+APFOpPaXcio0n/COeK7y+vbiPTvC8axf1J9Gvjv+zs2xPBGYVrYPOZTxuTucrRoZrSpf7Rhot6Rjj8LSUopu31jCwhBe0xT5v558eOD/r2W4fi3BUr4rK4xwuaKC96rltSo/YYhpaylg8RUcZNJv2GIlOclTw6R/DzX9uH8mn+jl/wQh/bz/wCGzf2OdH8J+NNa/tD45fs4R6P8NPiEbufzdU8ReGY7OVPht4/uN7yTzvrug6dcaFrF9cSyXV94q8K6/qVxsTUbXf8A51eOnAn+pvGFbF4Oj7PI+I3WzLL+SNqWHxLmnmWAjooxVCvUjXowilGnhcVQpx5vZz5f7h8IOMP9aOGKeGxVXnzfI1SwGN5nepXw6g/qGMe7brUYSo1ZybnPE4atUdlOB+21fih+rhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHHePviH4C+FPhHWvH3xN8aeFvh94H8OWrXuveLvGmvaZ4Z8OaPaqdvnajrOsXNpYWqs7COPzZ1aWVkiiDSOqsN21ei8wSvotX5H8tP7d/8AwdE/B74cnWfAP7C/glfjd4vh8+yPxj+IFpq3h74SaXcrujNz4d8L50rxr49MMgdBLfP4H0cuIryxvfENg4VuWpiYrSmuZ/zPb5KycvnyfPVy3hRb1k7Ltu369vv9bWR/Hp+1N+2t+1F+2n4xPjb9pT4xeLPiTfwTzzaJol9dJp3grwok+Q9t4R8EaQlj4V8NxmLZDPLpelQXt+saS6nd3tyXnfknOU3eTb/JeiWn5ed9zojGMV7qt/XmfLNQM/Z79hf/AIITft1/ttDR/FY8Fj4BfBjUvIuR8VvjLZajof8Aa2mS7X+1+BvAnlR+LvGPn27edpuo/Y9F8Iahjy/+EtgYjbtChUn05V3l+i3f4LrzPaOcqkY+bXRf5/1+B/ZL+w3/AMEEP2Ev2Mv7H8Vat4QP7R3xk07yLn/hZXxm07TtV0vStTi2v9r8E/DYLc+EfDIhuEjudNvtSg8UeLNLmTda+LADheyFCENbc0u7/RbL8X/eW0ueVWUvJdl+v9K3ybl+2gAAAAAAAAAGAAOAABwAB0A/pWxmLQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOb8ZeD/DXxB8I+KPAfjTRrLxF4Q8a+HtZ8KeKdA1GPzrDWvD3iDTrjStZ0q9iype2v8AT7u4tZ1DKxjlbaythq6cHi8Tl+LwuPwdaeHxeCxFHFYWvTdqlHEYepGrRqwetpU6kIyjputbmGKw1DG4bEYPFUo18Li6FXDYijNXhVoV4OnVpzWl4zpylF67PSx/lo/8FC/2O/Ev7Cv7WPxS/Z81wXt3oeiap/b3w18RXibW8W/C7xFJPeeDNe8xUjhmvFsll0TxB9mX7NbeKdG12whLLZ7q/wBQ/D7jDDcc8KZXxBQ5IV69L2GZYeD/AN0zTDqMMZQtdtQc2q9DmfNLC1qFR25z/PjjXhivwjxHmGS1eeVGjU9tgK81Z4nL67csLW7OfJelW5fdjiKVaC+E9S/4JQftx3/7BH7Y3gD4q6heXa/CvxQ6/Dn43aXB5ssd18OfEl7aC71xLOMObjUvBGqW+m+MNNSJBdXX9j3WjRSxW+sXYfy/Fbginx5wfj8qpwj/AGphf+FHJarsnHMcNCfJQc3blp42lKrg6l3yR9tGs/eowcfR8OeLZ8HcT4LMZzksuxD+o5tTV2pYGvOPNVUV8VTCVIwxVNJc0vZSpJxVWXN/p6adqFhq+n2Oq6Ve2upaXqdnbahpuo2FxFd2N/YXsMdzZ3tndQPJBc2t1byxz29xC7xTQukkbsjBq/zKqU6lKpOlVhOnVpTlTqU6kXCdOpCTjOE4ySlGcJJxlGSTTTTSasf33CcKsIVKc41KdSMZwnCSlCcJrmjOEo3jKMotOMk7NNNXuXKgoKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAxPEvibw34M0DVvFXjDxBonhTwvoFlNqeu+JPEurWGhaBoum2y77jUNW1jVLi10/TrK3X5pru8uYIIl5kkUYKjdtXovMD+Yv9vj/g5w/Z6+Cv8AbXw//Yv8PW37SPxHtvPsm+JOtf2jovwM8P3ybk86xeJ7HxT8TWtpkZHi0M+GPDV5C8V5pfjXUYg0Dc08TGOkPeffaP6t+i/8CejltGi38Tsu3X9bfd99j+NH9rX9u79qz9uHxd/wlv7Sfxg8S+PBa3U1z4f8ICZNG+HnhASh4xH4U8C6QLTw3o8q2zLaTaoljNr2pwxxtrOq6jcBrh+OdSdR3k79lsl6Lp98n56HRGMY7K35v+v+G6nyJUFH7SfsI/8ABCL9uX9tz+xvFk3hH/hn34J6l5Fz/wALX+MGnahpU2saXLtf7X4C+H+LfxX4x86BhPp2oyxeH/B+oICkfjCKQbG2hQqT1tyrvJb+i0f6eeqUc5VYx832Vn9+qt+L8j+z/wDYV/4IX/sL/sQDRvFVt4JHx2+NWm+Rcn4u/GKz0/XbnS9Uiw/2vwL4K8p/CXgn7PcBpNN1C3sdT8YWUbeRN4vvVG+uynQhDW3NLu9fuWy/8mfnq0c8qspeS7J/qfsrWxmFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//S/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+d/8A4OJv2C/+Glv2WY/2jvAejfa/i/8AsuWeqa/qCWUBfUPFHwVuit1470lxGFa5l8GPBF490wzyOljplh4ytrKB73XQH/oT6PPHf+rfFD4cx9bkyfiedOhT55Wp4XOo+7gayvpFYxN4Cry256k8HKbUKFz8T8beDv7e4eWeYOlzZnw9GpWmoRvPEZVK0sZTdrOTwjSxtNybUKcMXGEeevc/z96/vw/jM/vt/wCDcn9vT/hob9ma8/Za8faz9q+LH7MFjY2Php72433/AIn+Bt5MLTwpdRbyJJ3+Ht8f+EGvliTybDQW8CCSSS61CY1/BX0iuBP9XuJYcUYCjy5VxPUqVMTyRtTw2eQXPi4u2kf7Qh/t0LtyqV1jmrRgkf2P4H8Yf21kMuHsZV5sx4fhCGHcpXniMok+XDSV7NvAz/2OVtIUXg73lNs/o7r+dD9xCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgCOaaG2hluLiWOCCCOSaeeaRYoYYYlLyyyyuQkccaKzySOQqKCzEAE0Afzy/8FAP+DjD9kT9lE634A+ArW37VfxrsftFjJB4O1iK3+D3hTUk3RN/wkvxJt47yDxDcWcpWR9F8BWuuxzvDc6ZqfiLwzervTCeIhC6Xvy8tvm9V9yd+vLojWNGT391ee/3f5u+nW5/E7+2x/wAFMf2w/wBvzxBJqH7QHxSv7rwfb3xvvD3wi8ICfwv8JvC7BibdtP8ACNtdTLq2oWgd44PEXi288R+KVid4DrbW5SJeKdWdT4np/Ktl/n89fN6qPTGEY7LXu9/079vuufA9ZlH68/sF/wDBE79tz9vNtI8U+G/BY+EHwR1BoZ3+NfxatdQ0Lw/qenSEM1x4D8PC3PiX4gySRCYWV5otnF4Tku4jZal4r0iQhq2p0J1NUuWPd/ot3/5KvPRoiVSMet32X67W/PtfY/tX/YM/4IRfsP8A7EH9jeLrnwt/w0J8cNN+z3X/AAtj4uabYajbaLqsO1vtfw/+H3+l+F/Bvkzqtxp+pXA8ReMdOfcsPi+SJtidkKEIa25pd3+i2X4v+8tpc0qspeS7L/M/aitjMKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAr3dpa39rc2N9bW97ZXtvNaXlndwx3Nrd2tzG0NxbXNvMrxT288LvFNDKjxyxsyOrKxFVCcqcozhKUJwkpwnBuMoSi7xlGSs4yi0mmndNXVtBSjGcZQnFSjJOMoyScZRkrOMk7ppptNNWadne7P8AMf8A+Cuv7C13+wX+2R44+Hui6fcQfB/x6ZfiX8EL5hJJbjwN4gvrrzvChuWDB7/wDrcWoeFZo5Z5L6fS7LRNcu1jXXLcN/ph4Sccw474OwOYVqkZZvgLZbndNNKX17DwjbF8u6hj6LhiotJQVWdajC/sJqP8D+JXCMuD+KMXgqVOSyzGXx+Uzd3H6pWm74fm1vPB1VPDtOTnKnClWmo+2hzeA/sF/tc+LP2Hv2qPhV+0T4X+13dn4U1pdP8AHXhy1lEY8YfDfXduneNvDEiyOls9xeaPJLd6JLd77fTvEthomsGNpdNiFe/x5wlhON+Fs04exXLCeKo+0wOIkr/U8yofvMFiVZOSjCqlCuo2lUw1SvRvapI8bg/iXE8JcQ5fneH5pRw9XkxdCLt9awNb3MXh3f3eadJuVJyUowrwpVbXhE/1OPAHjvwn8UfA3g/4k+A9atPEfgrx74Z0Txh4T16xYtaav4e8Radb6rpGoQbgrql1Y3UEvlyqk0TMYpo0lR0X/LnH4HF5XjsZluOozw+NwGJr4PFUJq06OIw9SVKrTl0vGcGrq6e6bVmf6E4PGYbMMJhcdg6sa+ExmHo4rDVofDVoV4RqUprqlKEk7PVbPVM66uQ6QoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPyO/4KBf8FpP2Mv+Cf0Gq+GfFHiv/hbfx1tIpEtPgX8ML2x1PxHYX2zMKfEDXi82g/Di0DvA9zFrcs/ilrKdb/R/CWtwqyrlUrQp7u8v5Vv83rb5r0vY0hTlPyXd/wBa3P4a/wBv7/gtR+2j+37Nq3hjxR4u/wCFR/Ay8lljtvgb8Lry/wBJ8OahYFz5UXj/AF/zI/EHxGuWjWBruDW54fCv22Bb/SfCWiSsUbinXnPryx/lX6vRv8v7q+I6YU4w833f9aWPyMrEs/R/9hj/AIJS/tm/8FAtVtZvgr8Np9J+GgvTaaz8bviD9r8LfCvSfJl8q8S01uSzur7xfqVm48u50TwRpniHVbOR4m1K2sLV2uk1hSnU2Wn8z0X+b+Xz5dHKZTjHd69lv+n4v7rs/tn/AGBP+Der9jH9j8aL43+KenQ/tTfG+x+z3g8U/EjRbQfDrwzqce2QSeCvhZLNqOjLJazrHLa614yufFutW93BHqOjzeH3c2qdlPDwhZv3pd2tF6Lma+/mfpoc06spbe6uyer9X/Xn0P3wREjRI40WONFVERFCoiKAFRFUBVVQAFUAAAAADGK3Mh1ABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/Gn/guH+wX/AMNu/sb69e+DtG/tH46fAIar8TvhR9lg83VNetLexQ+Pfh3a7VeWU+MtAsYrnS7KFd974x8O+E4Wkit2uWb9j8EePP8AUnjChDGVvZ5HnzpZZmvNK1KhKU/9gzGWyX1OvUcas2/cweIxTs5KB+XeLPB3+tnDFaeFpe0zfJvaY/LuVXqVoqH+2YKPV/WqMFKnBNOeKoYZXUeY/wA22v8AR0/hg/th/wCDZn9vX/hMfAXiv9g/4ia1v8R/DaHUviF8C57+4zNqfw/1HUBN428E2zysPMn8IeIdRXxLpNojT3c+jeJdaWGOHS/CoWD+LPpK8B/U8fheOsuoWw2ZSp5fnqpx0pZhTp8uCxsktljMPT+rVZaQjWw1Fu9XFXl/VfgLxh9aweJ4QxtW9fAqpjcoc5azwc53xeEjfd4atP29KKbk6WIq2tTw9j+sev5SP6NCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPkX9r39uv9lz9hfwKfHn7SPxT0XwXDdwXL+GvCUDf2x8QfG9zbjBsvB3guwMutawROYre51MwW+gaRJcQS69rGlWjm4qZTjBXk0vzfolr+fnbcqMZSeiv+R/EL/wAFEP8Ag4+/ad/ah/t34b/svxat+y18E7z7RYTavpOpxv8AHTxnpsm6MtrPjPTZBB4BtbuIRyNovgGZNUtWa4s7vxzrunztBXFUxMpXUPdi9L7ya9bK3ok3/eWh0QpKOsvef4L8r/Nfdc/nBuLie7nnurqea5urmaS4ubm4keae4nmcyTTzzSFpJZpZGaSSSRmd3YsxLEmuY2Pqb9k79iP9p/8Abd8dL4B/Zs+E/iL4gX9vLbr4g8QxxLpfgfwZa3DfLf8AjLxpqbWvh7w/CYllmtrW7v8A+1dVEEsGiadqV6EtXuFOU3aKb89kvV9P6tezjKZSjFau35v0/rTruj+1L/gn5/wbPfs6fAX+xPiJ+2PqunftM/FS1+z30fgC2gvLL4C+GL5NrmGfSryK01v4oyQSqQLjxZBpHhi9gkeC98BTvHHdt2U8NGNnP3n2+z913f5tL+69TnnWb0iuVd+v4PT8fJqz5v6adH0fSPD2ladoWgaVp2h6Ho9lbabpGjaPY22maVpenWcSQWdhp2nWUUFpY2VrBGkNta20MUEESJHFGiKqr0mJo0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/znP8AgvR+wV/wxx+2FqfjvwTov2D4HftKy6z8R/A62dv5Wl+GvGRu4pPiX4DhCKkFtFputajb+JdEsoIobSz8N+KdL0mzEp0e6MX+iXgRx5/rhwhSwGNre0zzhtUcux3PK9XE4Pkay3HO7bk6lGlLDV5tynLE4WrVm17aDl/EHjBwd/qvxNUxeEpcmUZ66uOwnKrU6GK5k8fg1ayiqdWpGvRglGMKGIp0o83sps/Kj9m34++PP2W/jt8L/wBoD4Z3n2Txl8LfFmn+JtNjeSSK01a0hL2ut+G9UMX719F8U6Fc6l4c1uKPEkuk6peRxlXZXX9T4kyHA8UZFmmQZlDmweaYSphqjSTnSm7SoYmlfRVsLXjSxFFu6VWlBtNJo/PMiznGcP5vl+c4CXLisvxNPEQTbUakV7tWhUtZuliKMqlCqk7ulUmla6P9VH9nT48eA/2nvgd8MPj78M777d4K+KXhPTfFGk73je702a5VoNX8Pap5RaOLW/DGt2+o+Hdct0ZkttX0y9t1ZxGHr/LPiHIsfwzneZ5DmdP2eNyvF1MLWsmoVFF3pYilezdHE0ZU8RQk171GrTlpdn+huR5xg8/yjL85wE+fC5hhqeIp6pypuWlWhUtoquHqxnQrRXw1acl0R7TXjHqhQAUAFABQAUAFABQAUAFABQAUAFAHK+N/HXgr4Z+E9d8efEXxb4c8C+CfDFhLqniPxb4u1rT/AA94c0PTocCS91XWNVuLWwsbdWZUElxcRK0jxxoS7qtDaSu3ZLdvRAlfRavyP5E/+Cjf/Bz3o2htrvwp/wCCeGjW/iLVE+06bf8A7SfjvRZP+EfsZRuie4+Fvw/1eCKfXZo2Ie18TePLW10hJoJFj8FeILC5ttSXkqYlLSnr/ee3yTtf1bX+F297ohR6z/8AAf8Agr9P1P45Piz8YPil8d/HeufE74y+P/FfxM+IHiOfz9Y8WeMtavNc1i62ljBapcXkji002yR/I03SrJLbTNMtFjs9PtLW1ijhXjlJyd5Ntvq/6/y9Fexuklotir8MvhZ8SfjR420P4b/CTwL4q+JHj3xJci00Pwj4M0PUPEGu6jL1keHT9NguJ1traPM99eyrHZ2Fqkt3ezwW0UsqCTbsk2+y/p/l94NpavY/r1/4J4f8GvU840P4n/8ABQ/xI1tEfs+oWv7Nvw311TcuDtf7F8T/AIl6RMUgH34rvw/8N7x5SDDcQ/EGB1uNNrrp4XrUf/bq/WWn3Jf9vLcwnW6QX/bz/Rdfnb9Zf1/fCb4PfCz4EeBdF+GXwZ+H3hL4ZeAPD8XlaT4T8F6JY6Do9szBRPdvbWMUX2vUr1kE2o6retcalqdyXu9Qurm5kkmfrSUVaKSXZaf5fl91zBtt3bbfmekUxBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9b+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/Oj/gqd+xBpf7e/wCx78Qvg9BbWY+JeiRf8LA+CmsXJihOmfE7w1Z3j6TYSXkpCWmmeL7C41LwZrM8u+G0sNefVRE91ptoU/RPC7jarwHxhl+cSlP+zaz/ALPzqjG79rlmJnD201BayqYSpGnjKKWsqlBU7qNSal8R4hcJ0+MeGMblkYw+v0l9cyqrKy9nj6EZOnByekaeKg54WrJ3UYVvacrlCB/l/avpOqaBqup6Fren3mka1ouoXuk6vpWo28tnqGmapp1zLZ3+n31pOqT2t5ZXcM1tdW8yJLBPFJFIqupFf6cUatLEUqVehUhVo1qcKtGrTkp06tKpFTp1Kc43jKE4NSjJO0otNXufwDUp1KNSpRqwlTq0pyp1Kc4uM6dSEnGcJxdnGUJJxlFq6as7WZ/WD/wbL/t6/wDCKeNfFf7BnxE1rZoPxAm1T4i/Aea/uMRaf44sLD7R478C2ryuxSHxToFgPFmkWkf2e0t9W8OeIyiT6n4nQN/Kf0luBPrWCwnHeX0b18AqWXZ7GnHWpgak+XA46drXeFxFT6pWk1KUqWIw13Glhj+i/AXjH6ti8Twfjqv7nGupjcnc3pTxcIc2MwkW76YmjD6xSiuWMalCvbmqYhI/tXr+Lz+qgoAKACgAoAKACgAoAKACgAoAKAPxX/4KQf8ABcf9k39gCLWvAljqEXx4/aPtIpYIfg34F1e1Fr4W1HYTEfir4zji1DTvBEaHa8mhQ22t+NXWS1kPhq2067XVosalaFPTeXZdPV2svxfkre9pCnKeuy7vr6d/w/SX8F37dP8AwUx/a0/4KE+Ljrfx58fzL4M0+/kvfCHwc8IG60H4V+Dc+YkMmneGxdXD6xrMcUssT+KfFN7rviZ4ppbVNVi07ybGDhqVJVH7z06JaJf8Hzev38seqMIx2Xq3u/y/Bfdc+AQCxCqCzMQFUDJJPAAAySSeAAOfesyj+hz/AIJzf8G737Un7Xo0H4lfH0an+y/8A777Nf2914j0hj8YPHWlybJkbwf4E1AQN4e07ULfIt/FXjcWMKxT2mraL4c8Xae5FdFPDynrK8Y+mr9NVb1f3PeWU6sY6L3n5PT+v66H9yf7HP7Av7K/7B/gf/hCv2cPhfpXhSa9treHxR461LbrnxK8czQbX+0+L/Gl5F/amoRm4D3dvoto2n+GNJnmmGhaFpcMjQr2wpxgrRVvPdv1fX+rWu4x5pSlLd3/ACX9f8P0PsirJCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4Lf+DkL9gr/AIUR+0Tpn7XHw/0X7L8Lv2lb+4i8cJZQbLHw18dLG0e71h5iirHAnxM0e3l8W2+7fPe+JNL8d3crRxvbRt/d30cuO/7d4eq8JZhW5sz4bhF4FzleeIyOc1Cile7k8trSWElbljDDVcDBXamz+PfHLg/+x87p8SYKly5fn05LFqEbQoZvCPNVb0SX1+kniY6uU69PGSdlyH87Xw88f+LfhV488G/EzwDrV14d8bfD/wAT6H4x8J67ZMFudJ8QeHdRt9V0m+iDBkk8i9tYXeGVXhnjDwzRvC7o39DZjl+EzXAYzLMfRjiMFmGFr4PF0J/DVw+IpypVYPquaEmlJWlF2cWmkz8TwWMxOXYzC4/B1ZUMXg8RSxWGrQ0lTrUJqpTmujtKKbTumtGmm0f6nX7CP7W/hH9t/wDZa+FX7RXhT7LaXHi7REs/G3hy2mMreDviNom3TvG3haUSM1ysOn6zFNPo012sU+peHLzRtZ8pYdShLf5c8dcJ4vgnijNeHsVzzjhK7ngsRKNvrmXV/wB5gsUre63UotRrKF408TCtR+KlJR/0I4Q4kw3FnD2XZ3h+WMsTSUMXQi7/AFXHUfcxeHd/etCqnKk5JSqUJ0q1kpxPr2vkT6YKACgAoAKACgAoAKACgDw79ob9pT4F/spfDXV/i7+0H8SvDfwx8BaOCj6t4gu2Fzql+YpJodF8N6LaR3Wt+KPEN3HFK1loPh7TtS1e6SKWSGzaKKZ0UpRirydl5/1q/S/o9hpOTsld/wBfcfw2/wDBS3/g5D+OX7Rp8QfCX9jWPxB+zv8ABS5N1pl/8Q2uY7T45+P9PbfE7wanptxcQfCzR7tCCtj4YvrvxXKiK9x4vsra8vdCXhqYmUrqHux79X+dvRcz/vI6YUkrOWr/AAX+f9eR/MfPPNczTXNzNLcXFxLJPcTzyPLNPNK5klmmlcs8kskjM8kjszu7FmJJJrmNj7l/Yh/4Jx/tX/8ABQPxp/wjH7Pfw7ub7w9p17DaeMPir4mNxoPws8CrKI5CfEPit7W5WfURBItxD4Z8PWeueK7y3P2mz0Se1inng0hTnUfurTq3ol/XZa/fzRmU4x3fy6n94n/BOL/gg3+yZ+wmuhfEHxdY237RP7RtiLe9HxN8c6NbDw14M1VAshb4XeA55L/TtAmtJVQ2vinWZ9b8YrNHJc6bquhW15JpMXdToQp2fxS7tWt6K7S/Ps1axzTqylt7q7J79rs/cqtjIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9D+/igAoAKACgAoAKACgAoA8J+J/wAbLPwNe/2FpVjHq+upHHLd+fK0VjpwmUSQxz+X++uLmSJllMEbQrHFJE7T7mCUFRi3r09P/to/l932uI8H/tIte6lBY+L9KsrC1upViXVdLa4WGzZ22q95a3Utw7W4JBmniuA0KAuIJADtCnDs/wAP/t3+X3n1YCCAQQQRkEcgg9CD3BFBmLQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAeK/FD4x2HgCaPSbKyXV9fmhW4a3ebybPT4JM+VJeOivLJLNtLRWsflsYv3sksSNF5oVGPN1/C/6x/N/K3veY+Gv2l7mXUIbfxXollBp88ixtf6ObpZLIM2BNLa3Ut2bqJMgyiKaGRUDPHHK4WFgp0+z+9f/AHQ+tIZoriKKeCRJYZ40mhljYNHLFIoeORGUlWR0YMrAkFSCCc5oMySgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8k+J/xZ074dx29olr/AGrr19EZ7ew83yYLe2DNGt3ezBXdUeRXSCGJC85ilBeJV30FRi5enpf/ANuj/Xa3veN6F+01qBv408SaBYDTZJArz6O1zHd2qE8ymG7nuY7vYOTGslqSOVYsAjBTp9n96/8Auh9bWd5a6haW1/ZTJc2d7bw3VrcRHMc1vPGssMqE4O142DDIzg84IoMz5a/be/ZR8G/tr/sw/Fb9nPxn9ntY/HGgSN4W8QTQedL4P8e6Qw1PwV4tt9g8/Gja/b2cmpW9s8UmqaJJquiySC21K4VvquCeKsZwXxPlXEWD5pvA4hfWsOpcqxmArL2WNwkvs/vsPKapykpKlXVKslz0oHznFnDmF4ryDMcjxXLFYui/q9Zq7wuMp/vMJiVaz/dVoxdRRd6lF1KTtGpM/wAr74m/Djxl8HviJ44+FXxD0a48PeOfh34p1zwb4s0W6H7zT9d8PahcaZqMCyD5LiD7Rbu9pdwl7e9tXhu7aSW3mjkb/UjLMxwecZdgc1y+tHEYHMcLQxmErR2qUMRTjVpya3jLllacHaUJ3hJKUWj/AD1x+BxWWY3F5djaUqGLwOIrYXE0pbwrUJunUV9pLmi3GSvGUWpRbi0z+gj/AINx/wBvT/hnz9pW9/ZW8faz9l+FH7Tt/ZWvhd7242WHhn452cC2fhi4i3tsgT4i6ci+CL0RI09/r8PgONnitrOdq/APpF8B/wCsHDdPinL6PNmvDMJyxShG9TE5HOXPiYu2snl1R/XYXajTw8se1eUoo/Z/A7jD+xc+nw9jKvLl2fzhHDuT9yhm8Vy4dq7SisbBfVJWTc6ywadoxZ/fPX8GH9jBQAUAFABQAUAFABQB/P8A/wDBTv8A4L9fs6fsPjxB8KfgydH/AGiP2m7IXOn3PhrSNTMnw0+GWqJvhY/ErxXpcpN7q+n3G43HgDwvO+u+baz6f4i1bwZJLZ3UuFWvGndL3pdui9X+i1fXlteWsKTlq3yr8X6f8P6Xuz+Cb9q/9sn9o39tn4l3XxU/aO+JetePfEBNzDoemSuLDwj4K0q4lWX+wfBHhW08rR/DWkpsiEqWNst5qc0Q1DW73VNUkuL6fhnOU3eTv5bJei/rzvpKXVGKirJW/Xzf9eh4B4U8JeKfHfiTRPBvgjw3rvjDxd4l1G20jw74X8MaTf694g13VbxxHa6bpGj6XBdahqN9cSEJDa2lvLNI3CIealJtpJXb2S/p/l9427avReZ/Xz/wTT/4NkNW1r/hH/jB/wAFEryfQtJb7Lqmk/szeEdZCa7qETbZYo/i1420a4I0KCRQftHhHwRfy600c0X2/wAYaDfW97ojddPDbSqf+AL9Wpfgv/AtzCdbdRWv83T5Lr87frL+yn4c/DX4ffCDwXoHw5+Fngvwz8PfAfhaxTTvD3hHwfo1joGgaRaISxjs9N06GC2jeaVnuLqfYZ7u6lmurqWa5mllfrSSSSVktkv6X5fcc7bbu92dtTEeSfE/4s6d8O47e0S1/tXXr6Iz29h5vkwW9sGaNbu9mCu6o8iukEMSF5zFKC8SrvoKjFy9PS//ALdH+u1ve8b0L9prUDfxp4k0CwGmySBXn0drmO7tUJ5lMN3Pcx3ewcmNZLUkcqxYBGCnT7P71/8AdD62s7y11C0tr+ymS5s723hurW4iOY5reeNZYZUJwdrxsGGRnB5wRQZlmgAoAzNa1rRvDmk6jr3iHVtM0HQtItJ9Q1bWtav7XS9J0uwtkMlze6jqN7LBZ2VpbxgyT3NzNFDEgLyOqgmoq1aVCnOtWqQpUqcXOpVqzjTp04R1lKc5WjGKWrlJ2XWx1YHA47M8Zhsvy3B4rMMwxtanhsHgcDh62LxmLxFWSjSoYbDUIVK1etUk1GnSpQnOcmlFNtH4bftUf8HC/wCwd+z7PqPh74cavr/7TvjeyaWD7H8J0tYfAEF5HuKx3/xP1sw6LeWcgA2aj4HsPHMG5grKpD7fyvPvGLhPKHOjgqlbPcVG65cv5Y4NSXSeOq2pyi19vCxxa16e8j++/CP9m39ITxHp4bMuJ8Hl3hTkNfkqe24wdWpxFUoSteWH4UwEZ46jXg3rhs/xPD9RqLabTgpfgl8cP+DmX9t3x7Pd2vwa8E/CL4B6JIzmyuYdGufid42tQ2Qq3Ou+MHj8IXnljaUMfw6syX3mQOhCL+S5p438U4tyjluFy7KaT+CSpSx+Kj/iq4mUcNLptgo66u90j/Q3gL9lh4DcPU6NbjfPeM/EPHxUVXpTx1LhTIarWrdLL8lhPOqHM7qXNxPXtGyilKLnP83PGv8AwVu/4KUePriW5139sr42WEkzFnXwV4ih+GtuCeoitfh1ZeFbWBeThYIolX+FRhRXxWJ8Q+NsW3KrxLmkG/8AoGrLBL5RwUMPFeiWnnf3v6fyL6G/0XeHacKWA8EOBcRGCSi89y2pxRUaX89biXEZtWqPRXlUnNvrf3mebWf/AAUY/wCCgNjcC5h/be/a0eQNu23f7Q/xZv4Cf9q0v/Fl1auOnyvCVIwOAK4o8Z8XxfMuKeIbr+bOcwmv/AZYhx+TUvzPqK30Zvo516bpVPAXwdjFq16Phrwdh6ln2rYfJqVaL84zT7S6n1F8Lv8AguX/AMFO/hbc2zQftJ6n480uFlM2ifFHwp4N8cW16qYwlzrOoaCvi+JSBhjYeJbKR9x3Mxw6+9gPFPjnASjbO6mLpp60sfh8Niozt0lVnSWJX/bmIj394/JuLPoCfRT4tpVVU8L8Lw9i5pqGP4TzjO8hq0G+tLA4bHzyWb1uliMsrpW0UU2pftF+zD/wdF2V3dadoP7YH7P6aVFM8UN18SPgPe3F1aWzOVi8+9+GfjLUp75LSIn7Re3em+P9QuxEJFstAuJRHDL+l5F47RlKFLiPKFBNpSxuUzcoxvpeWBxNRy5V8U5Qxs5JfBRk9D+G/Ff9k5Xo0sTmHgt4iyxk4KU6PDHiFQpUa1VRTlyUOKskwsMPKtO3s6FHFcOYWi5OLr5jSi5Tj/Tf+zn+1V+z3+1r4IT4g/s8fFXwt8TvDa+Qmpf2LdyQ654durlGkh07xZ4W1KGy8S+FdSkRHkisPEGladczwr9ot45bZklb9yyXP8n4hwqxmTZhQx1DTn9lJxq0ZPVQxGHqWr4ebWqhWhCUlqk1qf5VeJvhF4keDmfS4b8SuEM34VzN+0lhvr9GNTAZnRpSUZ4nJ82ws6+V5vhYylGM8RluLxNKnN+zqShUTgfQVewfnAUAFABQAUAFABQB5J8T/izp3w7jt7RLX+1devojPb2Hm+TBb2wZo1u72YK7qjyK6QQxIXnMUoLxKu+gqMXL09L/APt0f67W97xvQv2mtQN/GniTQLAabJIFefR2uY7u1QnmUw3c9zHd7ByY1ktSRyrFgEYKdPs/vX/3Q+trO8tdQtLa/spkubO9t4bq1uIjmOa3njWWGVCcHa8bBhkZwecEUGZZoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPL/iX8UNL+HVnb+bbtqWsagshsNMSUQr5cZ2vd3c2yUw2yOdiBYnkuJMxxgKkssAVGPN/w1/1X5/J2ueFaV+05q4vk/tzw5psmmvIBJ/ZUl1Bewxk4Mim7nuYLl0GWERW0WQjb5sWd9BXs10evp/90PrXSdVsdb02y1fTJ1ubDULeO5tZl43xyDOGU8pIhyksbAPHIrxuqupVQzemnb+vP8/vNCgAoAKACgAoAKACgAoAKACgAoAKACgAoA//0f7+KACgAoAKACgAoAKACgD82/izY31h8RPFaX6uHuNWuL63dwcSWN6ftFk0bHhkS3dIcqSFeJoztZGRQ2j8KPPo45JZEiiR5JZXWOOONS7ySOwVERVBZndiFVVBJJAAJOKCj9TPDtrdWPh/QrK+Ja9s9G0y1vGLbi11b2UEVwSwyGJlRyWB5685oOdmzQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfnh8b7G+s/iV4he9V9t81ne2UrA7ZrJ7K3hiMZPVIXgltDjhZLd1HCig2h8K8v6/r/gHkwGeByTwAO9BR+nPgCxvdN8E+FbHUVdL210LToriKTIkgYWyEW8gPKvbIVgZf4WjKjgUGD3fqzr6BBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB8EftCWN9bfES6u7lX+y6jp2mzac5B8vyYLZLSeJG+7uS7hnkdAdyiZHZQJUZg1ht8/wCv6/zPDqCz9JfhPY32nfDvwpaairpdLpxmKS5EkcF3c3F3aRupwyNHaTwIY2AaPbsIUqwoMJfE/U9DoEfxef8ABzX+wV/YPibwl+3x8OtF26V4uk0n4a/H6Kwt/ktPFNnafZPh34/vBErMI9e0e0/4QfWb2Uw2lvfaF4NgXzL/AF+Vn/sz6NHHft8Ni+A8xrfvcIquZZA5y1nhZz58wwELtK9CrP67RguacoV8bJ8sKEUfyz498HexxGG4xwNL93iXTwOcqEdI4iEOXA4yVr2ValH6pVk7RjOjhVdzrSR/JPpuo6ho+o2Gr6TfXemarpV7a6jpmpWFxLaX2n6hYzx3NnfWV1A8c9td2lzFFPb3ELpLDNGkkbq6hq/rGpTp1qdSjVhCrSqwlTq06kVOFSnOLjOE4yvGUJxbjKLVmm073P5vhOdKcKlOcqdSnKM4ThJxnCcHzRnCUbSjKMknGSd00mrWP9PX/glH+3HYft7/ALHXgD4r395aN8U/DKL8OvjdpUHkwvafEjw3Z2gvdaSziCLbaZ420y407xjpkcSG1tE1m40aOWW40e7Cf5k+KvBFTgPjDH5VCE/7LxL/ALQySrK7U8uxE58lFzfxVcFVjUwdVt80nRjWdo1oH9+eHXFsOMeGMFmM5xeY4dfUc2pqyccdQhDnqqCso08XTlDFU0lyxVWVJNypTP0mr84PugoAKACgAoA8i+OXx7+Dv7NPw18QfF/47fELw58Mvh14Zh8zVPEviW8+zwNO6yNa6XpdnEk2pa7r2otG0Ok+H9EtL/W9Wuf9G02xuZysbJyUVeTSS6vT/P8AL0vcaTk7JXf9f1/w5/Cb/wAFRP8Ag4t+Mv7T/wDwkXwY/Y9bxH8BPgHc/atJ1jx2Lj+zfjR8UdObfDOsmo6fcv8A8K38K6gh2/2LoF5J4m1K0yuteI4LHUb7wvBw1cQ5XjD3Y9+r/Ky+99/5TphSSs5av8F/n/XkfzLkliWYkkkkknJJPJJJySSeSSfzzXMbH6e/8E7/APgkt+1Z/wAFGvEsMvw08O/8IR8GdP1EWXi/49+N7K8tvAuj+RIv2/TfDcSCK88feK4IshfDvh1jDZ3ElovibWPDdleQ6gutOlOpsrR/me3y2u/R+tiJzjDfV9lv+lv63tY/0Bv+Ce//AASe/ZO/4J0eG4j8KvC3/CXfF6/04Wfi748eOLaz1D4g635yL9u0/Q3SI2fgbwtPKML4b8NJbLdW8Vn/AMJHqPiPULVNSfvp0oU9ld9ZPd/5LyXzcrXOWdSU99F2/rc/TStCAoAKAPgj9oSxvrb4iXV3cq/2XUdO02bTnIPl+TBbJaTxI33dyXcM8joDuUTI7KBKjMGsNvn/AF/X+Z4dQWfpL8J7G+074d+FLTUVdLpdOMxSXIkjgu7m4u7SN1OGRo7SeBDGwDR7dhClWFBhL4n6nodAj8kf+Ckf/BYH9nj/AIJ7aZP4UuSnxa/aHv8AT1utC+DPhvVILd9GiuoRLY618S9fWK+i8F6NPE8dxZWTWd94n1uKS3l0vRjpctxrNl+eca+I2TcH03h5P+0M5nDmpZZRqJOkpK8KuOre8sLSas4w5Z16qknTpezcqsP7I+jB9C3xK+kjiqecUk+DvDXD4l0cw43zPCVKscbKjPkxGB4Wy5zw888x1OUZUq9dVsPlWAnGpDFY5YyEMFiP4Xf2z/8AgpJ+1p+3br9xe/HD4kXo8Fx3v2vQPhD4Qa68OfCvw3scvam28MQ3U51vUbTLCHxD4tu9f8RqryRR6qlrstk/lbibjXiHius55pjZfVlLmpZdhnKjgKFnePLQU5e1nHW1bESrVuiqKNkf7+eB30X/AAc+j7l1OhwFwxQeeyoexzHjTOlRzPi7M+aPLWVXNZ0af1DDVrJzy3J6OW5ZJxjOWDlV5qkvg+vkz+hD374Jfsq/tJ/tI332H4D/AAM+KPxWKXAtbq/8GeDdb1bQdNnO35dZ8SRWg8PaGg3qDLq+p2UKl0DSAstevleQZ3nU+TKcqx+YPm5ZTw2Gq1KUH/09rqPsaXrUnFdLq65fzrjvxd8LvDDD/WPELj/hPhBOn7Wlh88zvAYPMMVDXXA5XOt/aWPk+V2hgsLiJtRbUbRkz9Uvh7/wbq/8FM/G1rDda74G+F/wrE21lg+IXxW0C4ukjcZWSaD4cx/EFoPlwWglZbqMnZJCsislffYPwa44xUVKrhcBgL7LGY+i5W7tYKONa9G1JdUrOJ/I3En7S/6K+RVZ0svz/izi7kunU4b4QzGnSco6OMJ8TVOGlU12nD91LeNWUWpS9c1D/g2L/wCCg1laPc23xC/ZT1aZPu2Gn/ET4nRXcnGcI+q/BfTbHORj95exDJ67cmvQn4G8YRi5RxmQVH/JDG49Sfp7TKYQX/gf3nxuG/ar/Rwr1o0qvDfi9g4PfEYnhrhSdGP+KOD46xWI1392hN6a22Pir42f8ET/APgpX8C7S91bW/2a/EPjvw/Zb2fW/g9quhfFIyxxgtLMnhnwnqF946ht40HmST3nhS0iVMsWGyTZ8xmnhhxvlUZVKuSVsXRjf97l1Slj7pbtUMPOWLSS1bnhoq3VWZ+68CfTs+i3x/WoYPAeKGW8P5lXslgONcHmHCXLKVlGnLNM4w1HIJ1JyfLGnQzirNy0UXeKl+WupaZqWjahe6TrGn3ularpt1NZajpmpWk9jqFhe20jRXFpe2V1HFc2t1BKjRzW88SSxSKySIrAhfhJwnSnKnUhOnUhJxnTnFwnCSdnGUZJSjJO6aaTT0aWx/WmFxWFx2GoYzBYmhjMJiqUK+GxWFrU8RhsRQqRUqdahXoylSrUqkWpQqU5ShOLTjJp3l6v8B/2g/jN+zJ8RtH+K/wJ+IXiH4b+O9EcfZ9Y0G72RX1mZEln0fXtLuEn0nxHoN60SC/0HXbG/wBJvQqfabRyiGu/Kc4zPI8bTzDKsZWwWLpPSpSlZTjdN0q1NqVOtRm0uejVhOnOy5oOx8f4heG/A/irwzjeD/EDhvLeJ+H8fH95gswo808PWUZRp43L8XTlTxmWZjQU5fV8wy+vh8ZQcpeyqxUpKX99v/BJj/gsN4A/4KDeHx8NviDbaP8ADj9qfwxpJvdc8H2szw+G/iPpVjGovvGHw3+2zz3Q+zcT+IfB91dXmqaDG/260u9X0dLq9sP638PfEfCcYUfqWMVLBZ/Qp81XDRdqGNpxXv4nA88nJcu9bDSlUqUk+eM6tNSnD/na+mJ9CriP6OGZPijhyrjeJvCPNcYqGX51WhGeacMYyvJvD5LxP7CnTov2v8PLc6pUaGEzGcfYVqOCxro4fEftfX6efwmFABQAUAFABQB8EftCWN9bfES6u7lX+y6jp2mzac5B8vyYLZLSeJG+7uS7hnkdAdyiZHZQJUZg1ht8/wCv6/zPDqCz9JfhPY32nfDvwpaairpdLpxmKS5EkcF3c3F3aRupwyNHaTwIY2AaPbsIUqwoMJfE/U9DoEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHw7+0lY30Pjawv5lc2N7odtFZSkHyw9pc3X2q2U9A8bzxzuo6LdRt1Y0GsNn6/wBfkfPNBZ+hvwOsb6w+GugpfK8bXDX97bRSAho7K7vZ5rY4PRJ0Y3ceODHcK3VjQYy+J/1set0EhQAUAFABQAUAFABQAUAFABQAUAFABQB//9L+/igAoAKACgAoAKACgAoA4rxj8PfC3jqKFNfsDJcWylLXULWQ21/boxJaNJ14kiLEsILhJoVdmkWMOSzA1JrZ/r/X9djnvCnwZ8D+EL+PVLK0u9Q1GBt9rd6vcJdNaPziS3giht7VJl4KTtA80RAaJ0YlqBuben9ffaP9O2m8vVqCQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOR8XeBvDXje0jtfEGni4a3LG0u4Xa3vrMvjf5FxGVOx9qmSGUSwOVRniLqjKDTa2/r8/vt95x3hr4H+A/DGoRanDa32qXlvIJbR9ZuY7qO1mVtySxW8FvaW7yRkAxvPFOY2CyR7ZVV1Bubem3p/+zH/g+X2vX6CQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOZ8U+D/D3jOwXTvEGnpeQxuZLeUM8N1aSsMGS1uYmWWIsAokQMYpgqiaN1VQoNNrY8/0L4D/D/Qr+PURa3+rTQSCW3i1i7iubWGRTlG+zQW9tFPsIyq3YnTOCVZgpUHzy/r/hla/rp53PZqCQoA8f/aA+B/gT9pT4K/Ez4D/EzT/7S8D/ABS8Jap4T1yJVjN1ZrfRbtP1rTHlSRLfWvD2qxWOvaFeFGNlrGm2N4gLwDb6+QZ3j+G86y3Pcsqeyx2V4uli6D15ZuD/AHlGqk05UcRSc6FeF/fo1KkHdSPMzrKcHn2VY/J8fDnwmYYaphqqVuaHOvcq076KrQqKFajJ/DVpwl0P8q39pz9nvx3+yn8fPin+z38SbbyPF3wu8WX/AIdu7lIZILTW9NXy7zw94o0tJcy/2N4r8PXemeJNHaX96dN1S184LMHRP9TOGeIMDxVkOV8QZbLmwmaYSniIxbUp0KusMRharWntsLiIVcPWtZe0pS5bxaZ/njn+S4zh3OcxyXHRticvxM6E5JOMasPio4imnd+yxNCVOvSvr7OpG9ndH6gf8EIv29P+GMf2xdI8J+NNa/s/4G/tHyaP8NPiEbufytL8O+JnvJU+G3j+43skNvHoWu6jcaFrN9PLFa2HhXxVr+p3IlfTbQJ+Y+OvAn+uXB9bF4Kj7TPOHFWzLL+SN6uIwygnmWAjo3J16FNV6MIpzqYrC0KUeVVZ836B4Q8Yf6rcT0sNiqvJlGeOlgMbzO1OhXcmsBjH0So1qjo1ZyfLTw2IrVJKThDl/wBHKv8AOo/uEKACgAoA/Ir/AIKZf8Fjf2aP+CcPh+78P6zew/FX9ovUdNF14U+BHhbVLePU7UXUPmWGufEnWUjvIPAPhiUNFLA95bXfiLXInD+HtB1GzjvtQ0/KpWjT31l0iv1fRfL0Urvl0hTc/KPf9F3f3fglL/PQ/bb/AOCgH7Tf/BQD4lP8RP2hfHM+q2thNdjwV8OtD+0aT8Nvh1p1043af4Q8L/armK3mkiSGLUNf1O41TxRra29t/bWt3wtrZYvPnUlUd5PToui9F+urfXa0eqMFBWXzfV+p8jeG/DXiLxlr+jeFPCOg6z4p8UeItRtNH0Dw54d0u91rXtc1a/mS3sdM0jSNNgudQ1LULyeRIbWzs7ea4nldY4o2cgVKTbsk23slqyj+xj/gl3/wbRSz/wDCO/HD/gotC0EP+i6x4d/Zd0TVNs8qnZNay/GbxRpFwGt1IxLJ4B8KXwuDuto/EfiS2dNW8KP10sNtKp/4Av8A25qX4L/wLc551ukPv/y1/F+lup/ZL4U8JeFvAfhvRPBvgjw3oXg/wj4a0620jw74X8MaTYaF4f0LSrNBHaabpGj6ZBbafp1jbRgJDa2lvFDGvCoK7EraLReRzt31er8zoKACgAoAKAOZ8U+D/D3jOwXTvEGnpeQxuZLeUM8N1aSsMGS1uYmWWIsAokQMYpgqiaN1VQoNNrY8/wBC+A/w/wBCv49RFrf6tNBIJbeLWLuK5tYZFOUb7NBb20U+wjKrdidM4JVmClQfPL+v+GVr+unnc9moJPwX/wCC0f8AwVzsv2FPByfBP4JX2m6t+1V8QtEN5bXMsdvqOn/Bjwlf+bbw+NdbsZkmtb7xVqhjnTwR4cvUe1DQy+JvEFvLpFtpuk+J/wAm8TfEOPCuGWV5XOFTP8ZS5oyfLOGWYed0sTVg7xniKln9VoyXKrOvWjKnGFOv/oX9Br6Glf6QGdy4748w+KwfhFw3j1Rq0oSq4bE8cZxh+WpPIsBiIOnWw+UYRSpyz/M6E41mqkMqy2pDG1sTjco/gE8UeKPEnjbxHrni/wAY69rHinxV4l1S91vxD4j8Qajdatret6xqM73N/qeq6nfSz3l9fXlxI81xc3E0kssjFnYk1/ItevXxVaricTWqYjEV6kqtavWnKpVq1JvmnUqTm5SnOTd5Sk229X0P+i3KcpyvIcswGS5Jl2CynKMqwlDAZblmXYajg8BgMFhaapYfC4TC4eFOhh8PRpxjCnSpQjCEY2SX2vr39ir/AIJ8/tN/t7eN38J/AfwS9zoWlXdvB4z+J/iRrjR/hr4EiuAJFbxB4jFtcmfUpIWE9p4b0K01jxPfwbrm00d7KC7u4PouGOEM84txX1fKcK5UqcksTjq3NSwOET1/fV+Wd5taxoUoVK817ypuClKP4x46/SP8Kvo85Cs48Qs9VLMMXRqVMj4UytUsbxTxBKm3FrLcsdaiqeFjUTp1s0zCtgsqw9S1KtjI150aU/7NP2L/APg3r/Y0/ZytdH8TfG6xP7U3xVtRDdXN348sVs/hVpd8u1mh0X4Xx3N3p+s2sZ3QvJ4+vPFkV4V+2Q6ZpLulrF/S3DPg9w1k0adfNIf29j42k5YuHLgKc92qWBTcasVtfGVK6l8UadJu0f8AD7xy/aReN/ibVxuVcB4heEvCNVzpUqPD2I9vxdi8O7pTx/FcqVHE4KrPScYcO0MnlRTdCpi8ZGLq1f3e0TQ9F8NaTp+geHNH0vw/oWk20dlpWi6Jp9ppWk6bZwjEVpp+nWMNvZ2dtEDiOC3hjiQcKor9XpUqVCnClRp06NKnFRp0qUI06cIraMIRUYxiuiikux/n1j8fjs0xmJzHM8bi8xzDGVZV8Xjsfia2MxmKrz1nWxOKxE6levVm/iqVZynLq39nUrQ5AoAKAPg79s3/AIJtfslft1eHbuw+Nnw105PGv2J7bQfi/wCEIbXw78U/Dcwh8q1kt/E1vbyHXbCzHMXh7xba694cyTINKW4Ec8XyfE3BXD3FdGUM0wUFiuVxo5lhlGjj6DtaLVdRl7WEelHERq0evImoyj/Qfgf9KDxj+j/mdHEcCcU4l5F7eNXMOC85nWzLhLNIc/PWjUyqpVgsBiK2qlmWT1cuzO3u/XHTcqc/4Gf+CkP/AATH+N3/AATm+I9to/jInxx8IfFt3cp8MfjNpGnTWWieJBAjTyaBr9iZrw+FfG9hagz3mgXN7dQXlqkmoaFqGq2MN5JafyTxrwNmnBmNjTxP+1ZdiJSWBzKnBxpV7K7o1oe99XxUI6yoynNTinOlOcFPl/6I/ow/Sr4D+k1wxVxuSL+weM8mo0nxVwRjcVCvj8rdRqnHMcuxChQ/tfIcRVfs6GY08PQqUKsoYbMMLhK86Cr/AAZ8N/iP44+EHj3wj8T/AIa+JdT8H+PPAuu6f4l8K+JdIm8m/wBJ1fTZlntp49weKeF8NBeWV1FPY6hZS3Fhf21zZ3M9u/yeCxuKy7F4fHYGvUw2LwlWFfD16btOnUg7xa3TT2lGScJxbhNSi2j+hOKOGMg404dznhPijK8LnXD3EGX4nK83yvGw58PjMFioOnVpys4zpzjdVKFelOniMNXhSxGHq0q9KnUj/pi/8Ezv26/DP/BQL9lvwp8Y7KOw0j4g6RL/AMIZ8ZPCFlI3l+GfiLpNpbSahJYwys9wvh3xNZ3Fp4m8NPJLdeVp2pf2TcXk+qaTqez+3uB+K6HF+Q4fMoqFPGU39WzLDRelDGU4xc3BNykqNeMo16F3K0J+zcpVKdTl/wCWT6U/0f8ANfo5eLOb8E15YjG8OY2P9ucEZ1XiubNeGsZWqxw0a84RjTeZ5VWp1srzSMY0ufE4X65To0sJjcLzfoLX2B/OAUAFABQAUAcz4p8H+HvGdguneINPS8hjcyW8oZ4bq0lYYMlrcxMssRYBRIgYxTBVE0bqqhQabWx5/oXwH+H+hX8eoi1v9WmgkEtvFrF3Fc2sMinKN9mgt7aKfYRlVuxOmcEqzBSoPnl/X/DK1/XTzuezUEhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAYHiTwvoXi3Tm0rX9Piv7Qt5kYYvHNbzAFVntriJo5reZQxXfG43IzRyB42dGBptar+v6/rY8y0r9n/AOHml3yXz2+p6r5cgkjs9VvY5rFGU5XdBb29q06KR/qrmWeJ/uypIuQwU5yfl6O//tsbet/u+17WqqiqqKFVQFVVACqoGAqgYAAAwABgDgYxQQLQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/9P+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/lF/wCDmX9gz/hOfhx4V/br+HmjeZ4o+FcGn+AfjdDYQZn1X4banqRj8H+MbiOFN00/grxLqT6HqVwUluZdC8UWU9zPBpfhMbP6q+jVx59RzHFcDZjWthc0lUx+SSqS92lmVOnfF4OLe0cbhqSrUo6RVfCzjG9XF2l/Ovj1wf8AW8DhuLsFSviMvUMHmygtamBqVLYXEtJavC16jpVJfE6OIg5ONPDpS/iRr+1j+UT+6r9gz/gv/wDsy+GP2D/AF5+1v498Qt+0B8MVk+F+reEvD3hzVfFPjn4p2XhWwsT4Z8eWLYttCgfW/D1xZafr2q+K/EuhQXnjHSPEE/nRpe2SN/lP9I3MuCPCvjzM8DHN8FWhj4xzajkeVVaONzLLKmLlOdfL8XhKFVf2dy1VKtgoY6WFhPA1sMqU58s3H/YT6IH0a/pBfSc4NyvNeGOCMfhcnw1SWV1uO+LPbcP8J4+GF5acMfgMzxdCdfPuWPLQx64ewmcV6GMo1/rFKlzRPAfij/wdSxJqNxafBb9kOS40mORvsmvfFH4nLZ6jdRbiENx4S8J+GL620+TaAzCPxrqS7mKAgJ5j/wAmY/x7SnKOWcOt00/drY/H8s5L+9h8PQnGDt2xUz/VbhP9kdN4anW458Zo08ZKK9tl/CfCbr4ajKy5vZ5znGa4eriI3uk5ZFhXZKTu5OEW/CP/AIOoVl120s/jv+yZ9j8NzzIt94i+E3xCN/rWmQZw8lt4P8XaLYWWsyYORHJ420MLtxufcNqy7x6vVjHNuH+Wi379bL8Zz1YLry4bE04QqvyeLpfIfGX7JBxwFav4f+MPts0pwk8PlvGHDX1fA4qp9mNXOsmx+Ir4GN9HKOQ4+97pJJnlv7bH/BzT43+IHgHXfAP7E/wr1f4P63rnn2J+M/xP1DQ9W8W6Jo8iSxyN4U8DaRBrPh3SPEtwrRmHXdW8ReJLXSU89bTRZr97PV9P9OXjvkzrqEclzOGFcrPEOrhHXjG/xfVlU5G0vs/WvSR8DL9kt4pQyaWIj4o8BVc/jR545SsDxBDKZ10r+x/t2WF+tKDfuqs8gjfeVOKd4/x9eL9c8VeJ/E+u+JfHGt634l8X+INTu9Z8ReIvEep3mt67rurajM9ze6tqusahPc32qX19PI89xfXVxNPcSu0ksjOSa/UcqzbAZ5gaOZZbiY4rC4hNxqK6kpJ2nTqwladOrTleM6c0pRfdNOX+cPiJ4c8Y+FHF2bcDcd5LiMh4jyarGGJwdZwqUq1GrHnw2OwGKoynh8dl+MpNVsJjMNUqUasHZSU4ThH69/YZ/wCCen7TX/BQf4lJ8P8A4AeC5LvStNuLT/hOvid4gFzpnw1+HOnXTfLeeKPES204a+miWWTTPDWjwan4n1lYp5NN0ma1tb66tfTp05VHaK06vovV/ktW+lrtnw0pRirv/g/1uf6F3/BNb/gjv+zB/wAE4tAtNb8N6dH8Uf2hL/Tfsnir49+LtLtl11ftMPl6ho/w90cyXlt8PfC8+6WOW0066vNe1eBxF4k8Q6zDBZQWXoU6Uaa01l1k9/Rdl8/VyuuXlnUc32XRf5+f9dD9aq1MwoAKACgAoAKACgAoA+XP20P2pfB37GP7NHxV/aK8aLHeWngLw+8mgaA1wLefxb411WWPSvBvhS2kAeVG1zxDd2NreXUMNw+maV/aGsSQtbadcV4XE2fYbhrI8wznFWlHCUW6NG/K8RiqjVPDYeL1a9rWlGMpJS9nT56jTUJcv6z4G+Eud+OHinwj4aZE5Ua3EOZRjmOYqn7Snk2RYSEsZnecVYu0JLAZbRxFWhSnOmsXi/q2CjNVcTTR/l3/ABm+L/xA+P3xU8efGf4p67P4l+IHxH8R3/ifxNq8+4LLe3zjy7SxgLOthpGlWiW2laJpcBFrpOj2VjplmkdraQxp/CWZZjjM3x+LzPH1XXxmNrTr16j6zm9IxWqhTpxUadKnH3adOMacbRikf9YvA/BfDnh1wjw9wPwll9PK+HOGMsw2VZVgqdm4UMPH3q1ep8WIxuLrSq4zH4upetjMbXxGKrN1q05S/Qn/AIJS/wDBMfxr/wAFGfjNPYXs+q+EP2f/AIdTWF/8X/iJZ26famS5cy2HgLwfJdRSWc/jTxLFDMVuZo7my8L6Qlxr2p215MNI0XXPsOAOBsVxnmbhJ1MNlGCcJ5jjIxXN72sMJhnJOLxVdJ+81KFCmpVqkZNUqVX+bvpe/SqyL6M3A9PEUKeEzrxG4mhiMPwXw1XqS9inSShieIc6jRnCvTyPK5zgnShOlXzbGyp5dhatGH13H5b/AKK/wW+Cfwr/AGd/ht4a+EfwX8E6J8P/AIe+ErNbPRvD2hW3kwqxAN1qOoXUhe91jWtSmBu9X1zVbi81bVr6SW91G8uLmV5X/svLMrwGTYKhl2WYWlg8Hh48tKjSjZf3pzl8VWrUfvVKtRyqVJtznJybcv8Amf45474u8SuKM14y45z3H8R8SZzXdfHZlmFXnm1/y6w2GpR5aGCwOFg1RwWAwlOlg8HQjChhqNKlGEI+p13nyQUAFABQAUAFAHz7+1J+zR8L/wBrv4GePPgH8XdIj1Pwn430ma2ivUhhfVvCuvwo76B4y8N3EyOLLxF4a1Exahp04/dTbJdPv4rrS72+srrx8+yTAcRZVi8ozGmqmHxVNxUkl7TD1lrRxNFv4a1CdpweqdnCalCc4S/R/CXxS4s8GeP+HvETgzGzwmcZDjIVZ0JTqLB5vl05RjmOSZpShKLr5bmmG5sNiad1OHNDE4edHF0MPXh/l7ftNfs++Of2Vvj18Uv2ffiPAI/Fnwv8VX3h67u4oZYLPXNOAjvfD3ijS45szDR/FXh+70vxHpHm/vv7O1O2EwWYSIn8KZ5lGKyDNsfk+NVsRgMROjKSTUasNJUa9NPX2eIoyp1qd9eScebU/wCsHwr8R8g8XPDzhLxH4YqOWT8WZRh8yo0ZzhUr4DFe9QzLKcXKHuPG5RmVHF5ZjeT3PrWFq+zcoOEj9Xv+Dfr9sC6/Zt/bj8P/AAv1zVGtvhl+1JFZfCvXrSabZZWvxAE1xcfCbXViJVXv38R3Nz4IhJcItp45vZnSV7e38r9A8IeI5ZJxVRwFWpy4HPlHAVot+7HGXby+ra6Tn7eTwq3SjiptrRH8f/tG/Baj4oeAeY8WYDCKrxV4TTr8XZfWhC9etw44UqfGGXuerWHWWUqWfTSTk62QUKcZQjVqc3+hbX9hn/NuFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA5D4g+DvB/xE8B+M/AXxC0vT9c8B+NPC2v8Ahbxno+rELpmp+F9d0u60zXbK+dmjEVrcabc3Mc0wkjaFGMqyIyq69WCx+JyvGYXMsFXlhcXl+Io4zC4mDUZUK+GqKtSqptNJ05wUtU46apptGOJwFLNMPWy2vh/rdHMKVTBVcLySn9Yp4qLoyoqEfek6qm4KMfebdo62P8n74/fDfwJ8Mfjr8XfAHw28f6b8VPh14M+Inivw74G+IGks0mn+LvC2l6xdW2ia0k3kW8FzJc2CQC6ubBZNIu7pJ7nR73UNJlsr24Xj59OnPM+yujwj4VTrcPutgaNPiji+jJRx9THTpJY3LuFailUlgsBTqucP7c0zDEuzy9YGnSji8X/qF9Av9jvw5w9Xwvi99KfLKPE2Mlifr3A/g/mFNyynL8vU/a5dnHiVhZQis0zivT9lVjwZJyyjL6f7viOOaYrEV8nyry8AAYAwB0A4Ff5x1q1bE1quIxFWrXxFepOtXr1qkqtatWqyc6lWrVm3OpUqTk5znNuUpScpNttn/QJhMJhcBhcNgcDhsPgsFg6FHC4PB4SjTw2FwuFw9ONKhhsNh6MY0qFChShGnRo0oxp06cYwhFRilErI6AoAKAP0C/4JefsUfCb9vb9s/wCHvwG+MXjnXfBPhW/0XxT4nkt/C9raN4g8eSeELBdeufAmnateytB4bk1DRbXWtWn17+zdamtrDRr20tNPjur6LUrD9u8Es6lRzvFcP1qj+q5nh6mKw9O+ix2DipT5FtH22DVV1ZLWX1airPlTj/lV+1Q8J8Jnfhhw54wYDBwWecCZxhcgzrFwgozr8J8SVp0MMsVUUXKpHLOJJ4CGBpzcYUv7czGUZKVXkn/pR/A74D/B/wDZr+Gvh74QfAv4feHPhn8OfC8Hk6T4Z8NWf2a3851QXWp6ndytLqOua7qTxrPq/iDWru/1vV7rdd6nfXVy7SN/VKioq0Ukl0Wn+f5+t7n+Brbbu3d9/wCv67HrdMQUAFABQAUAFABQAUAFAH8aH/B0L+1Jcan41+Bf7Hugag40vwvpMvxx+I1vDMTBc+ItffU/C3w9066RWXy7vQdDs/FuqyQyq6yW3jDSp0KNGN381eO2fSqYrKuHKM/3eHpvNcbFPSVet7TD4OEtVaVGlHEVGmneOJptWsf7ffsnvCanhci4/wDGrMcPH63m2MhwDwzUqQtUpZZlywmb8SYmk2nzUcwzCtk2DjOLi4VclxdNqSm3H+Uvwv4Z13xp4m8O+DvC+m3Os+JvFmu6R4Z8O6PZqHu9V13XtQt9L0jTbVCVDXN9qF1b2sCllDSyqCRkmvwGhQq4qvRw1CEqlfEVadCjTj8VSrWmqdOEdvenOSitd30P9es2zXL8iyrM87zbFUsDlWT5fjM1zPG1najg8vy/DVcXjMVVau1Sw+Go1atRpaQg3qf6jn7A/wCyF4Q/Ye/Zb+GXwA8MQWMmqaFpMOsfEbxFZxlW8Z/E/Wra1n8aeJ5pZEW4mguNRjGm6HHdF5tP8MaZoekbzFp0Zb+7+EuHcNwtkOByigoupSpqrja0V/vOOqxi8TXbaTac1yUlK7hQp0qd7QP+TT6Q/jPnPj34tcVeIubVMRHCY/GTwXDOWV5XWR8KYGrVp5HlUIRcqUKlPDSeKzCVK0MTmuLx+Nsp4maj9j19IfiQUAFABQAUAFABQAUAfxsf8HRf7MtppXif9n79rnQtPEJ8V22o/A74i3UUYjhm1jQ4bvxd8OLybYoE+pX+iv46064uJW83+zvDOj2yl4rdUg/mzx3yONPEZRxFShb6xGeVY2SVk6tJSxGCk+850vrUG3Z8lCkldR93/bn9k34qVsXlXiN4NZhiOf8AsirhuPuGqU5OU4YLHzo5NxPQgn/DwuHx0cgxNKnD3frOa46q1GdRuf8AJ94e1/WPCmv6H4o8PX0+l6/4b1jTNf0PU7Zttzp2saPew6jpl9bsQQs9pe20FxExBw8anBxiv5+o1amHrUq9Gbp1qNSFWlOOkoVKclOE09bOMkmtN11P9gsyy7BZxl2YZTmWHhi8uzTBYrLsfhaqvSxOCxtCphsVh6i6wrUKtSnNdYyZ/rD/ALPXxZ0749fAf4M/GzShClj8WPhf4G+IUVvAxaOyk8W+G9N1u5047mZ0l026vJrCeKRjLDPbSxS4kRhX+gWT5hDNspyzNKaSjmGAwmMUVqoPEUIVXT6605TcGm7pxs7tM/4+fEng7E+HviFxvwJjHOWI4P4sz/hudSokpV45NmmKwFLEqyjGUMVSoQxFOcUoTp1Yzh7skew16R8UFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//1f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Un/AIOMP+Ck2t/DjSLX9g74M69NpfiPx14ct/EH7QfiLS7kw3+meBtaWQaB8MLa5gcTWk/jS1STWvGCAwTP4RfRNK3XWl+LNXt0/APGbjWrgqceE8srOnWxVFVs4rU5WnDC1f4OBjJaxeJinVxK91vD+yp80qeIqQj/AK+fszfovYDifGVfpB8cZfDF5Zw/mdTLvDfLcXSVTDYvP8C4/wBo8V1aVSKhWp5FWlHA5K26sI5zHHYy1HF5Pgpn8WtfzMf7mBQAUAFABQB9yf8ABM74nTfB/wD4KA/sg+O47k2lva/HnwB4d1a5D7PI8O+PNYh8BeJ5GPGUHh3xNqfmJnEke6M4DGvqeCMc8u4v4cxalyqObYOjUltaji6qwld+nsa8791p1PwL6U/CkONfo5+NHD8qSrVK3h7xFmeDpNc3tMy4ewU+Isqil0k8yyrCKMt4ytJaxR/qOV/d5/yaBQAUAFABQAUAFABQAUAFAH+YH/wVW+Mc/wAdv+Ch37Wfjxr176wt/i94h8BaBPv3QN4b+Fhh+GuhS2ag7I7W807wrBqCKqoZHvJLiVTcTzu/8LcfZk824x4hxfNzQWY1sJRd7r2GAtgaTj0UZQw6npu5Nu7blL/q5+iJwTT8P/o1+DvDyoLD4irwZlvEOY07WqRzTi5T4pzCFdvWVahis3qYaV3JQjQjTg/Zwgj6s/4N/fgHa/HD/gpD8OdY1azjvtA+A3hfxV8ctRgni3wPqnh4ad4Y8FyBypWO70zxz4w8OeIrMZEhfQ3eP5YpGT6DwhyiOa8a4KpUipUcpoV81mmrp1KPJQwr62lTxeJoVo9b0r6WufkX7RnxErcBfRh4mwWDryoZj4hZtlHAOGqU58tSOEzJ4nNc8i4rWVHFZBkuZ5bW+yo49KWs4Rl/ooV/ZJ/zRhQAUAFABQAUAFABQAUAfjf/AMF7fhZB8Tv+CYnx3uRbJcat8MdQ8AfFPQy67vs0/h/xpo+k69cqQCUdPBXiHxSgYA58woxVHd1/NvFrALHcDZrLl5qmAng8fSv9l0cTTp1peTWFrYj77Pc/tr9njxbU4U+lZ4fUnVlTwfFeH4j4SzBJ29rTzLI8bjMupNXSkpZ7luUSae3LzJOcYqX+cfX8YH/Tcf6Nn/BAv4jS/EL/AIJf/Ae3u7j7VqPw81T4k/Dm9kLZZItF8f69qmhW5HO37J4W13QrRF/55wRsMbgK/s7wkxrxnAuUqT5p4OpjcFN9lSxladJf9u0KtKPyP+ZT9ojwxDhv6V/iFUo0vY4biXCcL8T0I2spTx/DuXYTMKqdlf22bZfmFaT19+bTeh+ylfpR/EQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8tD/go18Qtb+KX7en7X/jPX7ia4vLv9oX4paLafaGZpbbw/4P8V6l4O8KaaxbnGk+F9A0fS0GABHZoFVVAVf4N4zxlXH8WcR4mtJylLOMfSjfeNHD4ieGw8Ov8OhRp015RW2x/wBa30ZeG8Dwl9HnwWyPLqcKVCj4bcJY+t7NJQq5lneT4XO83xKSvrjM2zHG4qWrblWbbk7s+N4PsflXv2kXJm+zJ/Z/kGIRC8+2Wu83okBdrb7B9uCCArL9sNqSTCJlb5uPLafNzX5fc5bW5ueN+e+vLyc+2vPy9Gz9sq/WOfD+x9j7P20vrftXNTWH+r1+X6vypxdb619WUlVtD6v7dpuoqaK1SbBQAUAFAG34a1698LeI/D/ifTW2aj4c1vStesHDFdt7pF/BqFq24ZK4nt4zuAyOozitaFWVCtRrwdp0atOrB9pU5qcX16xXT7zgzXL6Gb5ZmWVYpXw2Z4DGZfiFa96GNw9XDVlZ6O9OrJWf6n+urpOp2mtaVpms2D+ZY6tp9lqdnJx+8tL+2iurd+CR80MqNwSOeCetf6IU6katOnVg7xqQjUi+8ZxUk+nRrp9x/wAZ+MwtbA4vFYLER5a+DxNfC14/y1sPVlSqR6bThJbfcaFWcwUAFABQAUAFABQAUAV7u6hsbS6vbhtsFnbz3U7f3YbeNpZG5wOEQnk9u1KUlGMpS0UU5N9kld/gjWjSnXrUqFNXqVqtOlTXedSahFfOUkf5EXiXXr7xV4j8QeKNUfzNT8Sa3quvai+Sd99rF/PqF2+TgndcXEhyRk5ycZNf5216s8RWrV6jvOtVqVZvvOpNzk+m7b6fcf8AZplWXYfKMsy3KcIuXC5XgMHl2Gja3Lh8Fh6WGoqyulanSirJ/fY/rG/4NVPB1tc+Kf20PiDLGn2vRtA+CXg7T5SgMn2bxLqPxK1vV41kxlU83wpojOgbDnyywPloa/oHwCw0ZYjibFte9So5XhoP+7XnjqtRffh6V9e21j/Hv9rtndWllPgbw5CT9jjcx48zvEwv7vtcrw3C2BwUnHZvkzjHqL+yuZL4mf2P1/SR/iUFABQAUAFABQAUAFABQB8e/wDBQrw3F4u/YO/bM8PyosjXv7L/AMdJLVWXcq6jYfDXxJqOlyEd/J1K0tZeMMCmVIYA185xjRWI4T4lpNX5sizVx6+/DA15038pxi/+GP2r6N2Zzyb6QngfmMZOKoeLHAEazi7N4bEcU5XhsXG/9/C1q0Oz5rPRs/ywa/go/wCt4/u7/wCDYDX5NQ/YU+LWgzSbz4d/aj8XNbLn/U2OsfDD4SXSRgdgb+DUpcjGTK3plv6u8CqznwpmNJu/sc+xDj5QqYDLml/4HGb+eys3L/n1/au5dHDfSB4OzCEeVZl4TZMqr/nxGC4r4xpSk33+rzwsOtlBd0o/0i1+1H+YIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/NH/AOC0nw1+Fnwk/wCCkP7RGjfDL4k+E/HFn418U3fxQ8RaR4dvXvLv4deO/Hl7e6x44+H3iKdYl01Ne0vxPJqeqDTdMubw6Rous6PpuqLYavbX2n2v8geKXBeYZRn+Y5xhsPUxGUZniKuPeIowlUjg8TiZuriqGK5U/Yr28p1KM5RjSlSnCEZupCpCH/Rz9An6UXBPiN4TcG+Ged59l+UeJXAmT4HhNZJmeKo4OvxJk2TUYYHIc0yF15xWaTWVUcLhMzwtCU8fh8dhcRia2Gjg8ThMRX/LevyY/wBDwoAKACgDesPC3iTVNB1/xRpuharfeHPCsujweJdctLG4n0vQZfEE91baFHq17GjW9g2r3NldwaeLl0+1zW8sUO91IXWFCvUpVq8KVSdHDumq9WMG6dF1m40lUktIe0lGShd+800rnn4jNsrwmYZdlOKzDCYfM83hjamV4CtiKdPF5hDLadKrj5YOhJqpiFg6VejUxLpKXsYVYSnZNMw1VnZURWZmYKqqCWZmOAqgZJYkgAAZJOBnIrI721FOUmkkm227JJattuySS1bb+6x/rPfs9WniDT/gF8D7DxZZXGm+KrL4P/DS08TaddqyXVh4gtvBeiw6zZXKPh0uLXUUuYJlYblkjYNgiv8AQfJ41oZRlcMRFwxEcuwMa8JaShWjhqSqxknqnGfMnfqj/js8SK2W4nxE49xGT16eKyivxpxTWyrE0WnRxGW1c8x08DXpOPuunVwsqVSDWjjJNbnsFeifFhQAUAFABQAUAFABQBgeK7OXUfC/iTT4VZ5r7QNYs4UTO95brTrmCNUxzuZnAXHOTxWWIi50K0ErudKpFLu5QkkvvZ6OUVoYbNsrxFSSjDD5jgq05S+GMKWJpTlJ+SUW35H+Q9X+dh/2bn9jv/BqffwSeGv23dLDp9ptdd/Z/v5I8Yk8i/sPjDbxOT1KGTTZlA52kHON43f0j4BTTocUQ+1GrlE33tOGZJfjB9fuP8S/2vGHqRzXwHxbi/ZVcv8AEXDxl9n2mHxPBdScfJqOJpvpdPrb3f646/oc/wAawoAKACgAoAKACgAoAKAPnz9rURn9lT9poS7fKP7PnxnEm77vln4ceJN+7ORt25zkdPWvH4ht/YGeX2/sfM7+n1Ksfo/g45Lxd8K3C/OvEfgdxtvzf6z5Xy231vtp95/lBV/n+f8AYCf3B/8ABrWX/wCGVf2jgQfLH7QdqUPYufhx4U8wY9QoiJ55yOmK/qTwHv8A2BnXb+2I29fqWHv+nT7z/BT9rSo/8Rd8MWvjfhxVUl/dXE+ccv3tz6dOtz+n2v3Q/wAogoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5Ef+C2f/Bfa3+Gp8W/sifsL+Lobz4job3w78Xv2g/D12lxZfD5xvtdU8E/CzUrdnhvPHcZ8201/wAbWrva+CnEuneHZbnxgJ9S8H8tava8Ib7OXb07vzurdLu7j0U6X2pfJfqz+Hy6urm+ubm9vbme8vLyea6u7u6mkuLm6ubiRpZ7m5nlZpZ555XeWaaVmkkkZndizMW4ToWlraW2tpa3bsfrN/wT9/4JK/tY/ty+Avil8bPAejXHh74VfDPwZ441Tw/r+u2t4W+L/wAQ/D2g6jdaV8L/AIbWG6M61qOo6vBBper+IN66D4cml+zXFzdaz5Wkt8hxfwnh874bzqhhMBhY4+WFlXwtWnhqMcRUxOEnHFUqNOrGmp81eVL6u/eimqrTerP6n+i/9IDiLwx8cfDHO+IuMeIavBuGz+nlWf4DH57mdfJsNkmf4bEZDjcficBWxU8LKlk9LMf7Xh+5cqdTAwqUk5xifBjo8btHIrI6MyOjqVdHU4ZWVsMrKQQykZB4OMV/FzVtHo1o0+h/1IRkpJSi1KMkpRlFpqSaummtGmtU1o1qhtAwqoQnUnCnThKpUnKMIQhFynOcmlGEIxTlKUm0oxSbbaSTvYzq1aVClUr16lOjRo051a1arONOlSpU4udSpUqTahTpwgnKc5NRjFOUmkrn+gP/AMEX/wDgnx8DdB/4JnWVh8StC8F/GG2/bV0TTfiT8WLeZYtV0a58N3EG3wF4C+2wNDcQX/w+t1m1G4mtpbXV/CvxJ1PxKdNvobrTLG7i/s/hDwynwpw/jeHuLcodLOMymp8QZZj6LjVwrUU8LgKqdpRnhKclWU4Pmp4qtVqUakoxpTl/zU/Sx+mHmnin4/ZVx94P8XYrBcL+FzrZT4ZcR5Ji/wB3jq3tpLiDijDXVSjWw3EWJh9Q9hXhPD5hw7gcvoZhhP32Mw8vd/gf/wAEK/8AgnR8Bfivpnxg8MfC3xF4m8ReHNWh13wfpHxD8bav4v8ACXhLWLScXOn6jpmgXYhi1W60uZUl0yTxdP4jNldRQahCRqVtb3sTyvwq4MynMIZlQwFavWo1FVw1LGYqpicPh6kXeE4UpJKpKm9af1l1+WSU178Yzh4nHv0//pMeIfB+K4Kzbi3LcryzM8HPL86xvDWRYLJc5znBVqbp4nDYrMaLqSwlLFwbhio5NTyv29KVTDTTwtWrh6v7BV+jH8WBQAUAFABQAUAFABQAUAFAH+TB+0N4Dm+Fnx++OPwxuYzDcfDr4v8AxK8CzRFdnlyeEvGetaC6bewDWBAHTGMcYr/PnOMI8Bm+a4GStLBZjjsI1a1nh8TVovTp8H9WP+xPw14hhxb4dcA8VUpc9PibgvhbiCE783NHOMjwOYxd+raxCu/vP6Jf+DWz4jRaP+01+0h8Kpp0iPj34J6L4zto3YL9qu/hr41stLEMWSPMnWy+JN9ciJcube3uZQAkLmv2TwHxqp55nWAbt9byuliYp/algsVGnZd3y42Urdk30Z/mn+1o4ZnjfCvww4uhTlNcPcd47I6so6+yo8UZFXxbnNLam6/C+Hpc7slUqUobzipf29V/UR/gwFABQAUAFABQAUAFABQB8oft5ayvh39h79sfXGYKdK/ZZ/aAvY8nG6eD4U+K3tohyPnmuBFEgyMu6jIzmvn+LKvseFuJKv8Az7yHN5LzksvxHKum8rLfr0P1/wCj3gXmfj34JZek39c8W/DmhKyvy06nF+TqrN76Qp805aaRi3qf5V1fwOf9dJ/dV/wa76Q1v+xF8bdcZSv9qftS+I9PQkEb49H+FHwkm3r6p5uryx7hkb45F6qQv9V+BNO3C+aVf+fmfVoeqpZflzv99Vr5W6M/5/v2sWNVXx54EwCaf1TwlyzEys78ssbxhxlDlfZ8mDhKzfwyi9Ln9K1ftp/lwFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgBrMqKzuyoiKWZ2IVVVRlmZjgBQBkknAHJxg0AfxSf8Fv/wDgvfJr7eLv2Ov2FvGbRaADfeG/jT+0R4YvisuvH57TVfAPwj1mzkDRaEP3tn4l+IGnzLLrh87S/CdymiCfW9e461feEH5SkvyX6v5K1lM6KdL7UvlH9X/l95/HJXGdB/Rx/wAEYP8Aghn4s/bd1LRP2if2lNO1vwT+yVpl8t1omkZutG8VfH+7sZyJNN8PXC+Te6L8OIriJrbxD41tvKvNVZZ9B8GzrfjUvEPhnpo0ef3p/B0X835afffZNXvHKpVUbxXxfgvP1Xa3rax/oMeCvBPhD4b+EvDngLwB4Z0Twb4K8I6RZaB4X8K+G9NtdI0LQdG06Fbey03S9Nso4bW0tLaJAqRRIB1Y7nZ2buSSSSVktkv6X5fccrbbu92fypf8FYf+Df7xX8UfiF4s/aT/AGHLfQpdc8aaheeI/iJ8ANT1HT/DMV74nv5XudX8S/DDXNTms/D9q+vXkr6jq3hDxDfaNY2uoy397oWsm3vLPw3Zfz54geEWIx2MxGd8LKk6uKnKvjMoqThQ5q83zVa+BrT5aMfayfPUw1aVKEZucqVbllDDw/2L+h9+0YyfhPhvJ/C/x8q5hDL8iw1DLOGfEXC4bE5rOhlWHhGlg8r4rwGEp1sxqrLqEI4XBZzluHx2Iq4aGGoZhgZVKNbNMR/O9af8Env+Ckd7rs3h2H9jH47JqEDSq9xd+Dp9P0JjCrM3k+Kb+W38MXCkKfKeDV5VmYqsLOzoK/HqPh5xtXxMcLDhrM41ZTVNSrUY4fDczdk5YyvUpYOEL71Z1404r3nNRVz/AElxv0yPou4DKJ51X8b+BKmDhRdd0cFmksyzdwjHm5YZBl+HxOe1KzWiw8Mu9u5e6qUp+6fnHqUlxBPcWE0E9pPbTS213BcxvBcwzwu0U1vPBKqywSxSK0csUgWRHVkcKVIb/VX6Mn0KqPAOY5f4g+KNbLs54owbpYzh/hzA1I47JshxKtUo5njsZyqjm2b4d8ssFDDwlluXVo/W6NfMMT9UxGC/56/2hX7XPFeN+QZ34I/Rxw2ecLeG2b06+WcbcfZvRllPFXG+XT5qWJ4fybLI1ZYjhvhbHR5o5pWxtWGfZ9hKn9mYrB5Jl7zLA5v/AGAf8Gx37eOV8ZfsB/ELWuV/tn4o/s+PfXHVTm++J3w8sA5/hJb4i6NYwqSd3xCvp3AW3Sv0/wCkxwJrg+Pcvo7+xyviBU49fgyzMKll1X/CdWnJ9MvhFayZ/mN4B8X/AO9cG42r/wA/cwyXnl/2/j8FC/8A4XUoR3/22cton9iVfyAf04FABQAUAFABQAUAFABQAUAFAH+b5/wXY+DMvwb/AOCmfx+EVkbTQ/io/hf4zeHnKbBfReOdAtD4ovQB8rB/iHpnjSDeCd5tyz4kLqv8WeK2WvLeOM3tDlpY90Myov8AnWKox9vP/wALYYqPX4dd7R/6eP2fvHEON/or+HXPXVbH8IxzbgfMoqXN7CeQZjWWU0Hs01w3isjqcr+FVLK8OVnnv/BG747Q/s+/8FHv2ZvFmo3i2fh7xZ4yk+EniV5ZRDa/2d8WNOu/A1hcX0zEJDZ6T4l1jQNdnmkIhiXSvMmIhRzXJ4bZqsn40yPEVJctHEYl5dWu7R5MwhLCwcn0jTr1aNWTeiULvRM+j+m54fT8SPoxeKmT4ai62ZZNkkOMsrUI89b6zwfiaOf4mnh4WbnXxmVYLMcvpwiuebxfLTUpuEZf6Ytf28f8sgUAFABQAUAFABQAUAFAH5n/APBY/wAYJ4H/AOCZH7YWsyS+UL74XxeDw27buf4heKvDngKOLPfzpPEqxbf4t+3vXw/iTiVheBuJKrdubArDfPGYihhEvm66XzP6m+hLkss/+lV4K4GMed0OLJZ01a9o8N5RmfEUpeXJHKnO/Tluf5l9fw+f9UR/oR/8G5XhJ/Dn/BM7wnrDReWvj74u/FrxbG+MeelnrVp4FMuf4sSeCpIM8/6nb/Dhf7B8GMO6PBFCpa31vMcwxC81GpHCX+/DNddvK0f+bz9prnMcz+lPnGCU+Z8O8GcHZNJXv7OVfA1uIOTyvHPYzt/fv1R+7tfq5/n0FABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAI5pobaGW4uJY4LeCOSaeeaRIoYYYkLyyyyuVSOONFLySOyoiKWYgAmgD+GL/guT/wXduPi9J4t/Y4/Yq8XS2vwlja98O/Gf44+Hbx4bj4pupktdU8CfDzU7dlkg+GoIltPEXii0kWX4hfvdM0mVPAv2i78bcVeve8IPTaUu/dLbTz630TSvLqp07e9Lfou3n5t/h8j+SiuQ2P6nP8AgiN/wQg1H9pOXwv+1n+2P4bv9H/Z6iktdb+F/wAJdTjuNO1j44tG6zWXiPxNCfJvNL+ExZVlsbcNBqHxCTbNbvbeEHju/EXVRoc1pzXu7pd/VWulf1v2S+LGpV5fdj8XV9v83+X3n95ul6Xpmh6Zp2iaJp1ho+jaPY2ml6TpGl2dvp+maXpmn28dpYadp1haRw2tlY2VrFFbWlpbRRW9tbxRwwxpGiJXccpfoAKACgD/AD4/+Dhz9g7/AIZg/axPx88C6N9j+Dv7Utzq3izZZW+zT/DHxhtXjn+ImgkRKY7WHxNLd23jzSvOeH7Xc6z4msdPthZ+HX2f6AfR847/ANZ+FP7Bx1bnzjheNHCe/K9TE5PJOOX19dZvDKEsBVa5uWNHDVKj58RFy/i/xr4P/wBX+I/7YwlLlyziGVTE+5G0MPmcWnjqOl1FYhyjjKd2uaVXEQpx5KDZ+IfwU+MHjn9n/wCLfw6+Nfw11RtH8dfDDxdo3jHw1ffO0H9oaNeR3P2LUIUeP7ZpOqQLNpes6e7iHUtKvLywuN0FzItftmdZPgc/ynMclzKl7bA5nhK2DxMNOb2daDjz021LkrUpctWjUSvTqwhUjaUbx/J8qzPF5NmWBzXAVPZYzL8TSxVCe8eelLm5ZrTmp1FenVg9KlOU4SupNH+qj+yf+0j4G/a6/Z3+FH7RPw8mX/hHfib4Vs9afTTcJc3XhvX4Wk07xV4R1KWMIran4U8S2eqeH7+REWKe4097m33W00Lv/lpxXw5juEuIc14ezBP6xlmKnRVTl5Y4jDytUwuLpp6qnisNOlXgndxjUUZWkpI/0N4cz3CcS5Jl2d4J/uMfh41eS6lKhWi3TxOGm0knUw2IhVozaVpSg5RvFxPoevnj2woAKACgAoAKACgAoAKACgD+S3/g6N/Zsl1Xwb+z3+1loti0kvhLVNT+CHj65iiMki6L4jF34u+H93OyLut9P0zWrDxpYSzykwtf+KdMt1Mc0yLP/PfjvkjqYbJ+IKULvD1KmV4uSV37OtzYjByf8sKdWGKg23bnxFOOjaP9iv2TXihDB554k+D2OxChDOcJhOPOHaU58kXjss9jk3EdGmpO1XE4rA4jI8TCnBKaw+UYqq+eEJey/jZtLu6sLq2vrG4ns72zuIbu0u7aV4Lm1ureRZre4t5o2WSGeCVEliljZXjkVXRgwBX+bIylCUZQk4yi1KMotqUZJ3UotWaaaumndPVWsf7dVqNLEUauHr0qdahXpzo1qNWEalKtSqxcKlKpTknGdOpBuE4STjKMmmmm0f6k/wDwT0/ap0z9s39j/wCCnx7trq1m8Q+I/CtrpHxFsrUov9kfE7wwBofjqwe1X57KGfXbO41fSIJlR5dA1TSL1Q0N1C7f3jwdn9PibhzK82jKLrVsPGnjYxt+7x1D91i4uP2U6sXUppqLdGpTla0kf8l30kvCPF+B/jTx34eVaNaGW5Zm9bG8M16vM/rnCmav6/w/iI1XpXqU8vrUsHjKkHKMMxwmMoNqdGcY/aNfTH4YFABQAUAFABQAUAFAH4Ef8HJHxCHg7/gnBdeF1nCS/Fj43/DDwSYA+HntdHGv/EuVig5aGG48A2Zdz8iTPbqSHkjDfkfjXjPq3BboXs8wzTA4W3eNP22Od9VonhI62eritLo/0T/ZgcNvO/pO0s2dPmhwfwHxXnqqNe7Tq43+zuFoJS2VSdPiKuoxVpShGq17sZqX+ftX8hn/AEan+m9/wSC8AH4a/wDBND9jnw6YTAdR+EVh49KFdpP/AAtXWNY+KAlI6/vx4wE2T1Dg9xX9x+HOE+pcD8N0bW58uji//DhVqY+/Tf6zf/Pc/wCVX6aHEX+tH0pvGzM1P2iw3GeI4e5k7pf6o4LBcKcnX+G8lcLdOVrTY/SKvtT+YQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//9P+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAIppobaGW4uJYre3t4pJp55pEihhhiQvLLLK5VI4o0VnkkdlREUsxABNAH8Jn/BdL/guhcfHO48V/sbfsbeLZrb4J2st3oHxl+Mnh+7eGf4w3ETvb6j4I8E6jbuskfwrhdXt9d122kD/ABGcSWNi/wDwgYlm8Z8NevzXhB+71kuvdLy+bvrurM6qVPl96W/Rdv8Ag/f37qP8n9cpsf1u/wDBDb/ghDJ8XD4S/bI/bX8IyQ/CkGy8Q/Bb4F+IbRopvifgpdaZ4++IumXCrJF8OMiO68N+FbtFk+IA8rVdYiTwMbWz8a9dChe05rT7Me/m9vkvndpWlhUq2vGO/V7/ACWvXrpp0u37v9y0EENtDDbW0MVvb28UcFvBBGkUMEMSCOKGGJAqRxRxqqRxoqoiKFUAACu05iWgAoAKACgD4V/4KQ/sZ6D+3f8Asi/E/wCAmoJZW/iy7sB4s+E+vXoUJ4Z+KvhmC6ufCWotOVc2thqbzXfhXxBPGjzDwx4i1tIV89omX7nw54xr8C8W5Zn1NzlhYVPqma0IN3xOVYmUI4unyq3POmowxWHi2o/WsPRbuotS+R454Xo8X8NZhk81BYmUPrOXVp7UMxw6lLDT5teWFRuWGrSSv9Xr1bXdj/Lc8TeG9e8G+I/EHhDxVpN7oPifwrreq+G/Eeh6lC1vqOja9od/Ppmr6Vf27YaC907ULa4s7qFhujnhkQ4Kmv8AUDDYmhjMNh8ZhasK+FxVGlicNXpS5qdahXhGpSq05LSUKlOUZxa3jJPqf59V6FbC162GxFOdHEYarUoV6NRcs6VajN06tOcXqpwnGUZJ7NNdD+or/g2d/bw/4V18WPFX7DvxB1nyvB3xmnvPG3wclvp8W+j/ABW0jS1PiPwzbvKwjgh8e+FdMS9tY2dYh4g8JWtlZQS6j4omZ/5h+krwL/aOVYXjfL6N8Zk0YYLOFCPvVsqrVbYbEySV3LAYqq4Ter+r4uU5uNPDXj/QPgNxh9RzLEcJY2rbC5o5YvK3N+7SzGnT/f4dN6JYzD0+eOqXtsNGEE54iR/cHX8SH9ZBQAUAFABQAUAFABQAUAFAHzR+2L+zb4c/a8/Zk+Mv7OviZ4LW1+Jng2+0rSdWuITPH4e8XWMkOs+CfE3lKDJJ/wAI54t03RdZeGIq9zDZS2wZRMd3icSZJR4iyPMsmrtRjjsNKnTqNXVHEQaq4Wvazb9jiKdKq0rOSg431Z+peCnihmfgz4qcEeJmVRqVa3Cud4fGYzB0p+zlmWTV4zwWe5VztqMP7TybFY7AxqT5o0p141eVuCR/lj/EPwD4s+Ffjzxn8M/HekXGgeNfAHijXPB3ivRboYn0vxB4c1K40nVbNyPlkEN7azJHNHuinjCTQs0To7fwXjMJiMBi8TgcXTlRxWDr1cNiKUt6dajN06kXte0ouzWjWqummf8AW3w1xFk/F3D2R8VcPY2lmORcR5VgM7yjH0Xeni8uzPC0sZg68esXOhWg5QklOnJuE4xnGUY/vf8A8G+3/BRWw/Zb+Omofs1/FfXk0z4I/tE6zpyaJquoXCw6T4C+M+y30nQ9Yu5pCsVjovjqxjtPCXiC9k3R22pWfg7ULqew0nTtXua/WvCDjKGQ5rPJMwqqnlec1IKlUm7U8JmelOlUk9oUsXBRw9aTTUZxws5OFOFSUv8APD9o79GjE+LXAGG8UeD8vli+PPDTBYp4/B4am54ziHgfmqYzMMFRhGMp4jHcP4iVbOMuoRcZVcNXzvDUaeIxmKwVI/vgr+tT/nhCgAoAKACgAoAKACgD+QT/AIOpPiiog/ZD+CtpcZZ5fif8Udftd/3FiTwx4T8I3Hljr5hm8bR72Ax5WI926Tb/ADp494/Th3LIvrjsfWj6eww+Gf44pbeltT/aH9kbwk3U8Z+Oq1LSMOFOEsurcu7nLNc4zmlzdOVQyGfKr35rytaHN/IVpOl3+uarpmiaVbSXuqaxqFnpem2cQzLd3+oXMVpZ20QOAZJ7iaOJAT95x0zX8606c6tSFKnFyqVJxpwit5TnJRjFbattLf7j/Z7GYvD5fhMVj8ZVjQwmCw1fF4qtP4KOHw1KdavVl/dp04SnLyif62vwt8DWXww+GPw5+Gum7P7O+HngTwh4G0/yl2x/YvCfh/T9AtfLXC7U8jT02LtXC4GBjFf6FYDCxwOBwWChbkweEw+Fhbblw9GFKNvK0Ef8cPFuf1+K+KuJuKMVzfWeJOIc6z/EczvL2+cZlicxrczu7y9piZXd3r1d7nd11nzwUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAGsyorO7KiIpZ3YhVVVGWZmOAqqASSTgDk45oA/he/wCC7/8AwXHk+MFz4t/Yq/Y58XvH8I7SW88PfHH4y+HL0o3xVuYna21P4eeBtTtXB/4VpbSLJa+J/ENpPj4hTLLpWmynwKlzc+NeKvXveEHptKS6+S2+bXpZpXl00qdvekr9l28/Ppb710P5Kq5Dc/r0/wCCFP8AwQr/AOFjHwj+2p+2n4PI+HgNl4j+BfwL8S2RB8fspS60r4kfEfSbuMEeBARFeeEfCV7F/wAVt+51zW4T4MNhZeLuyhQvac15xi+vm9vkvm20rSwqVbXjF63s327pef5W0P7gkRY1VEVURFCIiAKqKowqqowFVQAAAMADAxxXYcw6gAoAKACgAoAKAP4U/wDg5V/YP/4VD8dPD/7Z3gDRvs/w+/aCuk8P/E6Oyg2WegfGrSNNaSHVJhGFht4/iT4X099SVURnuPEnhjxbql9L9o1i3V/7l+jdx3/a+R4jg3H1ubMMgi8RljnK86+S1aiTpK93J5biqipatKOGxOEpQXLRZ/Ivjtwh/Zmb0eKcHStgs6l7HHqCtGjmtKF1UdlZLHYeHtLKzlXw+JqTblVifzVeCvGXif4deMfCnxA8E6zeeHfGPgjxHovi3wrr+nuI77RfEXh3UbbVtG1S0cgqLix1C0t7mLeGQvEA6shK1/SWNweGzHB4rAY2jDEYPG4ethMVh6ivCth8RTlSrUprflqU5yi7Wdno1ufhOFxWIwWJw+MwlWdDFYSvSxOHrQdp0q9CcalKpF6pShOMZK6tda3uf6mv/BP/APa98Mfty/so/Cr9obw/9jtNV8SaONJ+IXh2zkLjwj8TfD6x6f418OmN3e4itItUU6noLXe25vvDGqaFqjoq36Cv8uuPuEcVwPxVmvD2I550sNW9rl+ImrfW8sxF6mCxF9Iubpfuq/J7sMTSr0lfkbP9B+DOJsPxdw5l2d0eSNSvS9ljqEHf6tj6NoYuhZ+8oqovaUeb3p4epRqP40fZlfGn1IUAFABQAUAFABQAUAFABQB/IT/wcaf8E1r7UJG/4KA/BrQHumt7LTNC/aU0DSLQyXAtbCKLS/DPxfWCFGeWGzso7Hwp43lX/j0sbXw1rrQraweJtSg/nXxn4JlNvi/LaTlaNOlndGnG75YJU6GY2Su1GKhh8U7vljGhWtyrETj/ALPfsy/pR4fDRj9HLjjMY0VVr4vMPC7McZWUabrYic8XmnBbqTmownWryxGb5DBr99iK2aYBVHWqZVhJ/wAetfzif7VH9of/AARP/wCC2uk+MtJ8I/sffti+L4dM8d6bDY+Gvgv8a/Et6sNh44sIUjs9H8A/ELWLuRY7TxtaosVj4a8UX8qW/jKBbfStYuU8YR2134w/pjww8UKeJp4bhziTEKnioKFDLMzrStDFRS5aeExlSUrRxUUlChiJvlxK5adRrE8s8V/ht9Oz6CGMyPGZ140+CeTTxfD+KniM0444Fyug54nIMROUq2N4h4bwVGLdbIasnPEZrlOHi6uR1HUxmCp1MllVoZL/AFe1/QB/kAFABQAUAFABQAUAf55v/BxF8Yo/ij/wUn8aeGbO8S80z4H/AA5+HfwptmglElqt82m3XxG11F2kp9qs9Z+IN5pF+SBKlzpbWkn/AB6oK/jvxjzJY/jbFUIy5oZXg8Hl8bO8efkeNqpWbXNGrjJU57NShyte6f8ASX+zU4Jlwn9F7I81rUJUcVx7xNxLxfVVSDhVeHjiqXDOXyfN73sa2B4co43DfYlSxarQS9tJy+Lv+CWPwkb43f8ABQ/9kXwCbb7XZ/8AC5vDXjXWLUp5kVxoHwuM/wATtftpweBb3WjeEL61nJKny5iFYOUK/M8BZd/anGPDuEtzR/tOhiqkekqOAvjq0Xo9JUsNOL02elm0fuf0t+MlwF9Gvxm4i9r7Gv8A6kZpkWCqqXLKnmPFvsuFMuq09V+9pY3OqFWC196CbXKmf6gdf3Uf8oIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/1f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+J/wD4L4/8FvW8Qy+Mf2Fv2O/GBXw9C194Z/aK+M/hq+58QTIZLTWPhF4C1e0fjQIWEtj8QfEljLnXZhP4S0yYaFFrsmv8detvCD8pNfknf5N6dktGpdFKltKXyTX4v9D+OeuM6D+t/wD4IP8A/BDj/hbUnhP9tf8AbI8IH/hVUElp4g+BXwX8R2RH/Czp4nS4034jePdKuoxn4cwuqXXhTw3eRlfH0qxazqkTeB0srXxr10KF7TmtPsx7+b9Oi+b0XLLCrUt7sXZ9X29Oz+V+qtof3LqqoqoiqiIoVEUBVVVGFVVGAqqAAABgDgY4rtOYdQAUAFABQAUAFABQB8wftm/su+DP2zP2Z/ix+zn44EUFh8QvDVxa6JrjwCefwn4z0549U8GeLrRRiQzeHvElnp2oTQRSRf2jYR3ukzSfZL+4R/p+DeJ8bwbxLlXEWBvKpl+JjKtQUuWOLwdROljMJN7WxGGnUpqTv7ObhVVpwiz5/inh/C8UZDmWR4uyhjaDjSqtXeGxUH7TC4mPW9CvGE2k488FOm3yzkf5WnxU+GXjP4LfErx38JPiLo82geOvhv4r1zwZ4r0ibJ+x634f1CfTb5YJSqLdWUstuZ9Pvogbe/sZbe9tnkt54pH/ANSsqzPBZ1luAzbLqyr4HMsLQxmFqrTnoYinGpByWrjNKXLUhL3qc1KErSi0f555jgMVlWPxmW42k6OLwOJrYXEU3ry1aE5U5pPTmi3G8Jr3ZwanG8ZJn79/8G5H7d//AAz1+07e/svePNZ+y/Cn9qC7sdP8Otez7LDw38cbCI23hG6i8x9luvxAsd/ga9WCMz6lr3/CCLLIltprlvwP6RXAn+sHDMOJ8BR5s14YhOpiOSN6mJyOcubFwdtZfUKn+3Qu0qdD681eVRI/ZPA/i/8AsTP58P4yry5dxBKEKDlK0KGbQXLhpK90ljYN4SaUb1K31O8lGDcf776/go/sgKACgAoAKACgAoAKACgAoAoarpWma7pepaJrenWOsaNrNheaVq+k6paQX+m6ppmoW8lpf6dqNjdRy217Y3trNNbXdpcRSQXNvLJDNG8bsrRUp06tOdKrCNSlVhKnUpzipwqU5rlnCcZXjKMotxlFqzTad7nRhMXi8vxeFx+AxOIwWOwWIoYvB4zCVqmHxWExeGqRrYfE4bEUpRq0MRQrQhVo1qUo1KVSEZwkpRi4/wADv/BZT/gjR4l/Y48R65+0L+zzoep+JP2U/EOom81bSrUXGp6v8BdV1K5wNF1tiZru7+Hd1dzJB4V8VzmV9LeWDwx4ouP7QGkaz4m/krxK8Na/DdarnGT0p1uH61TmqU43nUympOX8Kr9qeDlJpYfEyb9neOHxHv8AsquK/wCiD6EX038r8bcsy/w28Scfhcs8Xsuwyo4PGVfZ4XBeIWDwtK/17Ar3aNDiWlRg6mb5PTUY4tQqZrlMXhnjcBlH8+Ffj5/pAf0Lf8E7P+Dgb48/sqaboXwo/aK0zVv2jPghpUdtp2kalPqiRfGLwDpMO2OK00PxDqkhs/G2i2FuGjsPDfi25tLy3j+y2Wm+MNI0iyt9Mr9h4N8Xs2yCFLL85hUznK6ajCnN1LZlhKa0UaVafu4mlBXUKGIcZL3YwxVKlGNM/wA2/pLfs5PD3xdxWYcX+GeKwfhnx5i5VcTjcLTwblwTxFjKl5TrY/LcJFV8ix2IqWliM0yalWoVJe1xGKyPG42vUxR/Wh+zp/wVn/4J+/tO2Ont4B/aP8CeHvEl8kSt4B+Kmp2/wu8bQXsnXTINL8Yy6ZZ+IbyLP7x/B+o+I7EjLRXkwR9n9B5N4hcIZ7GH1TOsJRryS/2TMJxwGKUn/wAu1DEuEa0l1eGnXh1u7e7/AI6+Jn0O/pG+FNfEriLwx4gzLK8PKbXEXCOFq8WZDUoQ/wCYqpi8khia2W0J291Z1hMsxC2nQg3FT/RO2uba8t4buzuILu1uYkmt7m2lSe3nhkUNHLDNEzRyxSKQySRsyMpBU4PzfZxlGSUotSjJJxlF3TT2aaummtU0/vP5pq0qtCpUo1qdSjWpTlTq0qsJU6lOcHaUKkJKMoTi01KMkmno9mT0zMKACgD8y/8AgrX+2vZ/sOfsZfEX4gaTrUGnfFzxvaT/AA2+CVoskR1JvHfiW0ngPia0tn3l4PAOjf2j4wnnmhewN7pml6VdETaxaRT/AA/iFxPHhbhrG4ynVUMxxUXgcrjdc/1uvFr28Y9VhKXPiW37nPCnTk06sFL+qPoceBNfx88cOGeHMZgamJ4NyGtT4o48rOM1hVw9ldanUWVVqsV7tTiLG/Vslp06c44hUMVi8ZSThgqs6X+Z/qOo6hrGoX+ratf3mqarql5dajqep6jdT32oajqF7PJc3t/f3tzJLc3d5eXMstxdXVxLJPcTySSyyO7MzfxDOc6k51Kk5VKlSUpznOTlOc5vmlOcpXlKUpNuUm7tu7vc/wCpnDYbDYLDYfB4PD0MJhMJQpYbC4XDUqdDDYbDUKcaVDD4ehSjGlRoUaUI06VKnGNOnTjGEIqMUo/0if8ABsV8GD4z/bJ+KnxkvLTz9M+CnwaurCxuNmfsXjH4o61a6LpEnmHhfO8JaD4/t9gG9/MyGCJIrftXgZln1niXH5lKN6eV5bKEH/LicfVVKm7+eHo4yPS9/JqX+YX7Vjjj+w/BHhHgihW9ni+O+N6WIxFPmt7fJOE8DVx2Njy7vkznMOHKt9Yx5LPWUXH+7Cv6sP8An7CgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//1v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5D/+C/P/AAWwf4bQeLP2Fv2RfF3l/ES8gu9A/aG+Lvhy9/eeALK4jaDUfhV4K1W0kUxeOb2GR7bxvr1nKJPBlo8nhzT5V8XXOqTeEeWvWsnCL977TX2V2239Nu7b93opU9pS+S/V/prr5WP4d64ToP6n/wDgg9/wRIk/aR1Hw7+2R+1p4VkT9nzR76PUvhH8L9dtWj/4XfrGnz5h8UeJLKdAz/CbSbuEi2sJk8v4hajA0Mwk8H2t7D4k6qFHmtOa93on9rz66fJ37JL38alXl92O/V9v+Cf3qQww20MVvbxRW9vbxRwwQQxpFDDDEgSKKKJAqRxRoqpHGiqiIoVQAAK7jlJaACgAoAKACgAoAKACgAoA/i//AODm/wDYQ/sTxJ4N/b3+HujbdM8WPpPwx+Pkdjb/AC23iays/s3w48e3ojVm2a3o1k3gbWL6Yw2ttdaF4KtU8y+1uRn/ALL+jPx37fDYzgPMK37zCKrmeQub+LDTnz5lgIXsr0a01jqMEpTlGvjZO0KCP5a8e+D/AGOIwvGOCpfu8S6eAzlQjpHEQjy4HGTtd/vqUXhKs3aEZUcLFXnVZ/JJpupaho2o2Gr6RfXemarpV7a6lpmpWFxLaX2n6hYzx3VlfWV1A8c9td2lzFFPbXELpLDNGkkbq6hq/rKrTp1qdSjWpwq0qsJ06tKpFTp1Kc4uM6c4SvGUJxbjKMlaSdndM/m+E50pwqU5yp1Kc4zp1IScZwnBqUZwlFqUZRklKMk001dNWuf6f3/BKr9t3T/29f2OPh38Xry7tD8TtBi/4V58a9Lt/Kiaw+Jnhi0s01PU1tIsLa6f4y0640zxppUEW6G0tNeGlCV7nTLoJ/mR4p8E1OA+MMxyiEJ/2ZXf9oZLVld+0yzFTm6VJzes6mDqRq4KrJ+9OeH9q0o1IOX9++HfFkOMOF8Dmc5R+v0V9SzWnGy5Mfh4x9pUUFpGGKhKniqcU3GMa3s03KnM/R2vzk+4CgAoAKACgAoAKACgAoAKAKOqaXpmt6bqGi61p1jq+j6vZXWmarpWqWlvqGm6npt9BJa32n6hY3cctre2V5bSy291aXMUkFxBJJDNG8bOrRUpwqwnSqwhUp1IyhUp1IqcJwmnGUJwknGUZRbUoyTTTaaadjowmLxWAxWGx2BxOIwWNwdejisHjMJWqYbFYXFYepGrQxOGxFGUatCvQqwjUo1qUo1KdSMZwkpRTj/I/wD8FKv+Dcw6tfeIPjP/AME/0sLGe7e71fX/ANmrW9Sh07T2uZGaadvhB4k1KSOx02OZyXi8EeKbuz0y13TroXiSytE03wzF/PPG3gz7SVbMuEFCDk5VKuSVaihDmesv7Or1LQgm9VhcRKMI6+xrxioYeP8Asl9Fz9pn9Tw+XcD/AEjJYnEU6Ko4PLvFHAYWeJxKpRShTXGmV4WMq+KlCK5Z5/lNCti61qbzDK8RXlis1l/JJ8RPhr8QvhF4v1fwB8UvBHir4eeNtBn+z6x4V8ZaFqPh3XtPkOfLa403VLe2uhDOo821uVRra7gZLi1lmgkR6/nrGYLGZdiamEx+FxGDxVJ2qYfE0p0K0H0vTqRjKzWsZWtJaxbTR/shw1xTw3xnk2D4i4Sz7KOJchzCHtMFm+R5hhczy/ER05lTxWEq1aTqU2+SrSclVo1E6dWEJpxOIrlPePUvAHxy+NfwnYN8LPjD8UvhowfzA3gD4geLfBrCQsWMgPh3WNNIcsS28YbcSc5OW78HmuZ5f/uGZY/A63/2PGYjDa9/3NSGr1/4P2fkuI+AeBOME1xbwVwlxSnHla4j4cyfO04pW5WszweJvFLS21tFbaX1ToX/AAVP/wCCjfhyJItP/bS/aFuFQYU678Rtb8Uyn/fm8TTaxNIfeSRj3yK9+lx7xnRSUOJs4aX/AD9xtWu/m68qsn83997n5HmH0R/oyZnKU8T4GeG1Nyd2sv4ZwGUxX+GGVU8BCPpCMV0s9TqpP+CwP/BTKRPLb9sb4thcYzHd6HE+B/01i0RZM++4MevPSt34jcbtW/1kzH5Spp/eqSf4v82ePH6Fn0WIS5l4J8HN/wB6jmE4/wDgMsw5X/4CvlqjkNW/4Klf8FGNaR0vP20/2ioVfOTpPxM8Q6A4z/cfQbrTJIz6GN1x1GMfNz1OPOM6qtLibOl0/d46tRevnRnBr9O7vaPtYP6JX0ZsA1Kh4GeGk3Fq31zhbLcxWneOYUsVGXmpJp9eY+VfiX8avjH8ab+y1X4x/Fn4mfFnVNNS5j07UviX488U+O7+wS8aFrtLK88U6rqtxapdNb27XKwSRidoITIG8pNvgY7M8yzOcamZZhjswqQUlCeOxdfFzgpW5lGVepUlFS5VzWevKr3smfrvC3AvBPA2Hr4Pgng7hXg/CYp0pYnC8LcPZTw/h8RKgpqjKvRynCYWnWdJVaqpOpGTpqpNQa5pHffsofsyfEn9sH4+fDz9n74V6fJc+JPHWsw215qj200+l+EfDVuyz+JPGniB4tvkaH4a0pZ9RuyZElvJUt9KsfO1TULG2l6+H8jx3EebYPKMvg5V8VUUZVHFunhqEda2KrWtalQp3nLW8nanDmnOEZfPeMHirwv4K+HfEviNxdiY0sr4fwM6tHCKrCni85zSqnTyvI8uU+b2mPzTGOnhqNoyhQhKri8RyYTDYirS/wBIH/gnv/wT1+Df/BOv4PXvwx+F13q3ijXvFOqweIfiP8SPEcVrBr/jbXba1NnY5s7LNrovh7RbZ7iDw94et5rpNOS7v7m5vtR1TUtS1K9/tLg/g/LeDctlgcBKpXq4ioq2NxtdRVbFVYx5Ye7FctKjSi3GjRi58nNKUpzqTnOX/MR9JH6SPG/0l+NaHFfFlHB5Tl+UYSplvDHDGWTrVMuyLL6tb29f9/XtVx2ZY6rGnUzLMqkKUsU6OHpUsPhcJhcLhaH3rX1p/PIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/mi/wCC8f8AwWbg/Y88Lan+yl+zV4kgl/al8b6KF8Z+LtLnjmb4A+DtatA8V0kyb1g+KXibT51m8MWRH2nwto9wnjC7Fvc3XhT7fz163IuWL997/wB1d9t30+9p2SltSp83vPRLbzf+S/rZn+fXdXVzfXNze3tzPeXl5PNdXd3dTSXFzdXNxI0s9zczys0s888rvLNNKzSSSMzuxZmLeedR/Rn/AMEL/wDgjFqH7bni3T/2lf2i9BvtO/ZL8D6039jaHdrcWNz8f/Fmj3O2fw/p0g8q4T4caHewmDxrr9syf2vexS+DNCuDfL4j1Dwz00KPP70vhT2/mf8AlqvXZWu5Rxq1OXRbv8F/n/mf6GGl6Xpmh6Zp2i6Lp1jpGjaRY2ml6TpOl2lvp+maXpmn28dpYadp1haRw2tlY2VrDFbWlpbRRW9tbxRwwxpGiJXecpeoAKACgAoAKACgAoAKACgAoA8a/aG+BfgX9pn4IfE/4CfEqx+3eCvin4R1TwprARI3utPa8jEml69phlBji1rw1rEGn+IdDuXDC01jTLG52sYgtexw/nmO4azvLM+y2p7PG5Xi6WLo3bUanI7VaFW1m6OJoynh68U/fo1akNOY8vO8owefZTmGT4+HPhMxw1TDVbW5ocyvTrU73Sq0KqhXoyt7tWnCWtj/ACqf2kPgJ46/Ze+OvxR/Z/8AiVafZPGPws8Xal4X1KRIpIrXVra3ZbjRfEmmLL+9bRfFOhXGm+I9ElkAebSdUs5XVWdlX/U3hzPsDxPkWV5/ls+bB5phKeKpptOdKUvdrYara6VbC141cNWSdlVpTSvZH+eGeZPi+H83zDJsdHlxWXYmph6jSajUivepV6d7v2WIoyhXpN6ulUg3a9j9ZP8AggV+3f8A8Mh/ti6b8OfGus/YPgn+03Jo3w48XNd3Hl6Z4c8d/a5Y/hh41l3skFvHba1qNz4U1i7mlgtLTQvFd7q987roluE/KfHrgX/W7g+rmOCo+0zrhpVsxwnJG9TEYHkTzPBKybk5UaccVRgk5yr4WFKHL7afN+j+DnF/+rPE8MFiqvJlWfulgcS5StToYvmf9n4t7qKjVqSw1WTtGNHEzqzb9lBH+ivX+eB/bgUAFABQAUAFABQAUAFABQAUAFAHgvx6/Zc/Z3/ag8Op4W/aB+DngL4raTAkqaefFmg2t3q+imb/AFsvhzxHCLfxF4auZBlXu9A1XTbplZlM21nFeTm2Q5NntFYfOMtwmYU1fk+sUoyqUr7ujXVq1CT6yozhJ3tdan6H4e+LPiV4T5k828OeNuIuEMZUlF4lZPmNWjg8dyfBDM8sn7TLc0pRavGjmOExVJNJqCaTPw4+Nf8AwbJ/sVeOp7zUfg78Q/jF8Cr64Mht9IXU9N+Jvguw3EmNYdM8VW9r4zmEZO0/aviDKXjVRkSb5W/LM08DuGMU5Ty3GZllU3flp88MfhYX2Sp4iMMS7f3sY7rtuf3xwJ+1S8dcgp0cNxtw3wV4gYemoKrjHhcTwrnuItpN1MVlFStkkHNK/wC64bgozba5otQj+bHj7/g1j/aH06WcfC79qL4MeMIVJ+zP4+8L+N/hxLKOcedF4eh+KaQkjGdk04z0OBur4nF+A2cwb+oZ7lmJXR4vD4rBN+qo/X7fJy+WnN/UXDv7Wzw1xMKb4s8J+OMlqO3tY8O5tkHE8Ivr7OeZVOEZTV/5oU7/ACPmfWv+Da7/AIKPaVI8djJ+z/4kVWIE2i/FDVII5AP4kHiLwXoEwB7eZCjeqD+Lw6vgnxpTfuPKK/nSx9RL1/fYSi/vX3W979TwP7UT6MeLipYiHiNlbaTcMdwphKko+TeWZ7mUL9+WclpZN7nMp/wbmf8ABTJ32t4P+EsQzjzH+LehFB74jt5Hx/wDPrjBrBeDPHD/AOYbL15vMKP36Qf6eh6sv2mn0WErrOuMZu3wx4OzC/p71WEb/OS/vdTq9L/4Nqv+CjeoMq3d3+z3oYY4L6p8T9amVM92Gi+BdYcgdfkRz7Guin4J8aTtzSyelfrUx9V29fZ4Kq38l8tVzePi/wBqN9GTDJujR8Sce1tHCcKYCDl6fXuIMFHX+84n0Z8Of+DWf9pHUr22Hxa/aZ+CXgzTWkQ3cnw80Tx18SdQjhyC6wW3iPSvhZavMVyoL3gjR+cyqBu9rBeA+dTlH+0M7yvDQv7zwdHF46aXlGtDL4t+s0l5n5nxN+1q8MMLQqvg7ws48zzFKL9jHiXMOH+F8NKdnyupUyzFcXVYwvZ6UXJrT3W/c/pj/YB/4Jofs4/8E7/Buo6P8JNN1DxH4/8AFNvbw+Pfi94wFpc+NfFEdu4ni0m2NpDBY+G/CttdDz7Tw5o8McUkkdvda1ea3qltHqNft/CPBGS8HYadPL4TrYyuksXmOJ5ZYqulqqceVRjQw8ZaxoU1a6jKrOtNKcf8sPpF/Sm8TvpK53hcbxlisNlnDuUVas+HuDMl9tSyLKZVIunLGVVWq1a+aZxVov2VbNMZKU4wlVpYGhgMJVnhj9DK+xP5tCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/En/AILQ/wDBWrwx/wAE4/g+vhHwBdaT4h/aw+Kuj3ifDHwvP5F/beA9Elaewufi14y09tyf2VplzHcW3hLSL1Nni3xLbS24hudF0TxI9pjWq+zjprJ7Lt5vy+6+11ds0pw532S3038v8z/Nh8Y+MPFXxB8V+I/HXjjxBq3izxl4v1vUvEfijxNr19PqWta9rusXct9qeq6nf3LyT3d7fXc0s880jFndyeBgL5zbbbbu3u3/AE/z+87EklZbI/ZX/gjF/wAEj/FX/BRz4tHxj8QLXV/Df7Jnwv1m1/4WV4rtzNp93491uFYb6H4UeCr8KGOqahby29x4t1qzbPhLw7dRTebDres+HorrajSdR3fwRevm+3Tvrv2sr3M6lTkWmsnt5eZ/pMeCvBXhL4b+EPDXgDwF4c0jwh4K8G6Jpvhvwt4X0Cyh03RdB0LSLWOy03S9NsbdUhtrS0tYo4oo0Xou5yzszt6CSSSSslsl/S/L7jkbbd3uzp6YgoAKACgAoAKACgAoAKACgAoAKAP5Jv8Ag5t/YQ/4STwf4O/bz+H2jbtZ8Cx6X8NPjxHY2/z3ng3Ub8wfD7xzdiJVUyeHNfv38HateS+fd3Nj4k8KxbotP8POU/rL6M/HX1bGYzgTMK37nHOrmWROctIYynDmzDAwvfTE4eCxlKC5YRnhsU/eqYhRP5v8e+D/AG+GwvGGCpXq4NU8BnCgviws5tYLGStbWhWqPC1ZNSlKFfDK8YUGfxYqzKwZSVZSGVlJDKwOQQRggg4IIOQeRiv7Oavo9U9Gn1P5XP8ASw/4Iq/t2r+3L+xh4U1LxVq41D43fBf7D8K/jGlxOJNS1XUdLsF/4RTx/chj50q+PfDkEN/fXzJFBP4u0/xdaWi+Tpwr/Nrxo4F/1H4yxdLC0fZ5JnPtM0ydxVqdKnVqf7VgI6WTwGIlKnCF5SjhJ4Scned5f3d4V8X/AOtvC2GqYirz5tlXJl2aczvUqTpw/wBmxsur+uUEpznaKeJhiYxVoI/XevyQ/SgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/PL/gpb/wUQ+Fn/BOD9nbV/i741Nr4g8e679s8P8AwZ+F63gt9U+InjgWwkjifYTcWPhLw8s0GqeNPEAiaLS9NaCytvtGv6zoOmalnUqKnFye/RbXf3Pbr287pSuEHOVtl1fZf1p/wzP8vr9oT4//ABW/aj+MXjr47/GrxRdeLviN8QtZl1jXNUnzHbW6bVg07RNFsd7w6R4d0HTorbSNA0a122umaVZ2tpCCsW9vNlJyk5Sd2/6stXZL1+652JKKSWyPsT/gl7/wTa+J/wDwUn/aCsvhx4aN/wCGfhR4RbT9d+N/xUS0Etn4J8JzXEixadpjTo1ne+OfFZtrvTvCGjyeb5k0V9rd9AdD0LV5oLpU3UlbZLWT7Lt6vprpvaVnyzOagr7vou7P9PL4D/Ar4W/s0fCTwP8AA/4L+FLDwX8N/h7o0Oi+HdDsVLMI1ZprzU9TvHzc6rrutX8tzq2va1fPNf6vq95eahezS3Nw7t6UYqKUUrJbf1p/Xfc423J3e/8AX9f8OeuUxBQAUAFABQAUAFABQAUAFABQAUAFAHDfE74b+DvjD8OvHHwp+IWjweIPA3xF8K654M8V6NcD93qGheIdOuNM1GFJPv29x9nuHe0u4itxZXSQ3ds6TwxuvdlmY4zJ8xwOa5fWlh8dl2KoYzCVo706+HqRq05NbSjzRtODvGcLwknGTRyZhgcLmeBxeXY2kq2Ex2HrYXE0n9ujXg6c0nryy5ZNxkvehJKUbSSZ/lbftqfss+Mf2L/2m/iz+zn40E9xdeAPEk8Ph7XZYPIi8XeCNTRdU8FeLbYKPJ2694cu9Pu7uC3eVNN1U6ho8shutOuFX/UrgvijB8Z8M5TxFguWMcfhovEUFLmeEx1L91jcJLVu9DEQqQhKVnVpezrJKM4uX+efFXD2K4Wz/MsjxV3LBV2qNZqyxOEqL2mFxMelq1CUJSUXJU6ntKTfNCR9lf8ABFz9uxv2GP2z/CWs+KNXaw+Cfxi+xfCv4ypPN5enaXpGr38f/CM+PbhWJiifwB4ikt9Tvb3yprmPwneeLLG0UTalmvjvGbgX/Xjg3F0cLS586yfnzTJnGKdSrWpU39ZwEXu1j8OpUoQvGLxcMJUm7UrH1HhZxe+EeKcNVxFXkynNOTLs05pWp06VWa9hjJXuk8FXcak525lhpYmEbuof6WysrqroyujqGV1IZWVhlWVhkFSDkEHBHIzkV/mw1bR6NaNPof3eOoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//9L+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPBf2m/wBpP4TfsjfBDx7+0B8a/EKeHfAPgDSX1C+dPKl1XW9SmYW+i+FvDdjLLB/anibxJqclvpOiacJYkmvLhJLq4tLGK7u4JlJQi5Sdkv6su7fy9Va44xcmkt3/AFrvb7vvP8uX/goR+3l8W/8Agod+0V4k+OfxOnk0zSQZdC+GHw7tryW60L4Z+ALa6ll0rw5ppZYlu9SnMjal4n15reCfX9eubu98iysF03StP82pUdSTk9ui3svuW/Xv5WSj2xioKy+b7nnf7HX7I3xg/bg+P3gr9nr4K6P9v8UeK7o3Gra1dxzjw94G8I2MsH/CQ+OfFl5DHIbHw/oFtPG8zANdalfz6foWkwXut6tpthdKEJVJKMfn2S6t/wBLy7SJSUU2/u2v5f1+p/qM/sN/sU/Bz9gb9nzwp8APg3p3+gaSg1Txj4wvbaCLxJ8SPHN7bwR67428TTRbi99qL28Nvp9gJpbXQdEtNM0HTmFjp0O70oQjCPLFer6t93/T/SPHKTm7v5LsfX9WSFABQAUAFABQAUAFABQAUAFABQAUAFABQB/MT/wcqfsI/wDC4fgN4f8A2yvAOjfaPiH+zzbDQ/iSllBvvNe+Cesai0o1GYRrJPcP8NvFF+2rIqLHFa+G/EvjHVL6bydKgVf6a+jdx1/Y+e4jg7H1uXL+IZe3y1zlaGHzqjTt7NXajFZlhqfsnfmc8ThsHSgk6s+b8C8duEP7TyejxRg6V8bkkfY4/kjeVbKas787tq3gMRN1FpaNDEYqpN2px5f4Ta/uY/kQ/wBFH/ggN+3f/wANdfsdaf8ADXxrrP2741fsxR6N8OfFLXc/mal4j8ANaTR/DDxnKXZ5rmSXRtOuvCOsXUss93c614UudXv3V9ctt/8Anl498C/6pcYVMywVH2eS8TOtmOF5I2pYbH86eZ4JWSjFKtUhi6MElGFHFxo0+b2M+X+2/Bvi/wD1l4YhgMVV581yBUsDiOaV6lfBcrWX4p396TdKEsNVk3KUquGlVn/GifuvX4YfroUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDJ1/X9D8K6FrXijxNq+m+H/DfhzStR13X9e1m9t9O0jRdF0i0mv8AVNW1TULuSK1sdO06xt57u9vLmVILa2ikmmdY0cqAf5qv/Ba3/gq5rv8AwUW+N/8Awifw91DUtL/ZS+D+r39p8LNBkFxYt491xBNp+o/F7xNp8hjk+36xA01p4O06/iWfwx4TnMRtrDWte8TpcedWq+0lZfCtvPzf6b9+to9lOHIvN6vS1vLv9/6s/Hr4dfDvxv8AFvx34R+GPw28M6r4y8feO9f03wv4S8L6LB9p1PW9d1e5jtLCxtYyUjQySyBprieSK1tIFlurueC1hmmTFJtpJXbdkv6t+f3GjaSu9kf6cH/BI3/gl94G/wCCa/wBh0S6TS/Ev7Q3xItdM1j45fEW1jEqTalDE0tj4B8KXMsUdzF4H8GvcXFvZOywz+I9Wk1DxLfwWv22w0jRvSpUlTjbeT+J/p5JervvpexxVJub8lsv1+f4fM/WWtSAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDE8S+G9B8ZeHNf8IeKdJste8MeKtE1Xw34j0PUoVudO1nQtcsZ9M1fSr+3b5Z7LUdPubi0uoW+WSCaRDwxrfDYmvg8Th8Xhas6GKwtelicNXpS5alGvQnGrRq05LWM6dSEZwktpRT6GVehRxVCthsRThWw+JpVKFejUXNCrRrQdOrTnF6OE4SlGSe6bXU/y2v+Cj/7GuvfsI/tdfFH4Bagl7P4VsdQHir4U69ehi/ib4VeJ5rm78I6kZyqC6vtNiiuvC3iCeNVh/4Sfw9rccK+THGz/wCoHhzxjQ464SyzPqbhHFTp/Vc1oQ2w2a4aMY4uny3fJCo3HFYeLd/q2IoOVm2f59cc8L1uEOJcwyaam8PCf1jLq096+XYhylhql/tTglLD1mrL6xQqpaJOXZ/8Eq/23NQ/YM/bI+HPxfu7y7X4Z67N/wAK8+Nel2/myrf/AAy8UXlnHqupLaRZe71DwdqNvpnjXSoIgs13eeH10sSpbalc7uPxT4Kp8d8HZjlEIQeZ0I/2hktWVk4ZnhYTdKnzvSFPGU5VcFVk9IQr+1tKVKCOrw84rnwfxRgczlKX1Cq/qWa043fPgMRKCqTUVrKeFqRp4unFK8p0VTvGM583+oBpupafrOnWGr6TfWmp6Vqtla6lpmpWFxFd2OoaffQJdWV9ZXUDPBc2l3bSxz21xC7xTQyJJGzIwNf5j1KdSjUqUasJ0qtKcqdWnUi4Tp1IScZwnGVpRnCScZRaummnax/f0JwqwhUpzjUp1IxnTqQkpQnCaUozhKLcZRlFqUZJtNO6bvcu1BQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//U/v4oAKACgAoAKACgAoAKAPCfif8AGyz8DXv9haVYx6vrqRxy3fnytFY6cJlEkMc/l/vri5kiZZTBG0KxxSRO0+5glBUYt69PT/7aP5fd9riPB/7SLXupQWPi/SrKwtbqVYl1XS2uFhs2dtqveWt1LcO1uCQZp4rgNCgLiCQA7Qpw7P8AD/7d/l959WAggEEEEZBHIIPQg9wRQZi0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHivxQ+Mdh4Amj0mysl1fX5oVuGt3m8mz0+CTPlSXjoryySzbS0VrH5bGL97JLEjReaFRjzdfwv+sfzfyt73mPhr9pe5l1CG38V6JZQafPIsbX+jm6WSyDNgTS2t1Ldm6iTIMoimhkVAzxxyuFhYKdPs/vX/wB0PrSGaK4iingkSWGeNJoZY2DRyxSKHjkRlJVkdGDKwJBUggnOaDMkoAKACgAoAKACgAoAKACgAoA/iF/4ONP+CuP/AAmmra//AME9v2c/ExPhHw7qK2v7TnjfRLvKeJvEumXKzR/BnS723fa2h+GL6CK5+IcsTu2peJbeDwnJ9ltdA8Q2ms8eIq704/8Abz/9t/DXXXysdNGn9t/Jfr6/PTzP5AgCSAASScADqT6Dryfp+dcZuf6Bf/Bv1/wSFX9lHwFp37YH7Q3hkR/tJ/E/w/u8AeFtatAL34IfDjXLUHE9rcRiTTviR440+YP4hZ1TUfDPhueLwkRYX2oeMbG476FLkXNL4mtNvdX+b67du7ly1anM+VbJ6vu/6/rU/psrpMQoAKACgDyT4n/FnTvh3Hb2iWv9q69fRGe3sPN8mC3tgzRrd3swV3VHkV0ghiQvOYpQXiVd9BUYuXp6X/8Abo/12t73jehftNagb+NPEmgWA02SQK8+jtcx3dqhPMphu57mO72DkxrJakjlWLAIwU6fZ/ev/uh9bWd5a6haW1/ZTJc2d7bw3VrcRHMc1vPGssMqE4O142DDIzg84IoMyzQAUAFABQAUAFABQAUAFABQAUAfz0f8HEv7CP8Aw0t+ygv7Q3gbRvtfxd/ZZt9V8T3K2cG+/wDEvwZvBFP8QtIfywr3MnhIWtt4+043DyJY6dpPi21sYDea+d/9BfR546/1b4r/ANX8dW5Mo4plSwseeVqeGzmF1l9ZX0isXzSwFTls51KuElUahQTPxXxt4Q/t7hxZ3hKXNmXDyqYiXKvfr5XOzxtLS13huWOMpuTfJTp4qMFz1j/Pur+/j+MT+/T/AINyv27v+Gh/2Xrz9mLx3rP2r4rfsu22n6XoDXlxvv8AxJ8D9Qka38G3cXmEPcP4CvEm8C3yQJ5Om6FH4F8+WS71R2r+CPpFcC/6vcTw4mwNHkyrieVSrX5I2p4bO6a5sZB20j9fg1jocz5qld47lUYUlzf2R4H8X/23w/LIMZV5sx4fjCnR5nedfKJvlwslezbwck8HJJWp0VhLtymz+jSv52P3AKACgDyT4n/FnTvh3Hb2iWv9q69fRGe3sPN8mC3tgzRrd3swV3VHkV0ghiQvOYpQXiVd9BUYuXp6X/8Abo/12t73jehftNagb+NPEmgWA02SQK8+jtcx3dqhPMphu57mO72DkxrJakjlWLAIwU6fZ/ev/uh9bWd5a6haW1/ZTJc2d7bw3VrcRHMc1vPGssMqE4O142DDIzg84IoMyzQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAeSfE/4s6d8O47e0S1/tXXr6Iz29h5vkwW9sGaNbu9mCu6o8iukEMSF5zFKC8SrvoKjFy9PS/wD7dH+u1ve8b0L9prUDfxp4k0CwGmySBXn0drmO7tUJ5lMN3Pcx3ewcmNZLUkcqxYBGCnT7P71/90PrazvLXULS2v7KZLmzvbeG6tbiI5jmt541lhlQnB2vGwYZGcHnBFBmWaACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDy/4l/FDS/h1Z2/m27alrGoLIbDTElEK+XGdr3d3NslMNsjnYgWJ5LiTMcYCpLLAFRjzf8Nf9V+fydrnhWlftOauL5P7c8OabJpryASf2VJdQXsMZODIpu57mC5dBlhEVtFkI2+bFnfQV7NdHr6f/dD610nVbHW9NstX0ydbmw1C3jubWZeN8cgzhlPKSIcpLGwDxyK8bqrqVUM3pp2/rz/P7zQoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9X+/igAoAKACgAoAKACgAoA/Nv4s2N9YfETxWl+rh7jVri+t3cHEljen7RZNGx4ZEt3SHKkhXiaM7WRkUNo/Cjz6OOSWRIokeSWV1jjjjUu8kjsFREVQWZ3YhVVQSSQACTigo/Uzw7a3Vj4f0KyviWvbPRtMtbxi24tdW9lBFcEsMhiZUclgeevOaDnZs0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH54fG+xvrP4leIXvVfbfNZ3tlKwO2ayeyt4YjGT1SF4JbQ44WS3dRwooNofCvL+v6/4B5MBngck8ADvQUfpz4Asb3TfBPhWx1FXS9tdC06K4ikyJIGFshFvIDyr2yFYGX+Foyo4FBg936s6+gQUAFABQAUAFABQAUAFAH8//wDwXh/4KvW/7B/wV/4Ut8HNfhT9q7436DeQ+HbiymR7z4Q/D66a40zVPifdopZ7fX72WO80X4cwyrGr63b6n4jZp7fwpLpuqYV6vs42XxyWnkv5v8vh730sa0oczu/hW/m+346/8E/zjbi4uLy4nu7uea6urqaW4ubm4lee4uLidzJNPPNIWkmmmkZpJZZGZ5HYu5LEmvOOs/qo/wCDdr/gkePjx4v0n9ur9ofwyJ/gt8PNeZ/gb4O1q03WnxS+I2gXhSXxrqFrcJsvfAvw+1S3MdhEFe18SeOLRraeU6d4V1jTdZ6sPSv78lovh833tZaL1d36cphVnb3Vu935dvn/AFsf3lV3HMFABQAUAFAHwR+0JY31t8RLq7uVf7LqOnabNpzkHy/JgtktJ4kb7u5LuGeR0B3KJkdlAlRmDWG3z/r+v8zw6gs/SX4T2N9p3w78KWmoq6XS6cZikuRJHBd3Nxd2kbqcMjR2k8CGNgGj27CFKsKDCXxP1PQ6BBQAUAFABQAUAFABQAUAFABQBXvLO01C0urC/tbe9sb63ns72yu4Y7m0u7S5iaG5tbq3mV4Z7e4hd4poZUeOWN2SRWRiKqE505xqU5ShOEozhOEnGcJxd4yjKNpRlFpOMk7p6q1iZRjOMoTjGcJxcZQklKMoyVpRlF3Ti07NNWa0d7s/zEv+CtX7Dt3+wb+2X8QPhjpVhcQ/Cfxi7fEv4JXziWSCT4e+Jb27MXh37TJv82+8C6xb6n4PuvNla8ubbSdP1m4jij1m1L/6Z+E3G8OO+DcvzKrUjLNsGlludwVlJZhhoRviOVbQx1F0sZGy5Iyq1KMbujM/gbxI4SlwfxRjcvpwksuxL+v5TN3aeCxE5Wo8zveeEqxqYWV25SjSp1XZVYnkP/BPX9sHxH+wx+1n8Kv2hNFN7daHoOrjQ/iT4fs3w3iv4X+InisPGmheUzxwz3i6eV1rQBck29r4o0fQtQlVvsahvX8QeEMPxxwnmvD9bkjXr0vb5biJrTC5nhr1MFXvaTjB1P3OI5VzSwtavTV+d8vmcFcTV+EeI8uzqlzypUanssfQg/8AecvrtQxVGzsnLktVo83uxxFKjUd+Sx/qY+EPFnhzx74U8M+OfB2sWfiHwl4y8P6N4q8L69p0nnafrXh7xBp1vq2jatZS8eZaahp13bXdu5ALRSqSFJIr/LvF4TE4DF4nA4yjPD4vB4ithcVQqK1SjiMPUlSrUprpOnUhKEl3Wh/oPhsTQxmGw+LwtWNbDYqjSxGHrQd4VaFeEalKpB9YzpyUovtJHRVzm4UAfBH7QljfW3xEuru5V/suo6dps2nOQfL8mC2S0niRvu7ku4Z5HQHcomR2UCVGYNYbfP8Ar+v8zw6gs/SX4T2N9p3w78KWmoq6XS6cZikuRJHBd3Nxd2kbqcMjR2k8CGNgGj27CFKsKDCXxP1PQ6BBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB8EftCWN9bfES6u7lX+y6jp2mzac5B8vyYLZLSeJG+7uS7hnkdAdyiZHZQJUZg1ht8/6/r/M8OoLP0l+E9jfad8O/ClpqKul0unGYpLkSRwXdzcXdpG6nDI0dpPAhjYBo9uwhSrCgwl8T9T0OgQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfDv7SVjfQ+NrC/mVzY3uh20VlKQfLD2lzdfarZT0DxvPHO6jot1G3VjQaw2fr/X5HzzQWfob8DrG+sPhroKXyvG1w1/e20UgIaOyu72ea2OD0SdGN3Hjgx3Ct1Y0GMvif9bHrdBIUAFABQAUAFABQAUAFABQAUAFABQAUAf/1v7+KACgAoAKACgAoAKACgDivGPw98LeOooU1+wMlxbKUtdQtZDbX9ujElo0nXiSIsSwguEmhV2aRYw5LMDUmtn+v9f12Oe8KfBnwP4Qv49UsrS71DUYG32t3q9wl01o/OJLeCKG3tUmXgpO0DzREBonRiWoG5t6f199o/07aby9WoJCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA5Hxd4G8NeN7SO18QaeLhrcsbS7hdre+sy+N/kXEZU7H2qZIZRLA5VGeIuqMoNNrb+vz++33nHeGvgf4D8MahFqcNrfapeW8gltH1m5juo7WZW3JLFbwW9pbvJGQDG88U5jYLJHtlVXUG5t6ben/7Mf+D5fa9foJCgAoAKACgAoAKACgAoA+OP28v21fhd+wJ+zX44/aG+KE6XUeiQDSPA3g6G7jtdX+IvxE1SC4/4RjwVo5ZJXSS/nt5r3V9Qjt7ldC8N6frWvz281vpckTxOapxcn06d30XX8tPMqMXJ2Xz9Px/L7z/K+/aR/aH+KP7Vvxu+If7QHxk15/EHxB+JOvz63q9wPMSw022Cpa6P4c0K0klmOn+HPDWkW9loWgacJZPselWFrC8s0qyTS+ZKTnJye7f3eXXbb/K9jtSUVZbf1/X/AAx9z/8ABI3/AIJpeL/+Ckn7Sdh4QuI9T0T4C/DmTTPE/wAevHdmrRPp/hyW4l/s7wVoN46NAvjTx7NZ3Wm6Nu8w6TpttrniiS1vYtCbT726VN1JW+yvie3yWj1f4b67Smc1Beb2X6vbReuvkf6e3gTwN4Q+GPgvwr8Ovh/4d0vwl4H8EaBpXhbwn4Y0W2W00rQfD+iWcWn6XpdhbrnZb2lpBFEhdmlk2mSZ3ld3b00kkktEtEuy/D8vuONtt3e7OroEFABQAUAFAHM+KfB/h7xnYLp3iDT0vIY3MlvKGeG6tJWGDJa3MTLLEWAUSIGMUwVRNG6qoUGm1sef6F8B/h/oV/HqItb/AFaaCQS28WsXcVzawyKco32aC3top9hGVW7E6ZwSrMFKg+eX9f8ADK1/XTzuezUEhQAUAFABQAUAFABQAUAFABQAUAFAH4hf8F5v2Ev+Gxf2NNY8ZeDdG+3/ABt/ZrTWPid4DFrB5up+IPCcdlE3xN8C2+xXnnfWNA0638RaTZW8Ut3qHifwloWl2uxdSuC37Z4Ecdf6n8ZUcHjK3s8l4kdHLMfzStSw+Lc2ssx0ruMUqOIqSw9WcpRhTw2Lr1Z39nDl/J/GDhD/AFn4Xq4rC0ufNsi9rmGD5VepWwygv7Qwcd23Vo0416cIxlOpiMLRpRsqk2f5ylf6KH8Pn9zX/BtF+3b/AMLT+C3if9inx9rPn+OfgPBP4s+FMl7cb7vW/g5rWqKuqaLAZC81xJ8OvFmpJEpeVVi8O+LfD2mWFstnoEzp/D30k+Bf7LzrDcaYCjy4HPZLC5qoRtGhnFGl+7rNLSKzHCUuZ2WuIwmIq1Hz14839beA/F/9oZViOFMZVvi8nTxOXOcverZXVqfvKKvdyeBxNS129KGKoU6cVChJn9R1fzAf0EFAHM+KfB/h7xnYLp3iDT0vIY3MlvKGeG6tJWGDJa3MTLLEWAUSIGMUwVRNG6qoUGm1sef6F8B/h/oV/HqItb/VpoJBLbxaxdxXNrDIpyjfZoLe2in2EZVbsTpnBKswUqD55f1/wytf1087ns1BIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHM+KfB/h7xnYLp3iDT0vIY3MlvKGeG6tJWGDJa3MTLLEWAUSIGMUwVRNG6qoUGm1sef6F8B/h/oV/HqItb/VpoJBLbxaxdxXNrDIpyjfZoLe2in2EZVbsTpnBKswUqD55f1/wytf1087ns1BIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAGB4k8L6F4t05tK1/T4r+0LeZGGLxzW8wBVZ7a4iaOa3mUMV3xuNyM0cgeNnRgabWq/r+v62PMtK/Z/8Ah5pd8l89vqeq+XIJI7PVb2OaxRlOV3QW9vatOikf6q5lnif7sqSLkMFOcn5ejv8A+2xt63+77XtaqqKqooVVAVVUAKqgYCqBgAADAAGAOBjFBAtABQAUAFABQAUAFABQAUAFABQAUAFABQB//9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAyde17RfC2ha14n8S6tp+g+HfDmk6jruv65q93BYaVo2i6RZzahqmq6nfXMkVtZafp1jbz3l7d3EscFvbQyzSyIiMygH+Y9/wAFmf8Agpnrf/BRr9pi8vvDF9qNl+zf8I59V8K/Azw3OJ7VdUs3uI4td+J+s2Eu14/EHj2eytrmC3uIoZtE8L2egaJLCuo2ur3d/wCbWq+0lpflXwr9e+vm+nQ7acFBeb3/AK0/rvufm/8AAD4EfE39pv4yfD74D/B3w9N4n+IvxL8Q2vh3w7pke+O2ieUPPf6vq92scq6boGgaZBea34g1aVDBpWi2F9qE+YrZg2cYuclFbt/d59dt/wDK9ym1FXeyP9Tv/gnz+w58Mv8Agnz+zP4M/Z/+HUcOo6hZRjX/AIleOWtEtNT+I/xI1O2tk8ReLL9MySQ2rG3t9K8OaZJNOdF8M6bpGlNcXc9tcXtx6dOCpxUV833fV/8AAu7LS7scU5Ocm38l2XRH25VkhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUABAIIIyDwQehHoevX6fnQB/mt/8Ft/2Ev+GIP20PE8PhPR/wCzvgj8cv7R+KnwiNtB5WmaPFqF/wD8Vp8P7Xb+6iPgfxHctFp9jGXa08Iax4Qknkee6fb/AKQ+CnHX+u3BmFeLre0zvI/Z5Xm/M71Kzpw/2LMJdX9ew0L1JtLmxlHFqKUYo/hTxX4Q/wBU+KcQsNS5MpzfnzHLOWNqdJTn/tWCj0X1SvK0IJyccNVwrk7yPhT9jn9p7xp+xv8AtK/Cb9ozwK0s2qfDnxPbX+q6Mtw1vB4q8I3ySaX4x8I3r/MgtvEnhq81LShM8chsbm4t9SgVbuyt5E+64w4ZwXGPDebcO45JUsxw0oUqzjzSwuLptVcHi4debDYmFKryq3tIxlSl7k5KXyHDGf4rhjPctzzBtupgcRGdSlfljiMNNOnisNN7ctehKpTu1Lkk41EuaMD/AFT/AIUfE/wX8a/hn4C+Lvw61eLXfAvxJ8J6H4z8K6rFtU3Wi+INPg1Gy+0Qhna0voI5/s2o2MpFxp9/Dc2VyqXEEiL/AJaZrlmNyXMsflGY0XQx2W4uvg8VSevJWw9SVOfK7JSg3Hmpzj7tSEozi3GScv8AQ3Lswwua4DB5lgairYTHYajisPUWnNSrQU4cy15ZpPlnB+9CalCVpJo9ArzztCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+NT/g5Y/wCCpRsbe6/4J1fAvxHtu7yHTtV/aj8TaNd4e2splg1Tw78F4LuBtyyX8bWfib4gpEy/6A3h7wxLcSxX3izSF5MTVt+7j1+J9v7vXfrtpo073OijD7b+Xn5/L/gn8WVcR0H+ht/wb2/8Er/+GQPgwv7UXxr8OfZf2k/jz4dtZNG0jVbTy9U+EXwh1E22paX4beCZfO07xd41aKx8ReMo5Ql5plnF4e8LzW+n3+l+IUv/AEMPS5I80vil+C7dd93t2s9zlq1OZ8q2W/m/Ty/rY/pCroMQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/Jr/gs1+wqn7dP7GHjHw54Z0lb/41fCX7V8VPgvJDEH1DUdf0Wwm/t/wLAy7ZZI/H/h0Xei2lmZobRvFMfhXUr0tHpKbf1fwb45fA3GWDxOJquGS5ty5XnKb/AHdPD1pr2GOkr2TwGI5K05pSmsK8VTgr1bS/OPFHhD/W7hbFUMPT581y3mzDKml+8qVqUH7bBx6tY2hzUowvGDxKw1SelJH+Z86PG7xyI0ckbMjo6lXR0O1kdWwysrAhlIyCMHGK/wBKE00mmmmrprVNPZp9U0fwc1bR6NaNPof2ff8ABsd+3b/bfhrxp+wT8QNZ3al4TXVvih8BHvp/muPDN9eC4+JHgOyMjqm/RdavU8c6RYwiW7ubbXvGt24Sy0RAn8a/SY4F9hicFx5l9H93i3SyzPlCPw4mEOXLsfO13++oQeBrTlaEZUMFBXnWP6k8A+L/AGtDFcHY2reph/aZhkzm96E5c2OwcL6fuqsljKUFeUo18XJ2hRSj/XRX8lH9KBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPyr/4K8/8ABR3w7/wTi/ZZ1jxxYXGm6h8dfiMNS8GfAHwleeXcC98WtZq2oeM9WsDl5/Cfw8s7q31rWdyi31HU5/D3heS4s5fEcF1FlVqKnFv7T0it9e9tNF117LS6Lpw55eS3/rX+u25/l9eKvFPiPxz4n8ReNPGGt6l4l8WeLtc1XxL4m8RaxdS3ura7r+uX0+paxq+p3kzNNdX+o39zPd3dxIzPLPK7scsd3mttttu7e7f9P8/vO0/oy/4N4f8Aglr/AMNZfGlf2rvjR4c+1fs7fAPxFav4a0jVrXzNM+LHxj08W+paXo728y+VqPhTwCstj4j8UpJmz1LVpvDnh2WHUtOuvEttadGHpc0ud/DF6eb/AFS9PS+pjVnyrlW787WX/B/rc/0J67zlCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP87b/g4A/YR/4ZK/bDv/AIp+CtG+w/Bb9qCXWfiH4cWzt/L03w38RUuYZPif4PQIBDbRNq2o2vjHR7ZEgtYdK8VLpGnRtHoFyU/0L8AuOv8AWzhCnlWNrc+c8MKjl+I55XqYnLnGSyzFu7bk1SpzwdaTcpOrhfa1GnXg5fxN4y8If6t8TzzDCUuTKs/dXG0OVWp0McpL+0MKrWUV7WccVSjaMVTxHsqfMqMmfkP+zv8AHXx1+zJ8cPhf8fPhre/YvGnws8XaX4q0je8iWuox2khi1XQNT8kiWXRfEujT6j4e1y3Qq1zo+qX1uGXzd1frnEORYHibJMzyHMoc+CzTCVcLVsk5U3JXpYile6VbDVlTxFCTXu1qUJa2Z+aZJm+LyHNsvzjAz5MVl2Jp4mldtRmou1SjUtZulXpOdCrG/vUqk46XP9Vf9nL48+Bf2n/gZ8Lvj98Nbz7X4M+KfhHTPFOlK8kcl1pc9yjQax4e1MxZjTWvDGuW+peHdbgQslvq+l3sCswjDN/llxFkWO4YzzNMgzKHJjMrxdXC1Wk1GrGDvRxNLms3RxVCVPE0JNXlRqwelz/Q/I84wfEGUZfnOAlzYXMMNTxFNNpypylpVoVLWSq4erGdCqloqtOaV7XPaq8U9UKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//S/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDhvib8SfBHwc+HnjT4q/ErxFYeE/APw98Nav4t8XeI9TkKWek6FolnLfX904UPLPKIYjHa2dtHLeX128FlZQT3c8ELptJNt2S1b/q/5feNJtpLdux/lkf8FNP2+fHP/BRP9qbxf8b/ABD9v0jwLYGTwl8GPAlzOHi8D/DTTLu4fSLWeKKWW2bxJr0s03iLxfexPMLjXdRuLS1n/sfTtItbTzKlR1JNvb7K7L/N7vf7rKPbCChFLd9Xtd/1/Wp5t+wp+xr8S/28v2mPh9+zn8M4ntrnxNe/2l4y8VyWr3WmfD74eaTLBJ4t8b6uqmNDBpNlMlvplnLcWv8AbfiO/wBE8O29zFeaxbNSpwdSSiuu77Lq/wDgaX2ur3CUlGLb/wCHf6H+qn+zz8A/hp+y98Fvh18A/g/oUfh74efDLw5aeHdAsh5b3d15RefUtc1i5jihGoeIfEWqz32u+IdUaJJNS1rUb6+kRGnK16kYqKUVstEcTbk7vf8Ar+v+HPZqYgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD86/wDgqZ+xJpv7en7HPxH+DcFraf8ACyNIg/4WB8FtWufKiOmfFDwvaXsmi2bXcpCWmn+LbG51PwVrFzJvjtNN8RXGoiJ7mxtSn6H4Xca1OBOMMuziUp/2dVl9QzqlG79rleKnBVpqC1nUwlSNLG0YrWVXDxp/DOZ8R4hcKU+MOGMdlcYx+v0l9dyqpKy9nmGHjJ0oc70hDEwlPCVZO6jTruok5Qi4/wCX1qul6loep6lous2F5pWsaPf3ml6rpeoW8tpf6bqWn3EtpfWF9aTpHPa3lndQy29zbzIksM0bxyIrqVr/AE5pVadelTrUakKtGtThVpVaclOnUp1IqdOpCcbxlCcWpRknaUWmr3P4BqU6lKpOlVhKnVpTlTqU5xcZ06kJOM4TjK0oyjJOMotXTVnax/Wh/wAGyH7d3/CPeLPGX7BfxB1nbpPjV9V+JvwGkvp/ltPF2n2IuPiJ4FszIzsE8QaDYp410myiEFpbXnh3xfcHzb/X0D/yh9JjgX6xhMHx3l9G9XBKllmeqEdZ4SpPly/HTtZXw9ebwdWbUpzhiMIrxp0Gf0d4CcX+wxOK4OxtX93i3Ux+Tub+HEwhfHYON76VqMFi6UFywhOhim7zrpn9pNfxkf1OFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9P+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4aP+Dln/gp8fiL4yk/4J8fBXxD5ngX4d6tZar+0frelXWbfxT8RtOkjvNE+GHn27mO50f4ey+Tq/im2aSWKbx79h025gs9R8CSi44sTVu/Zx2Xxeb6Lptu/iu97WudNGFlzPd7en9ef3H8k1paXeoXdrYWFrcXt9e3ENpZ2VpDJc3d3d3Miw29ra28KvNPcXEzpFDDEjySyMscas7AVyG5/pd/8EO/+CZNp/wT5/Zlt9e+IOj26ftOfHSz0nxR8XLuaOKW98E6SsTXPhf4SWVyNwii8LwXcl54ra2do9R8aXupobrUdK0bw9Lb+lRp+zjr8UtX+i+Xpv3Vjjqz55afCtvPu+vy8u17H7a1sZhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfwMf8HHn7CP8Awz/+01YftT+A9G+y/Cz9p+7vbvxOtlb7LDw58ctOgFz4phlKDy4B8Q9NVfG9mZWM+o6/F48lVUt7KJW/vP6OnHX9v8NVOFsfW5s04ZhCOF55XqYnI6kuXCyV3eTy+q/qU0oxjTw7wKvKU5OP8c+OPCH9i5/DiHB0uXLuIJTliOVWhQzeC5sRF20X12n/ALXG95TrLGPSMUj+fr4XfEvxl8GviR4F+LHw81ibQPHPw48V6F4z8KaxBktY654e1GDU9Pkliyq3Nq89usV7ZS7re+s5J7O5SS3nkRv3/NMtwec5djspzCisRgcxwtfBYujL7dDEU3SqJPeM1GTcJxtKE1GcWpRTPxnL8fisrx2EzHBVXRxeBxNHFYeqvsVqE1Ug2rrmi3G04N8s43jK8Wz/AFSf2Lv2pfBn7Z/7M3wn/aM8EmG3sviB4bguNe0KOcTzeEvGumu+l+NPCN2xxKZPD/iO01CxtriZIm1LTUsdXhjFrqFuz/5a8Z8L4zg3iXNuHcbzSnl+JlGhXceVYvBVEquCxcVsliMNOnUlGLl7Oo6lJvnpzP8AQzhbiHC8U5BlueYS0Y42gpVqKd3hsXTfs8Vhpdb0a8ZwjJpe0p8lVJRnE+o6+XPoAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPx9/4LR/8FJdO/4J2/srajqfhTULJ/2ivjEmq+CfgXo0vkzzaVfi1iXxJ8Tr2ymDpLpHw7sb+1u7eOeGe21HxZqPhfSLuB9OvtRntcq1T2cLr4npH17/AC3630Wl7mlOHNLXZb/5fP8AD5n+Yxqmqanrmp6jrWtahe6vrGsX95qmrarqV1Pfajqep6hcSXd/qGoXty8lzeXt7dTS3N1dXEkk9xPLJLK7O7M3mHYf1T/8G2H/AATCHxl+I4/b0+NHh7z/AIXfCDXpLD4EaLqtrm18b/F3S3U3XjgQzrtu9A+F0hT+ybhI2guviE9vLbXaXXgfU7SXqw1K79pLZP3fOXfrt6b9VZmFadlyrd7+nb5/l6n94VdxzBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHxt+35+yH4X/AG4/2Uvir+zx4i+x2mpeJ9GbVPh/4iu4y48IfEvQA+oeCvEiuiPcR2sGrImn66lpsuL7wzqWuaUrqmoOG+x4C4txXBHFWVcQ4fnnTw1b2WPw8Hb63ltf93jcM1dRcpUn7Shz3jTxNOhVavCJ8vxlw1h+LeHcxySvyxqYil7TBV5L/dsfR9/CV7pSkoqolTrci5p4edamr88uX/LI8b+C/FHw38ZeLPh7430a88O+MvA3iTW/CPivQNQQR32jeIvDupXOk6zpd2gLKJ7HULS4tpNjMhaMlGZCrV/qLgcbhcyweEzDA1oYjB47DUcXha9N3hWw+Ipxq0asXo+WdOakrq+tnax/nvi8LiMDisTgsXSlQxWEr1cNiaM1adKvQnKlVpyWq5oTjKLs7XWlz+lD/g2r/bw/4U/8d/EH7Gfj/Wfs/wAPf2hLo678M3vbjZZaB8bNI05Yn02EyMkNsnxJ8MWCaUzOzSXXiTwz4Q0uxiM+rTlv5v8ApI8Cf2vkWH4ywFHmzDh+PsMzUI3niMlq1G1Vla8pPLcTUdWySUcNicXVm+WjA/dfAni/+zM4rcL4yrbBZ3L22A53aNHNqULciu0orH4eCptu7lXw+FpwjzVJM/uwr+GT+uwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDifiV8RvBXwg+H3jT4p/EfxBY+FfAXw98M6z4v8AF3iLUnKWekaBoNjNqGpXkgQNLM8dvA4gtbdJbq8uGitbSGa5miiZNpJtuyWrf9X/AC+8aTbst2f5W/8AwUq/bt8bf8FDP2q/HPx58Sfb9L8ILIfCnwf8E3cwkTwN8LtGuro+HtJdI5Jbf+29Ue5uvEniu5hkkiuvE2san9ldNNh0+2t/Mq1HUm5dNkuy/wA+52wgoRS3fV7Xf9f1qc//AME9v2JfiB/wUA/ak+H/AOzx4HFzp2natcnX/iV4yitvtFt8PvhjotxanxX4suVZTC11HDcW+keHbO4eKHVfFWraFpEs0Ed89xAqcHUkorbq+y7/AOSurvS6uE5KMW/uXd/8Pb+mf6qnwb+EXw/+AXwr8A/Bj4V+H7Xwt8PPhr4Y0vwl4T0O1GVtNL0uARJLdTkCW+1S/m87UdY1S5L3uratd3up30s15dzyv6iSikkrJaI4m222927npVMQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfxAf8HMf7B//CvPir4U/bj+H2jeV4Q+Mc9n4H+MsVjBi30j4qaRpjDwz4ouEiVUgh8eeFdMksLuURrCNf8ACUt5eXEupeKIg/8AbX0auOv7QyvF8EZhWvi8njPHZM6kverZVWqr6zhY3bblgcVVVSCu5PD4tQhGNLCn8nePPB/1LMcPxbgqVsNmjhhM0UF7tLMaVP8AcYhpJJRxmHp8knayrYeUpylPER5v5cfDXiPXvB3iPQPF3hbVr3QfE/hXW9K8R+HNc02ZrbUdG17Q7631PSNWsLhcNBe6dqFrb3lrMp3RTwxuMFRX9QYnDUMZhsRhMVShXwuKo1cNiaFWPNTrUK8JUq1KpF6ShUpzlCcXvGTXU/n2hXrYWvRxOHqTo4jD1adehVg7TpVqM1UpVIPpOE4qUX0aT6H+pF/wTd/bM0H9u/8AZF+GHx7sHsrfxZd2B8J/FjQbJlCeGvir4Zgtbbxbp4t1LG0sdUeaz8VeH7eR3mXwx4i0RpmMzyBf8vvEbg2vwLxbmeQ1FOWEhP63lVea1xOVYmU5YSpzfbnTUZ4XESSivrOHrKKskf6C8DcUUeL+GsvziDgsTKH1bMaMNqGY4dRjiYcuvLCo3HE0Yt3+r16V7u59118MfXBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iZ/4Obv8AgpWde1qz/wCCd3wf8QbtF8O3Gj+Lf2mdV0u53Q6n4iQW+seCfhPJNE4SS28OqbLxr4ttv38T69N4SsDLa3/hvWbJ+PE1P+Xa8nL9I9PXeXTbU6KMPtv5f5/O9vkfx529vPdzw2trDNc3NzNHb29vbxvNPcTzOscMMMMatJLNLIyxxxxqzu7KqqWIDcZ0H+mD/wAENv8Agmrb/wDBP79liz1jx9osVv8AtK/Hi20jxl8X57iJG1Dwdpq28k3hD4TwzYJhTwjZ31xd+JUiZlufGmqa5H9qvtN0vQ3g9KjT9nBXXvPWXl5fL1er0tvLjqT55abLRefn8z9sa2MwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPnn9q/wDZv8Dftc/s7/Ff9nb4hwr/AMI58TvCt5oqaiLdLm68N6/C0eo+FfF2mxSMiNqnhTxLZ6V4gsI3dYp7jTktrjdbTSo/0PCvEeO4S4hyriHL2/rOWYqFZ0+ZxjiaDvTxWEqNXapYrDTq4eo0m4xqOUbSjFx8XiPIsJxLkmY5Jjl+4x+HlS5+VSlQrL38Piaadk6mGrxp14Ju0pQUZWi5H+Vb8bPg/wCOf2f/AIt/EX4J/ErS20fx18MPF2s+DvEtl87QG/0a8ktvt2nzPHF9s0jVYFh1TRtQRBDqWk3llf25aC5jev8AUzJc3wOf5Tl2dZbV9tgczwlHGYaenN7OtBS5KiTfJWpS5qVam/ep1YTpySlFqP8AnjmuWYvJcyx2VY+n7LGZfiauFrw1ceelJx54SaXPSqK1SlUStUpyhNXUkft5/wAG8n7eP/DMH7WI+AfjrWfsfwd/aludJ8Jbry42af4Y+MNs8lv8OteBlYx2sPiaW7ufAeqmFYftVzrPhm/1G4Fn4cTZ+JfSD4E/1n4U/t7A0efOOF41sX7kb1MTk8kpZhQ01m8MoRx9JPm5Y0cTTprnxElL9Y8FOMP9X+I/7HxdXlyziGVPDe/K0MPmcW1ga2t1FYhylg6lkuaVXDzqS5KCR/oOV/n+f2gFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD84v+CqH7e/hv/gnf+yN43+NE8mn33xM1pX8DfA/wpelZP+Ej+J2t2d0dLurqz3pJceHvCNpBd+LfE3zwRz6ZpJ0eK7h1PWNMSXOrUVODl12iu7/rV7eXaV0480kunX+tf67aM/yxfFvizxJ488VeJPHHjLWtQ8SeLvGOvav4o8UeIdWuHu9U13xDr1/caprOr6jcvl7i+1HULq4u7qZuZJpnY4zivMbbbb1bd2+7/H8/vO0/pZ/4NuP+Cav/AA0V8cZv2zfizoH2n4Mfs7+ILeP4c6fqVtusPHvx0tYrfUtNukSVCl1pHwrtrix8TXbDYsni298IRRSXVvp+u2S9OGp8z53tF6LvLv8ALR7b21jb3sa07LlW7/L/AIJ/f9XccoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfx3f8ABzj+wdlfBv7fnw90blf7G+F37QaWMH8JIsfhj8Q78oBjaxX4dazfTMxO74fWMEahbiSv6/8Aoz8d2eM4CzCtv7bM+H3OXVe/meX07vqv+FGjCK6Y+cnrFH8x+PnCH+68ZYKl/wA+svzrkj/25gMbO3/hDVnLf/YoR2kfx3W9xcWdxBd2k81rdWs0VxbXNvK8Fxb3EDiSGeCaMrJDNDIqyRSxsrxuodCGANf2BKMZxlCcVKMk4yjJJxlGSs4yTummm001Zp2d7s/mSMpRkpRbjKLUoyi2pRkndNNWaadmmndPVWP9Nr/gkD+3Rb/t4/saeB/Hmu6lDc/GL4eCH4Y/G60LoLubxp4fsbb7L4vaAbGFp4/0KTT/ABOJ4oIrCLWrrX9Fsy50O4K/5oeLvA8uBOMsdgKFNxyfML5nkk7PlWCxE5c2Evr7+ArqeFs5SnKjGhWnb20Uf3t4Z8XR4w4XwmMrVFLNMFbL82jf3niqMI8uJa093G0eTEXXuKrKtShf2MmfqRX5efoIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAjmmit4pZ55Y4III3mmmmdY4oYo1LySyyOVSOONFLu7sqqqlmIAJoA/zHv+C3n/BROb/goB+19rU/g3WJbv8AZ6+B7ar8OvglbQyudO12CO9jHjD4nrETtNx8QtXsLebTpykUo8GaP4RtbmCK/tr15fOr1PaSsvhjovPu+u/TXbvqdlOHIvN6vTby+R+eH7Kn7NXxG/a//aD+F37OfwqsvtPjD4neJbbRYb2WGWbTvDmjRJJf+JfF2teT+8TQ/Cfh+11LxBqzR/v3stPlhtUlvJbeGXKEXOSit3/Tb/r8y5NRTb6f1b5n+r1+zB+zl8N/2SfgH8MP2d/hPp39n+Cfhh4ZtNBsJZUiS/1vUS0l74g8Va08KpHPr/ivXrrUvEWtzxqkMmp6lc+RFDbiGFPUjFRiorZK3/B6bvX/AD3OGUnJtvr+Hl/X6nvVUIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPMfjT8IfA/x++E3xE+CvxK0tdZ8C/E7wlrXg3xNY/Is507WrOW1N5YTvHL9j1bTJni1PRtRjQz6bqtnZ39uVnto3r08mzfHZBm2XZ1ltX2OOyzF0cZhqmrj7SjNS5KkVbnpVEnTrU37tSlOdOV4yaPPzXLMJnOW47KsfT9rg8ww1XC14aX5KsHHng3fkq021UpVF71OpGE42lFM/yr/wBrP9mzxx+yH+0V8V/2dfiFEx8Q/DPxTd6PFqYt3trXxL4euEj1Hwp4u02KQuy6b4q8NXml69ZRs7S28V+LS423UE6J/qXwnxJgeLuHcq4iy9/7PmWFhWdLmUp4bERbp4vCVGtHUwuJhVoTe0nDnj7son+eXEeRYvhrO8xyTGr9/gMRKkqnLyxr0JL2mGxMFraniaEqdaCu3FT5ZWkmo/od/wAEOf28f+GJf2y/D9j4w1n+zvgb8fzpXwu+Kv2qfytL0K8ub5x4A+IV1uZIoh4P8Q30lrqd9MwjsfB/iPxZOElnS3C/n3jfwJ/rrwdiKmDo+0zzIPa5nlXLG9WvCMF/aGXxsm39cw9NTpU0r1MZh8LHmjFyPtvCXjD/AFU4ooxxNXkyjOfZ5fmPM7U6MpT/ANjxstkvqtabjUnJ2hhcRiWk5WP9JCv84j+5woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5zf+Djf/goW/7K37K8f7OPw51z7F8bf2qNP1fw9dTWNx5ep+DvgnCPsPjzX90TNLZXnjBp18BaHJKkZubO98Yahp1zFqHhxGXnxFTkhyp+9LT0XV/PZfhszajDmld7L8z/ADua886j++7/AINo/wDgnSvwJ+BF9+2t8TtC8j4r/tF6Mlj8MLbULbbe+EfgSLqC9tNTgEiq9vefFbVLO18RO4Eqy+D9J8G3NpPD/a2p28vfh6fLHna96W3lH7uu/pb4rtx5a07vlWy3836eX/BP6iq6TEKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/li/4OXv2Df8AhZfwi8Mftv8Aw+0bzvGvwTt7Xwb8YIrGDdc618JNW1Nv7C8STpEjy3E/w+8Vam8Nw6pvHhzxZqWoX9xHp/hiFU/qP6NfHf8AZub4ngnMK3Lgs6lLGZQ5ytGjm1Gkvb4ZNu0VmGFpJxTt/tOEpU6adTFSP578eOD/AK/luH4swVK+KypRwuZqC96rltWp+5rtJNylgsRUtKy/gYmpOc1DDpR/h0r+3T+Sz/Ru/wCCD37eX/DZX7HGkeD/ABprP9ofHH9m5NH+Gnj83dx5uqeIvCyWcqfDTx9cb2eed9b0LTrjw/rF7cSy3d/4o8Ka7qlz5Sanaq/+dXjrwJ/qdxhWxeCo+zyTiN1sywHKrUsPinNPMsBHRKKoV6ka9GEUoQwuKoUo8zpz5f7g8IOMP9aOGKeGxVXnzbIlSwGN5pXqV8OoP6hjH1ftaMJUKs5OUp4jDVqkv4kD9uq/FD9YCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOc8Y+LvDfw/8JeKPHfjLWLPw94Q8FeHda8WeKtf1GQxWGieHPDum3Wr63q17IAxjtNO02zuby4cKxWKFyASMUN216LUEr6dXof5RH/BRX9srxP8At5/td/Fn9ovXjfWuh+INYOhfDPw5eybm8IfCvw28th4I8PiJXeCC8/s7drXiD7LstrvxXrOv6lGim+cV5VSftJuXTZei2O6MeWKX3+b6+h67/wAEjP2DNQ/4KDftm+AvhRqNnd/8Kk8IlfiT8dNWgMsCWvw38OX1n9p8Pw3se022reO9WuNN8Haa0L/bLNNWvtdhhmt9DvAlUaftJpfZWsvTt8/62YqkuWLfXZa21/4G+n6n+pfpel6bommadoujWFnpWkaRY2ml6VpenW0Nnp+m6bYW8dpY2FjZ26R29rZ2drFFb2ttAiQwQxpFGioqrXpnEXqACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOc8YeEfDXxA8JeJ/AnjLR7LxF4Q8aeH9Z8KeKdA1GPztP1vw94g0640nWdKvYsqZLXUNOu7m1nUMrGKVgrKcNXTg8XicvxeFx+DrTw+LwWIo4rC16btUo4jD1I1aNWD1tKnUhGUdN1rcwxWGoY3DYjB4qlGvhsVRq4fEUZq8KtCtB06tOa6xnCUovyeh/lpf8FDP2O/En7Cv7WXxS/Z81sXt1oWi6p/b/w08Q3qbW8WfC7xFJPeeDNd8xUSGa9jsll0PxAbYG2tvFOi67YQsy2e6v8AULw94ww3HPCeV8QUeSNetS+r5nh4bYTNMOlDG0LXk1BztXw/M+aWFr0KjtzWj/nzxrwxX4R4jzDJavPKjRqe2wFeS/3nL67csLWvs58l6Vbl92OIpVoL4T1D/glB+3FffsE/tj/D/wCKuoXt0nwr8USL8OfjdpkPmzR3Xw48S3tmt5riWce5rjUvBOqW+m+MdOSFPtV3/Y1zo0UsUGsXe7zPFbgiHHnB2YZVThF5rhV/aOSVHaLjmOGhPkoOb+GnjaUquDqNvkj7aFZ3lRgeh4c8Wz4O4nwWYznJZdiH9RzamrtSwNeceaqor4qmEqRhiqaS5peylSTiqsub/T00/ULDVrCx1XS7211LTNTs7bUNO1GxuIruyv7C9hS5s72zuoGeC5tbq3ljnt7iF3imhdJI2ZGBr/MqpTqUqk6VWE6dWlOVOpTnFwnTqQfLOE4ytKM4yTjKLV0007WP77hOFWEKlOcalOpGM4ThJShOE1zRnCUbxlGUWnGSdmmmr3LlQUFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/l+/4Oef23pPgv+zF4U/ZF8E6wbTx7+05dyaj46+xz7L3Sfgn4Pvrea/tpvLKz2o8feLk03RIJAxg1LQPD/jfSbiN4p3C82Jnyx5FvLf0X+b0+82oxu3J/Z29X/kvzP4CK4DqP9KP/g38/YNT9jf9iLQPHHjDRRp/xt/aej0f4rePGuoPK1TQ/B81lK/wr8Dzlljnh/sjw3qU3iXU7G5hhu9P8TeMdf0y53jT7fZ6VCnyQX80tX+i+S8+vQ5KsuaVltHT59fX8P1l+6tbGQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH873/AAcT/sGf8NK/ssxftH+A9G+1/F/9luz1PX9QSyg33/if4K3ZW68d6VIIwr3Mvgt4IvHumGd3Sx0ux8ZW1nA15ro3f0L9Hnjv/Vvil8OY6tyZRxROlh6bnK1PDZ1C8cDVV3aKxik8BVUUnUqzwcpyUKB+J+N3B/8AbvDyz3B0ubM+Ho1K01FXniMql72Mpv4eZ4RpYym5NqFOGKjCLnWXN/n8V/fZ/GZ/fh/wbl/t6f8ADQ/7Mt3+y7491n7V8Wf2X7GwsPDr3s++/wDE3wNvJvsnhK7i3tvuH+H16f8AhBb4QoIdP0L/AIQXzpHu9SlZv4J+kTwJ/q9xNDifAUeTKeJ51KmI5Fanhs8gufFwdkuVY+H+3U761K/16yjCmkf2P4H8Yf23kEuH8ZV5sx4fjCFDmledfKJvlw0lfVvBTvg52VqdH6ndylN8v9HFfzqfuIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/yt/+Cvn7Wk37Zn/BQH4+/FWy1NtS8CeH/Ek3wo+FBSXzbKP4b/Da4utA0i/0w8sll4t1SPW/HhjYkpeeLLsYjGIk8ytPnqSfRe6vRf5vU7YR5YpfN+r/AMtvl5mp/wAEdP2Mk/bj/b2+D/wt17TDqfwx8IXUvxd+MkbxebZzfDrwDc2N3caHfr3s/GviW78N+BLkoyTRW/ieW6iZWtiylGHPUSeqXvP0X37uy2+8KkuWDa32Xz/y3P8AUyVVRVRFVERQqIoCqqqMKqqMBVUAAADAHAxxXpnEOoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgCvd2lrqFrc2F9bW97Y3tvNaXlndwx3Nrd2tzG0NxbXNvMrQz288LvFNDKrRyxu0cilGIaoTlTlGcJShOElOE4NxlCUXeMoyVnGUWk007pq6toTKMZxlCcYzhOLjKEkpRlGStKMou6cWnZpqzWjvdn+Y5/wAFc/2F7v8AYL/bJ8c/DvRtPuIfhB46aX4l/BC/YSSW/wDwgviC+uvM8LG5fcJL/wABa1FqHhSdJZpL6fTbDR9bu1jTXLfd/pj4SccR474OwOY1qkZZvgbZbndNWUvr2HhG2K5ekMfQdPFppckalStQhd0Jn8EeJPCMuD+KMZgaUJLLMXfH5TPVx+p1pyvh+Z3vPB1VPDNNucoQpVpWVaB4P+wR+134r/Yc/aq+Ff7RHhn7Xd2PhbWV03x74ctZRH/wmHw114pp/jbwy6SOltJc3Wku99ocl3ut9P8AE2n6Jq5QyadHXu8ecJYXjfhbNeHsTyQqYqj7TAYiav8AU8yoXqYLEppOSjGquSuoWlUw1SvRvacjx+DuJcTwlxDl2d4fmlDD1eTGUIu31nA1rQxeH1ai5SpNyoud4wxEKVVr3In+pv4D8c+FPid4I8IfEbwLrVp4j8F+PPDWieL/AAnr9g5ez1jw74i0621bR9StyQrCO7sLqCYJIqyR7/LlRZFZF/y6x+BxWWY3F5djqM8NjcDia2ExVCorTo4jD1JUq1OXnCpFxurp2um1Zn+hGDxeGx+Ew2OwdWNfCYyhSxOGrQ1jVoV6calKpG9naUJJ6q6vZ2aOsrkOkKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//1f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/PP/gqz+0u37JP/BPz9pv4y2GoHTvFVp8PL7wX8P7iKXy7yH4g/EqeDwF4Sv7FVIkmn0DVPEEXiaaOMgrY6JeTsyRQyOsVZckJS62svV6L7m7/APDFwXNJLz19F6/195/lJ15R2n94f/Bqp+y/H4J/Zs+M/wC1ZrmmrHrvxx8dRfD/AMGXk8WZV+HfwsWVdSvNPnIGy217x7rWt6bqUS5Etx4FsHcgwoK7sLG0HLrJ2+S/4LZzV3qo9lf7/wA/u+8/q1rqMAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/GL/AILk/sGf8Ntfsb67qfg3Rv7R+Of7Pw1X4nfC37LB5uqa/p1vZIfiB8PLXask0x8XaBYRXulWMCebfeMPDfhW28yKCW5Lfsnghx3/AKlcY0KeMrezyPP/AGWWZpzStSw9SVT/AGDMJXaS+qYibhVm3aGExGKlyykon5b4t8H/AOtfC9aphaXPm+S+0zDLuWN6laCh/tuBjbV/WaMFOnFK88VQw0dIuR/m6V/o4fwyf20/8GzX7en/AAmvw88VfsI/ETWvM8TfDCDUfH/wOnv58zap8OtS1ES+M/BdvJKwMs/gzxJqSeINLtg891NofifU4beKHSvCY8r+KvpK8CfUswwvHWX0bYbNJU8Bnapx0pZjTp2weMkltHGYam8PVlpFV8LTcr1cVeX9W+A3GH1vBYjhDG1b4jL1PGZQ5vWpgqk74rCxbavLC15qtTiuaTo16iUY08Nc/q/r+VD+iwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/jy/4Ox/2jjp3gj9mH9k7SL/E/ijX/ABB8ePHFlFL5cqaZ4YtLnwP8PVnVTunstU1LXvH1wYpMQi88NWk4WSaGNoOTFS0jHu+Z/LRfm9LdL6WN6C1cvl/X/Dffc/ids7O61C7tbCxtp7y+vrmCzs7S2iee5urq5lWG3treGMNJNPPM6RRRRqzySMqKCxAriOk/1xv2Hv2ebP8AZQ/ZD/Z2/Z4toYIbr4XfCzwvoXiJrbZ5F743ubMax4/1WLZ8u3WfG+p+INW4L83vMkhy7etCPLCMeyS+fXot3rt95wyd5N92/u6dunl9x9U1RIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH+cp/wXj/YL/4Y0/bE1Xxl4K0b7B8Df2kpNZ+JPgIWkHlaZ4b8WNeRSfEvwDAEVIbePR9c1G38Q6LZQRxWdj4Y8VaLpVoJW0m7ZP8ARPwJ47/1x4PpYLG1ufO+G1Ry3Hc8r1cThFBrLce7+9J1qFOWHrTk3OeJwtarOyrQcv4f8X+Dv9V+J6mKwlLkyjPXVx2D5VanQxPMnj8FHRJKlWqKvRhHljDD4ilSin7KbPy0/Zp/aB8efsr/AB5+Fv7QXw0u/s3jD4W+LLDxJYQPLJDaazYp5lpr3hjVGi/enRfFegXWp+G9aji/evpeqXaxMkpR1/UeJcgwHFORZpw/mUObB5phamHm7Jzo1NJ4fE0r3XtsLiI0sTRbVlVpQburn59kOc4zh7OMvzrAS5cVl+JhXgm2o1YK8a2HqW1dLE0ZVKFVKzdOpJJp2Z/qpfs9fHTwH+0z8Efhj8e/hnf/ANoeCfil4S0zxVozO8bXVg13GYtT0HVFhZo4db8N6xBqHh/XbVWYWmsaZfWu4+Tlv8s+IMjx/DWdZnkOZU/Z43K8XVwtZWfLU5HelXpNpOVHE0nDEUJtLno1YSsr2P8AQ3Jc3wefZTgM4wE+fCZhhqeIpN25ocytUo1LXSq0KqnRrRv7tWnOOtj2SvHPUCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8wz/AILxftDn9on/AIKd/tEX9lffbfDPwh1PTfgB4VAk81LS2+FcEmleLYIpASjQzfE258d6hCYwE8u9UDewaV/Nry5qsu0fdXy37db/APB3OykrQXnr23+/pb/gXSOK/wCCKv7Oo/aY/wCCln7MPg2+sftvhjwX40Hxm8ZCSPzrNNC+ENtJ43tbbUYsMJLDXfE+l+HfDE8bK0cv9upFLiJ3alRjzVIronzP5a+fVfppe46jtCXpb7/u/rvsf6lFemcQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB+cH/BVb9h7Tv29/2O/iD8I7O0s/8AhaHh6M/EL4J6tcGGFrD4l+GrO7bTtKkvJcLa6Z4z0641LwZq00rNb2dtri6u0MtzpVmU/RfCzjepwHxhl+bzlP8Asyu/7PzqjG79plmJnD2tVQWs6uDqRp42jFe9OdD2SajVmpfDeInCUOMeGMblsYx/tCgvruU1JWXJj6EZclNyduWnioOeFqtvljGr7VpypwP8wTVNL1LRNT1HRdZsLzStX0i+u9L1XTNQt5bS/wBN1KwuJLS+sL60nSOe1vLO6ilt7m3mRJYZo3jkRXVlr/TilVp16VOtRqQq0a0IVaVWnJTp1KdSKnCpCUbxlCcWpRknZp3V7n8B1KdSlUnSqwlTq0pyp1Kc4uM6dSEnGcJxlaUZRknGUWrpqztY/rM/4Nlv29v+Ea8XeK/2CfiLrWzRfHEuq/Eb4BzX9x+7sfGNlZfaviB4CtGlZysXiTRLH/hMtGsovs9nbaloHiuTE2peJIlf+UPpLcB/WcJhOPMuo3rYJUsuz5U46zwc58mX46aSSbw1ep9TrTfNOVKvhV7tLDNn9HeAvGPsMTieDsdV/dYt1Mdk7m9IYqEObG4OLbelelD61SguWMZ0MS/enXij+06v4xP6nCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9D+/igAoAKACgAoAKACgAoA8J+J/wAbLPwNe/2FpVjHq+upHHLd+fK0VjpwmUSQxz+X++uLmSJllMEbQrHFJE7T7mCUFRi3r09P/to/l932uI8H/tIte6lBY+L9KsrC1upViXVdLa4WGzZ22q95a3Utw7W4JBmniuA0KAuIJADtCnDs/wAP/t3+X3n1YCCAQQQRkEcgg9CD3BFBmLQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAeK/FD4x2HgCaPSbKyXV9fmhW4a3ebybPT4JM+VJeOivLJLNtLRWsflsYv3sksSNF5oVGPN1/C/6x/N/K3vfLXxS/bnX4MfCP4q/Fjxz4e019H+HHw88ZeNmOmzXNu0s3hrQL/VrOweC6uJzcnUru1t9PRILmCdpLlBbpLMUhZSfKnJ7JN/cX7O9knu+q/8At3+X3n+Vh4k8Q6x4u8Q694r8Q302p6/4n1rVPEOualcHM+oaxrV9PqWp305HBmu725nnkI6vITXkt3bfd3Os/sP/AODTL9nsTav+1V+1Vqdj8un2Hhb4A+C9QMe4NLqU0HxC+JNssjcRyW8Wn/C5wI9zNHeyiTYuwS9eFj8cvSK/N/p0+85672j83r92n39fvP7T67DnCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPJPif8WdO+HcdvaJa/wBq69fRGe3sPN8mC3tgzRrd3swV3VHkV0ghiQvOYpQXiVd9BUYuXp6X/wDbo/12t73jehftNagb+NPEmgWA02SQK8+jtcx3dqhPMphu57mO72DkxrJakjlWLAIwU6fZ/ev/ALofW1neWuoWltf2UyXNne28N1a3ERzHNbzxrLDKhODteNgwyM4POCKDMs0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHknxP8Aizp3w7jt7RLX+1devojPb2Hm+TBb2wZo1u72YK7qjyK6QQxIXnMUoLxKu+gqMXL09L/+3R/rtb3vG9C/aa1A38aeJNAsBpskgV59Ha5ju7VCeZTDdz3Md3sHJjWS1JHKsWARgp0+z+9f/dD62s7y11C0tr+ymS5s723hurW4iOY5reeNZYZUJwdrxsGGRnB5wRQZlmgAoA/gk/4OPv2Cf+FB/tG6d+1n8P8ARfsvwr/aY1C6PjJLKDZYeGfjpZWz3mvCXYixwJ8StKhl8ZWm9pJ77xHYePbh/Kgjtkb+8Po58ef29w7U4TzCtzZpw1Th9Tc5XqYnIpyUKFrtuTy2rJYOekY08PUwEVzSc5H8d+OXB/8AY2eQ4jwdLly/Ppy+tcqtChm8Y89a/RfXqcXio6XnXhjG7JRP55fhz8QfF/wm8f8Agv4n/D/Wrrw744+H3ijQ/GPhPXLMgXGl+IPDuo2+qaXeIrfJKsV3bRGW3lDwXMPmW9xHJDK6N/QeY5fhM2wGNyzMKMcRgcwwtfB4uhP4auHxFOVKrB9U3CTtJWlF2lFqSTPxXA43E5bjMLmGDqyoYvBYijisNWj8VOtQmqlOa3TtKKvFq0ldO6bP9Tz9hb9rTwh+27+y58Kv2ivCX2a0k8Y6Glt4y8O283nP4O+Ieikab418Kzb2NyItN1uG4k0ie7SGfU/D11o+tCFYNThNf5c8c8J4vgnijNeHcXzSWDruWDxElZYzL637zBYqNvdbqUJRVZRuqWIjWov3qclH/QnhHiTDcWcPZdnmG5YPFUuXFUIu/wBVxtL93i8O7+9anVUnSc1GVShKlVty1In1zXyR9KFABQAUAFABQAUAFABQAUAFABQB5J8T/izp3w7jt7RLX+1devojPb2Hm+TBb2wZo1u72YK7qjyK6QQxIXnMUoLxKu+gqMXL09L/APt0f67W97xvQv2mtQN/GniTQLAabJIFefR2uY7u1QnmUw3c9zHd7ByY1ktSRyrFgEYKdPs/vX/3Q+trO8tdQtLa/spkubO9t4bq1uIjmOa3njWWGVCcHa8bBhkZwecEUGZZoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPL/iX8UNL+HVnb+bbtqWsagshsNMSUQr5cZ2vd3c2yUw2yOdiBYnkuJMxxgKkssAVGPN/w1/1X5/J2ueFaV+05q4vk/tzw5psmmvIBJ/ZUl1Bewxk4Mim7nuYLl0GWERW0WQjb5sWd9BXs10evp/90PrXSdVsdb02y1fTJ1ubDULeO5tZl43xyDOGU8pIhyksbAPHIrxuqupVQzemnb+vP8/vNCgAoAKACgAoAKACgAoAKACgAoAKACgAoA//0f7+KACgAoAKACgAoAKACgD82/izY31h8RPFaX6uHuNWuL63dwcSWN6ftFk0bHhkS3dIcqSFeJoztZGRQ2j8KPPo45JZEiiR5JZXWOOONS7ySOwVERVBZndiFVVBJJAAJOKCj9TPDtrdWPh/QrK+Ja9s9G0y1vGLbi11b2UEVwSwyGJlRyWB5685oOdmzQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfnh8b7G+s/iV4he9V9t81ne2UrA7ZrJ7K3hiMZPVIXgltDjhZLd1HCig2h8K8v6/r/gH4F/8F2fjH/wrX9hnVfBdndeRrHxu8d+FPAMccT7LoaDpdxL468Q3Kcg/ZXj8LWOh32N26LXkhKlJmZMMTK1O38zS/X9DSHxeiv8Ap3Xfs/lc/iKrzjY/08f+CDP7P4/Z9/4Jf/s52d5ZfY/Efxc0zVvj34lby/La8l+KV9/a3hG5dCN4kX4Z2/gWzcuWZms9w2oyRxenQjy04p7v3vv1/BW/pI46rvN+Wn3f8G/9Nn7D1qZhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHwR+0JY31t8RLq7uVf7LqOnabNpzkHy/JgtktJ4kb7u5LuGeR0B3KJkdlAlRmDWG3z/r+v8zw6gs/SX4T2N9p3w78KWmoq6XS6cZikuRJHBd3Nxd2kbqcMjR2k8CGNgGj27CFKsKDCXxP1PQ6BBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB8EftCWN9bfES6u7lX+y6jp2mzac5B8vyYLZLSeJG+7uS7hnkdAdyiZHZQJUZg1ht8/6/r/ADPDqCz9JfhPY32nfDvwpaairpdLpxmKS5EkcF3c3F3aRupwyNHaTwIY2AaPbsIUqwoMJfE/U9DoEFAHyb+3F+yf4O/ba/Zf+Kv7OnjH7PajxroMknhPxDPB50ng7x/o5/tLwV4st9im4C6RrsFqdTt7V4ZdU0GfVtFeVLbUrjd9XwRxXjOCuJ8q4iwfNP6lXSxeHjLlWMwFb93jcJK/u/vqEpKnKSapV40qyTlSifOcW8OYbivh/McjxPLH63Rbw1dq7wuNpfvMJiVb3rU60Y+0jFp1KMqtFtRqSP8ALA+Jfw68Y/CH4heNvhZ8QtFufDvjn4eeKdc8G+LNEuh++03XvD2oz6ZqVtvHyTwrc28jW11CXt7u2aK6tpJYJo5G/wBSMtzHB5vl+CzTL60cRgcxwtDGYStHapQxFONWnK28ZcslzQdpQleEkpRaP89cfgcVluNxeX42lKhi8FiKuFxNKW9OtQnKnUj1TSlF8sk3GUbSi5Jpn9Bf/BuR+3v/AMM9/tJX37KvxA1r7L8J/wBpzULK38KyXtx5dh4X+OlpAtl4Znj3ny4I/iNp0cfgi9EaNNfa/B4CQvDbWdy9fz/9IrgP/WDhuHFWX0ebNeGqc5YtQjepisjlLnxMXZXk8uqN42neUVTw8se7SlOKj+z+B/GP9i57Ph3GVeXLs/nCOHc5Whh83iuTDtX0Sx0EsJK3NKdaODXuxjNy/vmr+DD+xgoAKACgAoAKACgAoAKACgAoAKAPgj9oSxvrb4iXV3cq/wBl1HTtNm05yD5fkwWyWk8SN93cl3DPI6A7lEyOygSozBrDb5/1/X+Z4dQWfpL8J7G+074d+FLTUVdLpdOMxSXIkjgu7m4u7SN1OGRo7SeBDGwDR7dhClWFBhL4n6nodAgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+Hf2krG+h8bWF/MrmxvdDtorKUg+WHtLm6+1WynoHjeeOd1HRbqNurGg1hs/X+vyPnmgs/Q34HWN9YfDXQUvleNrhr+9topAQ0dld3s81scHok6MbuPHBjuFbqxoMZfE/wCtj1ugkKACgAoAKACgAoAKACgAoAKACgAoAKAP/9L+/igAoAKACgAoAKACgAoA4rxj8PfC3jqKFNfsDJcWylLXULWQ21/boxJaNJ14kiLEsILhJoVdmkWMOSzA1JrZ/r/X9djnvCnwZ8D+EL+PVLK0u9Q1GBt9rd6vcJdNaPziS3giht7VJl4KTtA80RAaJ0YlqBuben9ffaP9O2m8vVqCQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOR8XeBvDXje0jtfEGni4a3LG0u4Xa3vrMvjf5FxGVOx9qmSGUSwOVRniLqjKDTa2/r8/vt95/BV/wc/+MvDulftO/A79nbwnf6heWXww+FN74+8S/bLyGfyPFXxT12S2g02eO3trRRPp/hbwRoepQGSOQpbeJf3cuZp0XhxUryjHsr/N/nojqpXacn1dvkvPTr/dj89z+d34HfCvW/jn8afhJ8FvDYf+3/i18SvA/wAN9IdIzL5F/wCNfEumeHLa5dQCPJtZNRFzO7YjjhikkkZY1Zl5ormko92l95o3ZN9vl/n+X3n+wL4S8L6J4H8K+GfBfhqzTTvDnhDw/o3hfQNPj/1djonh/TbbSdKs48ADZa2NpBAuAPlQcDpXrpW06LQ4Hrr3/ry/L7joKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOZ8U+D/AA94zsF07xBp6XkMbmS3lDPDdWkrDBktbmJlliLAKJEDGKYKomjdVUKDTa2PP9C+A/w/0K/j1EWt/q00Eglt4tYu4rm1hkU5Rvs0FvbRT7CMqt2J0zglWYKVB88v6/4ZWv66edz2agkKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDmfFPg/wAPeM7BdO8Qael5DG5kt5Qzw3VpKwwZLW5iZZYiwCiRAximCqJo3VVCg02tjz/QvgP8P9Cv49RFrf6tNBIJbeLWLuK5tYZFOUb7NBb20U+wjKrdidM4JVmClQfPL+v+GVr+unnc9moJCgAoAKAP4vf+Dmr9gj+wvEnhT9vr4c6Lt0rxZJpHw3/aAhsLf5LTxRaWosvh38QLwRKxWPXtJtB4H1q9lMFrBf6L4MhUS3+vTu/9l/Ro489vhsXwFmNb97hVWzLIJTlrPDTnz5jgIXa1oVZ/XqEEpSlCvjW+WFCCP5a8euDvY18PxlgaX7vEulgc5UF8OIjHlwONlZbVqUfqlWb5YxnSwqvKdeXL/JLp+oX+kX9jqulXt3puqaZeW2oabqNhcS2l9YX9lMlzZ3tldQPHPbXdrcRRz29xC6SwzRpJG6uqtX9ZVKdOrTnSqwhUpVYSp1KdSKnCpTnFxnCcZJxlCcW4yjJNNNppp2P5uhOdOcKlOcqdSnKM4ThJxnCcHzRnCUbSjKMknGSd01dWsf6d3/BJz9uew/b4/Y78CfFDUr21b4seEVT4c/G/S4RFDJb/ABD8PWVr5/iCOzj2iDS/HOlT6f4v05YU+x2kmqX2hwzTT6JeFP8AMvxW4HqcB8YY7K6cJ/2Vi28xySrK7UsvxE5cuHc38VXA1Y1MJUu+eapQrNKNaDl/fXhzxbDjHhjB5hUnF5jhrYHNqasmsbQhC9ZRW1PF05QxMLLli6k6KcnRly/pdX5sfeBQAUAFABQAUAFABQAUAFABQBzPinwf4e8Z2C6d4g09LyGNzJbyhnhurSVhgyWtzEyyxFgFEiBjFMFUTRuqqFBptbHn+hfAf4f6Ffx6iLW/1aaCQS28WsXcVzawyKco32aC3top9hGVW7E6ZwSrMFKg+eX9f8MrX9dPO57NQSFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBgeJPC+heLdObStf0+K/tC3mRhi8c1vMAVWe2uImjmt5lDFd8bjcjNHIHjZ0YGm1qv6/r+tjzLSv2f/AIeaXfJfPb6nqvlyCSOz1W9jmsUZTld0Fvb2rTopH+quZZ4n+7Kki5DBTnJ+Xo7/APtsbet/u+17WqqiqqKFVQFVVACqoGAqgYAAAwABgDgYxQQLQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8pD/gq58eP+Gkv+Cin7W3xVgvft+jXXxe13wZ4Vu1kL29x4P+FyW3wz8KXlou5lit9S0LwlY6oI025lvpZZAZpZGby6suapN9L2XotPxtf/hzugrRivLXS2v3v8/uPtj/AINxPgN/wuf/AIKdfDrxNe2X2vQP2f8AwR47+NOqrLHutTqFnp0HgPwkGkI2rd2fi7x3o2vWUasJXfQ5JVV4YJ9l4eN6if8AKm/0X5/P5Mis7Qfm7f5/10+aP9JevROQKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8j+PfwT8B/tIfBn4lfAr4m6aNU8DfFHwlqvhLX7dRH9qtodQh/0PV9MllSRbXW9B1KOz1zQr/Y76frOnWN9EDJbrXrZDnWP4cznLc8yyp7LHZXi6WLw8nflk6b9+jVSceejXpudCvTulUo1KkHpJnm5xlWDzzK8flGPh7TCZhhqmGrJW5oqa92rTbTUatGajVozt7lWEJqzif5WP7Uv7Onjz9kz9oH4p/s8fEi3Mfir4YeKrzQpb1IHt7TxBo7rHf+GvFmlxyFpBpHizw7d6X4i0sSMZkstShiuAlxHLGn+pfC/EWA4s4fyviHLZXwuZ4WFdQclKeHrK9PE4Sq0kvbYTEQq4erbRzptxbjJOX+eXEGSYzhzOcwyTHxtiMvxE6Lmk4wr0vjoYmmnd+yxNCVOvTvqoVEpWkmj9JP+CGn7e//AAxL+2Jouj+NNa/s/wCBP7QbaT8NPiibq48nS/Duqy3si/D74i3O8pDCvhPXdQn0/V72eRYbLwh4l8UXjRzXFtaKn5x44cB/668IVq2Co+0z3h/2uZZXyxvVxFJQX9oZdG123i6FONSjBK88XhsNC8Yyk4/c+EnGP+qnE9Kniqvs8ozn2eAzDmdqdGo5P6ljZX0X1atNwqTbtDC4jEStKUY8v+kNX+cp/cwUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+Yv21PjjF+zT+yR+0f8AHlrlLW9+F3wb8e+KdBaQqFuPFlp4fvYvBungt8ok1TxXPo2mxbsr5t2mQQCKmcuWMpdk2VFXkl3aP8iiWWWeWSaaSSaaaR5ZZZXaSWWWRi8kkkjEs8jsSzuxLMxJJJJNeSdx/cH/AMGmvwI/sj4RftT/ALSmoWf7/wAcePfCfwb8M3U0e2SHTfh7ocni/wAUtZMQGktNW1D4geHILiQbomuvDYhjYS21wtduFjpKXd8q+Wr++6+7yOau9VH5n9eNdZgFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8r//AAct/sD/APCyvhR4c/bi+HWi+d41+DFpa+D/AIywWEGbnW/hLqOov/YXiiaOFWkuLr4feJdSe3vJRG0n/CMeJ72+vrmLTvCkCxf1J9Gzjz+zc2xPBGY1rYLOZyxmTyqS92hm1On+/wALFvSMcww1NSgrpfWcLThTTqYuR/PXjxwd9fy6hxbgaV8VlcY4bNFCPvVctnP9ziGkrylgq9Tlm9/q9eU5yjTw1pfw71/bh/Jh/owf8EF/2+f+GyP2QdO8BeONa+3/AB0/Zrh0b4d+N2vLjzdT8UeDPsksXw28eymRmnuptQ0fTrjwzr15NJPd3fiTwxqOsXzxjXLNX/zu8d+A/wDU7i6pj8FR9nkfEkq2YYHkjalhsZzp5lgFb3YKnWqxxNCCShHDYmnShf2E+X+3vB7jH/WjhmGDxlXnzfIlSwOL5pXqYjC8rWAxj6yc6UHh6025SliMPUqza9tDm/civxA/WgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//V/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/nK/4Oe/jr/wrP8A4J12nwrsbzytX/aI+MPgvwfc2iP5c0vhDwQ118TdduwchjBB4g8L+C9OuUT766wqPmJnVufEytTt/M0vlv8ALbzvt5x2oq879k/x0/rT7tD/ADvK886j/Um/4In/AAK/4Z+/4Ji/soeFbmz+ya54w8Af8Lj8RGSPyrufUfjFqV78Q7Bb6MhWS70zw1r2g6E0cirNDFpMUMw86NzXp0Y8tKC8r/fr+F/6scVR3nL1t92n9f8ABP1SrUgKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAMDxZ4V8O+OvC3iTwT4v0ey8Q+E/GGg6v4X8T6DqcIuNO1vw/r+n3GlazpN/ASBNZ6jp11c2lzHkb4ZnXIyDXRhcViMDisNjcJWnh8XhK9HFYavSfLUoYihUjVo1qcuk6dSMZxfSUV2McTh6GLw9fCYmlCvhsVRq4fEUaivTq0K0JU6tKa6xqQlKMl2fmf5b//AAUe/Yw8R/sG/ta/Ev4B6ot9deFbS9Hir4UeI71Du8V/CvxJPdT+FNUabaiXGoacsF54X8RSRIkA8UeH9ajt1+zJA7/6f+HPGeH474Ty3PqXJDFyh9UzbDwf+65phoxjiqfLduNOpeGKw6cpP6tiKLk1LmR/n3xzwtX4P4kx+TVOeWHjL6zl1ee+Jy6u5PDVL6Jzhyzw9dpKP1ihVUbxUXLov+CX37busfsD/tffDz40+fey/DvUZv8AhBPjRodn5kp1r4XeJLuzTXJorOMFrzVPC13b6f4y0G3QxPdax4ftNPeZLS+u0fn8T+CaPHvCOYZNywWY019eyavOy9hmmGhN0Iub0hSxUJVMHXk7qNHESqJOcIOO/AHFlXg7ibBZrebwU39TzWjC79rl9eUfbNRWsqmHlGGKoxVuarQjTclGcz/UI0LXNH8T6Jo3iXw7qdlrfh/xDpWn65oWs6ZcR3em6vo+rWkN/pmp6fdws0N1ZX9lcQXVpcRM0c0EsckbFGBb/MWvQrYavWw2IpTo4jD1alCvRqxcKlKtSm6dWlUhK0ozpzi4Ti1eMk07WP7/AKNWliKVKvQqQq0a1OFWjVpyUoVaVSKnTqQkrqUJwalGSdmmmr3Rq1kaBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//1v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4NP+Drn45/8JZ+1T+z78ALG88/Tvg58H9T8b6tBFJ+7tvFnxf8RGCezuYwRm6t/C/w88LahEzhhHba4BEymadW4cVK8ox7K/3/APDfidNBe633f9f1/mfzW/AH4Uar8ePjn8G/gnonmjVvi58UfAXw2sJIU3vbz+NfFGl+HVvDlWVY7IagbuaWQeVDDDJLMViR2rniuaUY92l97Nm7Jvsr/wBb/l95/sD6DoeleGND0Xw1oVnFp2ieHtJ07Q9H0+AYgsdK0mzhsNPs4QckRWtpbwwRgnhEA5r1jgNagAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPwL/AODgj9gX/hrH9k2f40eA9F+2/G39mC01nxnpkdlb+ZqXi34WSQx3PxG8JBYV869utLtLGDxr4fgIuJhdaHquj6Xbm68UXDN+9eAPHv8AqpxWsmx9bkyTiedHBVXOVqeEzRS5cuxerShCpOpLBYiV4x5K9KtUly4VH454z8Hf6x8OPNcHS5824fjVxUFBXqYnLmlLHYay1nKnGEcVQV5PmpVKVOKniHzf55df6DH8VH92P/Btn+31/wALl+Bus/sYfETWvtHxH/Z80/8Atj4YTX1xuvPEfwRvb6O2/sqEyPJLcTfDHX76DR/maNIPCviDwjp1jbmDRruSL+GfpH8Bf2NnlHjLLqHLl3EFT2OZqEfcw+dwg5e1dklFZnQhKtpe+Kw+LqVJXrQR/XfgVxl/amU1eFsbV5sdksPa5e5yvKvlM5qPs1e7by+vNUtWksPXwtOEeWlNn9O9fzKfvoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/ACpP+CuvxwP7Q3/BSX9r34iw3n23SoPi7rXw98OXCPvtZvDXwjgtPhbol3YgMyJaanY+EItXj27fNe/kuJF8+aYt5daXNUm/O33afjb+rndBWhFeSe1t/wCvL0Wx9d/8G5XwN/4XJ/wVB+F+vXdn9s0T4D+DPiB8adWR0zALjTdIj8DeFpGcghZrLxn488O6tbKCHaXTMj5ElNXh481RPpFOX6L8Xf5epFV2g/PT/Pv/AF20Z/pQV6JyBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFADXRJEeORFkjdWR0dQyOjAhkdWBVlYEhlIIIJBBzimm0002mndNbp91tqvX7gavo9U9Gn1P81X/gtX+wQ/7Cn7YviKz8JaQ1h8CvjYdS+JnwakghMem6PaXl8P8AhL/h1bsMxxyeANeu1trC0DyyxeD9W8IXN1K11ezKv+kXgvx4uOeD8PPF1lUz3JfZ5bnClK9StKEP9kzGS3ax9CHNUnZJ4yli4xShCJ/CXipwd/qhxPXhhqfJlGa+0x+V8sbU6UZT/wBpwMei+pVpKMIq7WFq4WUm5Saj8K/sh/tNeOv2O/2jfhX+0V8PJXbXPhx4lt9RvdINw9vaeKvC94j6b4t8H6k6B8af4n8O3eo6PNN5cklk91FqNqEvbO2lT7ri7hnA8YcO5rw7mCSoZjhpU4VuVTnhcVBqphMXTTt+8w2IhTrJXSmounK8JSUvkeGs/wAXwxnmXZ5gm3WwOIjUnS5nGOIw8vcxOGqNX9zEUJTpN2bhzKcbSjFx/wBUb4KfGDwL+0B8Jfh38a/hnqya34D+J3hPR/GHhq/GxZvsGr2qTmy1CBJJfsWr6VcGfS9a06RzPpmrWV7p9yFuLaRK/wAtc6yfHZBm2YZLmdJ0MflmLrYTE09eX2lKVuenJ256NWPLVo1F7tSjOFSN4yTP9C8qzPB51luBzbAVPa4PMMNSxNCfXkqRT5JrXkq05Xp1ab1p1YShKzi0eoV5h6AUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8R/aX+Ltr8Af2dfjt8cbxoRD8IvhD8RfiOqT4Mdzc+DvCWra9ZWQQ/wCtlv7yxgsoIAC8888UKKzuqspPli5dk3933fnr5DiryS7tI/yAL++vNUvr3UtRuZr3UNRu7i+vry4cyXF3eXcz3FzczyNlpJp55HlldjlndmOSa8g7z+1T/g0s+CX2bwl+1z+0dfWm46x4i8B/BPwxfFMGAeHNNvPHXjm1SQ5Li7Pin4eSuilRGbFC28yLs7cLHScu7Ufu1/VdPuOeu/hXq/60/X5dT+xmus5woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/Lj/gr1+wfaft8fsd+MvAeh6fbS/GX4e+f8SfgdqDiOO4fxnotjOLzwe102wpp/xA0VrzwzLHNPFYW+s3Gga7eLJ/YUAX9P8ACPjqXAfGGDx9epJZPmHLlud01dxWCrzjyYtQW9TL6yhiU0vaSoxxFCm4+3nzfn3iXwhHjHhjFYOjBPNMFzY/KZ6KTxVKEubC8zt7mNpc1BpyjCNV0a0r+xij/MnvLO70+7urC/tbmxv7G5ns72yvIJba7s7u2laG5tbq2mVJre5t5keKeCVElilRo5FV1YV/pfCcKkIVKc41Kc4xnCcJKUJwkk4zhKLcZRkmnGSbTTTTd7n8FSjKEpQnGUJwk4yhJOMoyi7SjKLs1JNWaauno7WZ/Xb/AMGy/wC35/Zmr+Jv2APiRrWLHXH1r4j/ALPM9/cfLba1DDJqXxH+HNl5hYhNVsoZviBodlCIoIrvTvHdxK8t5q1rE38kfSW4B9pRw3H2W0P3lBUcu4hjTj8VFtU8uzGdra0pyWArzfNKUKmBSUYUpyP6U8BeMvZ1cRwZjqvuVnVx2SOb2rJOpjsDF3b/AHkE8bRgkoxlTxjcnKrCJ/ZlX8cH9RBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8Mv+Di74xn4Tf8Es/jBpNtdfY9W+NHi74b/BzSpg+yR11bxJF408RWsYyPM+3eDPAviaxmTnFvczPgbc1jiJWpS/vWj+v5J9v0lrSV5ryu/wCvmf5qleadZ/po/wDBvr8GR8HP+CWP7P0tza/Zdb+LVz43+M2uDZs88+MfFOoWnha6yQGfz/h9ofg597Af3ULRKjt6VBWpR87v73p+Fjjqu835WX3fd1v/AMHVn7T1sZhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfwG/8HF37Af/AAzl+0rbftR/D7Rfsnwg/ad1K/v/ABDHY2+zT/Cnxyghe/8AFljJsXZbw/EK0WXx1p3muZbzWx46SCKGy0y3Sv72+jvx7/rFw3LhfMK3Nm/DNOnTw7nK9TF5JJ8mFqK+snl82sDUskoUXgW7zqyZ/G/jdwb/AGHnseIMFS5csz+pOdZQVoYfN0ufEw00SxsU8ZTu7zrfXElGFKPN+AXwy+I/jL4PfETwR8Vfh5rVz4d8c/DvxTonjHwnrdqf3una74f1CDUtOnKH5LiD7Rbol3ZzB7a9tXmtLmOS3mlRv3zM8uwecZdjcqzCjHE4HMMLXweLoS2qUMRTdOpG+8Zcsm4TjaUJpTg1KKZ+NYDHYrLMbhMxwVWVDF4LEUsVhqsd4VqM1ODttJXilKLvGcbxknFtH+pz+wz+1r4N/bd/Zf8Ahb+0V4O+zWh8Y6Ilt4x8OQz+dL4M+IWjbdP8aeE7jexuAml61FO+kz3SQzap4eutH1pYlt9TgZ/8ueOOE8ZwTxPmnDuM5p/U67lg8TKPKsZl9b95gsXHRRvVoOKqxheNLEQq0bqVKaP9CeEeJMLxZw/l+d4Xlj9apcuKoJ3eFxtL3MXhpX961Oqm6TkoupQlSrJctSJ9bV8mfSBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9L+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP44/+Dtj4ttb+Ff2OfgRaXW5dX8QfE/4t+IbIPjym8O6d4d8HeDrp48/N9oHijx1FG5A2fZpQCfMYLyYt6Qj3bf3aL83/TOigvifov6/Dpr5WP4rrCxvNUvrLTdPt5by/wBRu7exsbSBd811eXcyW9tbwoOWlnmkSKNR952A71xHQf7CXwC+F9l8EPgV8GPgzpwiFj8JvhT8PfhtaGAYieDwP4S0nw0kqdC3mjTfNLn5nZy75ZmNevFWSXZJfcrHA3dt9239/wB/5/eet0xBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfJP7cv7Jfg39t39l/4p/s6+Mvs9ofGOiPceD/Ec0HnS+DPiFo2dQ8F+LLfYpuAmla1FbpqtvavDNqvh+51jRGlS31Ofd9ZwRxZjOCeJ8r4iwfNP6nXUcXh1LlWMy+t+7xuElf3b1qDl7KUlJUsRGlXS5qUT5vi7hvC8WcP5hkmK5Y/WqXNha7V3hcbS9/CYmNvetTqpKqouLqUJVaLfLUkf5Y3xO+G/jL4O/ETxv8KfiJotz4d8dfDvxTrfg7xZol0P3una74fv59N1CFZB+7uLcz27SWl5Az217aPDd2ssttNFI3+o2WZlg84y7BZrl1eOJwOYYWjjMJXhtUoV6calOVt4y5ZJThK0oTUoTSlFxj/ntj8DissxuLy7G0pUMXgsRVwuJpS3hWozcJq+0leLcZK8ZxtKLcWmfvx/wbqft/f8M3ftLXH7MHxC1r7J8Hv2ndT0/TtBkvrjy9P8J/HGGNNP8I6ihdiltB4/tRF4E1TyovMvNZ/4QaW4mhstKuHr8E+kPwD/AKx8Nx4ny+hz5xwzTqVMQoRvUxeRtupi6btrKWAl/t1K7tCj9eUVKdVRP2TwR4y/sLPnkGNrcuV5/UhCk5u0MNm6ShhZq7tFY2KWDqWjJzqvBuTjCk3L+/ev4IP7JCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/zrv+Dnn4qHx3/wAFLH8DxXO+1+CfwL+GXgeW0V8x2+reI2134p3c7Jk7bm60zx/oaSsQpa3tbMchVNefiXepb+WKX36/qddFe5fu3/l/X/Dn5if8Ew/hSvxs/wCChf7HHw5mtvtmn6r+0B8O9Z120KeYLrwz4K1y38ceKbdl5ASbw54c1SN3IIjRjIQwQis6S5qkF/eT+7X9C5u0JPyf9df67bn+sZXqHCFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8an/BzR+wF9g1Hwz/wUA+G2i4tNVfRPhx+0Rb2EGFg1SOOLS/hv8SLzYuQuoW0dv8PddvJXSGO5s/AUEMb3OpXsrf2L9Gnj7np4ngHMq3v0vb5jw9KpLWVNt1cxy6F2tacnLMKEEm3GeObko04RP5e8euDeSdDjPA0vdqulgc7UI6KokqeBx0rX/iRSwVaTslKGDSvKpI/kKtbq6sbq2vrG5uLO9s7iG6tLy1mkt7q1ureRZre5triFklguIJUSWGaJ0kikRXRlZQa/rmcI1IyhOMZwnFwnCaUozjJWlGUXdSjJNppqzTs76n81RlKEozhKUZRkpRlFtSjKLupRas1JNJpp3TV1ayP9M/8A4I+ft52v7e/7HvhLxnr+pW8/xq+Gn2X4bfHCwDRpdT+LNJsYjpnjb7Mvlsth8Q9EW38QrNFbw2EXiA+JtDsfMXQpWX/NPxe4ElwHxfi8Fh6co5LmXNmWST95xjhKs37TBczunUy+tzYdpylOVD6tXqcvt4o/vPwy4xjxjwzhsVWmnmuA5cBm0NOaWJpwXs8XbT3MbSSrXUYwVb6xRhdUWz9Ua/LT9DCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/KU/4KzfEw/Fz/AIKU/tq+Mxc/a4E+P3jjwZYXQbelxpXwxvh8M9ImhbLbreTS/CNm1sc4+zmLAUYVfLrO9Sb/AL1vu08u3/D7ndBWhFeS/rr/AF22P0A/4Nl/hivjz/gp/wCH/Fclv50fwX+C3xZ+I6ysuY7e51aw0r4SwtuPyiZo/idceUv3yFkkT/VOy6YZXqX/AJYt/fp+vl36WlFZ2g/Npfr+n9aH+jXXoHIFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHmnxl+Efgb49fCn4g/Bj4maRHrvgP4meFNY8H+J9NbYksmmazaSWr3NjO0chstV06V4tR0fUok+0aZqtpZ6hbMlzbROvpZNm2OyHNcvznLazoY/LMXRxmFqbpVaM1JRnHTnpVEnTrU37tSlOdOV4yaODNMtwmcZdjcrx9JVsHj8NVwuIpvd06sXHmg9eSpTdqlKovep1IxqRtKKZ/lfftj/ALLnjr9jL9pL4p/s6fEBJJdV+H3iGa20jXPs721n4v8ACGoImo+EPGOmqxdRZ+I/D9zYag0CSzNpt7JeaRcyC+0+6jT/AFI4O4owPGXDmV8RZe0qWPw6lWocylPCYyn+7xeDqPfnw9eM6fM1H2kFCrFOFSEpf568T8P4vhfPcwyPGpupgq7jTq8vLHE4aaVTDYqnv7tejKE+W79nNypStOE1H7J/4I1/t8T/ALBf7YPhnxF4m1WW0+Bvxa+w/DX43WzyP9h0/Qb++H/CP+P3hBK/avh3rdwurz3CQXF43ha68WaVYoJ9XDr8d4xcBR474QxOHw1JTzzKfaZlkkklz1K8If7RgE9G45hQi6MYuUYLFRwtWcuWjY+o8L+MXwfxNh69eo45TmXJgM2i37kKM5/uca1qubA1WqrajKbw8sTShaVW5/pfQTwXUENzbTRXFtcRRz29xBIk0E8EyCSKaGWMtHLFLGyvHIjMjowZSVINf5ryjKMnGScZRbjKMk1KMk7NNOzTTummrp6Ox/eCaklKLUoyScZJ3TT1TTV001qmnr5ktIYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/1f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDI8Qa5p/hnQdb8SatL9n0rw/pGpa5qc5x+50/SbOa/vZfmIX93bW8r8kD5eSOtALXTv/AF5fn9x/jh+NPFGoeOPGPizxrq7F9V8X+Jdd8Uam5YuW1DxBql1q16xdgGctc3cpLEAt1IGcV5Dd233bf3noLRJdv68/z+8/rt/4NI/hyLrxv+2l8W57fa2heFfg/wDDnSrpl/1o8V6v438Ta/bxPjI+znwZ4bknXIz9ptiAdpK9eEXxv0X5/wDA6a+Vjnrv4V11f9f8P99z+2auw5woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5qP+Djz9gD/hff7P2n/tefDrRPtPxV/Zu0u5i8dw2NvvvvFPwLnuZb/V5ZdimSef4Y6pcXPi22y8cNt4Z1Lx1czNLNDYQV/SX0dOPv7B4gqcI5hW5cq4kqxeBc5Whhc8jFQopX0UczpRjhJfE54mngYxUU5zl+EeOXBv9sZLDibA0ubMciptYxQj7+Iyhyc6je7k8vqSliY/Co4epjJO75EfwXV/dx/Hx/oDf8G7/wDwUA/4ab/Zkk/Zs+IWt/a/jP8AswaZpmjadLfXG/UfF/wTkZbDwVrSmQiS7ufBMqr4D1lolcWunQeDLy+nlv8AX5DX8CfSF4B/1Z4mXEeX0eTJuJ6tWtUUI2p4POl+8xtB20jHGp/X6CbXNUljYQioYdKP9meCfGf9vZA8ixtXmzTh+nTpU3KV54nKX7mFq62vLCNfU6tlLlprCznNzrSP6Iq/no/bAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPiv8A4KQePP8AhWX7AH7Z/jZJ/s13o/7Mvxoi0mfdt8vXtX8Ba5onh9s8H/kN6lp4wp3NnC4YioqO0Jv+6/y+f9dtyoK8orzX9f1f0ex/kt15R3H9/X/Bqf4CGhfsK/Gfx9PB5V54+/aY16wt5dvNzoXgz4d/D21spN2ASE1vWvEsIXkKY2IILsK78Kvck+8vyS/r/hzlrv3kuy/P+u/3WP6fq6TEKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgClqOnafrGn3+katY2mp6Vqlldadqem39vDd2GoaffQSW15Y3tpcJJBdWl3bSywXNvMjwzQyPHIjIzLV06lSjUp1aU50qtKcalOpTk4VKdSElKE4Ti1KM4SSlGUWnFq6aauTOEKsJ06kI1KdSMoVKc4qUJwmnGUJxknGUZRbjKLTTTs072P8AMb/4K1fsIah+wH+1/wCM/hvpdldj4P8AjYzfEX4G6tN500c3gPW724B8MTXsm/z9X8Basl54WvxLKb26srLSNfuYoYdftEr/AEx8J+OqfHvCGCzKrOH9r4Lly7PKSsmsfQhH/alBW5aOPpOGKp2ShGc6uHjd0Jn8DeI/CE+DeJsVgKcJf2Zir47KKju08HVm/wDZ3N3vVwdRSw87yc5QjSrSUVWjzeBfsK/tc+M/2Hv2oPhf+0V4N+03kfhLWFs/GnhqCfyYvGvw71opY+NPCVxvYW5k1LSGlm0e4ukmh0rxHZ6LrYiefTIdvvcc8JYLjfhjM+HsZyweLo8+CxMo3eCzGheeCxcbJytTqpRrRhaVXDTr0b8tWR4/CPEuK4S4gy/O8LzSWGq8mKoJ2WKwNW0MVhpX929Sk26TkpKnXjSrJc1OJ/qa/DH4k+DPjF8O/BHxW+Het23iPwL8RPC+i+MfCet2h/dajoev2EGo6fM0Z/eW1wIJ1jvLKdUubG7SazuoormCWNf8u8zy7GZPmONyrMKMsNjsvxVfB4uhLenXw9R06kb7SjzRbhON4zg1ODcZJn+hGX4/C5pgcJmOBqxr4PHYelisNVjtOjWgpwbWrjK0rShL3oSThK0otHc1wnWFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8OP/AAWt/wCCyX7WOjftafEf9mX9m/4meIfgd8NPgjqdp4U1nWPBEkWkeN/HnjWHTbK98Q6jqPihYm1nSNE0fULyfQdG0bQr2wt76Kwn1nWJL+S/srTRv7e8FvB3hStwnl3E3EeWYfO8yzulPFUaONTrYLA4J1akMPTp4a6oVa9anCNetWrwqypuoqNL2ShOdf8AkvxV8UOI6XEmOyHIsfWynAZTUjh6tXCWpYvGYtU4Tr1KmIt7WnSpTm6NKlSlGM1B1ark5wjS+xf+Df8A/wCCtfx7/aR+KXiX9kb9qLxlL8S9ZPgnU/HPwk+JGtw2UPjCSTwzc6eniPwN4ivrK3tf+EnE+kahL4k0TWdQhfWrJNE1201PU9Ut7zSItL+P8ffCfIeHMrw3FvDGDWW0frtLA5tltBzlhEsTCo8NjsPCcpfVeWrTWGrUacvYzdehOnSpTjVnP6fwZ8SM4z3MK/DfEGKePq/VKmLy3HVVBYpvDygq+ErzhGP1jmpzdelUmnWh7KtGpVqxlSjS/rJr+UT+jQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/GX/g4G8a/8IX/AMEmv2pGil8q+8VR/CvwVYjdt83/AISD4xeAotVi45O7w9BrJ2jO7bhvkLlca7tSl52X4r16f0tzSkrzj5Xf4f5n+ZDXmnYf6Y3/AAbxeCh4O/4JN/s43UkPkXvjbVPi/wCNb5duC5v/AIveNdH0yZjwX8/QND0iVWPRHVRkKDXpYdWpR87v8X+np+suOq7zflZH7ZVsZhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH5C/8Fpv2Ao/28P2QNfsfCWkJe/Hj4Lf2l8SPgxNDCrahrF5bWQ/4S34cxP8rtD8QNEs47Wxt/MhhbxfpXhG7upktLO4D/rngxx6+BeLqFTF1nDIs59nl2cpv93RhKb+qZi1or4CtNynK91hKuLjFOc4n5p4qcG/638M1o4akp5xlXtMdlTSTnVkof7TgU+2NpQUYR0TxVLCyk1CDUv81SWKSGSSGaN4pYneKWKVGjkikjYq8ciMAyOjAq6MAysCCAQRX+kaaklKLTTSaad009U01dNNapp/fc/hNpptNNNOzT0aa3TXRpn9j3/Bs1/wUC+0W3iL/gn78TNb/f2Y1v4h/s6XOoXPMtozS6t8R/hnZbyButpGuviJoFpErO8M/j6aeVYrXT4G/j36SvAHLPD8f5bR92fsMv4ijTjtPSll2ZTt/OuXL68nopRwKSbnOR/TvgNxneNfgzH1tY+1xuRynLeLvVx2Ahf+V82OoxV208a3ZKnE/sHr+Qj+mgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/zf/8Ag4K+H1l4D/4Kk/HS7063W1s/iDoPwu+IIgjXbGL3VPh7oGjazcL3LX+ueH9T1GdiW3XV5ORtXaif6MeAGYTx/hfkcKknOeX4jNMv5m7vkpY+vWoxe1vZ0MRSpxXSEI3vufw34z4KOD8Qc3lBcscbRy/G2W3NUwVGlVfrOtQqVJb+9J90o+W/8ERvGE/gn/gqV+yLqcMzRLqvjXxN4PuV3EJPB44+HPjLwj5MqjiRRNrMM0asCFuIoJRh40ZfV8bMHHG+F/FtOUbulgsNjI94ywWY4PF8ydnbSi07WvGUlfU87woxUsJ4g8NVIu3tMXXwsuzji8DisNZq6vrVTV72lFO10j/TSr/NI/vUKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+bz/g6S8WHw/wD8E3fC+hpIVfx3+078NPDskSnmS107wb8TvGEjMO8Udz4Yswx5AleEdWBXnxLtT9ZJfm/0/rU2o/H6J/ov18/xvH/PKrzzqP8AVz/4JQ+Ev+EJ/wCCav7Dui+V5LXP7NXwr8USR42lZfHPhmy8bTb14KyNL4hdpARuEjMGwc16tLSnD/DH8Vfz/rtscVT45er/AK6/122P0FqyAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/z6f8Ag4V/4J+f8Ms/tP8A/DQvw90T7J8Ev2ntT1XxBJFY2+zTfBvxkT/T/HPhzbEpisrPxX5x8deH4pHiWaa88V6ZpttHp/hla/v/AOj7x/8A60cMf6vZhX5874ZpUsOnOV6mMyb+HgcTrrOeEt9RxDSfKoYSrUk6mKP4w8auDP8AV7iD+2sFS5cqz+dSs1CNqeFzRe/i6Gl1GOIv9bop8t3PE04RUKCR+F/wm+KXjf4I/E3wH8XvhtrU/h7x58N/FOjeMPCurwZP2TWNDvYr22FxDuRLywuTEbTU9PnLWuo6dPdWF3HLa3M0T/uObZXgs7yzHZRmVGOIwGY4Wtg8VRl9ujXg4S5XZuFSN+elUXvU6kY1INSjFx/I8uzDF5Tj8HmeBquhjMDiKWKw9VfZq0ZqceZaKcJW5alOXu1ISlCV4yaP9Tf9iL9rHwR+21+zL8L/ANorwMYbWDxpoiR+KfDqXAuLjwX490kiw8ZeELwnE27RtbiuV0+5uIoH1XQ59J1yKFbTVLZn/wAueNuFMbwVxNmnDuO5pSwVdvC4hx5Y4zAVf3mDxcOlq1BxdSMXJUq8atBvnpSP9CeE+I8JxXkGX53hGorF0ksRQTvLC4yn7mKw0uv7qtGXs3JRdSjKlWS5akT6vr5U+iCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8/L/g5rtUt/+Cj2kTKAGvv2bvhjdSEfxOnib4jWQJ9/Ls0X6KPQ1/fv0aJuXhzWT2p8R5nBejw2Wz/Ob/pn8ZePcVHjmk/58iy+T9frGOh+UEfm5/wSyuXtP+Cjv7EssZIZ/wBpL4VWxxx8l74osbOQduDHcMD6g45ziv0fxRip+HXGqey4czSXzhhak19zin/wx8L4eyceOOFGv+h7l0flPEQi/wAGz/Uwr/Ls/wBBwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+TH/g7Q8SNa/s3/ALJ3hDfhdc+N3i/xIY8/fbwr4Dk0xXx38seMmXPbzcfxVy4p+7Ff3r/cv+Cb0N5en6n8KtcJ0n+wF+y54aHgz9mX9nXweE8seFPgT8IvDQjA2iMaF8P/AA/pYQL22i1247Yx2r14/DH0X5HBLWUn3b/P5fl9x7tTEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHx/wDt4fsheDf25f2Xfid+zv4v+zWdx4p0o6j4G8TTwGaTwV8R9EWS88GeK4Nim4ENjqm201qC1aKfVPDV/rei+akWpymvr+BeLsZwRxRlnEOD5pxwtX2eOw0ZcqxuXV7QxmElf3b1KXv0ZTTjSxMKFazdKJ8zxhw1heLeH8wyTE8sZYinz4TENXeEx1G8sLiVb3rQqe7WjFqVTDzq0bpVJH+Wf8S/hx4y+D/xD8bfCv4h6JdeHPHXw88Ua14P8WaHeD99puu6Bfz6bqNvvUtHcQi4t3e1u4Gktr22eG7tZZbaaKRv9Q8tzHB5vl+CzTL68cTgcwwtHGYSvD4alDEU41KcrbxlyySlCVpQlzQmlKLR/nxj8DissxuLy7G0pUMXgsRVw2Joy3p1qM3Cceqaum4yTcZRtKLlFpn9L/8Awa6ftGePdA/aP+Lv7LhlutS+F/xD+G+qfFkaeS8kPhfx74I1PwxoR122XmO0t/Enh7XP7G11woe+u9I8IqXAsQj/AM1/Se4dwFfhzKOKLRp5nl+ZUsp9pZKWKwGNpYqv7Cb+KcsNiKHtqC2pwrYzR+0vH94+j9nmMo55mfD95VMvxuBqZlyatYfGYSph6Pto62iq9Ct7KtpecqWFV/csf3I1/EJ/WoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/n3/APBzReJc/wDBR/TIVOW0/wDZx+GFnIP7rv4i+IV+B7fu75G/4FnuK/v36NMHHw5qv/n5xHmc16LDZdD84M/jHx6lzcc01/JkeXxfzr42f5TX9XPzi/4JX2j3v/BR79iaGMbmT9pD4XXZHX5LDxLZX8h/4DHbM3tjPav0bxSmoeHPGrfXhzM4fOphpwX4yX9M+G8PY83HPCiXTPcvl/4BiITffpH/AIbc/wBS2v8ALw/0HCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9L+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/jF/4O6NbYL+wV4cjf5Gb9pTW7pM9WQfAuxsHx7CTUhk+uB0auPF/8u1/i/Dl/z7/edFD7Xy/X+t/uP4yrK0mv7y0sbcbp7y5gtIF/vTXEqQxjjJ5dwOB+dcf9f1v+X3nQf7MGladb6Ppem6Tajba6XYWenWy4Axb2VvFbQjA4GI4lGBwO1eweeX6ACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/C3/AIKT/wDBCb4Ff8FAviOPjfovxG1r9n/40ahYadpXjHxNo/hOx8c+GPHdtpFrFYaVqXiLwjPrvhK7/wCEm0/S7e00eLXNP8UWSXGk2dla6hp17JZ29zF+4+G/jnnnAGWvJK2XUc/yanUqVcHhq2LqYHE4GVaTqVaeHxao4mH1apVlKs6FTC1HGtOcqdSCnOEvyPjrwhyjjPHf2tRx1XJs1nCFPFYilhoYzD4uNOKhTnXw0q+Gl9YhTjCkq1PEQTpxjGcJOMWe8f8ABM3/AIJJ/Az/AIJqaV4r1Twn4j1v4p/GDx7YWujeLvit4l0yy0SUeHbO5ivovC3hLw3Y3Wox+GPD1zqMFtquqwT6xrepavqVnYS3+qy2ul6TZ2XheJXixnniTVwtLF4ehleUYCpKthMqw1WddfWJwcHisXiakabxOIjTlKlScaVGlSpymoUlOrVnP1+AvDfKOBKeIqYavVzDM8ZCNLE5jXpxov2EZKaw+GoRlUVCjKajUqJ1alSpUhBzqSjTpwh+rVflZ+ihQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH+cp/wcQeKE8Qf8FTvjTpiSeYPBXgz4M+F2wdyo8/ww8NeLnjU9PlbxUd4Gdsu9Th1YV/op9HrCvD+F2TVGrfXcbnOK7XUczxOET+awum2lt73P4f8AGzEe28Qs1pp3+q4XK8P6Xy/D4my/8KPPW/pHxD/gib4afxX/AMFS/wBj3S0j802njzxF4lK4ztTwb8OPGvi95O/+qTQzLnts7cGva8asSsJ4XcX1W7c+Bw2G+eMzLBYRL5+3seT4U0HifELhmmlflxlevbywuBxWKb+So3+R/ptV/mif3sFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4d/+DtnUWl+Mf7GekFsrY/DP4r6iqZ+62qeKfClszY6DeNHQZ77Oegrixe8PR/odNDaXqfys/BnTV1n4wfCnSHXeuq/ErwLprJ13rfeKNLtSuOc7hKR07965Y/EvVfmbPZ+jP9i6vXOAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/y2/+CrXxBT4nf8FHv2zfFMU/2mCH49eNvB9rcbt6TWfw3vV+HVnJC/Ie3e18KwtbMp2tAYymVIr/AFB8K8veWeHPBuFceWTyHBYyUbWcZ5lD+0ZprVqSlinzX15r3tsf59eImNWP454pxCfMlnGLw0ZbpxwM/qUWn1Tjh1y+VrH3r/wbYeA28Xf8FL9H8RCAyp8Lfgn8V/HLS7ci3OpW2i/DRZN3RWf/AIWE0I5yyyOBkbq+D+khj/qnhrWw/NZ5pnWVYG1/i9nKvmTVuqX9nqXS1r+UvsfArB/WePKVe1/7OyrMcXf+X2kaWAv8/rtvn6n+hfX+fR/agUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9T+/igAoAKACgAoAKACgAoA8Z+JPxm0jwDcLpMFm2ta80STS2aTi2trGKUbomvbnypnE0qESxWscTO0JWSV4EkhaUKUW9enp/8AbL/gedzjfCH7Rum6vqcGm+JNIXQ1u5Uhg1O3uzc2ccsjBY1vY5YYZLaEsQDdK8yIWBmSKJXlUG4Pp+X/ANu/677S+mKCAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+En/AIOzbgt+0/8Asr2ueIfgL4huAvobn4hapGT/AMCFoo/4D7VxYr4oej/P+un3nTQ2l6n8237LFuLv9p79nG0Ybluvjz8ILcqRncJviD4ejIx3yGxj/GuaHxx/xR/M2ez9Gf60nxJ+LujfD0w2JtX1fXLmITx6bFMtvHb27MypPfXRjnMIkZW8mGOCSWUKSwiQpK3rHFGLeuy9L/8At0f67W97zfw1+0rZXuoQ2fiXQhpNpcSLGNTsrt7qO1LnarXVrJBHIYASDLPDM7ouSLZsEqFOn2f4f/bvp5fefUKOkiJJG6yRuqujowZHRgCroykqysCCrAkEEEE5zQZjqACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDzH4j/FLRfh3b26XMMmpaxeo0tlpUEqws0KsUNzd3DJJ9lti6tHG4ilkmkV1iiZYpniClFv0/rzj/AE76WtLyPQv2mra4v44PEPh3+z7CVwhv9PvHu3tAxwHmtJLeJp41zmRoZVlVATHBMxVKCnTfR/h/9u/67XufUlvcQXcEF1bSxz21zDHcW88TB4poJkEkUsbrlXjkjZXRgcMpBGc0GZNQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAeY/Ef4paL8O7e3S5hk1LWL1GlstKglWFmhVihubu4ZJPstsXVo43EUsk0iusUTLFM8QUot+n9ecf6d9LWl5HoX7TVtcX8cHiHw7/Z9hK4Q3+n3j3b2gY4DzWklvE08a5zI0MqyqgJjgmYqlBTpvo/w/wDt3/Xa9z6kt7iC7gguraWOe2uYY7i3niYPFNBMgkiljdcq8ckbK6MDhlIIzmgzJqACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDzH4j/FLRfh3b26XMMmpaxeo0tlpUEqws0KsUNzd3DJJ9lti6tHG4ilkmkV1iiZYpniClFv0/rzj/Tvpa0vI9C/aatri/jg8Q+Hf7PsJXCG/0+8e7e0DHAea0kt4mnjXOZGhlWVUBMcEzFUoKdN9H+H/ANu/67XufUlvcQXcEF1bSxz21zDHcW88TB4poJkEkUsbrlXjkjZXRgcMpBGc0GZNQAUAFABQAUAFABQAUAFABQAUAFAHM+NfFmk+AvBvi3x1r8vkaF4L8M694s1qfIXydJ8OaVd6xqMu5vlHl2dnM+W4G3J4FdOCwlXH4zCYHDrmr43E0MJRj3q4irCjTXXec4rb7zDFYmng8LicXWdqOFoVsTVfanQpyq1H8owbP8iHxj4p1Txx4u8VeNdck87WvGHiTXPFOsTZLebqniDU7rVtQk3N8x8y7u5my3Jzk8mv9bsHhaWBwmFwVBWo4PDUMLRXalh6UaVNfKEEj/NXFYipi8TiMVWd6uJr1cRVfepWqSqTfzlJs/rL/wCDUn4Xtc+MP2wPjRc25RdG8NfDD4X6NdFMi4bxLqnibxX4lt45P4TZjwp4TkmT+L7dAf4K/lH6VOZ8uE4QyaMr+2xOZ5nWh/L9WpYbC4aT/wAX1rFpafYe1z+jfo7ZfzYribNJRsqWHy/L6UrfF9YqV8RXin05Pq2GbVtedWtZn9nNfxsf1IFAHnnxC+JGi/DywhuL9JL7UL3zBp2lW7ok1x5W3zJppXDrbWsZdVecxSuXYLFFMVcIFRi5en9ecfz+77XiOlftOrJfJHrXhcW2nSSBWuNPv2uLq1Qn75t57aKO62jllWW2OOVDHCUFez8/w/8Aunc+pdPv7PVbG01LT7iO6sb6CK6tbiI5SWCZA6OM8gkHDKwDo2UdVdSqhm1bQuUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/1f7+KACgAoAKACgAoAKACgD82PitBe2/xF8XLfhxM+s3M8RcEFrKfE2nlc9UFi9uqEZGFwMYxQbx+Fen/D/iefgFiFUFmYgKoGSSeAABkkk8AAc+9Az9TfDcN5b+HdBg1Hd/aEGi6XDfb/v/AGyOxgS63553eer7s980GD3fa5tUCCgAoAKACgAoAKACgAoAKACgAoAKACgAoA/g8/4OyR/xlj+zE3r+zxqIx9PiT4nP67vTt3rhxXxR/wAP6/8ABOmhtL1P50f2RDt/aw/Zhbrj9of4KnHrj4k+GjXPD44/4o/mbPZ+jP8ATf8AjZBew/EvxIb0PmeSyntXfO2SybT7VLYxHoUjVDAduQssUqH51cL6xzR+Ff1/n/XbY8poKP03+HkF7beBvCUGoh1vItA01ZUlyJI1+zR+TFIGwyyRQGON1YbldCpwRQYS3fr/AF3/AK7bHY0CCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD4F/aDgvYviPey3Qf7Pc6bpUmmlgdptEtVglEZPBAv4rwsB0ZjkAnLBtD4fz/r0/rQ8RoKP0i+EkF9bfDjwlFqAdbj+zTIqyZDC0nuribTwQcEAWElsFBHC4HGKDGXxP+vX8T0agkKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPgX9oOC9i+I97LdB/s9zpulSaaWB2m0S1WCURk8EC/ivCwHRmOQCcsG0Ph/P+vT+tDxGgo/SL4SQX1t8OPCUWoB1uP7NMirJkMLSe6uJtPBBwQBYSWwUEcLgcYoMZfE/69fxPRqCQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+Bf2g4L2L4j3st0H+z3Om6VJppYHabRLVYJRGTwQL+K8LAdGY5AJywbQ+H8/wCvT+tDxGgo/SL4SQX1t8OPCUWoB1uP7NMirJkMLSe6uJtPBBwQBYSWwUEcLgcYoMZfE/69fxPRqCQoAKACgAoAKACgAoAKACgAoAKAPy2/4LS/GUfBD/gmZ+1X4ghuhb6r4x8Bx/CHRo1cJPd3Hxe1jTvh9qsds2Ria18Ma9r+qsVZXW306d4yZFQV+oeDGTf234l8K4eUOalg8e83rO14wjlFGpmFJz8pYqhQpLo5VIp6Nn594qZp/ZPAXEVaMrVMVg1llJXs5PM6tPBVFHbWOHrVqm9+WDas7H+ZBX+mB/BB/oS/8G13wfb4df8ABOKz8d3dr5V98dvjD8RPiBDcSJsuJNC8Py6b8LdMtzkK32WO/wDAWt39oGyG/tSWeMmKdC3+fn0kM3WY+I08DGV4ZFlGXZe4r4VXxEauaVZdVzOGPo05W29kouzi0f2l4E5Y8DwPHGSjaeb5pjsYpNe86NB08vpx78qng6043/5+NrRn9AdfgR+zBQB8NftIwXqeObKe4Dmzn0C0Wwc58oLDdXn2mJD93zEnk8yRQdwWeJjgOlBrDb5/1/Wn4Xl8+UFn6FfAqC9g+GmhC9DqJJdSns0kyGWym1C4eE4OCElYyTxdmiljdcqwNBjP4n/X9fh+F5evUEhQAUAFABQAUAFABQAUAFABQAUAFABQB//W/v4oAKACgAoAKACgAoAKAPOfHXwu8L+PxDNqsVxa6lbx+VBqunvHDdiHJYQTiSOWG5gVyWVJomePdJ5EsO+TeDUmtvu/pO33a+RzPhH4D+D/AAtqMOrSS32uX1rIstn/AGkbcWlrMhzHcJawRxiS4jPzRvcPNGjhZI40mRJEBubem3p/+zH/AIPl9r2ygkKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/hN/wCDs622/tNfsqXmOJ/gT4mtt3r9l+IF9KRn2+2A+273rixfxQ9H+Z00Npep/Nb+y9ciz/aY/Z2uydotfjp8JLksf4RB4/8AD8pPbptz1/KuaHxx/wAUfzNns/Rn+uP44+G/hrx/BCmtQTRXlqrJaapYyJDfQRsdzQ75I5YZ7dnyxhuIpFRmd4fKkd3f1jiUnHb+vwl+X3/Z4Xwz+z74N0DUIdSvJ9Q1+W2kEttbagbdLBJEIaOSa2giVrl0YAhJpmtm/wCWlu3FA3N/0/8A7Rfn99j3eggKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDjPGngLw748sY7PXbaQyWxdrK/tHWC/smkAEnkTMsiGOQKvmQTxSwOVRjH5iI6A02tv6/P77feeaaF+zr4M0m/ivr661PXVgkEkNjfNbR2LMp3L9qit4o5LkKQD5bSrBJys0MsbMihTnJ+Xo7/APtsbet/u+176qhQFUBVUBVVQAFAGAABwABwAOAOBQQLQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAcZ408BeHfHljHZ67bSGS2LtZX9o6wX9k0gAk8iZlkQxyBV8yCeKWByqMY/MRHQGm1t/X5/fb7zzTQv2dfBmk38V9fXWp66sEgkhsb5raOxZlO5ftUVvFHJchSAfLaVYJOVmhljZkUKc5Py9Hf/wBtjb1v932vfVUKAqgKqgKqqAAoAwAAOAAOABwBwKCBaACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDjPGngLw748sY7PXbaQyWxdrK/tHWC/smkAEnkTMsiGOQKvmQTxSwOVRjH5iI6A02tv6/P77feeaaF+zr4M0m/ivr661PXVgkEkNjfNbR2LMp3L9qit4o5LkKQD5bSrBJys0MsbMihTnJ+Xo7/wDtsbet/u+176qhQFUBVUBVVQAFAGAABwABwAOAOBQQLQAUAFABQAUAFABQAUAFABQAUAFAH8n/APwdTfG7+xvgx+zH+zxY3eJ/HvxD8UfFjxBbQybZI9L+HGgx+GNCjvVBBa01PUviHqlxbxkNHJd+HDKcSWsRr+rPotZJ7bOeJuIZw93AZfhcqw8mtHVzGu8TXcNH79Onl9KMndNRxFtVNn86fSGzb2WV5BkkJe9jMdiMyrRT1VPA0fq9FT/u1J46rKKd05UL7xi4/wATKI0jKiKzu7BERAWZ2Y4VVUZLMxIAAGSTgZ4r+1G0k23ZLVt7Jd3tt6/cfyklfRat6JLqf6xf7FvwVX9nP9kr9nL4HtbLa3/w1+DvgPw3r8aqFEviyDQLK48Y3hUcK1/4quNYvnUE7XuGG5sbm/yl4zzr/WLiziLO1Lnp5lnGOxOHfbCSxE44OHpTwsaNNeUT/RnhXKv7D4byPKXFRngMswdCul1xKowlip9PjxEqs35y67n03XzJ74UAcp4v8F+H/HGmjTNetWmSN2ltLqB/JvbGZgFaW0n2uFLKAJIpUlt5dqebE+xNgNNrb+vwf5fdc8l0r9m/wZYXyXd9qGsavbxSB00+4ktre3kwchLt7WFJ5k9RDJbBsYYFGZKCvaPsvv8A/tF59fuPoGGGK3iiggijhggjSGGGJFjiiijUJHFHGoCpHGihERQFVQAAAAKCCSgAoAKACgAoAKACgAoAKACgAoAKACgAoA//1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Hn/g7a08x/GD9jHVduBefDX4s6eH/vHTPFHhC5K5/2Bqyn23+9cWL3h6P9DpobS9T+VT4OagNJ+Lvws1Vm2rpnxH8D6gW6bRZeJtMuS2e2BFn8K5o/FH/EvzNns/Rn+xjXrHAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/nZf8HFnx1/4W/8A8FJPGXhCxvPtWhfADwF4H+Elj5Um60bV3sp/iB4qlRASBeW2u+OLnw/fyMFkaTw/FAd0dtE1f6GfR4yP+yPDjB4ucOWvn+Px2bTurTVJVFl+FT/uSoYGOIp7q2I5tHJo/iXxuzf+0+OsVhoS5qOTYPCZbCz911OR43ENL+aNbFyozbs26Ntopy+EP+CZHwNb9o39vv8AZU+E8ln9v0rVvi94c8R+KLQx747jwZ8PHm+IfjO3lyCqJdeF/C2q2nmOCqvOnDEqj/deJmeLhzgLirNlPkq0soxGGws07OONzC2X4OS2bcMViqU7J3tHpZnyHAWUf25xjw7lrjz06uZ0K+Ij0lhcE3jcVF6NLmw+HqRu1ZOW0rqMv9Tyv8uT/QkKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/i/wD+DunR2Ev7BGvomVaP9pfR7l8fdZG+A97ZJnvvEmoHBxjZxnJ28eL/AOXf/b3/ALb/AME6KH2vl+v+R/GlYXkun31lfwHE9jd295Cc4xLbTJNGcjJGHQcgfniuRaNPs/67/l950f1/W/5fef7MVhew6jY2WoWzbre/tLa9t2/vQ3UKTxN+McimvXPPLdABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAGF4p8S6L4M8MeI/GHiS9j03w74T0LV/EuvajN/qrDRdC0+41TVL2Xp+7tbG1nnfn7qHpW+Fw1bG4nD4PDQdXEYuvRw1CnHepWr1I0qUF5znKMV5sxxFelhcPXxVeap0MNRq1603tClRg6lSb20jCLb16dD/JK+O3xW1j46/Gz4ufGnxB5i618WfiV42+IuowySeYbW58Y+I9R19rJG+6sFiL8WdtHHiKG3gihiAiRFX/WTIsqo5FkuUZLh7exynLcFl1NrTmjg8NToKb2blU9nzyb1cpNu7bZ/m9m+Y1c3zXMs1rX9rmOPxeOmm78ssVXqVuReUOflilooxSWiR/Rh/wa2/Ag+Lv2pPjl+0BqFl52l/Bn4U2Xg7RriWPCW/jH4tayfJu7WUj57i18JeCvFdhcRxn91Br0TTY86EN/O30oM9+qcL5Hw/TnarnOazxlaKessHlNHWEkvszxeNwtSLk1eVB8vNyy5f2/6PuUfWeIc3zmcL08ry6GFpNr4cVmVXScX1ccNhMTCST0VZXteJ/dFX8On9cBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9H+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/ki/4O1PDxufgH+yF4r2ZGi/F/4g+HjJj7p8TeDNN1IJntvHhItjv5ef4a5cV8MH/ef4r/AIHb7jehvL0P4ZK4TpP9hL9nLxCPF37PXwH8ViTzR4n+DPwv8QiUHPmDWvBGh6kJM853/ad2c857168dYxfdL8vl+X3HBLd+r/M9mpiCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPyA/4LsftAL8AP+CaPx6mtL77F4k+MVtpPwE8MqJPKa7k+JU8tt4vtVYfPu/4Vlp3jq4UJyzW6q22Mu6/rvgZkDz/AMSchjOnz4bJ5Vc+xOl1BZbFSwk30t/adTAx1t8XV2R+Z+L2crJuA84cZ8lfM408nw+tud45uOJiut/7PhjJaX1j5tx/zVq/0jP4TP8AQ2/4NxPgF/wqH/gnVonxA1Cy+z+If2ifiH4w+Js8k0ey8TwzpNzF8PPCVnIcAmyltvCOoeJtO+9uh8UvMG2zhE/z4+kXn/8Aa/iHXy+nPmw/D2X4TLIpO8HiasXmGLmu01LF08NU88Kl9lyl/avgdk39m8EUsbOHLXzvHYrHttWmsPSksFhoP+41hp4in5Yhu7TSj++Vfgx+xhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+aX/g6h8KnW/wDgnd8O/EEUW6bwZ+1R8P8AUZpgMmPTdX+HXxa8PzoTg7Ul1HUdIJOR88SDncK58Uv3a8pL8n/XX9Y7UH7z81+vqvyfy1P8+GvPOo/1i/8Agl94rXxr/wAE5f2HdeEvnyH9lv4KaLdTbtzS3/hbwFonhbUZHP8Az0a/0a5Mo7Sbh2r1abvTg/7q/L5f133OGatOXq/x+/8ArtsfdtWSFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfxZ/8HUf7Qv9qfEL9mv9lvSr7Nv4R8M6/wDGzxnaRSb4pdW8XX03g7wPHcqDthvdI0vw34yuVib979j8UW8xVYpoWl/s76LXD/ssv4k4oqw97F4mhkmDm1ZqlhIRxmOcerhWq4nBxurx58LJbxko/wAsfSGzr2mNyLh+nPTDUK2a4qKd06mJm8LhFLop06dDFStq+TERbsmub+UnwX4R174geMfCfgPwtZNqPifxt4m0Lwj4c09M77/XvEmqWujaRZLtVm3XWoXtvAuFY5fhT0b+qcbi6GX4PF4/FT9nhsFhq+LxFR/YoYalOtWnq0vdpwlLVrbdbn864XDVsbisNg8PHnxGLr0cNQgvt1q9SNKlH/t6c0vmf61/wN+FOg/An4MfCf4LeGAv/CP/AAo+HXg34eaTIsYja5s/CHh+w0KO9mUcm6v/ALEb27kcvJNdXE00skkru7f5OZ3mtfPc5zXOsVf6xmuY4zMKqbvyzxeIqV3BPT3afOoQSSShGKSikkf6QZRl1HJ8qy7KsP8AwMuwOFwVN2tzRw1GFFTe/vT5OeTbbcpNtybbPU68s9EKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9P+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/E3/g4d8FN4x/4JOftHXMMXnXngnVfhB41tEC7mC2Hxd8FaTqkoP8AB9n0LW9VuGbn93E6n72VxxCvSl5Wf4rzXT19DSk7TXndfh/n6fpL/M5rzTsP9N7/AIN+vG48b/8ABJv9lxpJfNvvCcfxS8EagA27yT4e+L/juPSovUEeHbjRX2nGN+B8m0t6VB3pR8rr8fl/Xfc46qtOXnZ/h8v677n7NVsZhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH+W5/wAFUv2hj+1B/wAFAP2nfita332/w4/xH1HwP4Jnjk32kvgj4ZxQeAPDN7YoPlhttb0/w6niJ40+9d6xdTyZmmkZv9QPC3h7/VjgHhnKpQ9niP7Op47GxatNY3Mm8fiYT1bcqFTEPDpt/BRilZJH+ffiHnf+sHGef5jGfPQeOnhMI18LwmASwWHlBbJVYUFWdrXlVk3q25fUP/BAT9nj/hfn/BSf4S6nf2P2zwv8BdM1748+IN8e6KO88IJa6V4FZZWBjjubb4j+IvCOqRR/NLLBpl2YlHlPNB8x4+cQ/wBg+G+bUqc+TFZ9VoZFQ11cMXz1cdpu4yy7D4ulJ7KVWF91GX0Hg3kv9scd5bUnDnw+T062cVuylhVGng2ntzRx9fC1Et3GErbOUf8ASCr/ADmP7kCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPhz/gpl8PT8Uv+Cev7aPgmKA3N5qP7Nfxc1HSbYLuNxr3hnwbqvinw/CAASDLrejaegYBihO4KxAWoqK8Jr+6/wAvl/XfYqDtOP8AiX4/f/Xbc/yaq8o7j/QF/wCDVb4ir4j/AGDfiz8Pbi48y/8Aht+0n4kmt4N2fs/h3xr4E8B6pp3ykkr52v2Hix+AFbHGWD134V3ptdpP8Uv1v1+7U5a695Puvy/rt99z+nOukxCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+NP+Chn7QH/DLn7Ev7S/xzgvRp+s+C/hX4gi8IXfmeWYvH3ilIvB3w+IbIbH/CbeINB3iP8AeGPfswwBX7Hw+yD/AFn414ayNw9pRxua4d4uFr3wGFbxmYabf7lh8RvpffS58vxrnX+r3CmfZvGfJVwuX1lhZXtbG4i2FwWur/3uvR21eytuf5UZJJJJJJJJJOSSeSSTyST1J/rX+p5/nef29/8ABrL+z3/wjXwH/aC/aY1Wx8vUfin4/wBI+GHhWeePEo8K/DPTDq2s31hJj/jy1rxP4ybTbv5iXvPBaAoghDy/xN9KLiD6znuQcNUp3p5XgKuZ4qMXp9azKp7KjCov56OFwftIaaQxj3uz+sPo95L7DKM6z6pC08wxlLL8M5LVYfAU/a1Zwf8AJWxGK9nL+/hNlZOX9Vlfywf0QFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAyde0TTvEuha14c1eAXWk+INJ1HRNUtmxi407VbOaxvYDkEYltriWM5BGG5B6UAtNe39ef5fef46HxG8Fan8NfiF47+HWtgrrPgHxn4o8FaurIY2XU/Cut32hX4MZyUIurGUFCcqeDnBryGrNrs2vuO9O6T7q/9bfl9x/WP/wAGlPxUXT/it+2F8EZ7kM3iz4e/Db4qaXaO4zEPh94j1zwlrtxAnB/0j/hZnh2O7b5v+PWzHy4O/qwj1nHyT+7T9UY11pF+bX9fcf2/V2nMFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/L1/wdIfHs+Dv2XPgh+z5p175Op/Gr4pXvi/XIIpMtP4M+EmlRPLZ3cQPyQXni/wAZ+E9QtnkH72bw/KId3kzbP6d+i/kP1zijO+IKkOankuVwwlCTWkcZm1VpTi+soYTB4unJLZYhXteKl/P/ANILOfqvD+U5LCVqma5hPFVUnvhctpq8JLopYrFYacW93QlZPlk4/wALlf3GfyOf6oH/AATO+AP/AAzJ+wb+y98Hbiy/s/W9E+Feh+IPGFq0flyweOvH5n8f+NraYkLJK9j4o8Tarp8csoVzb2kC7I0RIov8t/ErP/8AWbjvifOIz9pQr5pXoYSad1LA4DlwGCkuiU8LhqVRpac029b80v8AQrgPJv7A4P4fyuUeSrSy6lWxMescXjb43Fxb3fJiMRVgm7PlilZWsfdFfDn1wUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/9b+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8tn/gtn8Hm+Cf8AwVF/a+8OR2httO8V/En/AIW5pcipsgu4PjHomlfEvUJrbsYoNf8AE+sadJtCql3Y3MSjEdeZWjy1Z+b5u++vl1f/AA9rnbTd4R8lb7v6/qx7D/wb1fGZfg9/wVN+BNteXX2PRfi/pfjz4M6zJv2CRvFfhi81fwtalcgS/bPH/hrwhahGIw0okUM8aI7w7tVj53X3r/MVVXg/Kz/rVfr6H+mLXpHGFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/nt/8AByZ8cT8T/wDgope/DmzvDNo37Pnws8D+APs8UnmWg8S+Jraf4m+IL1CMr9rez8Z6Bot9sOI5PD8dvIFnglC/6B/RwyT+zPDyGYzhatxBmmOx/M1af1bDTjlmHg+vIp4PEVqd1qsQ5JyjKPL/ABb46Zv/AGhxvPAxlelkuX4TBcqd4+3xEXj601053HFUaU7OydFRajKMub8v/wDgn18Ch+0t+2z+zF8Ep7P+0NI8bfF7wmviq02eZ53gbw9ef8JX4++QhlPl+CtC16X5x5Y2ZkwgYr+m+IGef6t8FcTZ1Gfs6uCyjF/VZ3tbHYiH1TAa6b42vQWjvrZWbR8BwXlH9vcV5BlUo89LF5nhvrEbXvhKE/rGM08sLRrPt1eiZ/qyV/lef6IhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+E/wD4OwfgW3hz9oz9mv8AaJsbQpYfFL4U698Mtamhj/dHxF8KPEZ1q0ur2QD5bzUtA+JNpY229h59p4aZYl/0SZm4sVH3oy7pr7v+H/DyOmg9Guzv9/8Aw3b77n8wPwZ+Jut/BX4v/Cv4x+Giw8Q/Cj4jeCviPoe2QxFtV8E+JNM8SWEZkAbasl1pkUbkqw2MwZGU7G5Yvlkpdmn933fnr5GzV013Vj/YG8EeMNB+Ifgvwh4/8K3i6h4Y8c+F9A8YeHNQXG2+0HxNpVprWj3i7Sy7bnT723mG1mGH4JHNeundJ99Thas2uzsdRQIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8qf8A4KN+Lr/xz+35+2f4k1GSSWW5/ad+Nmn23mkl4tJ0D4g694f0O1YsSf8AQ9F0vT7QAYUCABVVQqr/AKm+HWEhgeAeDMNTSio8M5LUnbZ1sRl9DEV5L/HXq1J9fi1b1Z/nhxxiZ4vjLimvUbbln+awjfdUqONrUaMevwUqcIf9u9Nj9W/+DY/4cab4w/4KFeJvGepRxySfCb9nvx74n0JmAaSHxB4i8Q+Cvh+JYweVB8N+K/E0MkinI89Y8FZmK/lf0mMxqYPw+w2DptpZtxBgMNXts8Ph8PjcfZ939ZwuGkk1ryt6cp+i+AeBhiuNa+KqJN5bkuMxFHuq9evhMFddv3GJxCbXdLqf3+1/Ax/ZQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/BP8A4OPv2cpPjp/wTV8a+MdKsftnif8AZw8aeFfjTp3kxbryTw7byXXgvx1brIBlLCz8L+LrvxXqKMyoy+FYJCGlhhVsMRHmpt9YtS/R/g3pp+Fpa0Xaa89P8v66fNn+bnXnHWf6Wf8Awby/tML+0P8A8E0fhXoOpah9s8Yfs66prXwC8RrJLmddK8K/ZdX+HciQN+9Swg+HHiDwvoVvMS0M93oOopCVNvLDF6WHlzU13j7v3bfhb+rHJVjabfR6/wCf4/f8j9xa2MgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/zCP8AgsP8Dta+An/BSL9q3w3qllNbWHjX4o698ZfC9y8ZS01Lw38Ybyb4gW82muQqzWmmalrmqeHJWjysGo6JfWZJe2ct/pt4QZ3Rz7w44VxNKcZVMFldDJ8VFSvOnicngsvkqmzU6tOhSxKTV3Tr05qykj+A/E3KauT8dcR0KkXGGLzCtmmHk1aNShmcnjU6fRxp1K1Sg7aKdKcfsnEf8E2/28/F/wDwTs/aY0n48+G/DcHjbQ7/AMO6r4C+I3gefUG0l/FPgTXb3SdTvbTTtWFveLpWtadrGhaJrmk30tjeQfatMFjdQNZXt0a7fEfgTB+IfDVXIsTiZYKvTxFLH5djo0/bLC46hCrShOpS5oOrRqUa9ajVpqcJctTnhJThDm5OBeMMTwTn1LOKFBYqjOhUweOwjn7N4jB1p0qk4wqcs/Z1YVaNKrTm4SXNT5ZJwlM/tQ+E3/Bxt/wTL+IlhZy+MPHfxH+COqzxoJ9J+I/wu8T6qsF0QBJEmq/C63+IemNb+Znybu6uLIPFtkuYrNy0Sfxhm30dvEvL6k1g8Bl2d0ot8tXLs0w1Lmj0bpZp/Z1XmtvCMZu+kXJJSl/VGXeOHAWNhF4nGY7KajSvTx2X4iraT3SqZfHG03G+0pOF1rJQfw/X2g/8FfP+CZviSNJNP/bP+CtusgBUa9rt54VkGf78XijTtHliPqJEQjoc4r5Gv4R+JWGbVTgzOpNf8+MPHFL5SwtWqn6pa9N7n01HxM4CrpOHFOVRv/z+qyw7+ar06TX3fN68voVt/wAFL/8AgnhdqGi/bh/ZTQHn/Sfjx8NbJvxS88RwMD7EDHfuF8+Xhr4hQ34I4qf+HIsyn+MMNJfj9+nL2x484Jltxbw6v8WcYCH/AKVX/ru9VGy//BST/gnqgy37cf7JRH+x+0L8KZD+Ufipifpj8/4ZXhx4gvT/AFH4sXrw/mq/PCf19xT454LX/NW8Nv0zvLX+Vf8Ar7zGvP8AgqF/wTnsgTN+25+zG+3r9j+MPgrUDx6Cw1a5LfRd2e3WtoeGPiJOyjwTxMr/AM+T42n97qUopfP59pZS8QOCIb8WZB/27meFn/6RUl+b/wC3rrl4vUv+Cv8A/wAEy9KDG6/bO+C8oXr/AGbrV/rJ4/ujSNNvC3/AQc9s4+Tsp+EXiXVty8G50r/8/KEKP3+1qxt83819rln4mcBU783FOVu38lWdX7vZU5X+X4393znV/wDgul/wSm0UMbz9rrw9Ps6jSPhv8atfJx/d/sL4b6hv/wCA7vxr0qPgd4qV7KHCWIjf/n9mOTUPv9vmVP8Aror3lwVfF3w6pfFxLRdv+fWAzWt/6ZwFS/4eVtWeUa3/AMHEf/BLDSt/2H40eNfEu3O0aJ8F/ilb+Zj+5/wkfhjQQM8Y8wIO5xltvq0Po9eKVW3PkuCw1/8An/nOVyt6/V8RiPw+5fa8+r42eHtO/JmmLr2/59ZXmCv6e3w9D8XHz2PG9e/4Ocf+Cc2j7/7O8OftMeKiudv9hfDPwfbCTHTYfE/xO8OkA/8ATQJ75xhfYofRn8RK1vaYjhrC3/5/5njJW/8ACbKsTe3k/wAzyq3j5wRSv7Ohn2J/684DCxv5/wC0Y+h+j9LWPGNW/wCDqT9kqG5jXQ/2cf2itRtDKoln1aT4aaLcpAT80kdpZ+M9fiklC8rE15ErEYMyA7q9ml9FriyUW6/EfDtOdtI0lmVeLl0TnPA4dpXtryP0dmeXV+kNw4pJUcjzupG+sqrwFKSXdQhia6bXZzSfdH7m/sV/tw/AP9vf4Qx/GL4B67qN3pdpqT6D4r8K+JbKHSPGvgXxHHbw3jaH4p0i3u9QtIppbO4gvLDUdK1LVdE1O2ctp+p3EttexW/4fxpwRn3AebvKM+oU41Z01XwmKw03VwWOwzk4e3wtWUKU2lOMoVKdWlSrU5RtUpxUoSn+ucK8WZNxjlizPJq1SVONR0cRh68FSxeErqMZeyxFKM6kU3GSlCdOdSjUXwVJNSUfr2vkT6UKACgAoAKACgAoAKACgAoAKAP/0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA4v4keAfDXxW+Hnjz4X+M7Ial4Q+I/g3xP4D8Vac23F94c8XaLe6Brdod6uo+0abqFzECyMAXyQcCk0mmns00/RjTs0+zuf5Cnx5+EHiX9n742fFn4G+MUKeJ/hH8RPF/w81p/KaGK7vPCeu32itqNqjFt1hqiWiajp8ytJHcWN1bzxSyxSpI3kyXLJx7Nr7vu/LXyO5O6T7q5/Rn/AMGsf7UI+G/7XPxP/Zj1vUfI0D9o/wCH/wDbfhe2llyr/Ez4RJqWvW1raROQkLan8PtU8eXV9LF+9uX8O6TDIkqxRPb9OFnaTh/Mrr1X/A8vusZVleKfZ9uj8/Xy+7Q/vsruOUKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPxd/wCCxP8AwSd0P/go38NtG8UeBL/SPCH7Tfws06+tvh/4l1YPBofjPw5cSyX918NvGV5bQz3Ntp8movLqXhjXBBd/8I1rF1qQNq+n6/qzxfs3g/4rV/DrMq2Fx1OtjOGc0qQlmGGpWlXweIiuSOZYOEpwjKoqaVPFUHKH1mjCl76qUKKl+WeJ3hzS44wNLEYOdPDZ/l1OccFXq3VHFUJNzlgMVKN5Rg53qYesoy9hVlU93krTZ/nz/Hr9m347/sv+OL34c/H74WeMPhb4tspp40sfE+lS21lq0Nu/lvqPhrXIfP0LxVozsR5Gt+HNS1PSbgNmG7f+H+/8h4kyLifA08xyDNMJmmEmotzw1VSnRcldU8TQfLXwtZfaoYinTqx+1HS8v4wzjIs44fxc8DnOX4nL8TFtcmIp8saii7OdCtFzo4ilfarQqVKUuk3Y8Rr2zyQoAKACgAoAKACgAoAKACgD+3X/AINcv2c/jB8Ovhf+0Z8ePG+i614X+HXxtu/hjo/wxs9XtrmwbxfF4DTxxc6541sLO6SJ5dBD+LbDRtE1qFHtNXuYNeiglZNNDP8AxP8ASf4iyjMc04dyLA1qOKzDJIZnVzOdGUan1SWPeBjQwVScW0q9sJUrVqLtKjGVBtXqM/q/6PuSZngsvzzOMXSq4fA5tLL6WXxqxcPrSwaxcquLhGVm6K+swpUaqTjVl7ZKX7qx/VnX8rn9EhQAUAFABQAUAFABQAUAFABQB//S/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/wA+D/g6B/ZbPwi/bg8L/tCaLpxtvCn7UfgG01HUrmKLy7b/AIWf8LoNM8H+LIEWMeShufCUvw71iSQ7Jr3UtR1e5kR5BNO/BiY2mpdJLt1X/A9P1l1UXeNv5X+D2Pwa/Zj+OviP9mT9of4L/tBeFPNfW/hD8R/CvjmGzil8kavZaJqttcaz4fnk4xZeI9GGoaDqC5XfY6jcJuXduXCEuWUZdmn/AJ/gatXTXdWP9drwL408N/EnwT4O+Ing7UotY8I+PfC3h/xp4V1eD/U6p4c8UaTaa5omow9f3d7pl9a3MfP3ZB1r1k769HqcDVtOq0OqoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOS8a+AfAvxK0G58K/EXwX4S8feGLwg3nhzxr4c0fxVoN0QrIDc6PrtnfafOQrso823b5XYcBvm68Fj8dlteOKy7G4vAYqHwYnBYitha8Ovu1qE4VI6pPSS2ObF4PB4+jLD47CYbG4eXxUMXQpYijLp71KtCcHo2tYv8z85fiJ/wRW/4JefE6ee51/8AZA+HmjXM7M/mfDvUvGnwqghkbkNBp3w18UeFNKjVTysH2E23G0xFPkr9Fy7xn8T8sjGOH4vzGtGNlbMaeDzWUl2lVzLDYqq7rd86l2k2uY+HxvhX4f4+TlW4ZwVKUuuCqYvLop91TwGJw1Nb7cjXrsfLOv8A/Btx/wAEydYd207wv8Y/CgckrHoHxb1W5SLPZD4osPEchA7ea8h9ScmvqMP9I7xMopKpicnxdra4jKaUW/X6rVw6162ttp1Pnq3gXwFVbcMPmmG8qOZVJL5fWIV3p5uXm+p5vd/8GwH/AATvuWJh8eftV2AJ+5afEj4buo9h9v8Ag3evx7uxPf0r0YfSb8Qo/FgeFqnnPLcx/wDcedU/u/FHDLwA4JltjOIoeUcdgH/6Xlcn/wClfg+aiv8Awa6f8E91OT8UP2uXH91viJ8JAPp8vwJVv1/LINaf8TPeIH/Qs4S/8N2bfrn7S+5/K65YX0fuC/8AoY8TPyeMyxfllDf5euhr2n/BsN/wTrtyDN4w/aivwO138SvASA/X7D8JrE/kfyyBWM/pNeIctsJwxT/wZbj3/wCl5vP8tf7tmax8AeCI74riGf8Aix2DX/pGWw/rtdo7LTv+Da7/AIJoWJU3Ok/HDWMYyNR+LEkQfHZv7I0DSiM99uD6YAIrjqfSQ8Sp35auSUb9aeVJ29Pa4mqvvTOqHgTwHD4qebVf8eYtf+m6NL8l+B6PpH/BvL/wSp00qbz4D+KfEAXGRq/xr+MMIfHZv7B8aaIRnvsK+gx1rzqv0g/FOpfkz3C0L/8APrJcndvT2+Er/jfzvpy91LwU8O6fxZPiK3/X3NczX/pnF0f09esfV9E/4Ief8ErPD5Q2H7IPhGfZjb/bfjf4t+Jgcf3x4j8f6sJPfzAc9yMV5Vbxu8U8Rfn4uxcb/wDPnBZThvu+r4Clb5Jeq2PRpeEvh5RtycNYd2/5+4zM8Rt39vjal/nv1vtH2TQf+CWX/BOLw5s/s79iX9m248v7v9vfCzwv4qzj++PFGn6uJf8Atpuz3z0rx6/ij4jYm/tONeJI339hmmJwv3fVatG3y+9fa9Sj4e8D0Pg4UyKVv+f2XYfEf+pCq/ipf/Je4+G/2Q/2T/BzwyeEf2YP2ePCsluyvA/hv4K/DbQ3gZDlGhbTPDVoY2QjKshUqRkY4rw8TxdxXjE1i+JuIcUpaSWJzrMa6knumquJlf5v77+761DhnhzC2eF4fyTDNap0MqwFHlttb2dBWt5W+R9CoiRoscaqiIqoiIoVERRhVVVwqqoACqBgDgYxXz7bbbbbbd23u33e+r9fvPbStotEtEl0HUgCgAoAKACgAoAKACgAoAKACgD/0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPwz/wCDhj9k9v2mf+CcvxC8SaHpv27x9+zVqVr8evDRhi3Xc3h3w5aXenfE7TvNUNKLJfAGp6z4mmtkVhd6l4U0hW2lEkTHEQ5qbtvH3l+v4XZrSlaa7PT/AC/HQ/zU6806z/RX/wCDar9rpP2gP2C4vgrr+qfbPiB+yf4jb4fXEU83m31x8MfEzX/iL4X6nKCfktbKNfEvgTT4lRRDYeBbXcXeXe3o4aXNTt1i7fLdf5fI5K0bSv8Aza/Pr/mf0Q1uZBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/1P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAM7V9J0zX9J1TQtbsLXVdG1rTr3SdX0y+hS4stS0zUraWzv7C8t5AY57W8tZpbe4hkBSWGR0YFWIoA/yaf8AgoZ+ydrH7En7Y3xz/Zz1CG7GjeC/GF3d/D/UbwO7678MfEip4g+Hur/aWyl1cy+F9Q0601h4ZJY7bX7PV9PeVp7KYL5VSHs5uPZ6Punt/l/wzO6L5op+Wvr1Pq//AIIift42P7B37cPg/wAT+N9YOk/BH4u2LfCP4yXM8jDT9D0TXb21uPDfju6T5o408D+KrbTNS1O9EUt1beErnxXb2amW+KS3Qqck1faWj/R/Jk1I80fNao/084J4LqCG5tpori3uIo57e4gkSaCeCZBJFNDLGWjliljZXjkRmR0YMpKkGvSOMloAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/1f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Y//AIOPf+CZXif9qn4TeFv2rvgV4SvfFHxu+Auk3eh+NvC2gWEl94j+IHwYnurjVidJsrZJbvWNd+G2tXOo63p2j2cf2rUdB8Q+LPs4vNRsdI0645sRS51zRXvR3849vVatWXffQ2oz5W4vZ7Pz/wCCfwdfDH4TfEr40fEPw38J/hX4J8ReO/iP4u1iDQvD/hDw9ps99rN9qU0vlNG1uqgWdtZjfPqeoXzW2n6TZQ3N/qd1aWVtcXEXCk5OyTbfRf0vz9bHU2krvZH+uV+zV8O/EHwg/Zz+APwm8WaqmveKvhf8FPhX8O/E2uRyyTprPiDwT4F0Lw1rOqpPKqyzJqOo6Zc3iyyKskgmDuoYkL60VaMU90kn8l8vy+44JO7b6Nt/j8vy+49rpiCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDnNN8HeEdH1nVPEWkeFvDmleINb51rXdN0PTLHWdXO/zD/amp21tFe6hmQCT/SppfnG45YBqLL5+g7vzt6nR0CCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//Q/v4oAKACgAoAKACgAoAKAPK/iD8W/Dvw/eOyuY59U1maITJpdk0amGFiQk17cSZS2WXa3lIqzTsBv8kRMHoKUW9v8/wvH8/ut73J+EP2hPDfiPUoNK1TTrnw7cXkqw2lxNdR3thJNI22OKe5WC2ktnlYqiM9uYAx/eTICNwNwa13X3f+3S/L7/s/QFBAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHmvxA+KXh34exwxagJ7/VbqMy2uk2WzzmhDFPtFzLIRHa2xdWRHbzJZXVhDDII5igUouW3+f4Xj+f3W97z7w1+0d4b1jUIbDWdKuvDq3MixQ3z3cd/ZI7thPtkgt7SW1jYkAyiGeKMndM0cIeRQbg+n5W/Hnf5fcfRQIIBBBBGQRyCD0IPcEUEC0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHAePPiP4f8Ah9Zwzas01ze3m/7DpdmEa7uRHw8zFykdvbIxVWmlb5iSsKSujpQNRb2/r5XV/v8AvPLNC/aU8O6hfx2ms6Le6FbTSCNNQF3HqMERY4El3GlrbTQxD+NoVuSvUjaGdQpwf9K3487/AC+4+j45I5Y0lidJIpUWSOSNg8ckbjcjo65V0dSGVlOGByMg0ED6ACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDgPHnxH8P/AA+s4ZtWaa5vbzf9h0uzCNd3Ij4eZi5SO3tkYqrTSt8xJWFJXR0oGot7f18rq/3/AHnlmhftKeHdQv47TWdFvdCtppBGmoC7j1GCIscCS7jS1tpoYh/G0K3JXqRtDOoU4P8ApW/Hnf5fcfR8ckcsaSxOkkUqLJHJGweOSNxuR0dcq6OpDKynDA5GQaCB9ABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBwHjz4j+H/h9Zwzas01ze3m/7DpdmEa7uRHw8zFykdvbIxVWmlb5iSsKSujpQNRb2/r5XV/v+88s0L9pTw7qF/Haazot7oVtNII01AXceowRFjgSXcaWttNDEP42hW5K9SNoZ1CnB/wBK3487/L7j6PjkjljSWJ0kilRZI5I2DxyRuNyOjrlXR1IZWU4YHIyDQQPoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOJ8b+PtA8A6dHfa1LK8tyzx2Gn2qrJe30kYBcRI7JHHDEGUz3EsiRx70UbpZIo3BpN7f18rq/3/eeO6V+0zoF1fJb6r4e1DSrKSQJ9viu4tR8kMcCW4tVtrWRY16yfZ2uZQo/dxSNgUFezffX0/wDt3+X3n0ja3Vve21veWk0dza3UMdxbXELh4poJkEkUsbrwyOjBlYcEEGggnoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/R/v4oAKACgAoAKACgAoAKAPzY+K323/hYvi/+0N/n/wBs3Hl+ZnP2LCf2bjP8H9n/AGXy8cbNuODQbR+FHn1BR+p/hz7b/wAI9oP9pb/7R/sbS/t/mZ8z7b9hg+1b887/AD9+7PO7Oe9Bzs2aACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD87PjZ9t/4WZ4l+278+bZfZd2dv2L+zrT7N5XbZs+9t487zd3zl6DaHwr+v6/ryPKqCj9Nvh59t/4QXwl/aO/7X/wj+meZ5ufN2/ZY/J83PzeZ5Hl+Zv8An353/NuoMHu/VnZUCCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD4F/aD+2/8LIvftW/7P/Zmlf2buzt+xfZv3nl542/2j9vzt437885oNYbfP+v6/wCAeI0Fn6RfCP7b/wAK38I/2hv8/wDsz5PMzu+xfaZ/7N687P7O+y+X28vbjjFBhL4n6no1AgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+Bf2g/tv/AAsi9+1b/s/9maV/Zu7O37F9m/eeXnjb/aP2/O3jfvzzmg1ht8/6/r/gHiNBZ+kXwj+2/wDCt/CP9ob/AD/7M+TzM7vsX2mf+zevOz+zvsvl9vL244xQYS+J+p6NQIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPgX9oP7b/AMLIvftW/wCz/wBmaV/Zu7O37F9m/eeXnjb/AGj9vzt437885oNYbfP+v6/4B4jQWfpF8I/tv/Ct/CP9ob/P/sz5PMzu+xfaZ/7N687P7O+y+X28vbjjFBhL4n6no1AgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+Gf2kftv/CdWX2jf9k/4R+z+wZz5W37Ve/adv8AD5nn58z+PZ5O75fLoNYbP1Pn2gs/Qn4Ffbf+FZ6F9t3483U/sfmZ3fYv7RufJ687N/m+VnjyfL2fJtoMZfEz1+gkKACgAoAKACgAoAKACgAoAKACgAoAKAP/0v7+KACgAoAKACgAoAKACgDyv4g/CPw78QHjvbmSfStZhiEK6pZLG5nhXPlxX1tJhblYtzeU6yQTqCI/PMSrHQUpNab+rt/7bL+u9/d5Pwh+z34b8OalBquqalceI7izlWa0tprWOy09JkO6OWe2E13JctEwDxo86wbh+9hlBAUG5v8Ap/8A2i/P77H0BQQFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB5r8QPhb4e+IUcMt+Z7DVbSMxWuq2Qj84Qli/2a6ikBS6tldmdEYxyRO7mGVBJMrhSk4+n9eUvy+/7Pn3hn9nHw5o+oRX+tatc+IltpFlhsXs4rCxd0bcgvIxcXkl1GpAJhEsMUhG2ZJIi8VA3N9Pz/wDtF+f32PooAAAAAADAA4AA6ADsAKCBaACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDgPHvw48P/EG0hh1VZra9s9/2HVbMol3bh8F4XEiPHcWrsAzwSrlWBaGSF2Z2ClJx2/r8Jfl9/wBnyvQv2a/Dun38d3rOt3uu20MgkTT1tE02CbaciO7kW6u5pYjj50ha1Z+m8KWRgftH2/H/AO0X5/cfSEcccUaRRIkUUSLHHHGqpHHGihUREUBURFAVVUBVUAAAACggfQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAcB49+HHh/wCINpDDqqzW17Z7/sOq2ZRLu3D4LwuJEeO4tXYBnglXKsC0MkLszsFKTjt/X4S/L7/s+V6F+zX4d0+/ju9Z1u9122hkEiaetommwTbTkR3ci3V3NLEcfOkLWrP03hSyMD9o+34//aL8/uPpCOOOKNIokSKKJFjjjjVUjjjRQqIiKAqIigKqqAqqAAAABQQPoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOA8e/Djw/8QbSGHVVmtr2z3/YdVsyiXduHwXhcSI8dxauwDPBKuVYFoZIXZnYKUnHb+vwl+X3/Z8r0L9mvw7p9/Hd6zrd7rttDIJE09bRNNgm2nIju5FuruaWI4+dIWtWfpvClkYH7R9vx/8AtF+f3H0hHHHFGkUSJFFEixxxxqqRxxooVERFAVERQFVVAVVAAAAAoIH0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHE+OPAOgePtOjsdZjlSa2Z5LDUbVkjvbKSQASeW7q6PDKFQT28qtHJsRhtmjikiBptbf1+D/L7rnjmlfszaDa3yXGreIb/AFWyjkDiwhs4tOMqqciK4ulurqRo26SfZ0tpWU/u5I2w9BbqPovx/wDtF+f3H0la2tvZW1vZ2kMdta2sMdvbW8KCOKCCFBHFFGi4VEjRQqqBgAADGKDMnoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9k=" }, "95ba6758-aa30-4837-ba90-d524b8d971e7.jpeg": { "image/jpeg": "/9j/4AAQSkZJRgABAQAASABIAAD/4QBYRXhpZgAATU0AKgAAAAgAAgESAAMAAAABAAEAAIdpAAQAAAABAAAAJgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAFXqADAAQAAAABAAAD6AAAAAD/7QA4UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAA4QklNBCUAAAAAABDUHYzZjwCyBOmACZjs+EJ+/8AAEQgD6AVeAwERAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/dAAQArP/aAAwDAQACEQMRAD8A/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+NfFP8AwUS/YM8E+Nm+HHi39sf9mvw/44ivhpd34c1P4y+A4L/S9TMoh/s3Ws655Gh6gJSEaz1iayuVLJmIblLR7SCdueN+11/mrfNO/kVySevLL7n/AF93zPseKWOaOOaGRJYpUSWKWJ1kjljkUMkkbqSro6kMjqSrKQQSCDVkj6ACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//0f7+KAPLvi3471DwB4Zh1TS7KG7vbzUodOhe7WV7O18yC5uGnmSF4nkYrbmOGMSxgu+9mZY2jcKiru3/AAf1j+f3W94+EnjvUPH/AIZm1TVLKG0vbPUptOme0WVLO68uC2uFnhSZ5XjYLcCOaMyyAOm9WVZFjQCSs7f8D9Zfn99/d9RoJCgAoAKACgAoAxvEWrHQtB1nWltnvG0rTL3UFtUO1pzaW8k4i3AMUVymHcK2xNz7WxtoGtWl3f8AXb8/uPDvhB8X9e8ea9qOi61p2nxrHp8upWt1pkVzCtusNxbwNbXKz3FwHVxcqYpgyMHjKOsnmK0QVKKSum9+1v8A26X5fff3foqggKACgAoAQkKCzEAAEkk4AA5JJOAAByST+WKAP4X/APgsD/wWH+NX7Znxrl/4J9/8E8b/AMT3/gHUfE3/AArfxD4p+GM1yfGH7RPjKa4fT9Q8MeFNW06SO4s/hPZTrPZXN7ZXNra+NoLfUdW1S/fwIYI7/irVpTl7One17NreT7Ly/PyWkumnTUVzT37PZL9Wei/AP/g0317W/Anh/Xf2kf2p/wDhBvH2pfYb7XPh/wDDDwHZeLdN8N2khSW60STx1rXiXTINV10QM1tcX2n+G20TTdQSQ2U3iaxEN1cOOF096WvZK/yu2r+tkvJ6Cdf+WOnmz+ob4ceOpPhbceA/gV4Z0iSTwD8OtP8AC/wh8Prq9xd6j4tk0TwjZWPg/StR1PVnkjjvtVa10+C6vXayQXTmXcyyv9orrSskuiVvuM3FNc19Wr7ad9+Zf+k/JbH2tTMwoAKACgAoAKACgD51+L/xf17wHr2naLounafIsmnxaldXWpxXMy3CzXFxAttbLBcW4RUFsxlmLOxeQIix+WzShcYpq7b37X/9uj+X3W973Hw7qx13QdG1prZ7NtV0yy1BrVzuaA3dvHOYtxCl1QvhHKrvTa+1c7aCXo2uz/rv+f3mzQIKACgAoAKACgDy74t+O9Q8AeGYdU0uyhu7281KHToXu1leztfMgubhp5kheJ5GK25jhjEsYLvvZmWNo3Coq7t/wf1j+f3W94+EnjvUPH/hmbVNUsobS9s9Sm06Z7RZUs7ry4La4WeFJnleNgtwI5ozLIA6b1ZVkWNAJKzt/wAD9Zfn99/d9RoJCgAoAKACgAoAxvEWrHQtB1nWltnvG0rTL3UFtUO1pzaW8k4i3AMUVymHcK2xNz7WxtoGtWl3f9dvz+48O+EHxf17x5r2o6LrWnafGseny6la3WmRXMK26w3FvA1tcrPcXAdXFypimDIweMo6yeYrRBUopK6b37W/9ul+X33936KoICgAoAKACgAoAKAPlz/heuv/APCy/wDhF/7Fsv7F/wCEj/4RzyfLuf7X/wCP7+z/ALd53neR5nm/6R9m+zbPJ/ceb5n+kUGnIuW93e19v/t/0+XQ+o6DMKACgAoAKACgAoA+dfi/8X9e8B69p2i6Lp2nyLJp8WpXV1qcVzMtws1xcQLbWywXFuEVBbMZZizsXkCIsfls0oXGKau29+1//bo/l91ve9x8O6sdd0HRtaa2ezbVdMstQa1c7mgN3bxzmLcQpdUL4Ryq702vtXO2gl6Nrs/67/n95s0CCgAoAKACgAoA8u+LfjvUPAHhmHVNLsobu9vNSh06F7tZXs7XzILm4aeZIXieRituY4YxLGC772ZljaNwqKu7f8H9Y/n91vePhJ471Dx/4Zm1TVLKG0vbPUptOme0WVLO68uC2uFnhSZ5XjYLcCOaMyyAOm9WVZFjQCSs7f8AA/WX5/ff3fUaCQoAKACgAoAKAMbxFqx0LQdZ1pbZ7xtK0y91BbVDtac2lvJOItwDFFcph3CtsTc+1sbaBrVpd3/Xb8/uPDvhB8X9e8ea9qOi61p2nxrHp8upWt1pkVzCtusNxbwNbXKz3FwHVxcqYpgyMHjKOsnmK0QVKKSum9+1v/bpfl99/d+iqCAoAKACgAoAKACgD5c/4Xrr/wDwsv8A4Rf+xbL+xf8AhI/+Ec8ny7n+1/8Aj+/s/wC3ed53keZ5v+kfZvs2zyf3Hm+Z/pFBpyLlvd3tfb/7f9Pl0PqOgzCgAoAKACgAoAKAPnX4v/F/XvAevadoui6dp8iyafFqV1danFczLcLNcXEC21ssFxbhFQWzGWYs7F5AiLH5bNKFximrtvftf/26P5fdb3vcfDurHXdB0bWmtns21XTLLUGtXO5oDd28c5i3EKXVC+Ecqu9Nr7VztoJeja7P+u/5/ebNAgoAKACgAoAKAPLvi3471DwB4Zh1TS7KG7vbzUodOhe7WV7O18yC5uGnmSF4nkYrbmOGMSxgu+9mZY2jcKiru3/B/WP5/db3j4SeO9Q8f+GZtU1SyhtL2z1KbTpntFlSzuvLgtrhZ4UmeV42C3AjmjMsgDpvVlWRY0AkrO3/AAP1l+f33931GgkKACgAoAKACgDG8RasdC0HWdaW2e8bStMvdQW1Q7WnNpbyTiLcAxRXKYdwrbE3PtbG2ga1aXd/12/P7jw74QfF/XvHmvajoutadp8ax6fLqVrdaZFcwrbrDcW8DW1ys9xcB1cXKmKYMjB4yjrJ5itEFSikrpvftb/26X5fff3foqggKACgAoAKACgAoA+XP+F66/8A8LL/AOEX/sWy/sX/AISP/hHPJ8u5/tf/AI/v7P8At3ned5Hmeb/pH2b7Ns8n9x5vmf6RQaci5b3d7X2/+3/T5dD6joMwoAKACgAoAKACgD51+L/xf17wHr2naLounafIsmnxaldXWpxXMy3CzXFxAttbLBcW4RUFsxlmLOxeQIix+WzShcYpq7b37X/9uj+X3W973Hw7qx13QdG1prZ7NtV0yy1BrVzuaA3dvHOYtxCl1QvhHKrvTa+1c7aCXo2uz/rv+f3mzQIKACgAoAKACgDy74t+O9Q8AeGYdU0uyhu7281KHToXu1leztfMgubhp5kheJ5GK25jhjEsYLvvZmWNo3Coq7t/wf1j+f3W94+EnjvUPH/hmbVNUsobS9s9Sm06Z7RZUs7ry4La4WeFJnleNgtwI5ozLIA6b1ZVkWNAJKzt/wAD9Zfn99/d9RoJCgAoAKACgAoAxvEWrHQtB1nWltnvG0rTL3UFtUO1pzaW8k4i3AMUVymHcK2xNz7WxtoGtWl3f9dvz+48O+EHxf17x5r2o6LrWnafGseny6la3WmRXMK26w3FvA1tcrPcXAdXFypimDIweMo6yeYrRBUopK6b37W/9ul+X33936KoICgAoAKACgAoAKAPlz/heuv/APCy/wDhF/7Fsv7F/wCEj/4RzyfLuf7X/wCP7+z/ALd53neR5nm/6R9m+zbPJ/ceb5n+kUGnIuW93e19v/t/0+XQ+o6DMKACgAoAKACgAoA+dfi/8X9e8B69p2i6Lp2nyLJp8WpXV1qcVzMtws1xcQLbWywXFuEVBbMZZizsXkCIsfls0oXGKau29+1//bo/l91ve9x8O6sdd0HRtaa2ezbVdMstQa1c7mgN3bxzmLcQpdUL4Ryq702vtXO2gl6Nrs/67/n95s0CCgAoAKACgAoA8u+LfjvUPAHhmHVNLsobu9vNSh06F7tZXs7XzILm4aeZIXieRituY4YxLGC772ZljaNwqKu7f8H9Y/n91vePhJ471Dx/4Zm1TVLKG0vbPUptOme0WVLO68uC2uFnhSZ5XjYLcCOaMyyAOm9WVZFjQCSs7f8AA/WX5/ff3fUaCQoAKACgD//S/v4oApahpun6taS2GqWVrqFlOAJrS8gjubeTawZS0UquhKMAyNgMjgMpDAGgA0/TdP0m0isNLsrXT7KAEQ2lnBHbW8e5izFYolRAXYlnbBZ3JZiWJNAF2gAoAKACgAoAKAEIDAqwDKwIZSMgg8EEHIII4II596AMfSfDug6EbltF0bTNKa8cPdNp9jb2hnZclfNMEaFlQsxRCdibm2Ku5twO7e9/vv8A1/XY2aBBQAUAFAH85n/Bxl/wUVu/2Tf2YrT9nP4Y63Lpvxw/aj07WdFuNR025MGp+BvgxaFLDxtr8U0TGex1TxjLcjwP4dn2RObOfxhqmn3ltqnhy2aufEVOSPKn70u3RdX3V9lprra1jWjDmld7R/F/1r93c8o/4NwP+CYem/AX4M2H7cHxf8OI3xu+OehGX4T2Or2g+1fDX4Mamm6y1iyimU/ZPEnxWtvL1mfUE3XFt4EfQdOtZbP+3fFFldLD0uWPO/iktPJfo36eltR1p3fKtlv5v/gbH9RVdJiYv/COeH/7W/t7+xdL/tvbt/tX7Dbfb8bPLz9q8rzt/lfuvM3b/K/d7/L+Wgd3trb1/Q2qBBQAUAFABQAUAFAGNq3h3QddNs2taNpmqtZuXtW1Cxt7swM2C3lGeNyquVUugOx9q71bau0Hdra/32/r+u5sABQFUBVUAKoGAAOAABgAAcAAce1AhaACgAoAKACgAoApahpun6taS2GqWVrqFlOAJrS8gjubeTawZS0UquhKMAyNgMjgMpDAGgA0/TdP0m0isNLsrXT7KAEQ2lnBHbW8e5izFYolRAXYlnbBZ3JZiWJNAF2gAoAKACgAoAKAEIDAqwDKwIZSMgg8EEHIII4II596AMfSfDug6EbltF0bTNKa8cPdNp9jb2hnZclfNMEaFlQsxRCdibm2Ku5twO7e9/vv/X9djZoEFABQAUAFABQAUAYv/COeH/7W/t7+xdL/ALb27f7V+w232/Gzy8/avK87f5X7rzN2/wAr93v8v5aB3e2tvX9DaoEFABQAUAFABQAUAY2reHdB102za1o2maq1m5e1bULG3uzAzYLeUZ43Kq5VS6A7H2rvVtq7Qd2tr/fb+v67mwAFAVQFVQAqgYAA4AAGAABwABx7UCFoAKACgAoAKACgClqGm6fq1pLYapZWuoWU4AmtLyCO5t5NrBlLRSq6EowDI2AyOAykMAaADT9N0/SbSKw0uytdPsoARDaWcEdtbx7mLMViiVEBdiWdsFnclmJYk0AXaACgAoAKACgAoAQgMCrAMrAhlIyCDwQQcggjggjn3oAx9J8O6DoRuW0XRtM0prxw902n2NvaGdlyV80wRoWVCzFEJ2JubYq7m3A7t73++/8AX9djZoEFABQAUAFABQAUAYv/AAjnh/8Atb+3v7F0v+29u3+1fsNt9vxs8vP2ryvO3+V+68zdv8r93v8AL+Wgd3trb1/Q2qBBQAUAFABQAUAFAGNq3h3QddNs2taNpmqtZuXtW1Cxt7swM2C3lGeNyquVUugOx9q71bau0Hdra/32/r+u5sABQFUBVUAKoGAAOAABgAAcAAce1AhaACgAoAKACgAoApahpun6taS2GqWVrqFlOAJrS8gjubeTawZS0UquhKMAyNgMjgMpDAGgA0/TdP0m0isNLsrXT7KAEQ2lnBHbW8e5izFYolRAXYlnbBZ3JZiWJNAF2gAoAKACgAoAKAEIDAqwDKwIZSMgg8EEHIII4II596AMfSfDug6EbltF0bTNKa8cPdNp9jb2hnZclfNMEaFlQsxRCdibm2Ku5twO7e9/vv8A1/XY2aBBQAUAFABQAUAFAGL/AMI54f8A7W/t7+xdL/tvbt/tX7Dbfb8bPLz9q8rzt/lfuvM3b/K/d7/L+Wgd3trb1/Q2qBBQAUAFABQAUAFAGNq3h3QddNs2taNpmqtZuXtW1Cxt7swM2C3lGeNyquVUugOx9q71bau0Hdra/wB9v6/rubAAUBVAVVACqBgADgAAYAAHAAHHtQIWgAoAKACgAoAKAKWoabp+rWkthqlla6hZTgCa0vII7m3k2sGUtFKroSjAMjYDI4DKQwBoANP03T9JtIrDS7K10+ygBENpZwR21vHuYsxWKJUQF2JZ2wWdyWYliTQBdoAKACgAoAKACgBCAwKsAysCGUjIIPBBByCCOCCOfegDH0nw7oOhG5bRdG0zSmvHD3TafY29oZ2XJXzTBGhZULMUQnYm5tirubcDu3vf77/1/XY2aBBQAUAFABQAUAFAGL/wjnh/+1v7e/sXS/7b27f7V+w232/Gzy8/avK87f5X7rzN2/yv3e/y/loHd7a29f0NqgQUAFABQAUAFABQBjat4d0HXTbNrWjaZqrWbl7VtQsbe7MDNgt5RnjcqrlVLoDsfau9W2rtB3a2v99v6/rubAAUBVAVVACqBgADgAAYAAHAAHHtQIWgAoAKACgAoAKAKWoabp+rWkthqlla6hZTgCa0vII7m3k2sGUtFKroSjAMjYDI4DKQwBoANP03T9JtIrDS7K10+ygBENpZwR21vHuYsxWKJUQF2JZ2wWdyWYliTQBdoAKACgAoA//T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKAEZgoLMQqqCzMxACgDJJJ4AA5JPAHJoA/zsJLe6/4Lhf8ABdO5tLq5vda+AkPjy8gWSGSU2Wm/ssfAh5vLjtZIyJdJj+KNxb7hJG0n2Dxf8VJLgFoxmvP/AI9f+7f/AMlj/nv01l1tc6/4dPzt+L+5q39XtY/0R7Ozs9Os7TT9PtbexsLG2gs7Gxs4I7a0s7O1iSC2tbW2hVIbe3t4USKCCJEjiiRY41VFAr0DkLNABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoA/PH/grF8fLr9mf/gnT+1n8WtMvG0/xBY/CrUvBvhW9icpc2Pi34pX2n/DDw1qVntIZrvR9Y8X2msRABlQWDSyqYI5azqy5ac35NL1ei/FlwV5xXn+Wp/Pt/wAGmn7PMFr4Q/am/as1KzDXmteIPDnwB8H3rR7ZLWw8P2Fj8QfiFFHIctLBqt3r/wAN87NsaTaC6kyuSsGGFjpKXd8v3av80a138Mfn+n+fX7z+xeus5woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoA/nG/4OjPFt14c/4Jq6Fo9vI8cPj79pv4W+Er5VOBNa2fhP4m+Okjk5GVF74Ls5gOfniQ4GM1z4l2p+skv1/Tz/ABvHaj8fon+i/Xz/ABvH2v8A4NyPBtn4X/4JOfAnWLeJYrn4h+MPjZ4y1MqoDS3lr8W/F3gSCWTABZzpXgnTUVjk+SkQyAAKeHVqUfNyf4tfp5frJVfjflb8r/r5/jaP7nVuZBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAeW+Bfjl8Fvij4k8b+Dvhp8Xfhl8QvFvw01JdH+IvhfwT478MeKfEHgTVmluLddN8YaPoeqX2oeHL43NneWv2XV7azm+1WV7a7BcWlxHElJNtJptbpNXXqug2mrNppPyPUqYgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//1v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgD+cz/g6I8GX3ij/gmjpeuWkEksHw4/aV+FnjPU5EUlbaxvvDfxG+Hkc8pHCxtqXjzT7YM2B5txEv3mUNz4lXp+kk/wBP18vwtLaj8fqn+j/Ty/C0vW/+DcDx7pvjH/glF8F9BsriKe8+Fvjr41eAtbRGDPa6le/E7xF8Sbe3nA5SX+w/iHo06q3Jgnhfo4p4d3pR8nJfi3+oq3xvzS/K36eX4Xl+7FbmQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfA//AAVB/afuv2O/2DP2kvj1o96th4v8OeAp9A+HtyGHnW/xF8fX9l4F8E6hBCctdHQ/EHiKx8QXNug+aw0m7d2jhjllSKkuSEpdlp6vRd9m+332LhHmml0vr6L7/wCu25/OD/wahfs1atLc/tN/to69e6oYdSS3/Z38JxS3E7W2s3Ul34b+JvxI1jUkmJN7d2c8Xw8tdK1DMjI994ngaQSPKtc2Fi/em3v7v5Nvz6fia138Mfn+i0+/r91j+zauw5woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgD5i/bQ/Zo8Pfti/ssfHD9mnxLcRWFl8WPA2oaFpurzxG4i8P+K7Oa213wR4lktwrtcJ4a8ZaToOuvboA9wmnmFHjZ1kSZx54yj3Vv8vxKi+WSfZ/1+B/DL/wSa/4KCeM/wDgjH+1L8Zv2TP2yPDHiTw58KPEni+30j4nWMFjdalqnwm+I2iRCw0v4naJplvG8vifwd4m8PT2I1yTQ4bi88Q+FYvCninwx/ao0q20jXuKlUdGTpz0Tev916a6LVNW76aq9mpdM4e0inF69Oqa6rTt/Wx/fR8I/jZ8Ifj54N0/4g/BT4l+Cfin4L1SKKW08R+BvEWmeItODTJ5n2W7k065nfTtRhGY7vS9RS11KxnSW2vbWC4ikiXuTTV0013X9P8AP7zlaa0e5Y+Jnxi+EvwW0CbxX8YPif8AD74WeGbdJJJdf+InjHw94N0hViXc4GoeIdR062dwMYjjkaRmIRVLMtDaWraXm3b8/wCvvBJvZNn87X7bX/Bzj+yZ8FLTVvCn7J2iah+1F8SY0mtbbxNJFqfg34K6JegGP7Rd67qVra+KvGX2SYrKtj4X0W20TV4EdbXxzZb0mrnniYR0j7z77R/Vv0X/AIE9HLWNGT+J8q+9/wBf10Pzs/4JjfEv/gtj/wAFFP23/hX+1t4h+JPxM8H/ALMPhjxtYXvj95bvU/h/+zhrnw7s7xz4i+Gfw/8Ahl5y6P8AEPVtZ09LnQYPESab4o1Xw/qv9n654n8ZW2r6bpt22dJ1qk1NtqN9ekbdkr9e/veq+1c/Zxi4pJvp3vtd77a6flex/b/XacwUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/LJ/wAHXHxWm8N/sd/AL4RWlybef4pfHuTxLfxo+GvtA+GHgvWRdWciZw9uNf8AHHhe/f5TtuLC1IK5IbmxTtBLvL8v+Db+kjegveb7L8/6/qx+kf8AwQi+EcHwf/4JYfsraebUQap488Na/wDFzWp9myS/n+Jni3XPE+iXUowMtF4Ou/DOnRPzvtrGFieTWlBWpQ81f79fw2Iqu835af1ov19T9eK1MwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//Q/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8wf+Cif/BJb9lX/gpDoVrcfFTR9Q8F/F3QNNbTfB/xw8CLZWfjXSrJGmnttD8QQXdvNpnjTwnFezPcDQ9bi+12Hn33/CN6z4dudSvrqXOpShU+JarZrR+nmtdmvRxu+a4VJQ21V72f9L+u+x/LR46/4Ncf2+Phr4lu739n79or4KeL9F3SQWWtXPiP4ifB7xtNa7sp9v0XT/DvivR7VXAG+K28c6gBJ/CVAduV4Wovhmn98X+cl+P32XLsq0HvF/g1+d/w+erRN4C/4NYP24/H+uxan8ev2kfgZ4Nsrho0vdV0nUviL8YPGaQq3zE6bqnh3wLpNztViYY28aJubcG8oEtQsLN/FJL0vJ2++K/H7rvmbrRW0W/wX5v8Uvmfu7+x7/wbn/sAfsxXel+KviDoWs/tT/EXT2huY9W+Msdg/gCxv4ipM+kfCfS4l8N3Fs5QOtr47ufHrQSkyW1xE4Qxbww9OOrXM/7233ar73Ltp8RlKtJ7e76M/eixsbLTLK003TbO10/TtPtoLKwsLG3htLKys7WJYba0tLW3VILa2t4USKCCFEihiRY41VFUVuZFqgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Gr/g7W8eNqHx0/Y/8Ahj5xKeEvhN8RvHn2fdwjfEPxho/h/wA4r6yj4YeWGI/5YkDGGrixb1gvJv7/APhjpobSfmvw/wCH7fef2Rfsv+Al+FX7NP7PHwwSD7Mvw5+Bvwm8CC3xt8n/AIRHwFoGgGMjAwUOnlW4zkZOTmuyKtGK7JL7lY55O8m+7b/E9zpiCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9H+/igDkPG3jbRvAej/ANs6z9okjkuI7O1tbONJLq6uZEkkEcSySRRKqxRSyySSyRoqIQGMjRo4NJt2X9fivz++weCfG2jePNH/ALZ0b7RHHHcSWd1a3kaR3VrcxpHIY5VjkliZWililjkikkRkcAsJFkRAGmnZ/wBfi/z+6519AgoAKACgAoAKAKWpahaaTp97ql/KILLT7We8u5iGby7e2jaWVwqgs5CIdqIGd2wqqzFVoA878C/Fvwz4/wBQvdL0uHUrO9tIGu0h1KG3j+1WiSJE80DW1xcLuieWLzIpSjhZVaNXVZWiCnFrf/L/ANul/Xe/u+o0EhQAUAFABQAUAFAHkP8Awuvwd/wmP/CG/wDEx+0/2j/ZH9p+RD/Zf9p+d9n+zb/P+1bPtP8Aov2j7N5PnfN5n2b/AEigrkdr9N/6fN/7b5eZ69QSFABQAUAFABQAUAeXeOvi34Z8AahZaXqkOpXl7dwLdvDpsNvJ9ltHkeJJp2ubi3XdK8UvlxRF3KxM0iorRNKFKLe3+f8A7dH+u1ve9E03ULTVtPstUsJRPZahawXlpMAy+Zb3MayxOVYBkJRxuRwro2VZVYMtBJdoAKACgAoAKACgDkPG3jbRvAej/wBs6z9okjkuI7O1tbONJLq6uZEkkEcSySRRKqxRSyySSyRoqIQGMjRo4NJt2X9fivz++weCfG2jePNH/tnRvtEccdxJZ3VreRpHdWtzGkchjlWOSWJlaKWKWOSKSRGRwCwkWREAaadn/X4v8/uudfQIKACgAoAKACgClqWoWmk6fe6pfyiCy0+1nvLuYhm8u3to2llcKoLOQiHaiBndsKqsxVaAPO/Avxb8M+P9QvdL0uHUrO9tIGu0h1KG3j+1WiSJE80DW1xcLuieWLzIpSjhZVaNXVZWiCnFrf8Ay/8Abpf13v7vqNBIUAFABQAUAFABQB5D/wALr8Hf8Jj/AMIb/wATH7T/AGj/AGR/afkQ/wBl/wBp+d9n+zb/AD/tWz7T/ov2j7N5PnfN5n2b/SKCuR2v03/p83/tvl5nr1BIUAFABQAUAFABQB5d46+LfhnwBqFlpeqQ6leXt3At28Omw28n2W0eR4kmna5uLdd0rxS+XFEXcrEzSKitE0oUot7f5/8At0f67W970TTdQtNW0+y1SwlE9lqFrBeWkwDL5lvcxrLE5VgGQlHG5HCujZVlVgy0El2gAoAKACgAoAKAOQ8beNtG8B6P/bOs/aJI5LiOztbWzjSS6urmRJJBHEskkUSqsUUsskkskaKiEBjI0aODSbdl/X4r8/vsHgnxto3jzR/7Z0b7RHHHcSWd1a3kaR3VrcxpHIY5VjkliZWililjkikkRkcAsJFkRAGmnZ/1+L/P7rnX0CCgAoAKACgAoApalqFppOn3uqX8ogstPtZ7y7mIZvLt7aNpZXCqCzkIh2ogZ3bCqrMVWgDzvwL8W/DPj/UL3S9Lh1KzvbSBrtIdSht4/tVokiRPNA1tcXC7onli8yKUo4WVWjV1WVogpxa3/wAv/bpf13v7vqNBIUAFABQAUAFABQB5D/wuvwd/wmP/AAhv/Ex+0/2j/ZH9p+RD/Zf9p+d9n+zb/P8AtWz7T/ov2j7N5PnfN5n2b/SKCuR2v03/AKfN/wC2+XmevUEhQAUAFABQAUAFAHl3jr4t+GfAGoWWl6pDqV5e3cC3bw6bDbyfZbR5HiSadrm4t13SvFL5cURdysTNIqK0TShSi3t/n/7dH+u1ve9E03ULTVtPstUsJRPZahawXlpMAy+Zb3MayxOVYBkJRxuRwro2VZVYMtBJdoAKACgAoAKAP8/3/g5DH/CwP+CuHwa8D337yxj+DPwE8DCJuU+x+Ifif8QdTuFKnj538Tz7vUYyTjC8OI1qxXlFfe392/n+keqlpTb82/63t933n96XjXxro3gLRhrGsC4eJ7iOztbWzjSS5ubmRJJFiiWR4olVIopJZJJZI0REwCZGjjfuOZJt2X9fivz++wvgnxto3jzR/wC2dG+0Rxx3ElndWt5Gkd1a3MaRyGOVY5JYmVopYpY5IpJEZHALCRZEQBpp2f8AX4v8/uudTc3NtZ2895eXENpaWsMtzdXVzKkFvbW8CNJNPPPKyxQwwxq0kssjKkaKzOwUEqCPy6+L3/Ban/gmP8EvHukfDbxh+1f4D1PxPqesQaNet4At9e+JXh3wvPNMLaSfxd4v8C6Vr/hXw/DZXLrBqcV3rP8AaGmnzZr2xhtrW9mtcnWpJ2c023bTVL1a0/GPp9otU5tXtpvr19Fvr9x+pEUsc0cc0MiSxSoksUsTrJHLHIoZJI3UlXR1IZHUlWUggkEGtSB9ABQAUAUtS1C00nT73VL+UQWWn2s95dzEM3l29tG0srhVBZyEQ7UQM7thVVmKrQB534F+Lfhnx/qF7pelw6lZ3tpA12kOpQ28f2q0SRInmga2uLhd0TyxeZFKUcLKrRq6rK0QU4tb/wCX/t0v673931GgkKACgAoAKACgAoA8h/4XX4O/4TH/AIQ3/iY/af7R/sj+0/Ih/sv+0/O+z/Zt/n/atn2n/RftH2byfO+bzPs3+kUFcjtfpv8A0+b/ANt8vM9eoJCgAoAKACgAoAKAPLvHXxb8M+ANQstL1SHUry9u4Fu3h02G3k+y2jyPEk07XNxbruleKXy4oi7lYmaRUVomlClFvb/P/wBuj/Xa3veiabqFpq2n2WqWEonstQtYLy0mAZfMt7mNZYnKsAyEo43I4V0bKsqsGWgku0AFABQAUAFABQByHjbxto3gPR/7Z1n7RJHJcR2dra2caSXV1cyJJII4lkkiiVViillkklkjRUQgMZGjRwaTbsv6/Ffn99g8E+NtG8eaP/bOjfaI447iSzurW8jSO6tbmNI5DHKscksTK0UsUsckUkiMjgFhIsiIA007P+vxf5/dc6+gQUAFABQAUAFAFLUtQtNJ0+91S/lEFlp9rPeXcxDN5dvbRtLK4VQWchEO1EDO7YVVZiq0Aed+Bfi34Z8f6he6XpcOpWd7aQNdpDqUNvH9qtEkSJ5oGtri4XdE8sXmRSlHCyq0auqytEFOLW/+X/t0v673931GgkKACgAoAKACgAoA8h/4XX4O/wCEx/4Q3/iY/af7R/sj+0/Ih/sv+0/O+z/Zt/n/AGrZ9p/0X7R9m8nzvm8z7N/pFBXI7X6b/wBPm/8AbfLzPXqCQoAKACgAoAKACgDy7x18W/DPgDULLS9Uh1K8vbuBbt4dNht5Psto8jxJNO1zcW67pXil8uKIu5WJmkVFaJpQpRb2/wA//bo/12t73omm6haatp9lqlhKJ7LULWC8tJgGXzLe5jWWJyrAMhKONyOFdGyrKrBloJLtABQAUAFABQAUAch428baN4D0f+2dZ+0SRyXEdna2tnGkl1dXMiSSCOJZJIolVYopZZJJZI0VEIDGRo0cGk27L+vxX5/fYPBPjbRvHmj/ANs6N9ojjjuJLO6tbyNI7q1uY0jkMcqxySxMrRSxSxyRSSIyOAWEiyIgDTTs/wCvxf5/dc6+gQUAFABQB//S/v4oA5Dxt4J0fx5o/wDY2s/aI447iO7tbq0dI7q1uo0kjEsZkSSJlaKWSKSOWN0dHyAJFjkiBptO6/r8H+X3XDwT4J0fwHo/9jaN9okjkuJLu6urt0kurq6kSOMyyGNI4lVYoo4o44o0RETJBkaSSUBtt3f9fgvy++x19AgoAKACgAoAKAKWpafaatp97pd/EJ7LULWezu4SWXzLe5jaKVAykMhKOdroVdGwysrBWoA868C/CTwz4A1C91TS5tRvb27ha1SbUZYJPslo8iSvBAtvBbqWkeKLzJpA7lY1WMxq0qyhTk3v/n/7bH+u1ve9SoJCgAoAKACgAoAKAPIf+FJ+Dv8AhMf+EyzqP2j+0f7X/svz4f7M/tPzvtH2nZ5P2nZ9p/0n7N9o8nzvl2fZv9HoK53a3Tb+ly/+3efkevUEhQAUAFABQAUAFAHlvjr4SeGfH+oWWqapNqNle2kK2rzadLBH9rtEkeVIJ1uILhQ0byy+XNGEcLIyyGRViWIKUmtv8v8A22X9d7+76Lpun2mk6fZaXYRCCy0+1gs7SEFm8u3to1iiQsxLOQiDc7lndsszMxZqCS7QAUAFABQAUAFAHIeNvBOj+PNH/sbWftEccdxHd2t1aOkd1a3UaSRiWMyJJEytFLJFJHLG6Oj5AEixyRA02ndf1+D/AC+64eCfBOj+A9H/ALG0b7RJHJcSXd1dXbpJdXV1IkcZlkMaRxKqxRRxRxxRoiImSDI0kkoDbbu/6/Bfl99jr6BBQAUAFABQAUAUtS0+01bT73S7+IT2WoWs9ndwksvmW9zG0UqBlIZCUc7XQq6NhlZWCtQB514F+EnhnwBqF7qmlzaje3t3C1qk2oywSfZLR5EleCBbeC3UtI8UXmTSB3KxqsZjVpVlCnJvf/P/ANtj/Xa3vepUEhQAUAFABQAUAFAHkP8AwpPwd/wmP/CZZ1H7R/aP9r/2X58P9mf2n532j7Ts8n7Ts+0/6T9m+0eT53y7Ps3+j0Fc7tbpt/S5f/bvPyPXqCQoAKACgAoAKACgDy3x18JPDPj/AFCy1TVJtRsr20hW1ebTpYI/tdokjypBOtxBcKGjeWXy5owjhZGWQyKsSxBSk1t/l/7bL+u9/d9F03T7TSdPstLsIhBZafawWdpCCzeXb20axRIWYlnIRBudyzu2WZmYs1BJdoAKACgAoAKACgDkPG3gnR/Hmj/2NrP2iOOO4ju7W6tHSO6tbqNJIxLGZEkiZWilkikjljdHR8gCRY5IgabTuv6/B/l91w8E+CdH8B6P/Y2jfaJI5LiS7urq7dJLq6upEjjMshjSOJVWKKOKOOKNEREyQZGkklAbbd3/AF+C/L77HX0CCgAoAKACgAoApalp9pq2n3ul38QnstQtZ7O7hJZfMt7mNopUDKQyEo52uhV0bDKysFagDzrwL8JPDPgDUL3VNLm1G9vbuFrVJtRlgk+yWjyJK8EC28FupaR4ovMmkDuVjVYzGrSrKFOTe/8An/7bH+u1ve9SoJCgAoAKACgAoAKAPIf+FJ+Dv+Ex/wCEyzqP2j+0f7X/ALL8+H+zP7T877R9p2eT9p2faf8ASfs32jyfO+XZ9m/0egrndrdNv6XL/wC3efkevUEhQAUAFABQAUAFAHlvjr4SeGfH+oWWqapNqNle2kK2rzadLBH9rtEkeVIJ1uILhQ0byy+XNGEcLIyyGRViWIKUmtv8v/bZf13v7voum6faaTp9lpdhEILLT7WCztIQWby7e2jWKJCzEs5CINzuWd2yzMzFmoJLtABQAUAFABQB/Bh/wdB/Dzxh8Lf2+f2ef2lbDSp28L+LPhH4StdG1iSKT7BL8Qvg/wCPfEWp6xo0k4Bjjkg0HxD4JvlRiJJo724MaMttI1cOJTU4y6NL709uvS3T5O3vdVF3g49n+f3fn81f3f3K1r/g4F/4JG/E74VaZqni743+NfDXiC4srLWJvh3/AMKe+LN3448Pa2bX9/pB1XTvA+o/D++uLYzz2ct1b+K59HulHmQ3iv5bxb/WKVr3fpaX/wAj/wC3f5GapVE9En53SX+f9ep+Tnx3/wCDoXRfAui3/gP9hH9ni9mM9zO4+Kv7R15G91c3kyJatdWPwu8BaoI2wkcb6Vc6j4+iRFjh/tHwxLI9zC+U8V0hH5y/+RX6zX581qjfWb17L/PXv/la65fim2/Zy/4L4/8ABYm4g1T4nXvxU0r4Qa3NFcwXfxf1J/gB8BLezldZLG/0n4Y6Tpml3XjC0hjAS18Q6B8PPGF86Qk3erTXDvNLHLiKu7aXn7sfuW/3fcVelT2tfy1fz3/Nb6Lc/Y39kX/g1h/Z5+HN5ofi39rb4u+JPj3r9hcWeoz/AA68EWZ+HvwsaeCRJZdK1vUZZdS8deLtNZo8G4sdQ+H7XMTtDcae0ZYNrDCxVnNuT7LSPpu2/vjfysZyrN/Creur+Wqt80/lY/qtiiigiiggijhghjSKGGJFjiiijUJHFFGgCRxxooREUBVUBVAAxXUYElABQAUAUtS0+01bT73S7+IT2WoWs9ndwksvmW9zG0UqBlIZCUc7XQq6NhlZWCtQB514F+EnhnwBqF7qmlzaje3t3C1qk2oywSfZLR5EleCBbeC3UtI8UXmTSB3KxqsZjVpVlCnJvf8Az/8AbY/12t73qVBIUAFABQAUAFABQB5D/wAKT8Hf8Jj/AMJlnUftH9o/2v8A2X58P9mf2n532j7Ts8n7Ts+0/wCk/ZvtHk+d8uz7N/o9BXO7W6bf0uX/ANu8/I9eoJCgAoAKACgAoAKAPLfHXwk8M+P9QstU1SbUbK9tIVtXm06WCP7XaJI8qQTrcQXCho3ll8uaMI4WRlkMirEsQUpNbf5f+2y/rvf3fRdN0+00nT7LS7CIQWWn2sFnaQgs3l29tGsUSFmJZyEQbncs7tlmZmLNQSXaACgAoAKACgAoA5Dxt4J0fx5o/wDY2s/aI447iO7tbq0dI7q1uo0kjEsZkSSJlaKWSKSOWN0dHyAJFjkiBptO6/r8H+X3XDwT4J0fwHo/9jaN9okjkuJLu6urt0kurq6kSOMyyGNI4lVYoo4o44o0RETJBkaSSUBtt3f9fgvy++x19AgoAKACgAoAKAKWpafaatp97pd/EJ7LULWezu4SWXzLe5jaKVAykMhKOdroVdGwysrBWoA868C/CTwz4A1C91TS5tRvb27ha1SbUZYJPslo8iSvBAtvBbqWkeKLzJpA7lY1WMxq0qyhTk3v/n/7bH+u1ve9SoJCgAoAKACgAoAKAPIf+FJ+Dv8AhMf+EyzqP2j+0f7X/svz4f7M/tPzvtH2nZ5P2nZ9p/0n7N9o8nzvl2fZv9HoK53a3Tb+ly/+3efkevUEhQAUAFABQAUAFAHlvjr4SeGfH+oWWqapNqNle2kK2rzadLBH9rtEkeVIJ1uILhQ0byy+XNGEcLIyyGRViWIKUmtv8v8A22X9d7+76Lpun2mk6fZaXYRCCy0+1gs7SEFm8u3to1iiQsxLOQiDc7lndsszMxZqCS7QAUAFABQAUAFAHIeNvBOj+PNH/sbWftEccdxHd2t1aOkd1a3UaSRiWMyJJEytFLJFJHLG6Oj5AEixyRA02ndf1+D/AC+64eCfBOj+A9H/ALG0b7RJHJcSXd1dXbpJdXV1IkcZlkMaRxKqxRRxRxxRoiImSDI0kkoDbbu/6/Bfl99jr6BBQAUAFAH/0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+fv2l/wBln4Cftg/C7Uvg3+0X8OdG+JPgLUbmHUYtP1Jryy1HRNatYp4bPxB4Z8QaVdWGueGtfs4rm5gh1bRdQs7trO6vNPnebTr69tLiZRjNOMldP+rrZp+n46ocZOLunb9fX+v0Pw3P/BrN/wAE3Tr76x/wmf7VY05rjzl8KD4m/D7+wY49+77IlyfhB/wlBt9v7vdJ4kku9nP2oSYkrH6tSv8Aat25tP8A0m/y/wDJjX20+0fuf/ySX4fefqJ+y7/wSw/YH/Y7msdV+B37N/gbS/GNhseD4jeLYLv4h/EWG5U5e707xf43utd1Xw9JOwDTQeGJdDsGKoEtI0jRF1jSpw+GKv33f3u7+5/JWIc5veT9Fovw3t5n6C1ZAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//1P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/V/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/9b+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAga6tkuIrR7mBLueOSaG1aaNbiaKEoJpYoSwlkjiMiCR0VlQugYruXcAT0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAFW+vrPTLK81LULqCysNPtZ72+vLqVILa0s7WJ57m5uJnISKCCFHllkchERWZiACaxxOJw+Dw2IxmLrU8NhcLRq4nE4itONOjQw9CEqtatVqSajCnSpwlOpOTUYwi22kmzfC4XE43E4fBYOhVxWLxdelhsLhqEJVa2IxFepGlRoUacU5VKtWpKNOnCKcpTkkk20jkvAvxI8D/EvTrrVvA3iKy8Q2NjdtYXktqlzBJbXSqHEc9rewW11EJEO+CV4RDcIC8EjqrM3g8M8X8NcY4SvjuGc2w+bYbDYh4XEToxrUp0a6SlyVKOJp0a8FOL5qdR01Tqx96lKSTPoOKeDOKOCcZQwHFOTYrJ8VisOsVhqdeVGpCvQcnHnpV8NVrUJuEly1acarqUZWjVhCTSl29fSHzAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//Q/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/Pp/4OC7z4n/sm/wDBYPwZ+0R4L+K/iS+8W6x8Pvg58dfh7bSXV7ZN8MofC+p658O28DaZJBeGGbwvrWp/DTWvEGoWsFvY2uop4013TdWsNQeW/wBS1fhr3hVUlJt6SS7W0t00dtdr9W9WdVK0qdraXafn1v111/DpsfuZ8Qf+DpL/AIJ1eFraQeDvCn7RvxO1AofsyaJ4A8M+HNKMuMhbzUPGPjnRNQtos/KZbXQ9QkDY/cFTuXZ4mmtuZ+i/Vv8AR/j7uaoze7S8/wCv+B+CUvzY+MP/AAdq/EW9W6tPgD+yD4L8NModLLXvjB8Q9b8befnPlzXPhPwZpPgAWZXjdbx+M78MRkXK521nLF/yw+cpfoor8/vsWqC6yfyR6F/wTb/4KW/8Fwf2wf2x/g1deJfhpfXf7K2veI0t/ip9n/Z7g8EfB7QvA88Esmra/pvxW1jRpfEQ8S6RaA3nhfR4/iHqTa9qUVtp82kajDPMyOnUrTmrx9x7+7aK8723+a/+SU4U1F2evTW79N9vl8+h/ZfXWc4UAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAcT8StNi1n4dePdJnXfFqXgzxPYuO+260W9hyD1DLv3KRyrAEcgV85xjg4ZjwlxRgKivDGcPZ1hpLyr5diad11TTkmmrNNJpq1z6fgrGzy3jLhPMKcuWpguJMjxUX2dDM8NU1ummny2aas07OyZ+c3/AATr1CVNe+J+lbz5N1pHhvUCmTtEtjearbBwOgJTUSGIGWAXOdq1/I/0S8XOOZ8aYHmfs62AyfF8vTnw2Ix1HmS2TccW09NbK9+VH9k/TGwdOWVcDZhyr2tDMM6walbV08VhsBWcW92lLBppNaXla3NI/U+v7bP4PCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//0f7+KAKWoajp+k2kt/ql7a6fZQAGa7vZ4ra3j3MFXfLMyICzMFRSSXdgqgsVFABp+o6fq1pFf6Xe2uoWU4Jhu7KeK5t5NrFW2Sws6EqylXUEFHUqwDBhQBdoAKACgAoAKACgBCQoLMQqqCWYnAAHJJJwAAOSSePagDI0rxDoOum5XRdZ0zVmtHCXS6ffW12bdm3BfNEEjlA5VgjEbX2tsZtrbQdmt7/db+v67mxQIKACgAoA/wA/n/g5jiHj3/gqr8HPBTO5Q/s+fBPwSRCQJUGv/Ff4q6gwQkECUjxLuQkH7ycEDFcGJ1qxX92K085P/Pz/ABaj1UdIN+bfr+dvu+T+1/SL4C/4N1v+CUXgi4iu774CeI/iDd27K8Mnj34ufE28t1df4pdL8O+JvDejXqkZDQ3+m3Vuc58rcFK9Kw9JfZv6uX/yUf67faydWb629D9HfhB+xB+x18AWtZ/gz+y/8CPhxqNnsMOveGfhf4QsvFDNH/q5LjxWdKk8S3kqEZSW71SeRT91xktWihCPwxivRK/32T/D79CHOT3bfzPov/hI9A/tb+wf7a0v+2sbv7K+3239ofc83H2TzfP3+V+92bd/lfvNnl/NVCs99ben6mzQIKACgAoAKACgAoAx9V8Q6DoRtl1rWdM0lrtylquoX1taG4ZdobyhPIhcIWUOwG1Ny72Xcu4HZva/3X/r+uxrghgGUhlYAqwOQQeQQRkEEcgg8+9AhaACgAoAKACgAoApahqOn6TaS3+qXtrp9lAAZru9nitrePcwVd8szIgLMwVFJJd2CqCxUUAGn6jp+rWkV/pd7a6hZTgmG7sp4rm3k2sVbZLCzoSrKVdQQUdSrAMGFAF2gAoAKACgAoAKAEJCgsxCqoJZicAAckknAAA5JJ49qAMjSvEOg66bldF1nTNWa0cJdLp99bXZt2bcF80QSOUDlWCMRtfa2xm2ttB2a3v91v6/rubFAgoAKACgAoAKACgDG/4SPQP7W/sH+2tL/trG7+yvt9t/aH3PNx9k83z9/lfvdm3f5X7zZ5fzUDs99ben6mzQIKACgAoAKACgAoAx9V8Q6DoRtl1rWdM0lrtylquoX1taG4ZdobyhPIhcIWUOwG1Ny72Xcu4HZva/3X/r+uxrghgGUhlYAqwOQQeQQRkEEcgg8+9AhaACgAoAKACgAoApahqOn6TaS3+qXtrp9lAAZru9nitrePcwVd8szIgLMwVFJJd2CqCxUUAGn6jp+rWkV/pd7a6hZTgmG7sp4rm3k2sVbZLCzoSrKVdQQUdSrAMGFAF2gAoAKACgAoAKAEJCgsxCqoJZicAAckknAAA5JJ49qAMjSvEOg66bldF1nTNWa0cJdLp99bXZt2bcF80QSOUDlWCMRtfa2xm2ttB2a3v91v6/rubFAgoAKACgAoAKACgDG/4SPQP7W/sH+2tL/trG7+yvt9t/aH3PNx9k83z9/lfvdm3f5X7zZ5fzUDs99ben6mzQIKACgAoAKACgAoAx9V8Q6DoRtl1rWdM0lrtylquoX1taG4ZdobyhPIhcIWUOwG1Ny72Xcu4HZva/3X/r+uxrghgGUhlYAqwOQQeQQRkEEcgg8+9AhaAOf8WeLPC/gPwzr/jTxt4i0Xwl4Q8K6Tf694m8T+JNTs9F0DQNE0u3ku9R1bWNW1CWCx07TrG1ikuLq7upooIIkZ5HCgmgDjPg58cPg/8AtC+B7L4l/A74k+Dfit4C1C7vdPtvFXgfXbHX9IOo6dIseoabPcWM0v2PUrJnj+1afdrBeQLLDJLAqTRO6UlJXi013X/Dv8/uuhtOLs1Z/wBf1/wx6nTEFABQBS1DUdP0m0lv9UvbXT7KAAzXd7PFbW8e5gq75ZmRAWZgqKSS7sFUFiooANP1HT9WtIr/AEu9tdQspwTDd2U8VzbybWKtslhZ0JVlKuoIKOpVgGDCgC7QAUAFABQAUAFACEhQWYhVUEsxOAAOSSTgAAckk8e1AGRpXiHQddNyui6zpmrNaOEul0++trs27NuC+aIJHKByrBGI2vtbYzbW2g7Nb3+639f13NigQUAFABQBh+Jl3+G/EK9m0PVl/OwuB7+vp+debnKvlGarvluOX34Wqj08kfLnOUS6xzPAP7sVSfl+f3H5af8ABPFiPHvj9ex8IWjfius24H/oZ/ya/ib6J7/4yjimPfIKDt6ZjRX4c34+Z/d30wl/xinCT7cQ4hffltZ/+2n6z1/dZ/n8Y3/CR6B/a39g/wBtaX/bWN39lfb7b+0Puebj7J5vn7/K/e7Nu/yv3mzy/moHZ7629P1NmgQUAFABQAUAFABQBj6r4h0HQjbLrWs6ZpLXblLVdQvra0Nwy7Q3lCeRC4QsodgNqbl3su5dwOze1/uv/X9djXBDAMpDKwBVgcgg8ggjIII5BB596BC0AFABQAUAFABQBS1DUdP0m0lv9UvbXT7KAAzXd7PFbW8e5gq75ZmRAWZgqKSS7sFUFiooANP1HT9WtIr/AEu9tdQspwTDd2U8VzbybWKtslhZ0JVlKuoIKOpVgGDCgC7QAUAFABQAUAFACEhQWYhVUEsxOAAOSSTgAAckk8e1AGRpXiHQddNyui6zpmrNaOEul0++trs27NuC+aIJHKByrBGI2vtbYzbW2g7Nb3+639f13NigQUAFABQAUAFABQBjf8JHoH9rf2D/AG1pf9tY3f2V9vtv7Q+55uPsnm+fv8r97s27/K/ebPL+agdnvrb0/U2aBBQAUAFABQAUAFAGPqviHQdCNsutazpmktduUtV1C+trQ3DLtDeUJ5ELhCyh2A2puXey7l3A7N7X+6/9f12NcEMAykMrAFWByCDyCCMggjkEHn3oELQAUAFABQAUAFAFLUNR0/SbSW/1S9tdPsoADNd3s8Vtbx7mCrvlmZEBZmCopJLuwVQWKigA0/UdP1a0iv8AS7211CynBMN3ZTxXNvJtYq2yWFnQlWUq6ggo6lWAYMKALtABQAUAFAH/0v7+KAPLfi34E1Dx/wCGYdL0u9htL2z1GHUYUu2kS0uvLgubdoJniSV42C3Bkhk8qRQ6bGVVkMiBUXZ3/wCB+kvy++/unwk8Cah4A8MzaXql7Dd3t5qM2ozJaNI9pa+ZBbW6wQvKkTyMVtxJNJ5Ual32KrLGJHAk7u//AAf0j+X3W971KgkKACgAoAKACgDG8RaSdd0HWdFW5ezbVdMvdPW6QbmgN3byQCXaCpdUL5dAy703JuXO6ga0afZ/13/L7zw74QfCDXvAevajrWtajYSLJYS6ba2umy3Ey3CzXFtO1zctPb24RUFsohhCu5eQu7R+WqyhUpJqyT373/8AbY/n91ve+iqCAoAKACgD/P8Av+C33/FR/wDBeL4S6C37xU1H9kLw/s6/LqPiTS7wpjn7x1cnGOd/fNcNb+PH/tz8/wCv6Z1Uv4b/AO3j/QBruOU8M+P/AO0z8Af2V/A9z8R/2hviz4L+E3g+ATCHUfFurw2l3q9zBGJZNN8NaHCLjXvFesmMh49F8NaZqmrSp80Vm6jNKUoxV5NJef8AX5X9HsNRcnZJv+uvb5n43fsI/wDBSD9mL/god+1f8Rfhx8B9T+IthqXgFL34s2uo+P8Awrb+Hl8b+DdM8VaNpupap4W+wa3rdxALPWvEOiWr2viqHw1rEmnapbahDpMkkGp2Gn5wrQqNxje611VrrTzfV9bPr1sbSi4w19NOnrve/orbdbn9AlamAUAFABQAUAFABQB86/F/4Qa94817Tta0XUbCNY7CLTbq11KW4hW3WG4uZ1ubZoLe4Dq4uWE0JVHDxh0aTzGWILjJJWae/e3/ALbL8/vv7vuPh3SToWg6NorXL3jaVpllp7XTja05tLeOAy7SWKK5TKIWbYm1NzY3UEvVt93/AF2/L7jZoEFABQAUAFAHk/xc+M/gj4L6CmteLryUz3jSRaNoenrHPrOtXESqZEs7eSSKNIIA6Nd31zLBaWweJHla4nt4J/hePPEPhvw7yuOY59iZ+1xDnDL8swsY1cwzGrTSc44elKpTjGlSUouvia06WHo80Iuo6tSlTn9/4e+GvFHiVm0ss4ew0FSwyhUzHNMW50sty2lUclCWJrRhUnKrVcZKhhqEKuIrOM5KmqNKtVpfnh4x/bN0/wCKZsPDOp+D38IaT/bdtcQa2/iFtVjgBSezWXV7GLRLNltkW6NzNNaS3M1okTrFbXpcMv4Hkn0rMrxudUMHnHC9XKMoxFeNH+1KWarH1cHGc+SGIxWE+oYVSoq6niPYV5VKMFJ0qeJklGX9F559EPNsvyPEY7JeK6WdZzhsPOv/AGTUyh5fSxsoR554bB4z+0sS415WdPDrEUIUq9RxVSphYylOH6J/CHwRe+BPCz6fqF/b311qF/Jqj/YZHlsbdZre2hjjtpZEiM26O3WWSYRRo7SbUVkjWR/61jKM4xlCSlGSUoyi04yi1dSi1dNNO6admtVe5/HFRSU5RlGUJQbhKMk1KMou0oyTUXGSd001dPR2t73qlMgKACgAoAKACgDG8RaSdd0HWdFW5ezbVdMvdPW6QbmgN3byQCXaCpdUL5dAy703JuXO6ga0afZ/13/L7zw74QfCDXvAevajrWtajYSLJYS6ba2umy3Ey3CzXFtO1zctPb24RUFsohhCu5eQu7R+WqyhUpJqyT373/8AbY/n91ve+iqCAoAKACgAoAKACgD5c/4UV4g/4WX/AMJR/bVl/Yn/AAkf/CR+d5lz/a+ft/8AaH2HyfJ8nzPN/wBH+0/adnk/v/K8z/R6DTnXLazva2//ANp+vz6n1HQZhQAUAFABQAUAFAHzr8X/AIQa94817Tta0XUbCNY7CLTbq11KW4hW3WG4uZ1ubZoLe4Dq4uWE0JVHDxh0aTzGWILjJJWae/e3/tsvz++/u+4+HdJOhaDo2itcveNpWmWWntdONrTm0t44DLtJYorlMohZtibU3NjdQS9W33f9dvy+42aBBQAUAFABQAUAeW/FvwJqHj/wzDpel3sNpe2eow6jCl20iWl15cFzbtBM8SSvGwW4MkMnlSKHTYyqshkQKi7O/wDwP0l+X3390+EngTUPAHhmbS9UvYbu9vNRm1GZLRpHtLXzILa3WCF5UieRituJJpPKjUu+xVZYxI4End3/AOD+kfy+63vepUEhQAUAFABQAUAY3iLSTrug6zoq3L2barpl7p63SDc0Bu7eSAS7QVLqhfLoGXem5Ny53UDWjT7P+u/5feeHfCD4Qa94D17Uda1rUbCRZLCXTbW102W4mW4Wa4tp2ublp7e3CKgtlEMIV3LyF3aPy1WUKlJNWSe/e/8A7bH8/ut730VQQFABQAUAFABQAUAfLn/CivEH/Cy/+Eo/tqy/sT/hI/8AhI/O8y5/tfP2/wDtD7D5Pk+T5nm/6P8AaftOzyf3/leZ/o9BpzrltZ3tbf8A+0/X59T6joMwoAKACgAoAKACgD51+L/wg17x5r2na1ouo2Eax2EWm3VrqUtxCtusNxczrc2zQW9wHVxcsJoSqOHjDo0nmMsQXGSSs09+9v8A22X5/ff3fcfDuknQtB0bRWuXvG0rTLLT2unG1pzaW8cBl2ksUVymUQs2xNqbmxuoJerb7v8Art+X3GzQI/Gf/g4F8Y2/g/8A4JM/tTGSUJeeKIvhV4O0yPdsNxca58ZfAAvYgQQcx6Hb6vdFQG3rbFGARnZca7tSl52X4/P+u25pSV5x8rv8Pn/Xbc/kx/4JSf8ABbvQ/wDgl/8As1eOvhAf2ddb+Nfif4gfGHXPijDqDfE62+HfhvSdMu/BvgbwfY2Q3eB/G19f6g174S1S51CWK1s7cWrabbx3Es4uPsnLSrqlFx5XJuTe9ktEv5ZX2/4e3u7zp87TvZJW2v1/rp99j6V8ef8AB1D+2/4/vRoHwM/Zx+B3gq71N2gsIb6w+IPxb8XB2B8tdMFnr3hDSri6HB/0jwpfxuAcWwyCtPFTfwwV/nL9Ir8Puv70+xit5Nr5L9Hv6r5nAQ/Gb/g5r/bXnhbwtY/tYeFtEvpUk0ufwv4E0D9lPwssLsHT7D44v9J+F7anZqThrq98WaqSN0UtwyoY6ObEz6SXyUfx039fus+V2ox/l/P9Xr93of3C/sjaB8evC37MvwP8O/tQ+I9O8W/tBaP8OvD1j8V/EOmSQT22peLYbQLePLeWkUFpqWo28XkWmsatZwx2er6tBfanaL9nu467I83KuZ3lZXfn9y/L7zmlbmfLtfT+tf67bHc/FvwJqHj/AMMw6Xpd7DaXtnqMOowpdtIlpdeXBc27QTPEkrxsFuDJDJ5Uih02MqrIZEocXZ3/AOB+kvy++/unwk8Cah4A8MzaXql7Dd3t5qM2ozJaNI9pa+ZBbW6wQvKkTyMVtxJNJ5Ual32KrLGJHAk7u/8Awf0j+X3W971KgkKACgAoAKACgDG8RaSdd0HWdFW5ezbVdMvdPW6QbmgN3byQCXaCpdUL5dAy703JuXO6ga0afZ/13/L7zw74QfCDXvAevajrWtajYSLJYS6ba2umy3Ey3CzXFtO1zctPb24RUFsohhCu5eQu7R+WqyhUpJqyT373/wDbY/n91ve+iqCAoAKACgDH8Q/8gDXP+wPqf/pFPXn5t/yKsz/7F+N/9Rqp6OT/API2yv8A7GOB/wDUmkflb/wTy/5KF48H/Umwfprdl/j6/nX8RfRP/wCSr4n/AOyepf8Aqywx/ef0wf8AkkOFP+ykq/8AqsxR+tVf3af59ny5/wAKK8Qf8LL/AOEo/tqy/sT/AISP/hI/O8y5/tfP2/8AtD7D5Pk+T5nm/wCj/aftOzyf3/leZ/o9BpzrltZ3tbf/AO0/X59T6joMwoAKACgAoAKACgD51+L/AMINe8ea9p2taLqNhGsdhFpt1a6lLcQrbrDcXM63Ns0FvcB1cXLCaEqjh4w6NJ5jLEFxkkrNPfvb/wBtl+f33933Hw7pJ0LQdG0Vrl7xtK0yy09rpxtac2lvHAZdpLFFcplELNsTam5sbqCXq2+7/rt+X3GzQIKACgAoAKACgDy34t+BNQ8f+GYdL0u9htL2z1GHUYUu2kS0uvLgubdoJniSV42C3Bkhk8qRQ6bGVVkMiBUXZ3/4H6S/L77+6fCTwJqHgDwzNpeqXsN3e3mozajMlo0j2lr5kFtbrBC8qRPIxW3Ek0nlRqXfYqssYkcCTu7/APB/SP5fdb3vUqCQoAKACgAoAKAMbxFpJ13QdZ0Vbl7NtV0y909bpBuaA3dvJAJdoKl1Qvl0DLvTcm5c7qBrRp9n/Xf8vvPDvhB8INe8B69qOta1qNhIslhLptra6bLcTLcLNcW07XNy09vbhFQWyiGEK7l5C7tH5arKFSkmrJPfvf8A9tj+f3W976KoICgAoAKACgAoAKAPlz/hRXiD/hZf/CUf21Zf2J/wkf8AwkfneZc/2vn7f/aH2HyfJ8nzPN/0f7T9p2eT+/8AK8z/AEeg051y2s72tv8A/afr8+p9R0GYUAFABQAUAFABQB86/F/4Qa94817Tta0XUbCNY7CLTbq11KW4hW3WG4uZ1ubZoLe4Dq4uWE0JVHDxh0aTzGWILjJJWae/e3/tsvz++/u+4+HdJOhaDo2itcveNpWmWWntdONrTm0t44DLtJYorlMohZtibU3NjdQS9W33f9dvy+42aBBQAUAFABQAUAeW/FvwJqHj/wAMw6Xpd7DaXtnqMOowpdtIlpdeXBc27QTPEkrxsFuDJDJ5Uih02MqrIZECouzv/wAD9Jfl99/dPhJ4E1DwB4Zm0vVL2G7vbzUZtRmS0aR7S18yC2t1gheVInkYrbiSaTyo1LvsVWWMSOBJ3d/+D+kfy+63vepUEhQAUAFAH//T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKAEJABJIAAySeAAOpJ7ACgD/OH/AOCu37Svwevv+C3Nv8fvCfjDSPin8LPhZ48/Zh1nW9b+GWraN4sttTg+Ftp4J1Lxpo3h3UrfUodC1PWLG50vVNJEX9rwWS6xC1nc31t5VxJF59WUfbc3xJOLdutt1v5d18rnXTi/Z22bva/S+3+fX8Go/Zn7Sv8Awc8/tYfHXV/+FYfsKfAm2+FNx4iuW0jw/wCIdU01vjR8bdauZtwtm8MeErXS28GaLqUykqdKn8P/ABGl3RiS11CJiQtyxMnpCNul37z+Ssku/wBr5bkxopayd/K1kea/An/gg/8A8FOv+Chvji3+N37eHxN8VfCHR9aaKe98Q/HDVtT8f/HPUdJeQ3Cab4d+GkmqIvgvT4SZrSDSfF2seDP+EfDRSaf4TvrNUtWSoVaj5qjcV56y+Surejfpa1hurCKtFX9NF89vwv6q1j+uf9gn/gl5+yV/wTp0DULb4CeD9QuvHfiPSrbR/G3xf8caiPEHxG8W2VvPFef2fPfxwWOkeH9DkvoLa7k8P+EtG0HSLq5srC81O21HULG3vU6oU4U17q16t6t/12Wn3c0sJTlLd6dlt+v4u/rY/RCtCAoAKACgAoAKACgAoAKACgAoAKACgAoA/Fo2mqftcftO31jeajcw+F4b3URHJC25tJ8BeHLhooUsUcNHBd6vJJCWlZJY49V1mS5kjmhTyq/zsdDG+PHjPicNXxdanktPEYtQnTlzPA8L5RVcKccLGacadfHznTvNxnCGOzGdecZ048h/pdHEYH6PfgdhcVh8JRq55Vw2Dc4VVZZhxZnNFVKksVKLjOph8vhCrampQnPAZbChGpGpPnjoftqaF8OfCPifwH4A+H3h/SdHuvDvh65fWotJtkFzM2r3NqdHg1W5Xfd6hqggtZ7wy30txePDqUErSss6Cur6ReWcI5DnXDHC3CmV4HL62U5TVeYwwNFKtUePrUXgKWOrpyxGLxqpUKuIc8TOpiJU8ZSm6klVizk+jNmnGXEORcV8W8X5vmGZUM4zijHLKmYV5OjTWX0a6zGrgaD5cPhMC6uIpYdU8LClho1MFVhGEXSlzfrZ4G0++0nwT4P0vU939pab4W8P6fqG85f7dZ6TaW93vPOW8+OTcc8nnmv7u4awuJwPDnD+CxnN9cweSZVhcVzay+s4fAUKVfmfWXtYSv5n+fPFOLwuP4m4jx2C5fqWNz3N8XhOVWj9VxOYYith+VaWj7KcLK23ax1Ne2eEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8vX/AAdYfE8eG/2Ivgr8Lra48m/+J/7ROm6tcxbubrw38PPA/i261GLZ1Ij8Q+JPCNwXOVQwqpG50ZebFO1NLvL8Ev8AO39WNqCvJvsvz/rz/WPun/BGT/gnx+yv4n/4Jofsi+Lvjt+zL8Cfix8RNZ8L+NfGcfin4n/CXwN431uHRfG3xO8YeJvDNlDfeJ9C1S6/s628O32jTWVs8z28FzLdXlpFbvezFqo04ulDmjFuzeqT3d+u39d0KpN88rNpabN9F5W/rvZs/dTwL8Kvhf8AC+zOnfDP4b+Avh3p7IsbWPgXwf4e8I2bRrjbGbXQNP0+AopAKqY9owMDgGtkktkl6K35f195ndve/wB9/wCv67He0xBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAGRr6s+g62iKzu2kakqooJZmazmCqoHJZjgADkngda4M1TlleZRinKUsBjFGKV228PUSSSu229EktfM9DKWo5rlkpNRiswwTlKTsopYmm223oklq29kfld/wTxRj4/8AHrhWKL4PtUZ8HarPrVqUUnoGYRuVBOSEYjO01/Ef0T4t8U8UTs+WOQUIuVnZOWY0HFN7JtQk0nq1FtfCz+8/phSiuEuE43XM+I68lG+rjHLMQpNLdqLnFN20cle10frRX91n+fgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAxvEeg6d4q8Pa94Y1hJpNJ8R6Nqmg6pHbXM1ncPp2sWM+n3qW93bPHcWszW1xKsVzbyRzQOVlidXVWUA/zJ/wBor/gn/wDCz9mj/gsJ8Pf2EU1/xL8SfhFqXx+/Zh8Jape+I3i0XxLqvg340ah8OtS1rQ7y/wDDTWAhvbTSfGF1oo1vSV0u4meAanbW2nTukFv5sqajWVO7cXKK10dpPyb+9W9DsjJypuVrOz/Dtv22v5an+it+zp+xh+yp+yTpB0b9nH4C/Df4Txy2y2d9q/hvw/A/i7WLZCpSLxD451U6h408SBCqlDr2vakykZBBPy+hGEY/DFL0X5vf77+r3ORyct236/1/XzZ9N1QgoAKACgAoAKACgAoAKACgAoAKACgAoAKAEIyCOeQRxwefQ8YP4/lQ9dO/b+l+f3DTs0+zT11WndaX+/7j8Mvhz431/wDZI+L/AIrTXvCTa1fW+man4UuLC4vX0ZprOfVNOv7PW9PvTp+oLNa3a6VBPb4t2hura4yJonVWX/NDhHiPNfAfj7PI5pkLzHFUsFjMjq4ariJ5c6mHqY3CYrD5lhMQ8LilUoV44KlVpWpOFejVuqkJKPL/AKl8ZcMZT9ITw7yCeU8QLLMLVx2Cz6jiqWGhmSpYmlgcZhMTlmMwyxWFdLEUJY6rSq3r+0oVqFnTqRk1Lg/BvxDkv/jfonxG8a6LceN72+8Ywaze6PBM0Ml7qNzdAafHZxGK681dMuXtZNN0nCwTiytdNeSK2dgvzPD3Fk8T4k5bxdxHl1XiTEYniClmGJy+lUdOeJxdavbCxw8HCqqkcFWlQng8DaNKqsPRwjlCjKR9VxLwfDCeF+Z8G8M5nR4Yw2F4crZdhsxq01OGGwdChzYuWJmp0vZyx1GNeGOx/vVaTxNfGKEq6ij+gqv9VT/IkKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+HT/g7X+IMl/8aP2O/hUJz5XhT4YfEr4gyWytgGT4g+K9C8OQzyqDhyF+GU8cDMD5ebgIR5sgbixb1gvJv77f5HTQ2k/Nfh/w/b7z+wz9lD4dx/CL9lz9m/4VxQfZ1+G/wI+EngZoSu1lm8K+AtA0SdpR1M8k9lJJO7ZeSZ5JHJdmNdcVaMV2il9y+f5/ec8neTfmziv2lP27v2P/ANkCwlvP2jv2hPhv8MbxLb7ZB4X1LWhq3j7ULYpvWfSPh14ci1jx1q8LAr+/03w9dQqZIg8i+ahYlOEPikl5dfu3/B+juNRlLZN/l9+33/oz8Efib/wdZ/so6B8QtD8NfCb9nv4y/FXwTLrdrp/ibx9qup6B8PLm30uW4WOfV/BHg2W38Var4slSJhJaaV4kvPh5c3koMEktnlJXweKgnpGTXfb7laTfza+V/d1VBtaySfpf7/6f5qP9TsEq3EMM6LIqTRRyqs0UkEyrIgdVlhlVJYZACBJFKiSRsCjqrBhXSYEtABQAUAFABQAUAFABQAUAFABQAUAFABQAUAc9ofhLwt4Yk1KXw34b0LQJdZuvturSaNpNjpj6nd5kIub9rOGFrqYGWVhJMXYNLKwO6V2byssyLJMlljJ5PlGWZVPMK/1nHTy/A4bByxmIvJ+2xMsPSpuvUTqTalUcmnObVnOfN7GacQZ9nkMFTzrOs1zanltD6tl8Myx+KxscFh/dXscLHEVaqoU7QgnCnypqEFa0YqPQ16p45ial4m8N6Ln+2PEGiaTt+9/aWq2Fht+v2qeLH4/rjK+bjM5yjLr/ANoZrluBtv8AXMdhcNb19vVhb52+R6eCyTOcyt/Z2UZnj+b4fqWAxWK5vT2FGd/lf5bnO6Z8VfhlresQeH9G+IfgnV9buvMFtpWl+KNF1C/naJGkkjht7S9mkklSNWkaJVMgjR5NgRWK+TguOODMyx9LK8u4s4bx+ZV+ZUcDgs7y3FYqrKnFynCnRoYipOdSMU5unFc6hGUuVxjKUfZx3AXHGWZdVzfMuD+J8vyuhyuvj8dkeZYTC0YzkoQnUrV8NThCEpyjBVJNQ55RgmpSXN3tfUHyYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/1f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/z/8A/gpL/wArMnwy3fdH7T3/AAT36/3f7O+ApP6k+v64Xhqf7zH/ABU/zR0w/gv0nb8f1/rQ/wBACu45goAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA5nxH4L8H+MI44vFnhXw54mjhBEC69oum6t5AJ3HyDf205hJb5sxFTu568142b8OcP5/CEM9yPKM5jTTVNZpl2Dx/sk3d+yeKo1XTu9bwcXfXdHt5NxLxHw7OdTIM+znJJ1GnVllOZ4zL/atKy9r9UrUlUsm1apzKza0WpxMXhb4F/C+4XVV0P4XeA7yMF49Uns/DHh68jUjBMeoXCW08aEZB2SqmMjB5K/OQyTwz4LqrHLLeCuGMRBOccdUw+S5ViIRejcMVVVGrCFr/DUjHtu+X6epn3inxzRlgJZpx1xXh5tQngKWJzzN8POS1SnhKM69GcrpP3qXN110Of1n9qP4A6EWF58TvD9wUzxoy6j4hBI7K2g2WoI2T0Idh3yQc15WYeNfhZlrksRxnldVx/6F6xeap+UZZZhsVF/JtdeZq7PXy7wK8W80UXhuB83oqVrf2jLB5Q1f+aOa4nBSj5pxv67S6z4Z/GX4d/F631W48B67/a39iTQQ6nbzWN/pt3a/axM1nM1tqFrbSvb3Qt5/InjVoy0Esb7ZUZF9zg3xC4T49pY6rwvmf17+zalKnjaVTDYrB16Pt1UeHqOji6NKpKjXVGr7OrHmi5U5wlyzg4ngcb+G/GHh3WwFHivKv7P/tOlVqYGrTxWExuHr/V3TWIpqvg61anGth3Wpe1pT5ZqNWnNc0JRnL1CvtT4UKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/z2P8Ag6L8RLff8FLfAlpeQm9svCX7MXws017AymFJ4JviD8V/ElzB5gSTymul1oxNOI3ZV2fK4jVF4MV/EXlFfnJ/Lfz/AEj10fg9W/8AL9PL8G5J4v8A+CrH/Baz/gqjr178M/2UPCHjPwJ4SuJv7OvvD37K/hzWPDqaZBOipbnx58edZvptR8LhoZPKuLs+NPAHh28WdFm07mBVHVrVdIJpf3f1lp/7b8r2kKFOnrJ37OX6LT8b97rY+m/2Z/8Ag1h+PHxGv4vHH7bf7QulfD1tXuf7V1rwd8NWk+JvxK1Ka6fzL2LxB4/182vhLRdaaVpJJb/TbX4lWkzbWaZnlcpUcLJ61Jfdq/m20vwfbTQmVZLSEb/gv0/L7j+j39lT/gi7/wAE6v2QbrRtf+HvwC0bxn8QdCntb2x+J/xkuG+JvjO31SydJbPWdKj1yIeE/CusWsqLLb6j4L8K+GrmGX95GyOFNdMKNOG0Vfu9X+O3yUfR393F1JveT9Fp+XfzP1QrQgKACgAoAKACgAoAKACgAoAKACgD5o/aJ/aOtPgDH4WWTwld+KbvxPJqbRomqDRbO0tdJ+wi5d71tN1UzXTvqEAhtEtlGxZJJriL9ykv454s+LtDwtjkilkVfO6+dTxjhGONWXYehQwP1ZVpSxLwmNdSu5Yql7OhCilyKcqlWn7in+2eDvgziPFqeeuHEGHyHD5HDBKc5YF5liMRXzD606EY4ZYzAqnQjHCVfa15Vm+aUIU6U/flD5iuf+CjEITFn8I5GcjhrnxwqIp/3IvCUhcA9vMjz6jGK/Ga30t4cv8As/Ac3LvW4kjGMX/hp5FJy/8AAo/pL9xofQ2qOX+0+IMFBPahwxKUpLtzVM9gou19eWfprc4fU/8AgoV8RrklND8C+DbAudqDUJNb1mQE8AL9lvdFVn9PkIJ6ocAV81jfpXcXVfdy3hnh7CuTtH63PMswkr6JL2GKy5Slrp7tm94tO0fqMD9EHg2gubNeKuJMWoq83g4ZZlsNN2/b4TMnGP8A287Lrq+XG/4aX/bC8X/8izoWqxLLwh8LfDOXU1APdJNQ0vXMAD+Ivx1JOAa8/wD4jH4/59/yJssx0FPb+xODZ41JP+WWKwWZO1urfnfQ9L/iCX0dOHv+R3muAqOn8Sz3jingZNr+aGDxmVa/3VHXblewf2b+3t4x58z4m2gl/wCoppvgbGf9n7b4eMX0+THbOc0fVPpQ8Qfb4yw/P/1G4Lhq1/L6xlXJ6WjbsvtH136J3DmnJwRiHT/6gMbxRe3n9XzdVNurd+71lI/4ZP8A2r/FX/IyeIPL83/Wf8JP8Q73VcZ6+YbCXXN3vtD57A0f8QM8cs8/5HGacnP8f9tcWYnHb7uf1WWZ37O3P/29qpH/ABH7wByH/kS5Rz8nw/2HwfhcBttyrF08rt5XlHz2sbmmf8E8viDNt/tnx54Osc/fOm2+t6uRnrj7VaaLuP125/2cDd6WD+ifxVUt/aPFHD+F/m+p0syx9u9vbYfLb/O3qeXjfpg8I07/ANm8J8R4q3w/Xa2WZenba/sMRmXKn5J27O1j274Y/sJ6T4F8Y+G/GOr/ABDvtfn8NatZa3aabYeH00OCS/02ZLqxE92+tatNJbR3UUUk8SQQG5jVoGZEd2r9I4M+jJgeGeIMn4gzDivE5rUyfHYbMqGDwuVQy2nPF4OpGvhva15Zhjqk6MK8ITqQjCm60Ium3GMmfmHHH0qcw4q4czrhzLuD8LlFLO8Bicsr43FZvPNKsMJjKcqGK9lh4Zbl9OFedCdSFKpKpUVCclUUZyjE++6/qQ/ksKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/z/8A/gqN/wASn/g5I+GGpy/JE37QH7A+q724XyrSH4NQO4P90GwcE9ip964av+8x/wAVP9Dqp/wuu0v12/rc/wBACu45QoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD84vjr+2t4m8IeMvEHw9+H/hOxW/0LUX0a413xALq+lub1AqS/wBl6HamzVFWVttnc3V5eJeIUmFkqMit/Ivib9IzOcg4hzXhThbIsMsVlmLll9bM81VbE1K2Jjyxn9Sy2hLDqMVUdsPVrV8QsRFxn9WjGSUv7N8K/ozZJxFw3lHF/F3EGKlhM1wccxo5VlDoYWnRw0nKUFjs0rwxDlJ01fEUaFDDSw0uam8VKcJOPhqad+298aR500nj2y0u7GT9ourf4daK1tJ90/Ykk0D+0bbaRsaO1v3kX5yZSGevzSOE+kj4ir2k58UYfA19X7WvR4Ry6VGWz+rKWVfW6NmrONDFykkp++05S/UZY36L/hp+7pw4TxOPw+i9jh63GWZxrR3X1mSzZYOtdPmU8RhIQfu+4vcOl0T/AIJ9/EjVH+0+LfHfhfSHnbzJjYx6t4lvgW+8Z/tEehwPMDnOy8lRuD5vNexlv0VuL8bL22e8TZLl8qr56n1aGOzjE3e7q+1p5dSlUvvy4icXuprU8XM/pdcF4CPsOH+Fc8zGFJctNYqeX5JhbLZUvYzzKrGn25sNTktvZrU9g0b/AIJ4+A4Av/CQePvFuqEY3/2RZaPoasR1wLyLxAyqT23MQDjJxur7/L/on8MUkv7V4pz7Gtb/AFDD5flsX6LEUs1aT7XbXd3R+dZl9MHiuq5f2Rwlw/gE/h/tDE5jmsorpd4ark6bX+CzfRK59U/CP4GeAfgpZ6rbeC7XUPP1yS0fVNS1e++3ahdpYrOLOAukNtbQwW5url1S3tod7zu02/bGE/b+A/DThbw5w+Oo8O0MV7XMp0JY3GY/E/WsVXjhlUWHpOUadGjTpUnWrTUaVCHNOrJ1JT5Ycv4N4heKXFnibiMBW4lr4T2WVwxEcBgsvw31XCYeWKdJ4mqoyqV61SrWVChFzrV58sKUY01G85T9hr78/OQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPOfiT8YfhJ8GtHj8Q/F/wCKPw6+FWgSu0UOt/Efxt4a8D6TNKgUvFFqPibU9Ls5ZVDKTGkzON68DcK4sbmWXZZTVbMcfgsvpN2VXG4qhhaba3SnXqU4tq60T662umfTcL8FcZccY2WW8F8J8TcXZjCMZTwHDGRZpn2MhCV1Gc8NlWFxVaMXaVpSgovldnoz+B//AIONNa8Iyf8ABTf4F/FvTNU8O+PPhp40/Z6+Bnj7S9c0e803xT4O8VeGdM+JPxG0y8NhqOnS3+k67pd5b6DKZPs091b3NtdqPninQNg69DEqjicNWo4jD1qcKtGvQqQrUatOTfLOnUg5wqQktVKLcWtrnHmGU5rkWOx2TZ3luYZNnGW4mrg8xyrNcHicuzLAYuk7VcNjcDi6dHFYXEUpaVKNelCpB6SjFq0v9AjwxoHhjwzoWm6L4N0TQfD3hm0toxpGk+GdN0/SNDtbSRQ8Q06w0uC3sILd1YOgtoljIIIznNeoeM79b/M3qBBQAUAFADEkjlXfG6SLudNyMrrvjdo5EypI3RyK0br1V1ZWAZSFAH0Ac3c+MvCFn4o07wPd+K/Ddr401fTrnWNJ8IXOuaXB4o1PSLNnS71TTvD8t0urXunWrxSLc31taSW0DRuJZVKMFLrbr/X9f8MFnv0/r+v+HOkoAKACgAoAytb13Q/DOlXuu+JNZ0rw/oemwm41HWdb1Gz0nSrC3BCme91G/mt7O0hDMFMs8yICwBOSKG7avReYGb4R8beDPiBo8fiLwH4u8MeNvD800tvFrvhHXtK8SaPLcQbfPgj1PRrq8snmhLL5sSzb49y71XIount/n/X9dgs1v/l/X9dzp6AMLxB4X8M+LLNdO8U+HtD8SWCSCZLLXtKsNXtEmClRNHb6hb3EUcyqxCyom9QSARmvMzXJcnz3DrCZ3lOW5xhYz9pHD5ngcNj6EalnFVI0sVSqwjUSbSnFKSTdmrs9XKM9zvIMS8ZkWcZpkuLlD2csVlWPxWX4iVNtSdOVXCVaNSVNtJuEpcjaV07Ll422+CXwbtHElv8ACj4cxyA5WT/hCvDrOp/2HfT3ZP8AgJGOgzzu+epeHHh7QkpUuBuEYyTupf6u5RKUX3jKWDk4/wDbrXy+z9JW8TvEjERcK3H3GU4NWcP9Zc4jGS/vRjjIxl8/x0Z22meHPD2iALo2haNpAAwBpml2VgAOmALWCIAY4wB9e1fSYLKMpy1JZflmX4BLRLBYLDYVLyXsKUP0X3WPmMdnOb5m75lmuZZg27t47HYnFtvv+/q1NfP8rmzXoHmhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Az/g5M0TWPgT/AMFT/gl+0JpNs0ia/wDC74Q/EfTbj/VxzeLPhN4817S7rThJj/WW2naB4TuZHG7ampxD+HFcOI92rGXdRfzT+XS3X7jqo2cGvNp/P7vz+av7v963hfxJpHjHwz4d8X+H7pb7QfFWhaR4k0S9TGy80jXNPt9T026TazLtuLK6glXDMMOMMerdxyvTTt/Xn+f3m7QAUAFABQAUAFABQAUAFABQAUAfmz+zf/wVi/Yz/aq/aa+J/wCyZ8JPGuv3vxY+GD+JVmGueGp9F8MeN18GaoujeLpPh9rc1zIddHh++bdcRXlnpNzqOnJc63oMWr6JZXuo2+casJycYt3V+llpvZ3d/uXlezLlTlFKT2f69/6f4tR/SatCAoAKAMMeGPDQ1p/Eo8PaGPEckSQSa+NJsBrTwRoEjhfVRb/bniRAESNpyioAoAAxXmrJcnWYyzhZTlqzecFTlmqwOF/tGVOMVGNOWO9l9ZcIxSioOryqKSSSVj1HnmdPLI5K84zR5NCpKrDKXj8X/Zkas5c06kcA631VVJS96U1RUnLVu7vLcr0jywoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8p+NHxy+EP7O3gHVvih8b/iH4Y+GfgPRF/03xF4p1KOxt5Lhkkkg03TLYCXUNb1q9ETrp2haLZ6hrOpSr5Gn2NzMdi+fmea5dk2EqY/NMZQwOEpfFWxE1GLk9oU46zq1ZWfJSpRnUm9IQbZ9fwNwBxp4l8RYPhPgLhrNuKuIcc/3GWZRhZYirGmpRjUxWKqtww2AwNByi8TmGPrYbA4WEvaYjEUoXkfyUftr/8ABx/8TPiPrc/wf/4J3+A9T0KPV74aBp3xe8VeGk8SfEnxPe3cv2S2T4bfDPyNT03RnvJyo0u68TWviXXNQhuYgPDHhvU4wF/nvifxpx2NqvLuDsJUpKpP2MMxxFBV8bXlJ8sVgcD+8hScnb2cq6r1ZqX+70aiR/sb4E/sxeFeGMBT40+krxDhMwlgqH9o4rgzKM0eV8L5VQow9tVfFHFXPhcVjo0ad/rdHKquVYDDTpT/AOFbM8LNuXz58FP+CEX/AAUY/bk1z/hdH7ZXxW1P4QHxKqXMus/Gi/1z4pfG6+tJiZrcDwI2tWS+HbCAPJFHonifxd4U1LSf3cEPhuO2wV8fLPCjjPimr/afEuPnlzrpSdXM5Vcfmk4vVf7J7WPsYRu0qVfE4edPSKoKLvH9I46/aC/Rm8A8B/qN4IcIYXjRZW5UoYHgahgOEuA8PWguSp/xkP1DEPM8RUajOWPynJc3wmM96pUzWVa8ZYn/AAX1/wCCamjfsY/sjfsDXfw+1nxD438OfCG4+J/wQ8ceNtfgihvdT1f4i6/qHxl8MXI0+zkmtdB0p9cf4qR6fpkc11FZ202mWs1/e6i1zfal/QWRcPUOGMiy/JsNXq4mnglWTr1kozq1MRXq4mpJQi3GlD2tSfs6cXLkhypznNznP/GDxv8AGDNfHfxU4r8UM5yrL8jxnEtXL+TKctlOrh8Dg8pyvBZNgKEsVVhTrY7ExwWAoPFY2rCk8TiHUnTw+FoKlhqX9Xv/AASk/aX0z9rD/gn9+zL8WLbU49S8Qw/DbQ/h/wDEQeaHu7X4kfDazh8F+MDfw7mktJdX1HR/+EmsoJv3j6NrumXatLDdRTP9PSlzwi/Kz9V/Vz8dqLlm153Xo/6/q5+h1WQFAHm/xa+MPws+A/gTW/id8ZviB4T+GXw/8Ow+dq/izxnrVloej2xYMYLSO4vJYzealeshg03SrFLrU9Tuilpp1ndXUiQsm1FXk0l3en+X5/dcaTk7JXf9f1/w5/FZ/wAFMv8Ag4R+KX7U2rXX7KH/AATZ0bx7oXhjxlqQ8HXHxZ0TStXj+NPxbm1GU2EXh74U+GtOt38Q+CNG1mR9sOpKifEXW4JreGK18GbL+w1Tjq13J8lO9npdbvyS3+e77R2OiFJL3p7720svXv8Afb1P28/4IIf8E9v2hf2Cv2c/H6/tGeKpE8X/ABx8S+HfHMPwcg1Z9a0/4SJp2laha3J1HUI5pdLk8d+Lv7RtW8Yx6I95p1tD4d8P239r6leQ3X2XehTlCL5nq3e3b/gvrt21s2Z1ZKTVtlp6+nb7/uP3frYyP4E/+Cm3inXvg7/wcnfDL4latrmq2GiWvxq/Yi8SWVw9/cwxWPgBNG+Fvhrxfplk5lC2ujak2neNI9TtItlpcvqusG4ikN5debw1HbExfnDvts+/nsreup1Q1pNeUv19PLr92h/fZXccoUAeP+NP2g/gT8OPH/gX4U/EH4yfDHwT8TfifJ5Pw68AeK/HHhvQfGHjaU3Jsoo/DHh7U9StdU1hrm+B0+zFjbTfbdR/4l9p516fIpOSTSbSb2Tau/RdRpNptJ2W/wDX9W+Z7BTEf53H7UXxj/at/wCC+v8AwUa1D9mr4IeKjp3wJ8K+I/FUPwx0DUNV1Cy+GnhP4a+BrttM1b46eO7TS4rhtY8Q+JzJb3dnNJaahqFnN4k0HwPos8duz3dxwSc69TlTtFN27JLRyfd6/ouXWZ1xSpQ5mtXv/l0t/W9rl39hLxD8d/8AgjD/AMFkdI/ZD8Z+NRrngDx78SvAPwZ+J1rpUl9beCfHXhr4u22in4XfE620i8llj0zWfC974s8P6zNdBbrUtItovFvhAajNaX1/LdFNyo1uRu6bSfZ32e+j2v8AFba/WRNKpT5luk2utu66/wBdtz/Q6rvOQKACgAoA+Wv2x/EmueGPgZrt74f1a+0W/utW0HTXvtNuZbO9FpdXwN1BDdQNHPALiOLypmhdGeBpYWJjldW/E/pBZvmeS+GmZ4nKsdicuxNfH5Zg5YnB1p4fEqhXxKdanTr0pQq0vaxhyVHTnFypOdNtwnOEv3f6OGS5XnninlWFzfL8LmeEoZfmuNjhcbRhicM8RQwrVCrVoVVKlVdKc/aU1UhOMKqhUSU4QlFn7G3iPXvE3wN0W98Rarfaze2us67p0F9qVxLeXrWNreA20Mt3O0k84t/NeGEzO7RwLFAhEUSKs/R7zfNM58NMvxObY7FZjiaOY5nhKeJxlaeIxDw1GunRpzr1ZTq1VS55U6bqSk4UowpRahTiov6SGTZTkfilmeFyfAYXLcNXy3KsZUwuCoww+GWJr4a1apTw9JRpUnVcI1KipwhGdWU6rTnOcpfVFftx+DhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5UP+DrP9nm68afswfAX9pDSNPe6uvgb8TdW8F+Kbi3iO+z8GfGHTbBIdU1CUYBsrHxn4K8MaNbeYWMV74sAhVRdXDNy4qN4xlb4XZ+SfyfVJbq1+tzeg7Sa7rT1X/AP0p/4IR/tPaX+01/wTV+AUn9qxXvjP4IaGn7P3j2xMwlvNNv/AIYwW2leEZLvc5nkOsfDd/Bus/apVxNc3t5CJJZbWd61oz5qce6XK/l/mrMirHlm+z1Xz/r+rM/XLW9c0Xwzo2q+IvEmr6Z4f8P6Fp17q+ua7rd/a6Vo+jaTp1vJd6hqmq6nfS29lp+n2NrFLc3l7dzw21rbxSTTSpGjOupmfxAf8FP/APguf8fP2qvjp4W/ZL/4Ja+IviFpPh9PGNp4ft/iR8L1v9O+JHx48cyXP2Sy0zwNPbpFrGhfDiyn3vHdA2N54s2y6nqz2Phi1jgv+KpXlOShSbtfdbyflpdLr57+6laXTCmormnb0a0S8+7P7JP2adL+M2ifs9fBPR/2itZ03xF8eNM+F/gmx+L2uaT9lNhqnxDtvD9hF4qu4ZLGG2sLhpdWW5Nxd6fa2mn3lz5t1YWdpZzQ28XXG/LHm+Kyv6/h+X3HPK3M+Xa+n9a/122Pb6oR/Nr/AMFy/wDgtfr/AOwXdaR+zZ+zRDod/wDtLeK/DsHifxN4y12xt9d0b4OeFdVe4g0F7bQbkS6drfj7xAbe41HTrHXYrjR9C0aKy1TVdG1qLX9NhTnr1vZ2jFe81e/Zemzb9Vbd3vY2p0+bVvTt3f6WP5/9E/4Kn/8ABbX9gv4h/CP4x/tW33xf174a/GFG8TWXw4+P3hfTdL8N/Erwjaz2La9aeGWj0Sy1X4ca9Z2epWF3YrpMWjXWktqGi32q+HdV0C+XT9SwVWtBqU78r6SW/wCWvy+5M15KcrpWTXbp/mf33/AX42eBP2kPgv8ADH48fDLUG1PwJ8VvBuieNPDlxKES8gs9YtI55dM1SCOSVbTWtFvPtOj63YeY76fq9jfWUjGSB67otSSktmk18/v/AD08zlaabT3Tset0xDVZXG5GVlyRuUgjKkqRkZGQwIIzwQQckUAOoAKAP8+T4vWNr+wX/wAHLOian4Zgj8OeENe/am+G3iFfsai00+Dwf+1RoWh2fxD+z26bIotM06f4m+MrIWkaLbxJprQ20aRJCF4H+7xPk5J/KW+nk2zqXv0vOz6dV9339PO1j/QbrvOUKACgAoAKAPz9/b+tvFNr4S8A+J9F1zUtO0nSfEd5p+pWWn3dzab9S1KzS60bVHa2liJawGkajbRSSFjBJfp5BRppS/8AK30p6Od0Mh4XznLszxeEwGBzevhcZhsLXrUObGYzDxr5djpSoyi3LCrAYqlTnN3ozxUfZcrqz5v65+iRXyKvxDxZkeZ5XgsZj8wybD4vBYnF4ehiOXBYLEyw+ZYCMa0J2ji3mGErVIQXLVhhJe1U1Thy/TP7PHju8+JHwb8D+KtTmNxq9xpsunaxO2PMuNT0O9udHurybHyiXUGsl1BwuFBuuAoIRf2Twm4mxHF/h7w1neNqOrj6uDqYTMKstZ1sZluJrZfWxFS2ntMW8MsXLlSV6+kY2UY/iXjDwphuC/EfijIMDTVLL6ONp4zLqUfgo4HNMNQzGhhqd9XTwixTwcW7u2H1bd5S9pr9FPzMKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPj/APbx/ar0n9jD9ln4pfH29t7PUta8N6VDpfgXQL53W38RfEDxHcx6R4T0ydIpIbibT4tRuBq+uJayxXSeHtL1eeCRJIVetKVN1akYdHu+0Vu9pfLTdrf7PwniVxrQ8P8AgzOeJ6kIVsRhKMaOW4ao2o4rNMXNUMDRkk1J0lVmq+JUGprC0a8otONz+YD/AIJT/wDBW/8Aa38fftyeBfhn+0J8WtQ+JPw7+POq6x4XutJ1rS9As7bwn4svtMv9R8Ial4QTSNL09tHgk12ztPDc+i2syaNLpmsz3MlhLqNjYXEHfiMPTVJyhHllDXS+q6p3bvprd8ruut2j+OvBXxx44zTxHy7J+Kc8q5vlXEtbEYOdCvQwtOGBx1SjVrYCrgVQo0nQg8TThhJYeElh3RxEpOlKrSpTj+rv/BR//gu7+z1+xr/b3ww+DX9k/tB/tFWX2mwudE0jUt/w0+HWppuhYfEHxVpkrHUdW0+43faPA/heeXVxNa3OneINX8H3DW8z/inGnivk/DftsDlns84zmHNCVKnU/wBhwdRaf7ZiIP8AeVIO/NhcO3UvGVOtVwzcZS/6B/oxfs+vEnxu/s/ivjf654b+Gdf2WIpY/GYXl4p4lwkrTi+HMnxVNfVsHiKdvZZ/m0I4Nwq0sTluBzunGrCH88Hwh/ZA/wCCmP8AwXK+Jtr8bfjb4y1jw38GkvbiGz+KXjrT7zS/h14d0iS5C3mg/Af4Y2kmnw+IpIvJ+z3F1pBstJu7ywceMfHR14brj8cy7hzjjxTx0c0zTE1KGWqUlHH4uEoYKjTcveo5TgYuCrWtyylTcacpQ/2nFutfm/0p4z8aPosfQE4Vq8B8B5Jgs044lQp1K/CeQYmjiuJszxsad6OYeIPFdaOJnlkZ+09rTo4xV8ZSoV4/2Lw/HLnah/XZ+w3/AMEuf2S/2B9GtpPhP4ITxD8T5rL7Nr/xs8dx2eufEfVmmi8u+g0u/wDs0Vl4N0O5yY20HwnaaVa3Vulv/bUms30TX8v9E8K8CcPcJUk8vwvtsc48tbNMWo1cbUuveVOXJGOGpS29lh1CMope1dWceeX+M3j79LLxi+kPjqseMc+llvCkK/tcu4E4flXwHDGDUJ81Cpi8P7WdfO8fS0ksxziti61KpKr9Rp4HDzjh4forX2R/NB8o/tvfsmeB/wBuD9l/4sfs0+PJBYaf8QdA2aF4jS2W6u/B3jXR7iLWPBni+yiLxSSvoXiGysbm9s4ri1OraT/aWiTXEdrqVwamcFOLi9n17Po+nXz120uVGTjJNdPy/C/3/cfwj/sbftr/ALW//BAH9pr4l/s5/tBfC7VfEnws1/XIL/x78NDfSWFtqzQ50vRvjb8D/FF5anS9QXV9ItYoZGkgj0zxbpun2vh3xFJ4f8QaBbXnh7hhOdCTjJPlvt3/AL0d+nyezs/h6ZRjVSadn06/Jn9JVn/wc6/8Exrnw5DrdxefHzT9Ukt0mk8IXPwmjk8QQSlQWtXu7LxPd+FHmRiULxeJZLckZE+0hm6frNK32vSzb/NL8fS5j7Gfl6/1f8vvPzZ/ae/4OwpbqyvtB/Y3/ZqubG9uVeGx+If7QeqW08tmX3Rh4Phd4B1S5t5rsBhNa3N38TJrWKdUS60a+hLxtlLFfyR+cnt8ktf/AAKJcaH80vkv82v0XyufBXw6/wCCeX/BYz/gtF430f4tftOeLPGngr4Vz3X2vTfiB8eob7wp4U0bSb1la5b4M/AnTLfR5LtLm0w9ne6P4d8L+F9daJBqXjZblmuFhU61Z3ndLvLS3pHS/wD5L/iZblTpq0bN9l182/6/E/rx/wCCef8AwSL/AGSv+Cc+jpqHwz8OTeOvjNf6f9i8S/Hfx/BYX/jm8jni23+meFooYV03wD4ZuXMgfRvDqJe39sLaDxNrfiSaytrpeunShTWmr6ya1+WrsvJfNvQ551JT30XZfrve3/DWu0fqNWhAUAfxQ/8AB1t+zBrumeOf2cv21PDNldDSb3QZfgN481WwWWL+w/EPh/VNa8d/DTUJ5oMFLnXLPWfG9lHfM0TQHwtplqZWeazROPFR1jNf4X8tV+b+46aEtHHzuv1sf1Ff8E6f2n3/AGy/2Jv2dv2kLuyudP1r4h+A44/FttcW/wBmX/hOvB2rap4D8e3NhHgA6Pe+MvC+uXuiSgDzdHuLGRgrs6J005c8Iy7rX12f4rT/AIJhNcsmuz/PX8n527vc+1Ksk/gG/wCDi67udJ/4LCfBDVNJup21Sz+FH7O+o2u2eTdY6lZ/FLx29nHbFWZrb5re2u1EQQia4kmCl5C7cFfStF9lH8/n+X3nVS/h/wDgR/et4xsdR1Twj4p03R5TBq+o+HNcsdLmD+WYdRu9MurexlEnHlmO5kicPn5cbuMV3s5luvU/g0/4NV9d8PeGv28Pjp4Q8RGDSvGfiH9m/wAQ6d4dt9R22t9PceHviT4A1DxN4ftY5tkz6iLW3TVbiwRfO+x+H766eMR2Ezpw4X+JJdeX9Vf+vLyOmuvdXZP+v6/yOb/4Kbatp/xw/wCDjD4b+E/BF7aawdP+O/7Fvw4k1LSLmG9tDqsEnwz1DW3+1Wsrxl/D8+s3Vhqv7wPYXWkX1vOEktJEQq+9iEl0lBfk/K9r9/LQIe7SbfaT7d/X8vk/tf6CVdxyhQAUAFAHxV+3rdfZ/gdbRZx9t8c6Ba/XZYa3e4/8lM/hX86fSgrey8NaNP8A6CeJsro+vLhcyxH/ALr3P6Z+ifQ9r4o1qlv914Wzev6c2KyzDX/8uLdN/NKXT/sU2v2f9nnwjLjH23UvFV0ffZ4k1Oyz+Vpj8PavZ+jnQ9l4T5DUt/vOMzyv68ucYzDX/wDLe3yPD+k1X9r4w8Q07/7rgshoenNkuBxNv/Li/wA/I+rq/cj8CCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8Z/aH+A/w+/ae+CHxP+AHxT059T8BfFbwlqXhPX4oGjS+s0vEWXTtb0maWOaO21zw7q0Fhr+g3jwyrZazptjdGKUQ7KUoqUXF7NWf9a/l940+VprdP+u35/cf5+DW/wDwUt/4N1P2k/Gt14a0aHxF8I/GlwmlReJdf8M67rv7PXx18N2FzdP4X1HUJNJ1TTLjwp8QtEivLg/2UniLSfFfhu6vNQsvM13wnqon17g/eYeTsrxffWL7apaPX9Pe3j1+5VXn2vqvz+9r79TV8d/tN/8ABZL/AILu6zafCbwX4O1OD4NT6nbDWfC3wp8P6z8OP2edKkt7mORNT+KXxD8Q6pq8uvNp5iTUINA8R+L9aL3tgbvwj4P/ALYVIWblWr6JWj5e7H5t7/j/AIXoLlp09evnq/l0v5pL56KP9XH/AASe/wCCMXwZ/wCCbfh5fHGu3Wm/Fr9qbxHpRsvFPxXlsGj0jwhY3kY+3+D/AIUWF9GLvR9Efm31bxLdpD4l8WqrPepo+kSweGrLppUY09d5Pd9vJb6X63TfVbGFSo56WtHtf8z9qK2MwoA/z5PiFpmkfFD/AIOem0b41wQajosv7Y3hGwTT9cRZrG/tvBfhHRF+FGlXNtdBobrT7+TQPBtlHYypJbX9tOlq8UsM7RtwvXFa/wAy/COnbsv+DsdS0o6fyt/5n9RP/BeD9kX/AIa2/wCCdXxctdC0f+1fiT8Dki+PPw6EFv52oy3PgS2vJPGujWYjU3dzJrvw6vPFdrZ6Xblv7Q16LQj5E89tbqvRXhz033j7y+W6+auv+GRjSlyzXZ6PW3+fX+le5+Z3/BrB+2JaeOPgJ8UP2LvE+rqfFnwS167+Jvw1sbmcCW8+Ffj3UEPiew0y3LMzQeEfiPcXOp6pMQih/iVpkcavslZM8LO8XB7xd16P/J/mXWjZqXfT5r87r8vQ/pb/AGkPAPin4rfs9/HP4Y+BvFOo+B/GvxD+EXxG8FeEfGOkXElpqfhjxL4n8I6vo2h67Y3cMkFxa3GmaneW13HcW09vdQGLzbW6trhYrhOmSumr2bTV+11v1/L7zGLtJN7Jp/1/T9Hsfx6f8Gof7RnjSL4s/tK/sna3rOqX3hG/+Hlv8dPDWh6jc3Mtr4a8SeF/F2geCPGc2l20x2Wc/imDx34bfWkUBribwzZTFFkW4d+TCyd5Qd9ubXo07P77q91063Z0V0rKXW9vXTT1P7c67DmCgD+BH/g6I8O33w3/AOCivwJ+MGgL9ku/EP7P/gTWoLsAgt4u+HXxM8eRfaN67SfI0p/CiAA718rO4BkFcOJ0qRl/dX3pv1t93nrc6qOsGvN/c18vz+61z+9Hwv4gsfFnhrw74q0tt+m+JdC0nxBpz7g26x1mwt9RtG3LhWzb3MZ3AYPUYzXctde/9eX5fccr007f15/n95u0AFABQAUAfI/7b1r9o/Z+8QTbd32HXPDF0D/c36vBZbh6Ei82cdmx3r8H+kjQ9r4V5rUtf6rmWS17/wAvNj6WGvs/+gjl6fFu7tH9CfRgruj4u5RT5rfWsszyg1/Mo5dWxXL564ZS/wC3b9DM/YSuvtHwJjh3bvsPjDxFa4znZvXT73b7Z+2b8cfez3y3F9GSv7XwyhTvf6tn+bULfy80cJibf+XHN8/Q7vpVUPY+Ks6lrfWuHcnr3/m5ZYvDX/8ALfl/7d9D7Lr+hT+bQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/ki/4OYv2hGn1j9nz9lvSr4i306x1X44+N7NJN0cl5qEmoeCfh6JVXCxz2NrZ/ECeSKUs7Q6tYzhIkKPP6OChZTqP/AArySs5P8vu8j+Hvpd8Tzq4nhXgrDTlLkhV4hx9GHvOdWtKrluUx5Y6+0hGGaPlfNJqvSajFNOf8wdvc/wDCYeMPDlp8CtO8TaLrurW3gvwp4Zhj1xYNf1D4iTaBovhzWNU0vVIZrJdIi8U+OG1LVNGtXvF/saw1S0sZ71hbPKvyEM6jxvwPxBi8np1YyxmC4kyzL+Woo1qtSjDGYPB1oTjyKnLENUa0FzL2fPFSm7Ocvu8X4K4j6Ev09Po38IeJeJwNT/VLjH6LviHx2sTg51stwFPO63BPFHGmU4jD1liJ4zC5PXq5zlWIqex/2tYOrUpYWmp06Mf6y/8AgnB/wbpfD74V/wBg/Fz9udtF+K3xDi+zanpXwM0yf7f8K/CdyNs8S+OL8CM/EnWLZxGlzo0Qh8BwzJd2tzH42sZre7T8m4L8GsHgPZZjxV7PH4xcs6eVQfPgMPLdfW6ll9eqxdk6SUcImpRksXCSmf8AQX9J39phxHxd/aHBvgCsdwhw1P2mFxfH2Kp/VuLs4pa05vIMM3P/AFXwNWPNKljZupxDUhKlWpPIcRCpQl/UHp+n2Gk2Flpel2VppumabaW9hp2nafbQ2dhYWNpCtvaWVlaWyR29raWsEccFvbwRxwwwoscaKiqq/usIQpwjTpxjCEIxhCEIqMIQirRjGMbRjGKSUYpWS0VrH+UGIxOIxmIr4vF162KxWKrVMRicTiKs6+IxGIrTlUrV69ao5VK1arUlKpUq1JSnOcpSm3JtluqMQoAKAPnT9pH9kf8AZq/a98Iw+B/2k/g14K+Lfh+zeeXSR4l0+RNb8PT3SJHdXXhXxXpU+neKvCl5dRxpFc3fhvWtLubmJFhnleMKtTKMZK0oqS8+np1Xyt6rcak4/C7f1/X9M/Jh/wDg2q/4JXNrTaqPhz8VI7EzGUeG0+MvjE6KiEki3Wd55PERhUfKC2vNOQBunJJZcvq1Ls/Tmf8AwX/5N9+5p7afkfoD+zt/wTC/YE/ZTvLLV/gb+y18LvC/ibTTE+n+NdZ0u78f+PNPmhIYT6b44+Id94p8V6XLJIBJKdM1ezSR1jJj2xRImkacI/DFJrru/vd3/wCTS+VkiHOT3k3+C/DT+vNn3jVkhQAUAFAHDfEj4Y/Dj4xeDdY+HfxZ8B+EPiX4C8QJBHrng3x34d0nxV4Z1VbS5ivLQ32i63aXun3Elne29ve2U0lu0tneQQXds8VxDHIqaTVmk0+j1X4jTad02n5Gt4Q8H+E/h/4Y0LwT4E8MaB4L8G+F9NtdG8NeFPCuj6f4f8OaBpFlGIrPTNG0XSre007TLC2jASC0s7aGCJRhIxk00raLReQm76vV+Z0dAH8QP/BQj9kP9p79qH/g4X+HlpdfBT4izfBmPxt+zPe6f8RLbwpq914E/wCFK+AdG8HeJfiPr83jBbJvDlsbLXI/HWk/Y72+t7ga89honlS3l9ZLd8dSEpYhaSteOtm1ZWb6pb3W+/fQ6YyUaT1V7PTbV9Ov4L5P7X9v1dhzH8eP/BRP/g2b+Ifxh/aG8bfHX9iz4q/C/wAGaN8U/EereMPFnwy+K974u8MWvhHxP4kuZ7zxNceCfEngzwn40N74d1rUry81CPw7qGi6OfD8dzcadYX+o6f9js7TkqYduTlBpX1s7rXra3fzX33OiNZJJSTduqs/S92tf600cfoD/glv/wAG5dt+x38bfBf7TP7SPxk0X4m/Er4bXk2r+Afh/wDDTTNStfh7oviWTT7zT4fEeu+JvE1pp/iHxVNpa30l5omm2vhvwpBYavaWepXl3qsS/wBnJVLD8jUpO7WyWiX33b69I/OyFOtzJxUbJ7t7/rb8e2mko/1HV0mAUAFABQB8U/t66ZcX/wADrW6gRmi0Xx1oGp3hAJEdvLp+uaOrtjgKbvVrVMnA3Oo6kBv5z+lDg6uK8NaFenFuGXcTZXjK7V7RpTwuZ5epPsvb4+jHWyvJLdpS/pn6J+No4XxRr0Kskp5lwtm2Cw6bScq1PF5XmMoru1h8vrysru0W9k3HpP2JtZtNT/Z78MWVs6tP4d1bxRo9+qkZjup9fvtejVxxhjY63Zye6uDznNev9HHMKGM8Kclw1GSdTKcdnWAxSTu4V6uaYnNIqS6N4bMsPLXpJPqeN9JzLsRgfF7PMVWjJUs4wGRZjhG72nQpZThcpm4vqlissxEetnFryj9ZV+6n8/hQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9L+/igDyH41/wDCY/8ACHD/AIQ3+0ftP9owf2n/AGR539p/2Z5Nxv8As32f/Sdn2n7N9p+zfvvJzu/0f7RQVG19fx/q33/5B8FP+Ex/4Q4/8Jl/aP2n+0Z/7M/tfzv7T/szybfZ9p+0f6Ts+0/afs32n995ONv+j/Z6Ala+n4f1b7v8z16gkKACgAoAKACgDF8R/wBrf8I/rX9g7f7b/su+/srdsx9v+zS/ZceZ+63+dt8vzf3W/b5nybqBrdX2vqfO3wL/AOFmf8JBrX/CUf8ACR/2J9ik87/hI/t+f7X+0weT9h/tD975nk/avtP2f9xs8vz/AJ/s1Bc+W2lr36W/T+u3U+o6DMKACgAoAKAIp4ILqGS3uYYri3mQxzQTxpNDKjfeSSKQMjoR1VgQe9ABDBDbRR29vDFBBCgjihhjSKKKNRhUjjQKiIoGAqgKBwOlAHyP/wAXi/4XD/zMP9nf8JD/ANPn/CMf8Iz9r/8ABZ5H9m/9vn2z/qIUGnu8vS9vnf8APf8Aqx9e0GYUAfxi/wDBw/8A8E1/jnovx30X/gpt+ypo3iTV7uwi8G6n8Y4vAltdXfjX4d+OfhfHp9v4K+M+lWWnxzX1xoUOiaH4esdcvrG2lk8J6h4XtfEGo79M1W+u9G5MRTldVYXurXstVbaW/onppa7v9nopTVnCVrdLve+68v8Agnwr8Qv+DmH/AIKB/GP4M6P8EPAPgb4f+CPjD4iTSPDWqfGD4eaFquueOPE0rmK0li8IeBdTXWPD+heI/FMuy3vJbOw1tYzeXcfhfS9DupNPm03N4mo48qSUtFzLf5Ller9X5Wv7tKjFO9212eiX/DfLv3Us/wDYN/4Jq/8ABWn9jj9t39i343eG/gD4p0uP4g6x4c8QeOL+0it/+EU8GfDDxfrdxo/xL8E/G5LY21j4E1aPwG1xr7eHL+P7Xp93eaDFoEE/jjRpdD0op060JwfLvvtZJ7p9nb9Lczdok503GS5tturv0tu3rpfZ+V7n+hpXecp/n+/8G4zDwZ/wV5+MnhS+/wBGvLj4QftA+D1t2Oxje6N8TfAeqT2wX5ctHD4bupCgHAhZsDbXDh9K0l5SX/ky8vL+7+Fjqq600/NN/c/T8vu0P7X/AI6f8LM/4SDRf+EX/wCEj/sT7FH5P/COfb8/2v8AaZ/O+3f2f+98zyfsv2b7R+42eZ5Hz/aa7jGHLbW179bfr/XfofRPhz+1v+Ef0X+3tv8Abf8AZdj/AGrt2Y+3/ZovtWfL/db/ADt3meV+637vL+TbQQ93ba+h+WP/AAU3/wCCQ3wT/wCCnl98HNa+I/j7x58NfEPwhn1yxg1jwPDol4/iLwf4mudJvNZ8PX9rrtndQWt7DdaPDPoOtwb10uS91P7dpWsxXNvHaZVKUatrtq3Vduqt+t9O0rPluFRwvZXv02/r+u5+ovg7wro3gTwj4W8EeHYZrfw/4N8OaH4V0K3uLiW7ng0bw9plrpGmQzXc5ae6misrSBJLiZmlmdWkkJdia1Wmnb+vP8/vM3rr3/ry/L7jo6ACgAoAKAPmT9rvRvEOv/BDxPp+hWst5EPI1HWoLeLz7ltN0YtrCvHHtZzHFf2FnLM0I81ETeSsC3DV+b+L+UTzzwz4ywFOLnUWT1cwpwSvKdTKKtLNoQgtG5zlgVGKWrk0le9j9Q8Fs5hkPinwTmFWap0nnVLL6k5O0YU85pVcnnOb0ShCOOc5tuyir6WZ8+/8E7/E6zeHPiH4NkkUSadrWmeJrWI/fkTWLFtLvXTnlYG0OwEnyja1zHy24hfw76J2cwqZPxXw9KdqmEzLB5xSg95wzDC/Uq8o91TlluHU9NHWp78zP3v6YWRzpZ3whxJGDdPG5XjMkrTS0hUy3F/XsPGb2TqxzTEOGt2qE9uVH6O1/XJ/GgUAFABQAUAFAGL4j/tb/hH9a/sHb/bf9l339lbtmPt/2aX7LjzP3W/ztvl+b+637fM+TdQNbq+19T52+Bf/AAsz/hINa/4Sj/hI/wCxPsUnnf8ACR/b8/2v9pg8n7D/AGh+98zyftX2n7P+42eX5/z/AGagufLbS179Lfp/XbqfUdBmFABQAUAFABQAUAfIX/F4v+Fw/wDMw/2d/wAJD/0+f8Ix/wAIz9r/APBZ5H9m/wDb59s/6iFBp7vL0vb53/Pf+rH17QZhQAUAFABQAUAFAHy58dP+Fmf8JBov/CL/APCR/wBifYo/J/4Rz7fn+1/tM/nfbv7P/e+Z5P2X7N9o/cbPM8j5/tNBpDltra9+tv1/rv0Ponw5/a3/AAj+i/29t/tv+y7H+1duzH2/7NF9qz5f7rf527zPK/db93l/JtoIe7ttfQ2qBBQAUAFABQAUAeQ/Gv8A4TH/AIQ4f8Ib/aP2n+0YP7T/ALI87+0/7M8m43/Zvs/+k7PtP2b7T9m/feTnd/o/2igqNr6/j/Vvv/yD4Kf8Jj/whx/4TL+0ftP9oz/2Z/a/nf2n/Znk2+z7T9o/0nZ9p+0/ZvtP77ycbf8AR/s9AStfT8P6t93+Z69QSFABQAUAFABQBi+I/wC1v+Ef1r+wdv8Abf8AZd9/ZW7Zj7f9ml+y48z91v8AO2+X5v7rft8z5N1A1ur7X1Pnb4F/8LM/4SDWv+Eo/wCEj/sT7FJ53/CR/b8/2v8AaYPJ+w/2h+98zyftX2n7P+42eX5/z/ZqC58ttLXv0t+n9dup9R0GYUAFABQAUAFAH5W/8FEv+Crnwj/4J4+Ifhn4O8WeBPFnxL8X/EO0ufEU+ieF9Q0rSf8AhGvBNnqH9lSa/eXmrb472/1DUIr+20LRoUiivn0nU21DVtGSK0a96KOHlWUmpKKjpqr3fbZ28356Jn4v4qeNmReFeKyjAY7Lcdm+PzWEsVLDYKrQofVMup1fYvFVKle6qVatVVYYbDxUY1HQre1r0EoOfqHwi+K3iz45al4E+L/w41XxDrXw1+I0WleK/DWoFLyHw+/gjVXSdbe+tSz6fY3thZGXT9W0+VjqWna9a3djcY1e3dVxlFwk4yVnF2f9dnuvLXqfq+RZ1lnEeSZbnuU11iMuzXBUcbhKtuWbp1oKSjUhdyp1qUr0q9KT5qVWE6c7ODP0CqT0T+ef4O/8F9Ph98VP25bf9mmT4Y2+j/BvxZ8QLj4V/Dr4yL4oe41TVfE76jLonhnW9W8PHTEsbfwz441xbbT9Kjt9SF9o8Gq6bf6jLcKb22tOyWDlGlz815JczjbS3VJ23S189lbSR/LWQ/SayvOvEePCDyeNDIMdmkslynP1jHOtXxjqvD4PE18K6KpxweZYlQpUFGsqtCNejVrSl78If0KTTRW8Us88scEEEbzTTTOscUMUal5JZZHKpHHGil3d2VVVSzEAE1xNpJttJJNtt2SS1bbeiSW7f6H9TwhOpOFOnCVSpUlGEIQi5TnOb5YwhGN5SlKTSjFK7bsr3P5wv+Ci3/Bwx8E/2eP7d+Fn7JEeg/tA/GW2+06dfeOftMl18E/Al+m6N2GqabcW8/xL1a1cD/iX+GL+18NRs+658XSXdnd6HL+L8Z+MOV5P7XAcPKlm+ZR5oTxXM3leFktH+8pyTx1SL+xQlGir3eJcoyon+nP0Z/2bfHniT/Z/FvjJLMPDngir7LE0Mg9lGjx3xBh3aSX1TFUqtPhbB1Yv/ec2oVs0ko2pZLCjWpY4/mv/AGfPA3xv/wCCsf7bng3wn8ZfibrupeO/jHfX9/8AEH4i3GnWU0/hfwd4W8O3+uammi6HaJp2h6Pb6boulf2D4X0i0trPR7TVbvToWtnE03m/qGR4XNMTwHhqWZY6tHN83yidbGY6UI+2w1fOKc6j9nSgqdKE8DTxMaNCnGMaUHh6acZRUub/AA08Vc94C4m/aVZ5juCuFcvxnhX4Z+MWGy3h3henia88nzvhbwTr0cDH67mFaWKx2JwHHGP4WxGZ5rja9arj8X/rFipQq0q1Wl7L6W/4KwfskfCv/gnL+1X+z74U+AWj6xp/gvS/hB8PviDFfa5q9xrWv+IfHGhfEnxtDr2tazqcywQSatqC6Jol1PFplnpmj2ST29ppemWFnBFbxenwnkGW8N5LSyfK4VIYWhUqSbrVJVq1WrVUZVa1WT5U51JauMI06cfhpwhFKMfj/wBoH4s8b+LX0kcP4ucb4nCYnPs54d4erwhluCp5fl2Aw+RZlmWGwWV4DDwlOosPgsNQw8adTFYjFY2q5uri8XXrznVl/fhYX1rqljZalYzLcWWo2ltfWc6fcntbuFLi3mT/AGZIpEdfZq2atp1Wh/XtKpCtTp1qclKnVhCpTktpQnFSjJeTi0z5n+On/CzP+Eg0X/hF/wDhI/7E+xR+T/wjn2/P9r/aZ/O+3f2f+98zyfsv2b7R+42eZ5Hz/aaDeHLbW179bfr/AF36H0T4c/tb/hH9F/t7b/bf9l2P9q7dmPt/2aL7Vny/3W/zt3meV+637vL+TbQQ93ba+htUCCgAoAKACgAoA8h+Nf8AwmP/AAhw/wCEN/tH7T/aMH9p/wBked/af9meTcb/ALN9n/0nZ9p+zfafs377yc7v9H+0UFRtfX8f6t9/+QfBT/hMf+EOP/CZf2j9p/tGf+zP7X87+0/7M8m32faftH+k7PtP2n7N9p/feTjb/o/2egJWvp+H9W+7/M9eoJCgAoAKACgAoAxfEf8Aa3/CP61/YO3+2/7Lvv7K3bMfb/s0v2XHmfut/nbfL8391v2+Z8m6ga3V9r6nzt8C/wDhZn/CQa1/wlH/AAkf9ifYpPO/4SP7fn+1/tMHk/Yf7Q/e+Z5P2r7T9n/cbPL8/wCf7NQXPltpa9+lv0/rt1PqOgzCgAoAKAOL+IvgrT/iN4G8T+CNTPl2viPSbiwE+3ebO7+WfTtQVMgPJp2oQ2t9GhOGe3VTkE187xdw5heLuGs64bxj5KGb4GrhVV5eZ4evpUwmKjHaUsLi6dDEwi9JSpJPRs+l4N4mxfBvFGR8T4Fc2IybMKOK9lzcqxGH1pYzCSlZuMMZg6lfCzkleMKras0j5t/ZJ+BXxA+Cdv45t/GeqaTNZ65e6UdK03SLue+txJpyX0d1q7ST2tr9nN9FcWkMcIQTyR2oN2kZht1r8g8CPDPirw4pcS0eIcbgKmHzLEYF4HB5fiKuKpKeEjioVse51cNh/ZfWadahThTUfaThQTrxg6dOJ+0/SC8VOEfE2twtW4bwOYU8RleGxyx+NzHD0sLVcMZLCzoZfGFLEYj2ywtSjiKs6jn7KE67VCVRVKjj9jV/QJ/OJ8hf8Xi/4XD/AMzD/Z3/AAkP/T5/wjH/AAjP2v8A8Fnkf2b/ANvn2z/qIUGnu8vS9vnf89/6sfXtBmFABQAUAFABQAUAfLnx0/4WZ/wkGi/8Iv8A8JH/AGJ9ij8n/hHPt+f7X+0z+d9u/s/975nk/Zfs32j9xs8zyPn+00GkOW2tr362/X+u/Q+ifDn9rf8ACP6L/b23+2/7Lsf7V27Mfb/s0X2rPl/ut/nbvM8r91v3eX8m2gh7u219DaoEFABQAUAFABQB5D8a/wDhMf8AhDh/whv9o/af7Rg/tP8Asjzv7T/szybjf9m+z/6Ts+0/ZvtP2b995Od3+j/aKCo2vr+P9W+//IPgp/wmP/CHH/hMv7R+0/2jP/Zn9r+d/af9meTb7PtP2j/Sdn2n7T9m+0/vvJxt/wBH+z0BK19Pw/q33f5nr1BIUAFABQAUAFAGL4j/ALW/4R/Wv7B2/wBt/wBl339lbtmPt/2aX7LjzP3W/wA7b5fm/ut+3zPk3UDW6vtfU+dvgX/wsz/hINa/4Sj/AISP+xPsUnnf8JH9vz/a/wBpg8n7D/aH73zPJ+1fafs/7jZ5fn/P9moLny20te/S36f126n1HQZhQAUAFABQAUAFAHyF/wAXi/4XD/zMP9nf8JD/ANPn/CMf8Iz9r/8ABZ5H9m/9vn2z/qIUGnu8vS9vnf8APf8Aqx9e0GYUAFABQAUAFABQB8ufHT/hZn/CQaL/AMIv/wAJH/Yn2KPyf+Ec+35/tf7TP5327+z/AN75nk/Zfs32j9xs8zyPn+00GkOW2tr362/X+u/Q+ifDn9rf8I/ov9vbf7b/ALLsf7V27Mfb/s0X2rPl/ut/nbvM8r91v3eX8m2gh7u219DaoEFABQAUAFABQB5D8a/+Ex/4Q4f8Ib/aP2n+0YP7T/sjzv7T/szybjf9m+z/AOk7PtP2b7T9m/feTnd/o/2igqNr6/j/AFb7/wDIPgp/wmP/AAhx/wCEy/tH7T/aM/8AZn9r+d/af9meTb7PtP2j/Sdn2n7T9m+0/vvJxt/0f7PQErX0/D+rfd/mevUEhQAUAFAH/9P+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDhNL+Fnwx0PxFP4v0X4c+BNI8WXTTNc+KNL8IeH9P8RXDXG/z2n1u00+LUpmn8yTzjJcky733ltzUrLeyv6Du9ru3qd3TEFAH8+XwF/4IaD4Bf8ABVzxN/wUF8K/HVbb4Z6n4n+K/wAQtK+Dlj4cu7TXU8T/ABh0TxJpfiHwtq2vDUzpVx4F0nU/Fuq6/ovlaf8AbyLLQtHns4zYya1cYRoctX2ilpq7W6yvpvsr328tLXNXVvDla17/APA6M/oNrcyCgAoAKACgAoAKACgCOaGK4hlt540mgnjkhmikUPHLFKpSSORGyrI6MVZSMMpIOc1FSnTrU6lKrCNSlVhKnUpzSlCdOcXGcJRd04yi3GSas07O9y6VSpRqU61KcqdWlOFSnUg3GdOpCSlCcJKzjKMkpRad01dW0PGfhT8APhz8Gr7xBqXguy1GK78RGNLmTUtQe/NnYwyvNFpmn7oo2isklfeTO1xeSlIvPupREgX884H8LOEvD3E5ri+HcPi4V82cI1p4zFyxTw+GpzlUp4PCXp03DDxnLmbquriKjjT9rWmoQ5f0nj3xb4y8SMLlGC4mxWDqYfJlOVCGCwccJ9YxVSEadTHYu1SoqmJlTjypUlQw9NSqeyw8HUme1V+jH5mFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8WP8AwcwaLcwftX/AbxC6t9j1T9nmHRYGIOw3Og/Enx1fXaqehZYvElkXA5AZM9Vr08C/3cl2nf74r/Lv91j/AD6+l5h5x414ZxbT9nW4WWHi9bc+FzbMak0ul0sXTvbXVX6H6Mf8G3f7QNx47/Zi+J/wA1e+a41H4D+PYNZ8OQyyc2/gX4qpqWrQWNtGzFnSy8a6H40v7mSMbIjr9pG6oXjefHGwSnGaVuZWfm49fLRpb9Oh+r/RM4onmXB2ccMV6jnV4azONfCRk/gy3OlVrxpQT1ap5hhswqza0j9app2vFy/bb9rDx1N8MP2XP2j/AIjWs5tr3wL8Cfiz4s0+ZW2yLqWg+A9d1LThEwIIme+treOHBBMrIAQTmuWmuapCPecV8m1+h/Q/G2ZSyfg3izNoScKmW8N55jqUk7NVcLluJrUuV6Wk6kIqOvxNWtc/zBdG1TVvDmqaN4l0a5uNO1PRtWtdU0bU4DsltNW0a4tb+1ubeTkC4srj7JcKcfIxiJzmvcbi3ytq7V+W+vLte29ul7fcf484d4zCSoZnh41qX1bF03QxkYSUKeMouOIpRjVtyKtDljVjC/NZc1rK5+xPx/8A+Cgn/BSL/gsv8RJP2aP2ePAuveFfhreBLXWfhX8Mb25t9N1HTFkW2ufEfxz+Jl7/AGbap4akuhI6aXqd3oXgqNmsbH+zNd8QQWepXf8AHPF3EHHHGvEOZ8IZXha1DCYHH4vAV8DgpSjCrDC4iph5YjNcdJQj9Xm6blGE3RwtpU4qnWqqE5f9x/0WvDL6Kn0ePAHww+lHx1n+VZrnnH3APCXHeU8VcTUqVavl9finh7AZ/SyPgDhai8VX/tfCQxqw1bEUKWY8QxnSxdSpi8swEsRhKH6i/CD/AIIu/AD/AIJu/sx/Fr9r39qS58O/tBfHr4W/C7xN4z8M+Hr+yNx8EvBPjq10iaPwdp+laBq9vFJ4/wBYn8WXGlafBr/jKwi0lJ7q2uNN8H6dqNlDqkv6NwR4PZTk1TD4zPfZZzmvNCSpODllmDktf3dGcIvGVIatVsTCME1GUMLCpGMz+HvpoftPfEDirg/jXC+FLx3hnwJl+TZnKOYwrwp8b8Sz9hUp4Kljcxw1SdPh3B43FTw9GWW5NWnipKpOni86xmFrTwUPIv8Ag2j+C82v/Fr9oz9o7WIZLhfCHhDQ/hhoN/dhpjda54/1dvFHii6gmkLH+0NN07wfo8N1Mx8423icoGK3E9fueOlaMILq+b5RVl9/M+nTpY/wO+iJw/LFZ5xZxbiFKf1HA4fJ8NVqXk6mJzSv9dxs4yd26tKlgMPGpOT5uXGWV+eZ23/Bzv4EKX/7I3xNt4Mie0+LPgTVrnb9w2k3gjxB4egLd/NF74okCkjb5RK7tz7VgZaVI+cZL53T/JdfuPR+mHltqnA2cRj8UM8y2vO23JLLcVhI3639pjHa2nLpe7P6LP2HPHg+J37Gv7LPjtpvtF14i+AXwqudUk3bv+J5b+DNHsdfj3ZO4w63a38JY4YmPLKrEqvFVXLVqLtOX3X0/A/qzw5zP+2OAeDMycueeL4ZyWdZ7/7THL6FPFK/XlxEKsflqfU9Zn2YUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDGtvEXh+91a90Gz13RrvXNOjWbUdFttTsp9WsIWKBZb3Top3vLWNi6BZJ4Y1JdAD8yivPo5vlWIx2IyvD5nl9fM8JBVMXl1HG4arjsLTdkp4jCQqSxFGDcopSqQinzJL4lzelWyfN8NgMNmuJyrMsPleMm6eDzKtgcTSwGKqRUnKnhsZOlHD15xUJNxpVZSSjJ20k47NegeaFABQAUAFABQAUAFABQAUAfyy/8HOXw4e78Bfsp/FyCArH4f8XfEb4capcqvEr+MNG8P+JtCglfsYF8DeI5IF4z9ouSc7Rt78DLWpHuoyXyun9919x/GX0wcpdTLOCs8jGywuPzXKa0+7x+HwuMw0W/7qy3FOOv25bn58f8G63xVHgb9ufX/A97epb6R8Wfgr400jyZplhtzrfg270fx5ZX8jOypusNA0HxXHuf5Y4L24kJAXNa41L2Dm2kqclJtuyUdU229Laq97W36Wl+Y/RPzaphPEutlEeea4hyHG4SlQgm5Vcbg62Gx+HcIRvKdRUKGMhCKjJv2srbWPvH/gr/AP8ABbj4Gan4A+Jf7GX7Mr2Xxh8QfEDSNQ8CfEr4s6fe7vhv4R0i8YRa5pXg/ULRs+PvENzZxXFjLqmmzReENJW5Se31TxJdR3ml2n5NT8SspxfF+T8L5Jy5nVxWMlTxuYQn/sWGhRo1a9Snhpx/3yty0XF1KbWGp8yaqV5KdOP+1PjD9CfxB4Y+hd46ePvii8RwPl+R8CRxHDHCGIocnFGc4rO83ynI8Hic7w9bTh3LFPNYVI4PEwnnON5JUqmEyyjKli6/82XhH9kf4r+M/wBmX4tftjaWdFT4QfB3xh4S+G/iKOW7uH8RXniTxfeaSkVxZafDayW8Oj6P/bvh6DUr+/vbV5bzxFplrptte7NRksP0KWHzD/WyjjFKksqXD9bCTg5v21TMJ5hSr05xpqLj7OjhqNWM5SlFuVemoRko1HD/ABryuHB+M+hJxXhlg8dU8Q8t+khw7xBDMIYak8uwfAdLw+x2QZhhMRipVY1vrmZcS8QZHWwtGhSq0o0srxUsXOhOrglX/tD/AODfrW/AOt/8E8fCyeE/DHhrQfFHhr4i/EPwp8TtT0PSbDT9S8VeKLfWj4m0fWfE13bRJd6vqkXgbxX4V0yK81Ga4lSzsYLa3eK0iit4qngMJgsTip4XDUMPLG1ni8TOlShCeJxE1adavOKUqtRtNc03JqKUVaMYo/qnwE8QuIOOvCLg3A59n2aZzHgLDYrgnKcPmGOxGKw+S5Tl2IeMy7K8sw9WrOlgMHRwOPwr9hhoUqdSq6lecZVak5y8k/4OOPjuvgD9j/wV8E7C88rWfj78SbL+0bQSbTc+Bfhetr4q1ptqnc3l+Mbr4d43fuyjS53MFC9uCheo5fyR09Zadn05uq+dj84+lfxKsr4Dy/h2lU5cRxPm9P2sL258tybkxuIdt3bHzyvfRpvqkfSn/BDH4En4J/8ABPL4X6jf2X2PxF8bNV8QfGvWwyYke08UTW+keDJBKQHeC68AeHfCupxJgRxyajP5Ybe8ssYqfNWkukbRXy1f/kzf3eh9d9HHhr/V3wsyarUp8mK4irYriHEXVm4Y2UKGXu923GeV4XBVleyTqysne54Z/wAHGXw8Piv9hDQPGUEG65+Fvxz8E69c3IXLQ6J4j0bxT4Ku4ScHbHcazr/hx2PGZLaFcnJFXgpWqtfzQf3pp/lft+FpfN/Suyr674a4bMIxvPJuI8uxM52vy4fF4fG5fUi30jLEYnCtv+aEV1PbP+CD/wARB48/4Js/CHTpJ/tF98NfEvxK+HeoSFtzqbTxpqvirSoHH8H2bw74s0W2jXj9zDE38WWjFq1eT/mUX+FvzTPofo15r/afhJkVJy56uUYvN8qqu92vZ5hWxlCL7cmExuHil/KovqfsRXMfvIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/1f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/Dr4YzeMvhl+1f4ci8aJcad4nuvHi6X4jWWbzUux43kezkunnV2iurO9XWYdRgnLPGymC5yroCn+a3BlXiHgzxyyiHEUauEzqtxOsFm6qVOeNf8A1knKhOs6qbhXw+JWYwxdKq3KMk6Vb3ZRXL/qLxxS4b438Ac5qcMyo4vI8Pwo8dk0oUuSWHfDEI4mNCNKUYzw+Jwzy2rgqtJWlFqrRvKEmpfuLX+lJ/l0FABQAUAFABQAUAFABQAUAfij/wAF/dG8Caz/AME6fG7+LfFvhbwzrvhvx34A8XfDuz8SaxZaXc+J/FGnau2kapoXhuC5kFzq2ut4H8QeLL2Cw0+Ge4aG1mklENotxcQcmLzzKsghDGZxmGGy7CznGgquJqqnGVSo/chBaym7pSlyxahTUqk3CnCc4/H8f+A3iZ9IXhDN+DvCbgjPuPeL8rVHijC5NkGCni8SsPlUpRx9WctKNGTy/E4ulhIVqsJ47HVMNluEVbG4zD4ef8Inw98K+N/id4v8K/Dv4TyXN148+J2u6f8ADTwjbafrUOgtrOseP7xPBkPh+XWLm9sLK0sPEB1h9B1M6hewaZNp9/dW+oyGwmuFbg4spw4w4Fzqlw9iaWYLMcFWhga+DxEPY4mrhMVadKGIU4UnTlWw1TD1ZOcaTXtFN8jfN/OX0OK+dfRJ+n94E1vHXhjOPD7MeCOPMijxjkHFuRYyhnXD+W8ccLyo4LGY3IquGqZhSxaybirAZzgaEcL9fhKphalGjDFKED+hr4z/APBEX4efsHf8E0vj/wDtAfGXX4Pij+1JbaP8MbTRptHnvbf4dfCl/FPxh+HfhrWbTwnbyJZ3nizXZ9G1nVNOvPFfiG2t7VLa6ePQ/Dml3ML6rf8Awvhv4WYLhbF4XNszqrH57CNR03Tc44LL3UoVKdRYeLjGWIrOE5wliKyjG0rUqNJxlUn/AKzftQvp+8TeO3gh4i+H3A2AqcJeE+Knw7SxsMbChU4m4whhuMcgxOFq5vVjKvQyfL4Ymhh8VRyfLalSs6lHnzDNMZTnHB4f6d/4I8/AKP8AaK/4I5ftp/B4W8c+q/FD4sfFnR/Dgm2+UnivSfg58G9U8CXUpfClLDxpZ6beN8yfLAcSRORIv7JiZ8mJpS6RjG/o5SUv/Jey++yP8gfAbhlcV+AniDkPIpVs5zvPKGE5rWWNo5BkFbLZu+lqWYU6NTW3w6WtzHmH/BtX8eh4Z+J37QP7LfiO4exn8ZaNpfxP8I6dfFrV4vEnge4l8OeN9Mit5Qrtq2oaNrGhX0tsVWaKy8H30jKVgk2VjYXjCaWzab8nt02TT6r4vP3vG+iPxN9TzjijgzFzdOWPw9HOcDSqXg44vLpPCZjRUJa+3q4fEYao4WUlTwNVu6i1HwT/AILDeL9b/bf/AOCqngP9lnwDetd2XgjUfAH7PejyW2bmxtvGPi/WLbWPiF4hkjB/dHQJ9et9F8QO5jjgi8CSyPtjheeW8MlSw7nLreb9EtF80rrX7XTaPzXjxj8R4i+NOWcF5ZUc6eXVsr4WoOHvU4Y/H4iFfNMU9Xb6rLEww+JbtGEctk2moyZ/az4P8KaH4D8I+FvA/hizXTvDXgzw5onhTw9p6YKWOh+HdMtdI0mzQgKCttYWdvCuFUYQYA6V5bbbbe7bb9Xqz/QjAYLDZbgcFl2DpqlhMBhMPgsLSW1PDYWjChQpryhSpxj8j4k/4Kn/AA2/4Wv/AME8/wBrPwolv9qns/hJrHju0hC75JLz4WXVj8TrVIF+81w8/hFEhRPnkkZY1yX2trh3y1qb/vW/8CvH9T888Z8p/tvws44wShzyp5HiMyhG126mSzp5xBRWjcnLApRS1b0V72Px9/4NkfiT/aHwi/ag+EElx83hL4jeCviPZ2ztyyfEHw1feGtQmgU/eWJvhppy3G3iNri234MyFunHR96nLupR+5p/+3Pr9x+EfQ/zb2uQ8Y5E5a4HNsvzaEG91mmDqYSpKK62eT0lNrbmhf4kf1AVwH9ihQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAFO+1HT9MgFzqV9Z6fbGWOEXF9cw2kBmmbZDEJZ5I4/NlchI03bnY7VViQKuFOpVly04TqSs5csIucuVat2im7Jat203diZzhTXNUnGEbpXnJRV3oleWl29lrfZd43KgoKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9b+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA5/xV4p0LwT4d1bxV4mv00zQtEtTeajevHLL5UW9IkVIYUkmnnnnkit7eCFHlnnljijRnZVrys8zvLOHMpx2eZzio4PLMuoOvi8TKM5+zhzRhFRp04zqVKlSpOFKlSpwlUq1ZwpwTlJHr5DkWa8TZxl+Q5JhJY7NczrrD4PDRnCn7SpyynJyqVZRpUqdKlCdWtVqSjClShOpOSjFuPB/DD45fDX4wLfJ4H1/wC3X2mIkt/pN7aXWm6pb28j+Wl0LS8iiNxaGRkje6tGuIYZZIoZ3ilkRJfmOC/Erg7j9YmPDWafWcTg4xqYrA4ihWweNo0pS5I1/YV4Q9tQcnGEq1CVWnTnOFOpKM5wgfV8c+F3G3h08LLijKfquFx0pU8JmGGxFDG4GtWhHnlQ9vh6k1RxCgpTjQxEaVWpCM6lKM6cJyj65X3h+ehQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB+P37bcMvhP9oTw14stkIe58PeFvEKOvBa+0PWNQtNgPHzpDpdic54EidMV/Af0j6c8i8V8nz2jF81bKskzaMo6c2Jy3MMVh+VP+eNPBYZ36KcezP9FfoxVIZ/4QZ3kFaS5aOcZ7lEoy1UcLmmXYPEczWvuyqY3Eq1tXGW9z9fIJormGG4hcSQzxRzQuvR4pUDxuPZlYEexr++adSFWnTq05KdOrCNSnNbShOKlGS8nFpo/wA7qtKdGrUo1IuNSlUnSqRe8Z05OM4vzUk0/QlqzMKACgAoAKACgAoAKAPyI/4KWf8ABYL4Af8ABPnRb3wlDJafFj9pDUNPEvh74PaHqUaR+H/tcHm2OvfFHWbcXA8J6J5bxXdppAjk8U+IYpLf+y9Pg0ue58Qaf+dcb+I2UcH0pYZOOYZ3OF6OW0p2VHmV4VsfVjdYelZqUaeuIrJxdOEablWj/Zv0W/oWeIv0kMdQzmca3B/hhhsTyZlxrj8LOUsy9jU5cRl/CeBqey/tnHqUZUa2M54ZTls41frWJq4ylDLcV/Lh8Ef2Vv8AgoP/AMF4/jhJ8cvjX4v1Lwz8FdN1K5066+J+s6Zd2nw88HaQt2rXngH4C+BDdQ2+ualb+WsV81rdraw3NuuoePfFtzr89umr/hGV5Bxh4sZo81zPEzoZZCcoSx1WnJYPDU+b3sHlGE5kqs42tO0uVSjz4vFSrOPP/rNx54ufRv8A2e/AS4B4EyXC5rx1isLSxVLhTA4ujW4kzvGui1R4i8Q+IfZTq4DC1OZzw6rUHWnSqPDcO5PSy6nVlhLP/BQL9mP4Z/8ABM/9v/8AZ58K/CCLW7PwN4L8O/AT4wWGpeI9UfVtd1XU9F8f6tF4g8R6rqHlW9sb7U9c8F39/NBp1nYaVYlxaaXp9jYwQWsX9ccLZHgeHshwuSZcqv1TBqtCDrVPa1ak61SdetUqStFKVSrWnNxhGNOPNaEYwUYn/IJ9OHxV4q8SfpbYnxn4zlgI5/xLHgriHERyvCRwOX4XDcP+xyLLsJg6HPUq+wwGX8PYbCQq4rEYnGVlQ9ti8VXrznVl/Tv/AMF4r77L/wAEyPjlADxqfiH4O2XB+95fxc8Galj3/wCQfux/s57V24T+PDyUv/SX/X/DH6h9JWr7Pwf4kjf+Nishpets9y+tb/ylf5eR41/wbmWP2T9gDXJ8Y/tP9oj4jX2f73l+Fvh3puf/ACn7e/3fwW8b/FXlBf8ApUn+vn+No/P/AEUafJ4YYiX/AD+4qzWp92Dyqj/7i/qx+L3/AAU0+EvxK/4Jgf8ABSrw3+1z8FtNWx8G/EHxlefGXwBO9vcDw2PE1+8kXxh+FesG0ltWi0/WH1fVZZLCyksjH4L8bWllpUy3Om3Mlr00JRr0HTlulyy1u7fZmvw3v70b2eqP5/8AF/JM38HPFzCcdcPUvZ5fmmPqZ/lknGawn1yq3HPslxDg01SxDr15OlTdO2X5jTpUZudGc4etf8EAv2f/ABd+0H+1z8V/25PidDdaxa/D+68VXVn4kv4CI/Efx0+LRvp9fv7eV1a3up9C8L6x4hv9Whj/AHun33i3wxdo0ZdC04yahTjSjpzW07Qj831SW3Rq7Pc+jFwxjuKOOc78Rs4jOvDLJ42dPF1Y6YviTPHUliasW04zlhsFiMVUrxi+alUx2DnpdH9mVeYf34YPirw5pvjDwx4j8I61F5+j+KdB1jw5q0HynztN1vT7jTL6LDBlPmWtzKnzKy/NyCMimm001ummvVHNjcJRx+DxeBxEeahjMNXwleP81HEUp0asdbrWE5LVfefxd/8ABvv4j1P4M/8ABQz4v/AbxJL9nu/E3w2+IXgm7suYvM8cfCzxhpGpA+W5JJtdH0zxqvlnMi+aW3BUcP6eMSlRjJa2lFp/3Wn+ba/yd7x/z9+i/i6vD/inn3DOLfLUxmU5rl06fw3zHJcfQq/Drfkw9HMNL3V73aT5v7Yq8s/0LCgAoAKACgAoAKACgAoAKACgCKeaK2hmuLiRYoLeKSaaVzhIookLySOeyoiszHsBntQKUowjKcmoxinKUntGMVdt+SV2z+e3/gkt/wAFZPjv+3p+098b/hf8RvBvgXRvh/pPgDWvib4Bn8L2Gp2Wr+F7PS/G/hTwvYeFtbvb3Vb6LxFJqel+Klv59UNpp0yano149vbxWF/FY6b24jDwpU4yi5N8yi79dG77K2q2vto72TP5b8D/ABu4k8S+MeIsmzbL8tw+WUMrxGcZZPB0q1Ovg6dHMcFg6WCxFSpWqLFutRxqqyr+zoyjWw9TlgqdWMKX9C9cR/UoUAFABQAUAFABQAUAFAH8GX/BRPwD+3T/AMFUP+Cs3xG/ZF0fTdZ8L+HPhJq3iXRvhnoXjceJdE+FPgf4feGNHuLiP4t+ILnS9H1kIPi1c20F3pfipdK1G/1NvEfhjwvaSGw0+0trX+7fDzH8DeFvhRl3FtapRxWJzalhq2Z18F9WrZrjsfia0YvKcPGrXoN/2TGbhVwvtqUKf1fE4qSU6k5z/j7jfB8XeIXiPjuGqUKuHo5bVr0sBRxf1ijl2EwVCm5LM68qdKrb+0nFTp4j2VSdT29DDw9yMVDkP2cv2/v+ChP/AARN+Otn+zj+1r4b8aeMfgpbSW4vvhb4r1f+3obbwhNctbQ+Of2dfHtzcXNgNPi8qaWHw/a6k3g7UbmPUdD1rTfDXin7Rq2i9fEXAPh941ZFPiPhPE4PB51JS5MzwtL2Dli1HmeB4hwEYRqe0k2r15Uo4ynF061GricK1SnzZHxlxr4U5vHI+JKGLxWVRcefL8TV9so4Vy5Vi8jxkpSp8itJqjGf1WpNVKNanhsSpVqX9zXwD+Pnwn/ac+E/hD42fBPxfp/jb4d+NtOW/wBH1ixYpNBMh8q/0bWbCXbd6N4g0a8WXT9a0XUIoL7TL+CW2uIlZQW/h/PshzXhnNcZkudYSpgswwVT2dajU1Uk9adajUXuVsPWhapRrU3KFSnJSi9T+t8mznLs/wAtwubZViYYvA4uHPSqw0aa0nSqwfvUq1KacKtKajOnOLjJaI9irxz0woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/K//go7/wAFWvg9/wAE8ovCvh3VfC+ofFn4u+MrVtZ0v4Z6Jr9p4b/svwpHcy2beJ/FPiG403XDoljfXtvdWOg28Oiald6zd2Oo7Ira1sLi7XooYeVa7vyxWnNa932W97dfhtfrdI/F/FjxryHwsjgsLXwdXO89zCDxFHJ8NioYT2OCU5U/rmNxUqWJeHp1KkJ0sNGOHqzxE6da0YwpTnH6z/Y8/ap8B/tn/s/eCP2gPh5aajpGkeK01Gy1Pw5rDwSav4W8S6Ffz6XrugahLak29ybS8tzPY30QjXUtJutO1L7Pam7NrBnUpulNwlq11WzT2ey/LvufccB8aZZ4gcL5dxRlVOrQoY5VadbCV3F18Fi8NVlRxOFqyh7s+SpDmpVEo+2oTpVuSHPyR+nazPsAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOf8AFfhbQvG3h3VvCviawTU9C1u1NpqNk7yxebFvSWNkmgkimgngniiuLeeGRJYJ4o5Y2DoteVnmSZZxHlOOyPOcLHGZZmVB4fF4eUp0+eHNGcZRqU5RqU6lKpCFWlVpyjOnVhCcJKUU4+vkGfZrwxnGX5/kmKlgs1yyusRg8TGMJ+znyypyjKnUjOnVpVaU6lKtSqQlTq0pzpzTjJn5G/A3Tofh5+2k3hHQ5LiHRbPxV4/8LxQzTNLLNo0Ol66+n291LhTO0Utnp8xd1/eTW8cpAPNfwb4a4Snwn9Il5Dlk60Muw+d8U5JCnUqOc6mX08FmcsLRrT0dV054fCVOaS9+pRjNpNe7/oV4pYypxj9GiPEOaQo1MyxGRcJZ7OpTpqFOnmVTH5VDF1qFPVUlUp4nGUlCL9ynXlBNr4v2Sr/Qc/zeCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD87f28Phd4v8Yv8ADzxF4P8ADOs+JZLAa3omrw6Hp9zql5bLeS6bdaPI9pZRT3P2Z5U1OOS48oQQStCksgaeMV/Jf0neCs/4glwnm+QZNmGcSwqzLLcfTy3CVsbiKKrzwlfATlh8PTqVvYznHGxnW5fZ0p+zjOSdaCl/Yv0U+OuHeHI8Y5NxFnmXZJDFvLM0y6pmmLo4HDVnh6eOoZjGGIxNSlR9vGEsDKFHn9rVgqkqcJKjNx+5fAFtq1l4E8FWevQ/ZtdtPCXhu21q3LrL5GrQaPZRajD5iFkk8q8SZN6syvt3KSDmv6W4Wo47DcMcOYfNKfsszoZDlFHMaXMp+yx1LL8PDF0+eLcZcmIjUjzRbUrXTadz+WuLa+X4niribE5TU9tlWI4gzmvltZQlT9rl9XMsTUwdTklaUPaYeVKXJJc0b2dmmdbXvHz4UAFABQAUAFAEF1dW1jbXF7e3EFnZ2cE11d3d1NHb21rbW8bSz3FxPKyRQwQRI0s00rpHHGrO7KoY0pSjGLlJqMYpylKTSjGKV223ZJJXbbdktXY0pUqterSoUKVStXrVIUqNGlCVSrVq1JKFOlSpwTnUqVJyUIQinKUmoxTbsfyc/wDBUj/g4LtdDuNc/Z3/AOCfep2/iXxVcTTeHvFH7RllbR6rpOmXUrmzm0j4LWTxXFv4l1iSZjbL48urefRIGBfwhZ65Ndaf4k03+feO/F+NJ1cn4PqKviG3Rr51FKpThJ+66eWQelao37v1uSlSjvho1rwrx/2E+iZ+ziq4+ll/iV9I7CVMryenCGZZV4Z16ssHjcVRhH21PG8c4iMqVTK8FGmvavh6lUpY+omlnNfAQo4jK8V47/wTR/4IFeN/jHrVl+1B/wAFG38UQWHiHUD4u074Ia/quqn4jfEDUNRnOoS+Ifjbr090dc0G01GWQ3dz4VS8Txrq09w58TX/AIb+zz6Zq/m8EeEmKzKrDPeM/bqFaf1iGV1alT67jJzfP7bNKzbq0Yzb5pUE/rVSUv386HLKE/tvpS/tEch4JwNfwo+jIspniMtw39jYnj3LsJg1wzw5hsNTWGjlvAeX06Sy/Ma2FhBUqWbyoPIsHCnFZVhs19pDF4L+xPwz4Y8N+CvD2i+EvB+gaN4V8LeHNOtNH8P+HPD2mWejaHomk2MSwWWm6VpWnw29jp9jawosVva2sEUMSKFRABX9IUKFDDUaWHw1Glh6FGEadGhRpxpUqVOCtGFOnBRhCEVooxSSWx/ijmua5pnuZY7Oc6zHHZvm+Z4qtjcxzPMsVXx2YY/GYibqV8VjMZiZ1MRicRWnJzqVqs5znJ3k3c/kE/4OcPB4svjP+y14/wDKwfE3ww8d+DzPt/1g8DeK9M1oRbu/kn4hs+3Py+fnjdXr4F+5Uj2kn96t/wC29vvP8+/pg4D2ef8ABmacv++ZPmWA5u/9m42jiOW/93+1b+XN5n33/wAFiPiIvjP/AII0/DXxo8/nN8VLf9mHXEm3Z+0v4g0Gx8aF93O/zEtXlyDzjPOKyw6tiZL+X2i+52+Z+nePWarMPALKcwcuZ51Hg7EqV78zxWGpZhe/W6g3+J7N/wAG+2lvp/8AwTi8IXbLtGufFL4qapGcY3pFrsWilvfD6O6Z/wBnHY1GM/jPyjH+v6/U9/6L1F0vCfATat9YznOqy81HFLD3++g1028k5frJ8YPgl8I/2gPBtz8PfjV8O/CnxM8GXN1b37aB4t0m31S0t9RtRItrqenvKoudL1S2jnnig1PTbi0v4Ybi4hjuFhuJkfnjOUHzRbi9rp2/R/l92h+3Z7w9kfE+XzyviDKsFm+XznGq8LjqEK1ONWF1CtSck50a0FKSjWpShVjGc4qajKSNT4Y/Cv4b/BfwXpHw6+E/gjw18PPA+gpKuleGPCelWuj6TatcStPdXH2a1jQT3t7cO9zfX9y017fXLyXN5cTzu8jKUpSfNJuTfVu7/r7vRbG2T5LlPD+X0MqyTLsJleXYZSVDB4GhChQg5PmnLkhGPNUqSbnVqz5qlWbc6k5zcpHfUj0woA/Jz4W/8Ejvgx8J/wBv3xV+3poPjzxlLr2va14+8YaZ8NHttNg8PaJ43+KOl63pXjfV31iE/btU0i9i8TeIbnSvD8lnarpV7qEUrajfQ2Ntbr0SxEpUVRsrJJc3VqNrLfRqyu7a+Vmz8SybwO4fyTxOxviZhcyzB4nFYjM8dRyhwoxwuHzHOaOIoZjiHXi3UrUKkcXip0cLKnD2FSqpOrUVOED9Y65z9tCgAoAKACgAoAKACgAoAKACgDw/9pzxV/wgv7Nn7QnjbzPJ/wCEO+B/xY8U+bnb5R8P+Atf1bzN3bYbTdntjNXTV6kF3nFfez53jDG/2bwlxRmN+X6hw7neN5v5fquW4qvfpt7O+/3H8tX/AAbF+FftfxQ/ay8b+Xn/AIR/wF8MfComx9z/AITDxD4q1cxhu3mf8IMrEDr5QJ6Cu/HP3aa7yk/uS/z7/efxl9D3Be0zjjfMbf7rlmTYLm7fX8Vjq9vn/Zqb/wAKP7Ba80/u8KACgAoAKACgAoAKACgAoA+Jv28/2Dfgn/wUD+COqfCH4uaYlnq1ol3qXw2+JOnWdvL4s+GXi2S3EcGt6JNIYmu9Mu2jt7fxN4ZnuItO8SaZGtvO9rqFtpWq6X9rwJx3nXAGd0s3ymo50puFPMsuqTksJmeEUryo14prlqQUpSw2JipVMNVblG8JVaVf5TjDg/KeM8pqZbmVNRqxUp4DHwinicvxLVlWpN25qcrRjXoSahXpqz5ZxpVaX8Xn7Jv7S37TX/BBD9tfxV+z7+0LpOrat8D/ABHrNi/xJ8K6Y1xeaF4l8MXsrWPhz4//AAblu/s8E+px2NsRcW4Fq2v2NhqHgXxVFpvibQrC48Lf2XxXw3w1488F4XiDh+rSo55hqM1l2Kq8sK+GxMEp4nIM4UFOSpOcrxleXsJ1KeOws6uGr1IYr+WeHM+z7wd4rxOS51TqVcpr1YPH4em5To18PNuFDOsrcuWMqihGzjaPtoQng8R7KvRhLD/32+APH/gz4qeCPCvxI+HXiTSvGHgXxvoWneJfCnifRLkXWl61omq26XVjfWkwCsFlikAkhmSK5tplltrqGG5iliX+C8wwGNyrG4rLcxw1XB47BV6mGxWFrR5KtCvSk4zpzV2rprRxcoyVpRlKLUj+yMFjMLmOEw+OwNenisJi6MK+HxFKXNTq0qkVKE4vzT1TtKL92SUk0dfXGdIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDyT4+eIfiZ4S+B/xe8U/BfwraeOPi74d+G3jXWvhn4Ovi/2PxN460zw9qF54X0S4jjubKS4j1HWIrS2NpHfWD3vmC0S/sWmF3F52b1sdh8qzHEZZh44rMaOCxVXA4ad+Wvi4UZyoUmlKLkp1FGPKpwcr8qnG/NH7Lw7y3hXOePeDMp45zetkHBmZ8UZFgOKs7w/L7bKuH8VmWGo5tj6cpUq8KcsNgp1qqrToYiNDl9tLD11B0Z/ynfsTf8HGPxN8JfEy/wDg5/wUj8GLpNq3iG50i6+J3h3wVeeEfFnww1UXRt7nSPiR8NIoElvtF0yfMVzd6Jp1h4r0KOCUXmieKp5t9l+BcMeM2Ow+OllvGuG9nH2zpyx1HCzw+IwNRS5ZU8bgVZzpwekpUowxFFRfNRxMm3H/AF48d/2ZnCuccLYfjb6MGePG1VltLG0eFMzz2hnOT8V4N0va0sZwxxVKpOFDHYqn79Kjj8RiMozCVSDo4/KKcFGv/XX4T8W+F/HnhnQvGngnxDo3i3wj4o0uz1vw54m8O6laaxoeuaRfwrPZalpep2Es9ne2dzC6yQz28rxup4OQwr+iMPiKGLoUsTha1LEYevCNWjXozjUpVac1eM6c4OUZRktU02vxP8Z84ybNuHs1zDI8+y3HZPnOVYutgczyrM8LWwWPwGMw83Tr4XF4TEQp1qFelOLjOnUhGSe6X2uhrY80KACgDyb47fGjwR+zt8HviJ8bviPf/wBneDPht4Y1DxLrMiGP7VefZUEen6NpqSvGlxrOv6pNY6HotoXT7Zq2o2VqHUzBqqEXOUYx3k7f5vrolq9Nu54nEnEGXcK5DmvEWbVfZZflGDq4zENW558iSpUKSbSliMTWlTw2Hhf95Xq04K7kj/P9t/hJ+1z/AMFaPip+1p+0v4Z8Nah4v8SeEtJg+IGqaDp6z3qtb3ut2OieDvhB4HRykt3qek+B7PWrvw9pyJJd6pYeCLq3YT67rFmt367lTw8acHom+X8LuT262u/713HpH/MKOR8c+OGdcccX4PB1cdi8DQjmlbDUlOouSpiKWHwGQ5cnyynWoZdTxFTC0rSnXpZdUi74mvD2v9XH/BB74H/Gj4C/sQah4Z+OHgTxN8N/EPiL42eN/GXh7wp4x0260PxNZ+EtQ8N+BdHtZ9W8P6jFb6roM13rug+IJ4dP1S1tL1rRre+MAgvbd34MXKM6qcGpJQSbWqunLbfo1s/vP7X+jVw5xBwz4dVcHxHluMynFYriHMcfhcFj6U8PjKeBq4TLaEJV8LVjCthpVMThsVKNKtCFTkcanLy1Iyl+0dcp/QIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB+PumH+zv2+JN/yeZ8S9WAzxn+1NJvBH6f6z7WuPXd3z838BYP/AGX6UU+b3ebjHH+X++YHEcvb4/br1v1v73+iuN/2z6JsOX3uTgrL9tf9xzDDc3/gH1eV+1vI/YKv79P86goAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDzPx38ZPhj8M1P/Ca+M9H0W52eYumGV77WZEIyrx6Lp0d3qjRtkBZvsnk5IzIM5X43ifxB4M4Nj/xkfEOX5dW5eeOC9pLE5jOLV1KGX4SFfGuEtlU9h7PXWa3Pt+FPDfjjjaS/wBWeG8yzKhzckscqccLlsJJ6xnmeNnh8Apx1bp/WPaWV1CXwS+T/FP/AAUF+HGnGSLwp4S8UeJ5UyFnv5LHw5p0x/haKZjq+obD387S4HHTYcFl/DM7+lVwjhHOGR5DnWczi2lUxU8NlGEqdnCo5Y7Fcr/6eYGlL+6fv2RfRE4zxihUz/iDIsjpys5UsLHFZzjKfdTpxhl+E5l09nj60X/MeEat+3r8X/ENx9h8G+DfDOlvOT5EUdnq/ibVxzgCJhc2drIRkbs6Q+TjG3LBvzHHfSg4+zWr9W4f4fybBSqXVOEcNj84x67cj9vQoTt1vgJavS2qP1bL/ooeHeUUfrXEnEmd46NK3tZzxOXZJl3/AHEXsK9eHW1sfGy35rI/SD4LeJPGvi74Z+GPEHxC0P8A4R7xZqFvdNqOnG1msGMcV9dQWN4+n3Ja4sH1Cxjt7x7WU5RptyLFGyRJ/Xvh1nHEefcHZLmvFeW/2TnuKpVni8I6FXCy5aeJrUsNiJYSs5VcLLFYaFLESozfuupeKhCUYR/i/wAS8l4Z4e42zzKOD80/tjIMJWoRweMVeli1z1MLQq4rDRxlCMKOLjhMVOtho16cbSVJRcqk4yqz9Tr7Y+ECgAoAKAPKvjX8b/hR+zp8NvEnxd+NXjjRPh78PfClr9p1jxDrtwYog75FrpunWkKT3+s63qUoFrpGh6RaX2r6tePHaadZXNw6R1wZnmmX5Ngq+Y5niqWDweHjzVK1V2X92EIpSnVq1H7tOlTjOpUlaMIOTtL6/gXgLjDxM4oyzgzgXIcfxJxJm9b2WCy3L6alPlVva4rFVpuGHwOAwsG6uMzDGVaGCwdGMq2Jr0qcXM/iJ/bg/wCCov7Wf/BXD4qQfsh/sXeB/HGh/BvxNqE2nWPgPQClv47+LVjbzKJvEfxc1q2uk0rwv4Dsoil9deG5dVg8J6PCx1DxhrWtzQac+kfy7xTx3xD4h49cO8M4XFUstrzcIYSi7YvMYp61sxqqSp0MJFWnKg6scPSXv4mtWag6X+8ngL9E3wd+htwjPxn8cs/yDH8b5Vh4YnEcQ5jerw9wdXqQbp5ZwbgatB4vNuIa8k6FHNIYOWcY2ovq2SYDL4TxMcb+9P8AwS1/4IgfCP8AYjt9C+MHxoGh/GL9qMQw3ltrL2pvPAfwjunQM9p8ObDUII5NQ8Q27ExXHxB1Wzg1TCCLw3YeGreTUX1f9Z4D8Lsu4XjSzHM/ZZln1lKNRx5sJl0raxwUJxTnWW0sZUjGp0oQopz9v/np9LX6enGfjxVzDgvgZ5hwT4Tc9ShVwMayo8Q8ZUYycVW4mxGGqTjhstqR9+nw3g608JeTnmeJzSpHD/Uv3ir9YP8APcKAP5jv+Dm3wh9t+Bv7MPj3ys/8I18V/GPhDzsf6v8A4TfwhBrPlbu3nf8ACvt+M/N5Gedtd2BfvVI94p/+Au3/ALd2+4/j76YGA9pw3wfmfL/umd4/Ac3b+0cBHEct/wC9/Zd/Pl8j5c/bx+JH/CU/8EAv+CfsqXHmy6h49+GXgpxuBzZ/C7wH8bPCMqdyRa3XhWwg2/wEAHG0LWlKNsXW0+y3/wCBOD/G7/pnxviXm3136MXhe1LmlVzPJ8uev2MmyziHAyX/AG5PBUoW0t02tL9sP+CHejf2P/wTC/Zr3Jsn1T/hbOsz8Y3fbvjZ8Rfsr+pzp8Vnz37fLiuXFfx5/wDbv/pEf66fi3L+hvo6UPYeDvCN1aVb+268vP2vEObOD/8ABSp9v1l+slc5+2hQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH5/f8FVPFP/AAh//BOz9rzVvM8r7X8HNe8Lbs4z/wAJzPZeCfLzx/rv+Eg8rH8W/bznFbYdXrU/8Sf3a/ofmHjTjfqHhVx1Xvb2mQYnBX/7GUqeXW/7e+tcvz8z8jP+DZHwt9k+CP7UHjby8f8ACQfFTwX4W83H3/8AhDvCV3q3l57+V/wnO7Hbzs/xV045+9TXZSf3tL/20/DPof4L2fDvGOY2/wB6zrL8Fzd/qGBqV7fL+0r/APb3mf06VwH9hBQAUAFABQAUAFABQAUAFABQB+X/APwVR/4JreAf+CjfwEufC0w0zw38cvAcGo618EfiTcwEHSNcmhV7vwj4iuIIpbybwN4wNtbWetwxJPLpV5Fp3iSxtby70kWF7+neFviRj/DrPo4qPtcTkeOlTo53lsZfxqCl7mLw8ZSjCOOwfNKdGTcVVg6mGnKMKrnD4DxD4EwXHGTyw79nQzfBxqVcpx8l/CqtLmw1eSTk8HieWMaqSm6c1TrwhKVNQq/zGf8ABHX/AIKR/EH/AIJu/HrxH+wJ+2kmreC/hJc+O77w2f8AhLnKSfs8/FK6vRHPeyXTyPbx/C7xndTQ3Wt3VpNLoNjcX1l8RNJu00nUfEt7q/8ATHjB4cZf4jZDh+PuDHSxmbRwFPE/7IrriHK4QvGCikpPNMHBOFCE4xr1Iwnl9WMqtLD06H4F4Y8dY3gXOK/BvFSq4TLZYydD/aXZ5JmMp2cnL3orL8VJqdWcXKhCU446nL2U8ROf92EUsc0cc0MiSxSoksUsTrJHLHIoZJI3UlXR1IZHUlWUggkEGv4aaabTTTTaaas01o009U090/0P67TTSaaaaumtU09mn1TQ+kMKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8mf+CmH/BJL4Ef8FC/Cd7rrWunfDP9o/R9MMXgz4zaXpyCXUjawkWXhf4l2VqscnizwpJtS3t7qTd4g8LZF1oF2bP+0tD1r8+438Pcp4ww8qvLDA51ShbC5nThrU5V7uHx0Y64jDu1oyf76h8VGSip0MR/Yn0Wfpj+IP0bc4oZequJ4p8McbilPPOB8XiZcmF9tO+IzbhavWco5PnEbyqVKUUstzbWlmNF1vquYYD+X79ij9uv9qf/AIInftG61+yj+1f4Y8TX3wN/t1X8W+AZJX1RvC1tq9zILf4v/A3U5njsdU0PVgkuoX2k2dxDo3itIr2C4TRfF9pcXFp+FcMcVZ94YZ1V4f4goV5ZV7W+IwjftPq8aknbMsqm7QqUqlnOdOLjTxCUk/ZYmMnD/V7x2+j/AOEn07fDLAeL/g/muV4fj7+z3HJuIowWEjm1XB0ourwXx9haaqYjB4/BuUcNQxlaFXHZPKVCpSlj8lrQp1f7r/hr8SvAfxh8B+Ffif8ADDxVpHjbwB430e117wt4o0K5F1pmraZdqdksT4SWCeGRZbW+sLuKC/02/gutO1C2tr61uLdP6swWNwmZYTD47A4inisJiqca2Hr0pc0KlOWzTsmmneM4SUZwnFwnGM4yif8AP3xRwvxDwVxDm/CnFeUY3IuIshxtbL82ynMKXssVg8XRfvQmtYVKc4uNXD4ijKph8Vh6lLE4arWw9WlUl3FdR4IUAfyIf8HDf7ZGp+PfH/gX9gf4VXF3qw0PUtA8W/Fmx0PzLq717x/r0Ua/Df4drb2mZ7ubStO1OLxLeaZsuIb7VfEXhUpGupaCVT0cHStF1ZdbqN+kVu/m9L32XS7P4X+lNx9WzPM8t8MsknOv9XrYbHZ5Tw151MTmeJSWU5UoQTlOVGlWWMqUVzxqVsXgrRVXDNR/fP8A4JpfsaaZ+w/+yj4E+FEttaN8RNZiHjn4w6vb+XKdS+I3iC0tW1Oxju48rc6Z4UsoLDwlo8seyK6stEXUzDHdaldF+SvV9rUcl8K0j6Lr6t3b9bdD+mvCLgCj4dcE5bkkoU/7Vrx/tHPq8LS9tm2KhB1qaqLSdHBU40sDQlG0Z08Oq3Kp1Zn35WJ+nBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB+PPxwP/CD/tsaV4gf9zZz+Lfht4hJ6A2Tw6HZaoc8DEslnqILdtxBzgmv4A8Sn/q19I3A5rL93h6me8H5s29E8NKnlmGxrv2nPD4tX6XfZn+jHhev9aPoyY/KI/vMTS4f41ydJatYmNTM8VgFbXWEMTg7Ld8t1a6R+w1f3+f5zhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAeHftD6X8VdY+GWpWHweupLXxZNe2IlNpf2+l6nPouZRqEGk6ldS28Nlfs5tpBN9qtJfssd1Hbzi4kiR/wA18WcFxvmHBuMwvh/XnQz2piMN7T2GKo4LG1cu/efWqWAxledKnhsU5OjJVPbUansYV4UaqrThGX6j4PY7gLLuN8Fi/EbDwxHD9PDYrkWIwtbHYGlmVqbwlXMMFQp1quKwiiq0HSWHxEPbzoTrUnRhOUfhz4d/sEeKNeca38XvFT6I93Ibi50XRZodZ8QzPKd0rahrtw1xpdrdM+5ma3h15ZN25pkcutfzVwl9F7Os0ksy49zuWWyxEnVrZdltSnmGbVJVHecsXmdb22Co13K8pOlDM1O93VjJyjH+o+MfpY5FlMXlnh5kMczjh4KjQzPM6dXLsnpRpq1NYPKqKw+Pr0FG0YqtPKHTtZUpxSlL6t079mf9mj4Y2A1XXPD2gGC2wJ9b+Iesi8tHYAsPPh1i6i8PoxAYlYtPh3c5DAKK/csJ4N+DnBmFWOzLKcrdKjZVMy4szFV6Emlde1p5hXp5VGTSbahhKafZpJR/A8Z43eNnHGLeAyvOM3VWvd0sr4Py14bERTaT9lUy6hVzeSTaXNPGTcb6NNsnh/aV/Zc8GMNJ0rxj4X0mIMIxB4Y8MaxJpwwdoxP4d0G407YvZxLsA5DBcltKfjD4KcOv6hgeIMlwME1D2eS5Nj54RW0X73KssqYTlV9JKo4paq6VzGp4KeOnEi/tDH8OZ7mFRxc/a55neXwxrvq17LOM3pYzmf8AK6XNfRxb0j9E6Dr+i+KNIsdf8O6pZazo2pw+fY6lp86XFrcx7mRtkiFsPHIjxTRPslgmSSGZElR0X9ayvNMuzrAYbNMpxuHzDLsZT9rhcZhasa1CtDmcXyzjtKE4yp1IStOlUjOnUSnCUY/j2bZTmeRZjispzjA4nLcywVT2WKwWMpSo16M+VSjzQlq4zhKNSlUjzU6tKcKtOUqcoTlr13nnBQAUAfHf7bH7cnwH/YL+EN78WPjbr/lSXP2qx8DeAtIe2n8bfEfxFBCsq6H4W0uaWLekPmQSazrl49vougWs8U+p3cT3Nlb3fzfE/FOU8J5dLMM0rWcuaGFwlNxeKxtZK/sqFNtXSunUqycaVGMk6kk5QjP9r8CfAPxC+kLxnQ4P4Dy7njS9liM/4hxsatPIeGMsqTcHj82xcKc2pVOSpHA4Cgp47Ma0J08LRnGlXqUP4q7zUP8AgoB/wcIftOCztIz4R+DHgnUhKlr5mpL8E/2fvDF+7ol1fTBYH8bfE7WrGOREfy/+Em8V3UcsdpD4X8EabKvh7+ZJT4v8YM95Yr6vlmFqXUff/szJ8PN7ydk8VjqsFa/8fESXuxw2Eg1Q/wB0qGG+jn+ze8Kvb1pf2zxxn2FcJVeXCvjvxGzXDxjKVHDwcqkch4UwGInByXN/ZWUUpQnWnnGfYqH9pf2XfsI/8E8/2ef+Cfnw0XwR8HdA+3eK9Yt7RviJ8WNfgtZvHfxB1O3Xdv1G+jTbpXh60naRtD8JaU0Wj6RG7TOl7rNzqesal/SnCfB2T8IYH6rltHnxFVReNzCtGLxeMqL+eSS9nRi7+yw1O1Kknd89WU6s/wDEL6QX0kvEn6RvFLz7jbMfq+UYKrWXDXB+XVK1Ph7hvC1HblwuHnK+MzKtTUVj85xfPjcbKKgvq2CpYTA4f7qr6s/n8KACgD8N/wDg4X8GHxR/wTs1bXBD5g+HHxj+GHjNn25+zrfTa18PfNz/AAhm8drBnjJmC9wG68G7VrfzRkvyl/7b5/rH+c/pS5f9d8Kq+J5b/wBk59k2YN/y+0liMq5vm8zUenxeil/NH8aviqviD/gjl+xR8ORch28I/tQftFaY0G/JjOjWtp4x2leo2J8ao5MHGBdKRw+W7YxtiKsu8Kf43X/tnn+LUf5E4hztYrwE8PMp57vA8Y8VUXG+31eEMft5LiFPy5/NH9kv/BK3w/8A8Iz/AME7f2Q9NKeX9p+DXh/xBtxjP/CWy3fioP2/1g1nzM99+ec5rzcQ71qj/vW+7T9D++fBfC/U/CrgWla3PkGExVv+w51Mbfp8X1jm+fXc+/6xP04KACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/G/wD4L1eKP+Ee/wCCaPxh00SeW/jTxZ8JPC6EHaz+T8SPDviyWNTwfnt/C0yuB96LzFOULCunCL9/HyUn/wCStfqfgn0l8b9V8Is+o3s8wxuR4Jd3y5thMbJLVbwwcr2vePMrWbPKv+DdLwv/AGD/AME/dS1gx7W8b/H74jeJBIRzLHZaF4G8HrhupRJPC0ygA7Q/mEYYvVY13rLyhFfi3+vl+F5eL9FPBfVvC+rXtZ5jxPm2Lv8AzKnhsuwC9UngpLfe+2p+8tch/SoUAFABQAUAFABQAUAFABQAUAFAH8+P/Bcj/gkjbftrfD24/aF+BWg28X7VXwx0JxNpVjDHC/xw8D6XHJOfB95t2iXxzocXmzeA9Tk+fUEMvg7UXe1vNDvfDv8AQHgh4sz4LzCPD+eYiT4VzOvpVqNtZJjqrS+uQvJWwNaVo4+ktIaYynyyp14Yj8X8W/DePFWCedZRRS4iwFHWnBKLzbCU9fq0t74yirvB1LXqXeFqXjKjPD/EX/BAX/grddX7eH/+CfP7U2vXFn4p0Zh4b/Z08c+KJpbe7vo7AtbJ8DfFNxf7JoNd0nyTbfDmW+dXvbWJvAhMGoWPhax1T7bx78Jo0/rHH/C1CM8LW/2niHA4VKUKbqe887wsaa5ZUKt1LMFDSE39es6U8VUh8n4N+JMpuhwXxDWcMRS/cZJjMQ3GU1T91ZRiJT1VanblwLk7zivqWk4YeM/666/kk/pQKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/S/v4oA8u+LfjvUPAHhmHVNLsobu9vNSh06F7tZXs7XzILm4aeZIXieRituY4YxLGC772ZljaNwqKu7f8AB/WP5/db3j4SeO9Q8f8AhmbVNUsobS9s9Sm06Z7RZUs7ry4La4WeFJnleNgtwI5ozLIA6b1ZVkWNAJKzt/wP1l+f33931GgkKACgAoAKACgDG8RasdC0HWdaW2e8bStMvdQW1Q7WnNpbyTiLcAxRXKYdwrbE3PtbG2ga1aXd/wBdvz+48O+EHxf17x5r2o6LrWnafGseny6la3WmRXMK26w3FvA1tcrPcXAdXFypimDIweMo6yeYrRBUopK6b37W/wDbpfl99/d+iqCAoAKACgAoAKAM+LV9Kn1K70aDU9Pm1ewgt7q+0qK9tpNSsra73fZbi7sUlN1bQXOx/s800SRzbG8tm2miz36f1/X/AAxlGvRlVnQjWpSr0ownUoxqQdWnCd+Sc6ak5wjOz5JSilKzs3ZnzZ/wvXX/APhZf/CL/wBi2X9i/wDCR/8ACOeT5dz/AGv/AMf39n/bvO87yPM83/SPs32bZ5P7jzfM/wBIoOnkXLe7va+3/wBv+ny6H1HQZhQAUAFABQAUAFAHzr8X/i/r3gPXtO0XRdO0+RZNPi1K6utTiuZluFmuLiBba2WC4twioLZjLMWdi8gRFj8tmlC4xTV23v2v/wC3R/L7re97j4d1Y67oOja01s9m2q6ZZag1q53NAbu3jnMW4hS6oXwjlV3ptfaudtBL0bXZ/wBd/wA/vPz+/wCCkn/BN74Rf8FFPg5L4O8WJa+Ffit4Vt769+EPxctrFJ9X8H61Ogd9K1VU8ufWfA+uyxQReI/D7yjcFh1XS3tNasbK7i+L414Ky7jLLXhsQo0Mww8Zyy7MYw5qmGqv/l3UtaVXC1mkq1FvtUp8tWEJR/pn6MH0neM/o0cbQzrJ5Vc24QzepQocZ8G1a7p4POsDTlaOLwjlengc/wAvhKpPLMyjCVrzwmLjWwNfEUZ/yZ/sH/txftFf8EU/2nfFX7Jv7WWgeID8DrvxNHH488IKbjVl8Gz6k6x6f8a/hDOVSPWfD+s2SQ3urafpwjh8WaRECLe28V6VHbr/AD7wnxTnPhjnuI4f4go1v7KlXSxeG1qfVpTsoZplz/5e0akEpVIQssRTW0cRBQj/ALEfSD8A/DP6dXhTlHjD4PZjlv8Ar9RyuT4ezpqlg3ndPCpzxPAvGlO7lgcywNeU6GDxGJcp5PjZ29rWyjGTqS/u+8EeNvCPxJ8IeG/H/gHxHpPi7wX4w0aw8Q+GPE2g3kWoaRrei6nbpc2OoWF3CzRzQTwurDkOjbo5UjlR0r+r8LisPjcNQxmErU8RhcTShWoV6UlOnVpVEpQnCS0aaflbZpNWP+fPPshznhfOs04d4iyzGZNnuS47EZbm2VZhQnhsbgMdhKjpYjDYijNKUKlOcWusZK04SlCUZS+fP21v2qPCP7Gf7NvxI+Pfiw21zL4Z0prLwb4enm8qTxh8QNXWS08IeF4AhE5jv9UKT6tNbLJNpvh6z1jWDG0OnSmuulTdWcYLq9X2j1ez+Xn32l+a+IXGmB4A4SzbibHOE3g6Dp4DCylZ4/NK6cMDgopNSaq1rSryheVLCwr4i3LRkfyyf8EOP2XPFn7X/wC1r4//AG7/AI6fafE+j/DTxnqPiq11bVod8PjT9oXxTNJrsV5GCDB5Pw+tL8eKnggEI0vWtQ8C/ZENrDPCnfiqip01Sho5K1lf3YLTe63ty7PTmva6P4x+jlwbjuO+OM08SuJOfGUMozCrjYV68bxzDinGyeIjUX2eXK6dX67yR5fYYiplvJ7kZQP7Rq8w/wBAjy74t+O9Q8AeGYdU0uyhu7281KHToXu1leztfMgubhp5kheJ5GK25jhjEsYLvvZmWNo3Coq7t/wf1j+f3W94+EnjvUPH/hmbVNUsobS9s9Sm06Z7RZUs7ry4La4WeFJnleNgtwI5ozLIA6b1ZVkWNAJKzt/wP1l+f33931GgkKACgAoAKACgDG8RasdC0HWdaW2e8bStMvdQW1Q7WnNpbyTiLcAxRXKYdwrbE3PtbG2ga1aXd/12/P7jw74QfF/XvHmvajoutadp8ax6fLqVrdaZFcwrbrDcW8DW1ys9xcB1cXKmKYMjB4yjrJ5itEFSikrpvftb/wBul+X33936KoICgAoAKACgAoAKAPxV/bS1y58QfFO31g2K6d/ZlpeeFbcx+YtzKvhzV7uZLq6YvgXUsmpu6eWsYjgWGHMrQmZv4Y+ldlcsNxLwrntNOH1/J8Tl7nHT97lGN+sxldWtU5c2ilK93GCSa5Hy/wB/fRBzWOJ4W4t4fqNT+oZzhczVOev7nOcD9VlFJtp0+fJ5OSSspVbtLnSP2C8D+IE8WeDPCXiiMhl8ReG9D1v5eAG1PTba8dCP4WR5mRk4KMpUgEEV/ZvDeaxz3h7Is6i01m2T5bmWltHjcHRxEo2VrOMqjjKNrxlFxdmmfw9xRlEsg4l4gyOaalk+dZpllnvbA42thou/VSjTUlLVSTTTaaZ1Fe0eEFABQAUAFABQB86/F/4v694D17TtF0XTtPkWTT4tSurrU4rmZbhZri4gW2tlguLcIqC2YyzFnYvIERY/LZpQuMU1dt79r/8At0fy+63ve4+HdWOu6Do2tNbPZtqumWWoNaudzQG7t45zFuIUuqF8I5Vd6bX2rnbQS9G12f8AXf8AP7zZoEFABQAUAFABQB5d8W/HeoeAPDMOqaXZQ3d7ealDp0L3ayvZ2vmQXNw08yQvE8jFbcxwxiWMF33szLG0bhUVd2/4P6x/P7re8fCTx3qHj/wzNqmqWUNpe2epTadM9osqWd15cFtcLPCkzyvGwW4Ec0ZlkAdN6sqyLGgElZ2/4H6y/P77+76jQSFAHJePb3xNp3grxTf+C7CLVPFlnoWpXHh7T5huju9VitZGtIjGZIhMxlClLcyxfaHCwebH5m9fC4nxGc4Th3O8Vw7hYY3PcPlmMq5Thai5oV8dChOWHpuHND2jdRJxpc8PaySpucObmPoOFMNkmN4lyLCcS4upgMgxGa4Kjm+MpaTw+AqV4RxFRT5Z+zSp3Uq3JP2MXKryT5OU/J7QP2bv2jP2gtZm8TfE3UtV8N2/nSRtqHjuG+h1FFL/AL2DQfCOy1ks7SM7WSIpoemSKd1rLKwZV/hjKvCDxb8VcwqZ1xljMdk9L2koPF8T08TDGRi5XnSyvIeWhLD0Iv3oU3DLMFJa0Jzakf37m3jR4N+EWW08k4IwWAzqsqUJLCcK1MLUwc5KNoVc24hvXjicRNJxnUU8zx0XpXpxXK5cn+0P8FfhX8DtP0/w7Y+LvEfi34mX/kXVxB/xKtP0LRdIzlrvUdPitLy+W71Er5emWQ1jcsPm31w3lLax3fheLHhzwR4a4TCZThs+zfPeMsV7KvWpXwOEyzLsBvKvi8JDD4nFKvi2uTBYb+0ItU/aYmr7kaEMR9B4PeJnHviji8ZnOK4eybh/gjCe1oUav+34zNMyzDRRw+Dxk6+Gwrw+DT58bif7OadT2eFornliJYX9A/2J/CuveFvgbYNryzwnxJr2p+J9Is7jeslpol/a6ba2P7t/9VHftYT6xAo4eDUo5vvStX9U/RyyPNMk8NcK80VSm83zTGZ1l+HqpqdDLcVQwdDDe4/hhipYWrj6SVualjIVN5ty/kX6TefZTnvili1lMqVVZLlWByPMcTR5XDEZphK+Nr4r34t+0nhI4ull1VvWNXBTpaqEXL6e8RasdC0HWdaW2e8bStMvdQW1Q7WnNpbyTiLcAxRXKYdwrbE3PtbG2v3g/n1atLu/67fn9x4d8IPi/r3jzXtR0XWtO0+NY9Pl1K1utMiuYVt1huLeBra5We4uA6uLlTFMGRg8ZR1k8xWiCpRSV03v2t/7dL8vvv7vmf7en7c/wj/YB+A+s/Gb4nz/ANp6pO8uifDf4eWF3DbeIfiR41ktnmstC01pFm+w6Zaqv27xL4hltri10DR0luPIvtSn0vSNS+Y4t4qy7hHKauZY5+0qSbpYHBwko1sbinG8aUG78lOPx16zUo0aab5ZzdOlV/cvo8+APGX0i/ELA8EcKU/quEpqGP4o4lxFGdXLeGMijVUK+YYpRcPrGKqt/V8qy2FWnWzHGyjT9pQwtPGY3Cfxl/s6fs2/tg/8F8f2rfEXxw+N/ijVPDXwX8OapBp/jLx1aWssXhfwL4ejl/tDTvgx8EdEv3uLKXXjZXInmeU3kWjpev4z8c3Wra3rGn2Xif8AmnJsl4k8W8/rZpmlepRyyhUUMTi4xtQwlFPnhlmV0pc0XW5JJtvmVNS+tYt1atSEMR/uB4meKHgt+zv8IMs4B4CyrCZpxzmeEnick4frVYTzbiDMpQ+r4njjjzHYdU68cv8Ab0nTpxg8PPGuhHI8go4LAYLEYjKv7oP2fP2ePg/+y18KvDXwY+BvgvTPA/gHwvb7LXTrFDJe6nqEqRLf+IPEWqS7r7XvEmrPEk2qa1qU1xe3brHGZVt4LeCD+qsnyfLshy+hlmVYaGFwlBe7CGsqk2lz1q1R+9Wr1Gk6lWbcpWtolGMf8BPEjxK418WuL80444+zzFZ/xFm1S9bE4hqNDC4aEpvD5bluEhbD5dlmDjNwwmBwsKdCjFykourUqTn7VXpnwoUAFABQB+NP/BUHxZ4g+LH7Iv7WfwnXQrKTSo/AWv6ha2ggun1mW/8AhlqVp46sLlJBP5TXEmpeEYJY7VbVvkZYEZpsTtth5ctam/7yj/4F7vl3/wCH2PzXxmyf+2fCvjjBxi5zjkOJzGEOW7lPJ5U84gormbcnLArkSV3KyVj+ETUPiFq+ofC3wl8KZSRoPhHx/wDET4hWIDnD6v8AEXw78L/DmqFo/ugxWXwt0fY+ST50i/Lt+b2bLmcurSXyi5Nf+lPr9x/lLVzSvVybA5I/91wOaZrmlPXevmuEyfCVrrb3aeTULO32mtLH+mb+yT4YPgr9lT9mbwc0flP4U/Z++DfhySMjDLLovw68OadKGHXeZLZi5OSXySSSTXh1XepUfecn/wCTM/184Hwf9n8FcIYBrleC4XyDCNdnh8qwlJ387wd/PV7n0JUH1AUAFABQAUAfOvxf+L+veA9e07RdF07T5Fk0+LUrq61OK5mW4Wa4uIFtrZYLi3CKgtmMsxZ2LyBEWPy2aULjFNXbe/a//t0fy+63ve4+HdWOu6Do2tNbPZtqumWWoNaudzQG7t45zFuIUuqF8I5Vd6bX2rnbQS9G12f9d/z+82aBBQAUAFABQAUAeXfFvx3qHgDwzDqml2UN3e3mpQ6dC92sr2dr5kFzcNPMkLxPIxW3McMYljBd97MyxtG4VFXdv+D+sfz+63vHwk8d6h4/8MzapqllDaXtnqU2nTPaLKlndeXBbXCzwpM8rxsFuBHNGZZAHTerKsixoBJWdv8AgfrL8/vv7vqNBJ/PF/wcn+KP7L/Yq+FnhiKTZP4p/aP8MzTJn/W6ZoHw8+JN1crjqdupXmjPnkDbg8kFezBL97J9oP8AFr+tvusfyx9LbGex8PclwadpY3izBykr/FRwuVZvOat1tWqYd+XzR9i/8ESfC/8Awi3/AATK/ZphePZda3Z/EfxRdNjaZf7f+LPjq9sJMf8AYHbTYwedwQMOCAueKd68/LlX/kq9Ov8AT3Pvfo8YL6l4P8IRatPEU81xs3/N9azvMqtJ9f8Alw6K87X0vY/Viuc/agoAKAMbxFqx0LQdZ1pbZ7xtK0y91BbVDtac2lvJOItwDFFcph3CtsTc+1sbaBrVpd3/AF2/P7jw74QfF/XvHmvajoutadp8ax6fLqVrdaZFcwrbrDcW8DW1ys9xcB1cXKmKYMjB4yjrJ5itEFSikrpvftb/ANul+X33936KoICgAoAKACgAoAKAPlz/AIXrr/8Awsv/AIRf+xbL+xf+Ej/4RzyfLuf7X/4/v7P+3ed53keZ5v8ApH2b7Ns8n9x5vmf6RQaci5b3d7X2/wDt/wBPl0P5qv8Agvv/AMEkb0XGvf8ABQr9lXQ7qw8QaTN/wk/7RXgjwpHLa3plsHW8b47+FLfT9k9tqunPELr4kR6ftkkSJPHyol5beLdSuv658BfFmHLQ8PuKq8amHrL6rw9jsW1KmlNcqyLFureMqVRNwy11LpN/UH7k8JRh/MnjH4bT5q3GvDtGUK1N/WM8wmGTjK8PeecYZU3FxqQa5scoK7t9d+JYqcvvT/gh7/wVus/23fh3B8Avjlrltb/tW/DHQkLajeSRW5+N3grTEjt18bacn7tH8aaPH5MPj7SYVzds0Xi/S4xY32saf4d+E8bvCafBOYvPsjoTlwrmddr2cE5f2JjajcvqVTe2DrPmlgKrfu64Sq1OFGeI+x8JvEiPFmBWTZvWjHiLAUl78mo/2thKaUfrcF1xdJWWMpp+9piacVCdWFD+gSvwE/ZgoAKACgAoA+dfi/8AF/XvAevadoui6dp8iyafFqV1danFczLcLNcXEC21ssFxbhFQWzGWYs7F5AiLH5bNKFximrtvftf/ANuj+X3W973Hw7qx13QdG1prZ7NtV0yy1BrVzuaA3dvHOYtxCl1QvhHKrvTa+1c7aCXo2uz/AK7/AJ/ebNAgoAKACgAoAKAPLvi3471DwB4Zh1TS7KG7vbzUodOhe7WV7O18yC5uGnmSF4nkYrbmOGMSxgu+9mZY2jcKiru3/B/WP5/db3j4SeO9Q8f+GZtU1SyhtL2z1KbTpntFlSzuvLgtrhZ4UmeV42C3AjmjMsgDpvVlWRY0AkrO3/A/WX5/ff3fUaCQoAKACgAoAKAMbxFqx0LQdZ1pbZ7xtK0y91BbVDtac2lvJOItwDFFcph3CtsTc+1sbaBrVpd3/Xb8/uPDvhB8X9e8ea9qOi61p2nxrHp8upWt1pkVzCtusNxbwNbXKz3FwHVxcqYpgyMHjKOsnmK0QVKKSum9+1v/AG6X5fff3foqggKACgAoAKACgAoA+XP+F66//wALL/4Rf+xbL+xf+Ej/AOEc8ny7n+1/+P7+z/t3ned5Hmeb/pH2b7Ns8n9x5vmf6RQaci5b3d7X2/8At/0+XQ+o6DMKACgAoAKACgAoA+dfi/8AF/XvAevadoui6dp8iyafFqV1danFczLcLNcXEC21ssFxbhFQWzGWYs7F5AiLH5bNKFximrtvftf/ANuj+X3W973Hw7qx13QdG1prZ7NtV0yy1BrVzuaA3dvHOYtxCl1QvhHKrvTa+1c7aCXo2uz/AK7/AJ/ebNAgoAKACgAoAKAPLvi3471DwB4Zh1TS7KG7vbzUodOhe7WV7O18yC5uGnmSF4nkYrbmOGMSxgu+9mZY2jcKiru3/B/WP5/db3j4SeO9Q8f+GZtU1SyhtL2z1KbTpntFlSzuvLgtrhZ4UmeV42C3AjmjMsgDpvVlWRY0AkrO3/A/WX5/ff3fUaCQoAKACgD/0/7+KAKWoabp+rWkthqlla6hZTgCa0vII7m3k2sGUtFKroSjAMjYDI4DKQwBoANP03T9JtIrDS7K10+ygBENpZwR21vHuYsxWKJUQF2JZ2wWdyWYliTQBdoAKACgAoAKACgBCAwKsAysCGUjIIPBBByCCOCCOfegDH0nw7oOhG5bRdG0zSmvHD3TafY29oZ2XJXzTBGhZULMUQnYm5tirubcDu3vf77/ANf12NmgQUAFABQAUAFAH8V/7FPizxPZ/wDBxN8ULO88QaxOfEv7Qn7anhHVmn1G6k/tXw7oei/F7U/D2jX26XFxpWl/8Il4bbS9Pl3Wlh/Y2kpaRIthbCL1KqX1OOi0hSa02fuXfq7u763d9z/Prw9x2Mh9KrOac8ViJfXOKfELA1+arUftsJhsPntbC4epradGgsDhHRpSXs6f1egqcY+yhy/2bf8ACOeH/wC1v7e/sXS/7b27f7V+w232/Gzy8/avK87f5X7rzN2/yv3e/wAv5a8s/wBBrvbW3r+htUCCgAoAKACgAoAKAMbVvDug66bZta0bTNVazcvatqFjb3ZgZsFvKM8blVcqpdAdj7V3q21doO7W1/vt/X9dzYACgKoCqoAVQMAAcAADAAA4AA49qBC0Afl//wAFQv8AgmX8M/8Agov8Hm0i6/s3wh8d/A9lfXXwe+Kj2pL6deSBp5PBvi17aJ7zUvAXiC4CrfQIs934fv3TxDo0MtxFfabrPwvHfA+B4zy32cuTDZthYzlluPcdYSerw2I5U5TwlZ/ErOVGbVakpNTp1f6v+if9Kjin6M3GqxtH61nXh9n1fD0uNeEY1Uo4mhFqnHO8mVWpGhheIsupNvD1Jezo5lh4yy3HVadOeHxeC/mB/wCCY3/BRb4x/wDBJ/8AaA8SfsS/toaX4i0P4JxeMJ9H8RaTq6TX+o/AjxZqUyTL478KGD7QNZ+GnidLm31nXrHRWvLHUtNvYPH3g/7VfTalY+K/wrgbjLMvD/N63C/E1OtSytYl061OopTnlOIm7/W8PZv2uBr8yq1oUrwnCaxmGc5ucMV/q79Kv6M/BP0wPDnK/HfwNxeW4/jueS08bluMwcqeHw3iDk+Fpyg+H83VSNN4HinKnSqYHL8RjlSxGFxNCpw7nXsaEMNiMm9B/wCCsX7VPiz/AIKX/tnfDj9kD9mS7j8afDvwX4uj8E+CJdFvftPh/wCIPxS1ki18WfEKXULIz2k/hDwnp0dxpel69turCx8P6b4r8V2d62keIH2f2FhVCFBV7pqpBVFJNNOm1zQ5WtHzJp6N3vFXdj/jn8eOKs38UPErBeG3DlOrVw2R5tVySjhvehHF8RqpLD5rjcQuVcmGyv2dXCKrUjKOHo4fH4uM3RxLP67v2SP2aPBP7If7Pnw2+AXgSNJdN8EaJHFq+tmBbe78WeLb9jfeKvFuoqC7i617W57u8jgeWYadYmy0m2kFlp9tGnn1JupOU31ei7Lot3srddd3a5/cHA/COXcC8L5TwxliUqOXYdRr4jkUKmOx1T95jcdVSu/aYrESqVFFyl7Km6dCD9nShGP0fUH1hS1DTdP1a0lsNUsrXULKcATWl5BHc28m1gylopVdCUYBkbAZHAZSGANABp+m6fpNpFYaXZWun2UAIhtLOCO2t49zFmKxRKiAuxLO2CzuSzEsSaALtABQAUAFABQAUAIQGBVgGVgQykZBB4IIOQQRwQRz70AY+k+HdB0I3LaLo2maU144e6bT7G3tDOy5K+aYI0LKhZiiE7E3NsVdzbgd297/AH3/AK/rsbNAgoAKACgAoAKAKGpappmjWkl/q+o2GlWMP+tvdSu7extIu/7y4uZIoU4BPzOvT2+XmxmNweX0J4rH4vDYHC0/4mJxlelhqFP/AB1q04U47PeS/A68FgMdmWIhhMuweLx+Kqfw8NgsPWxWIn/go0ITqS3+zF/ifEHx0+IH7G/i6EW/jbW9P8Q6ra3SXUV34EjvrzVpZIkMTxnXdHt/7KuIZocQyRX2oujKsTxFJIIpYv538UOOPAjiTA0Ms4ozyGdSwGJ+tYNcOSxmLxFOq4unVVHMMDTeXunXhaFWnVxShO0KkVz0oVYf0r4T8B/SC4Yx9fNOE8gqZHDMcKsJjHxNHB4PDVKXP7SlKtl2PlDMVVoVL1KVSjhJThepCXNTqTpz4G6/b28CeFNH07w58NvhjrM+k6Lp9rpOkR67q1nokFpZWMCW1qogs4/EVxcJHFGg/fXkU8335pVlZzXxlf6UHDGR4DCZTwfwZmFTA5dhaGBwMMzx2Hy2nQw2FpRo0Iqnhlm1WrGNOEV+8rwqz+KpU53Jn29D6J/Fef5jjM54044y2lj8zxdfMMwnlWAxGZ1cRicVVlXrt1cS8npUZTnOT/d4edKn8FOk4JI93/Zg/aJ8R/HdvF6a54StNEj8PNpz2mp6VJeS6dcC/N0G064N5vI1C3W3W4DwylJYJiXtrby43uP07wX8Ws38Tnn0cyyGhlsMpeElQxmBniJ4Sr9a9snhKrxHM/rdJUlV5qdTlqU5tyo0eWDq/lXjl4O5P4VLh6WV8QYjNJ5wsbHEYLHww9PGUXhFQaxlFYdQX1Ss60qXLVhzU6tNKNavzTVD61r92P59CgAoAKACgDG1bw7oOum2bWtG0zVWs3L2rahY292YGbBbyjPG5VXKqXQHY+1d6ttXaDu1tf77f1/Xc2AAoCqAqqAFUDAAHAAAwAAOAAOPagQtABQAUAFABQAUAUtQ03T9WtJbDVLK11CynAE1peQR3NvJtYMpaKVXQlGAZGwGRwGUhgDQAafpun6TaRWGl2Vrp9lACIbSzgjtrePcxZisUSogLsSztgs7ksxLEmgC7QAUAFAHz3+0V8d9K+B/g43yiC/8X62s9p4U0WVsrLcxqon1W/RGWQaVpfmxSThCj3dxJb2MckXnvc2v5T4teJ2C8NuH3iYqlis/zJVaGRZdN+7OtBL2uOxUYyjJYHBc8JVbWlXqypYaEoe1nWpfr/g54VY/xR4jWFk6uF4dyx0sRn+ZQj71OjOUvZYDCSknB4/HeznClzKUaFGNbFTjP2UKVX4O/Zk+A2s/HDxXefGP4rNdap4b/taa/UakCZPG+uxzZkV0IVD4e02VBFdLEi2lxJEmjW0Rtra+ii/mHwa8L8w8Ss8xHiBxw62Nyf6/UxKWMu58SZpGpealH3Y/2Tg5xUK8YKNCrOEcuox9jSxMIf1b43+K+WeF+QYfw34BVDA50sBTwsngtIcMZVOn7rjJOTWcY2nL2lCU3KvShOWZVpKtWws6v65qqoqoiqiIoVEUBVVVGFVVGAqqAAABgDgY4r+84xUUoxSjGKUYxiklFJWSSWiSWiS0S0R/npKUpScpNylJuUpSbcpSbu227ttu7bbu3q7ikBgVYBlYEMpGQQeCCDkEEcEEc+9MRiafoXhzw2l7caZpWkaJHMGuL+e0tLWwRkhDO0lzLGkaiKFS7/OwiiBdgEBcsm0k22kkrtvRJLdt9EkXGM6s404RnUnOShCEU5znOTSjGMY3lKUm0lFK7dkrn8CXxf8AEvxV/wCC8n/BU60+HfgzW9Q0v4JeH9S1rRPBd8sck+mfDf8AZ88H6lEPFHxLk0x9kJ8UePZ/sl+iXQEl54j8Q+D/AAhd36aRpNjcWn8h5jXx/ixx7HB4arOGV0Z1aWFlq4YLJ8NNe3xzha3t8W+WdpK8q1bDYaU406cJx/6MuC8r4R/Z7/RIrcS55gMPi+PMywuBx2eUHKMMVxP4j51hZ/2TwtHFL94sp4dpe2w8pUvdo5ZludZzRw0sbjMRTr/3WfAj4F/DD9mv4TeCvgn8HfDFp4S+H3gLSIdJ0TS7YK087AmW+1jV7zasuq6/rd9JcarrusXW671TVLq6vLhjJKQv9WZTlWByTL8LleW0I4fB4SmqdKnHd9Z1KkrJ1K1WblUq1JXlUqSlKTuz/n98QeP+K/FHjHPeO+Ns1rZxxJxDjZ4zH4uq7U4J2hh8FgqF3DB5dgMPGng8vwVG1HCYSjSo01ywR67XonxgUAFABQAUAchr3gHwZ4mh1mLWvDekXzeINI1HQtWuJLC2+13el6rYTaZf20l15Xnf6RYXEtqz7t/kOYt/l/LTTaaa3TTXqjHE0KWLw2IwmIgqmHxVGrh69OXw1KNaEqdWDXaUJSi/U/zMvFv7Mvjrwp+1nqn7JNzY3z+OrP43x/Beyi+yuLjU72/8XReGtD1W0h2/vrPW7W7sNZ06dFMN1p97bXURMEqO3uKadP2n2eXn+Vr9916/Pqf4947g/MsFxxW4GlTqPMqfEa4fprkfPWqVccsJhq8FpzQxEJ0sRSkvdlSqQmrxaZ/p46fY2ul2FlptjEILLTrS2sbSFfuw2tpClvbxL04jijRBx0XtXhH+w9KnCjTp0qa5adKEKcIraMIRUYpekUkW6CwoAKACgAoAxtW8O6Drptm1rRtM1VrNy9q2oWNvdmBmwW8ozxuVVyql0B2PtXerbV2g7tbX++39f13NgAKAqgKqgBVAwABwAAMAADgADj2oELQAUAFABQAUAFAFLUNN0/VrSWw1SytdQspwBNaXkEdzbybWDKWilV0JRgGRsBkcBlIYA0AGn6bp+k2kVhpdla6fZQAiG0s4I7a3j3MWYrFEqIC7Es7YLO5LMSxJoAu0Afysf8HPXifyPCn7HvgxJM/2r4h+M3ie4iB+5/wj+m/DnSrKR17eZ/wkt+sRxz5UwGMGu/ArWo/KK+/m/wAkfxb9MTGcuB4Dy9P+Pis/xko9vqtHKaNNv1+uVFH0l2P3a/4J1eGP+EP/AGDf2PtDMflSj9nX4TavcxYwYr3xJ4O0rxJfRuMD94l5q06yf9NA3JzluWu71qn+OS+52/Q/pPwpwf1Dw04Dw1uV/wCqmR15x/lqYvAUMXVT81UryT81pufZtZH34UAFACEBgVYBlYEMpGQQeCCDkEEcEEc+9AGPpPh3QdCNy2i6NpmlNeOHum0+xt7QzsuSvmmCNCyoWYohOxNzbFXc24Hdve/33/r+uxs0CCgAoAKACgAoAKAMX/hHPD/9rf29/Yul/wBt7dv9q/Ybb7fjZ5eftXledv8AK/deZu3+V+73+X8tA7vbW3r+hrTQxXEUsE8Uc0E8bwzQzIskU0UilJIpY3BSSORGKOjAqysVYEHFNNxalFtNNNNOzTWqaas009U0/usS0mmmk00001dNPRpp6NNbp/qfwn/8FhP+Ca/xD/4JtfHfw9+31+xTJrHg34Ry+ObHxKP+ESQrN+zt8Tbq93wWItljlt1+FnjG6nlstEgu4ZtBsJb67+HWs2o0vUfDlrrX9zeEPiRl/iPkWI4C40VLGZssDUw3+1u64hyyEPem5tqX9qYOKjOtKDjXmqccwoydWniJ4f8AkTxN4ExvAub0OMeFXVwuWvFwr/7MtckzCU7qFrOKy/FSbhRjNSowc5YGrH2c8PCv/TZ/wSq/4KYeAf8Ago58CofEKnS/DHx48A22naT8bPhrbTlRp2qzRtHaeM/DEFxLJd3HgXxa9vcXGlvK9xcaHqEd94b1G6uptPt9S1T+aPFPw1x/h1nssP8AvcVkWPlUq5LmUo/xKSd54PEyjFQjjsIpKNVJRjWpuniacVGrKnQ/e/DzjzBccZQq37vD5xg406ebYCLtyVGrRxWHi25PB4lxlKneU5UZqdCcpOCqVf1Ir8vP0EKACgAoAxtW8O6Drptm1rRtM1VrNy9q2oWNvdmBmwW8ozxuVVyql0B2PtXerbV2g7tbX++39f13NgAKAqgKqgBVAwABwAAMAADgADj2oELQAUAFABQAUAFAFLUNN0/VrSWw1SytdQspwBNaXkEdzbybWDKWilV0JRgGRsBkcBlIYA0AGn6bp+k2kVhpdla6fZQAiG0s4I7a3j3MWYrFEqIC7Es7YLO5LMSxJoAu0AFABQAUAFABQAhAYFWAZWBDKRkEHggg5BBHBBHPvQBj6T4d0HQjctoujaZpTXjh7ptPsbe0M7Lkr5pgjQsqFmKITsTc2xV3NuB3b3v99/6/rsbNAgoAKACgAoAKACgDF/4Rzw//AGt/b39i6X/be3b/AGr9htvt+Nnl5+1eV52/yv3Xmbt/lfu9/l/LQO721t6/obVAgoAKACgAoAKACgDG1bw7oOum2bWtG0zVWs3L2rahY292YGbBbyjPG5VXKqXQHY+1d6ttXaDu1tf77f1/Xc2AAoCqAqqAFUDAAHAAAwAAOAAOPagQtABQAUAFABQAUAUtQ03T9WtJbDVLK11CynAE1peQR3NvJtYMpaKVXQlGAZGwGRwGUhgDQAafpun6TaRWGl2Vrp9lACIbSzgjtrePcxZisUSogLsSztgs7ksxLEmgC7QAUAFABQB//9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iO+AH/ABIf+DjbXv4PP/ap/aV9s/8ACSeC/ir9P9YNU/Hd3zmvUnrg1/17p/hy/wBf8Of54cMf7N9K/E9ObjTi/wD8u8uzr039t+PW9j+3GvLP9DwoAKACgAoAKACgAoAKACgAoAKAP5V/+DmDw9+y1N4P+CWp67pKN+1rd6s8fhHUtBmtLW/f4Pac94/iCP4hx+TLJqfhtdfuLeDwTDP9nvYdcl8RS6NfJp8Hiuw1D5vNuA8h4pzLKs0zTC89fKMRCqpQ5UsbSg3UhgcYmmq2FVflrOElJpKpSjywxNbmvif6ePiz9Fbwp4+8MvDTiR4TF+MOSY7KcPRq1K1SvwXLFwpYHNOOuG5U6sKmU8Q1Mr9vkuBxdNxhUxNXD5o6dbF8O4OVD8l/+CIv7WX7O37LP7agH7Qmhw6NL8Q/Ctv4C8B/GDWbgQaP8KNf8R3FtdNca1Z3UKxWGieN9PksdEuPHC3Ef/CNW0u282eFtc8Qapp/iZ34q5Ll/GUeE67UMLThCjjM1c7UcNmtRqVPC1U7RWGhTlGNfEczVHEzUKijTo1akPp/oYfswfE7PvotYj6XUaE8TxXn9TF43gPw8eEc81zLwuwkalHMeK8BJv2rz7Ocdh61bJMnVFVMy4YwbxmAxGIxGe4LL6v+gerK6qyMGVgGVlIKspGQykZBBByCDgjkZzX358s002mmmm001ZprRpp6pp7p/ocF8Rfir8MfhBoD+Kviv8RPA/w08MxuY21/x74q0PwlpBmCF/Ij1DXr6xtpbllGUtopHnk4CRklQ1RjKTtGLk+yV/8AP+u1rnl5rnWT5Fhnjc7zXLsowidniszxuGwNDmtflVXE1KUJTttBNyey3R8VWf8AwVp/4JxX3iS38KwftbfDBdUublbSK4un8QWPh0TO/lqZvGF7oVv4Strfcebu41qO0VfnaYIC1a/V69v4cvlZv7k738rv5n57T8b/AAnqYuOCjxxk3tpzUIzm8VTwvM3Zc2OqYeOBhG/254mMEtXKy939C7S7tNQtLW/sLq3vbG9t4buzvbSaO5tLu0uY1mt7q1uIWeGe3uIXSWGaJ3jljZZI2ZGBrA/U4ThVhCpTnGpTqRjOnUhJThUhNKUJwlFuMoyi1KMotpppptO5YoKCgAoAKACgAoAKACgAoAKACgAoAKAPjj9rb9onWvgvpeiaF4RtIf8AhKvFUF9cQ6xfW4uLPRNPs3hge4gtpAYL3U5pp8W0dwJLS1SJpbuC4EsMTfz747+LWY+HeCy3LMhoU/7czuniatPMMTSVbD5bhMPKnSlVpUJ/u8RjKlSpajGqqlCjGEqlajV54Ql/R/0fPB3LPErHZnmvEOIqf2DkNXC0amXYWq6OJzPGYmNSrGlVrw/e4bBU6VK9adJ069eVSNOhWpOFScfjTw5+zD+0T8dpIPF3j7XLjSLO/AuLfUPHWoX93q0lpPh1fTPD0SzSWVsQQYLW6OhwmHa1shh8tm/nrKPBjxZ8TZUs+4ozOrgcPil7WjiuJsViq+PnQqWalgsqgqk8NRas6dCu8up+zs6KdNw5v6Rznxx8HfCqFXh7hLK6OY4jCXo1cJwrhMJh8vhXpe6447OKkoQxVZO6qV6CzSr7TmVaaqKaj9K+Ff8Agn18OtOEUvi3xb4n8TXCYLw6dHZeHNNkP8SvDjV9QK9gYtTgbucdK/Yck+ipwlhFCefZ9nWc1Y2cqeEhhsowc31jKnyZhi+Xs6eMpN79kfiuffS74yxjnDh7h7I8joyuo1MZPFZ1jYLo41HPLsJzdWp4Goumtry7+fwb+xt8Gm8rV7P4a2Go2py9v4hvF8Xa6ki9Zf7M1O41zU4n3DIaCzRUf5Y1TAWvqqvD/wBHzw9lyY/D8H4XF0H71HNcQs/zOM4/8vPqeNq5ljKcr7OnQgoy0pqNrR+RpcSfSQ8SY8+X4njXF4Ov8NbJ8M+HsqlGX/Lv67gqWV4KpGz+GriZuUdZt3co+i+Af2hPgP4v1W18H+BvGGknUZd6ado66LrHh2K5ZFLtFpw1TSdMs7iYqrsttbM07qjMkbou+vreFvFbwxz/ABtHIOGeIMA8XPmjhMvWXY/KYVnGPM6eEWOwGBoVqlk2qNCUqklFyjTcUfHcW+EHitw7gK/EXFPDuYLB0+WWMzF5ll2cToKUuVVMY8BmOOxFGnzSSlWrwjRi5JSqRk7HvNfp5+UBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfgv8AtKeMNX8T/Hvxnc+LLW7ls/DniW48OWOivO9kU8NaDfyW9tb2sximNoNYgWXVTdJDKpn1SS6hEsbRiv8AMDxgz/H5z4o8Q1s9o16mHyjOKuUYbLpVJYZxyfLMVOlRo0KnJVdBZhSU8b7eMKsXVxs8RTjOEoRP9XvBXhzL8j8J+G6OQV8PTxGc5LSznFZnGlHEqedZrhYVa9avTVSn9Y/s6q4YFUJVKUvZYGFCbhNTcfVbf9r74563aWXhP4V+END8N2Om2lvp+k6X4N8K33iLUbKzgjENtAkd++r2z+WiKqFdJQsQWfzGLM33FHx88S8yw+GyLgjIMsyjDYPD0sLgMFw9keJzbF4bD04KlRpRhipZhRkoRSUWsDBtq8uZ6nwVb6O/hZleIxOf8ecRZpnOLxuIq4zMMfxJn2FyfB4nE1ZupXqynhY5fXjzzk3JPHTSTtHlikiUfCD9s34xkN4pu/FNnplzguvjHxJ/wj+lR7+pbwvazC5hOPveV4fyANhzhRVrgH6Q3iDaWd4jO8Ngq3xR4hzj+ysDC+98kozjWp6b8mV7Lld2kjN+Iv0bPDhcuQ4fIsVjaOkXw5kv9r4+fLtbPMRBUKmu3Pm71fNez5z9Qfg54L1z4efDXwr4N8R68fEus6JZTwXmq77iSJ/Ovrq6gs7WS7AupLLTLe4h02zkuAkjW1pGfKtkKW6f2l4fcO5lwnwdkfD2b5o84zDLcPVp4jHc1WcJe0xNevTw9Cde1eeHwVKrDB4eVVRm6NCDVOjBxow/hnxH4myvjDjXPuJMmylZLluZ4mlVw2A5aMJx9lhaFCria8MO3QhicdWpVMbiYUnKEa2ImvaVZc9WfpE0MNzDLb3EUc9vcRSQzwTIssM0MqFJYpY3DJJHIjMkiOrK6sVYEEivsWlJOMkmmmmmrpp6NNO6aa0aa++58XCc6U4VKc506lOcZ06kJOE6c4NShOEotSjOMkpRlFpppNNNXPhX9kT/AIJtfskfsOeKviT4z/Z3+H174Y8Q/FForbW77VvEes+JH0nw/b30mpW3hHwx/a9zcNo3huLUJFu5LZXnv76W104anqF6ml6alp8pw7wVw9wtiMbicmwcqFbHWjVnUr1K/s6Knzxw9D2n8OipvmaTc5uMPaTmoQ5f6A8ZvpQeMnj5lHC+R+JXElDNct4TU6uAw+DyzBZXHGZjUw8cLUznNfqdOnHHZpPDRdGNVxp0MPCriXhcNQljMXKv9319Yfz4FABQAUAFABQAUAeN3/7O3wH1T4t6f8e9R+D3w3vvjVpVkmn6d8Urrwfoc/jmztorVrCHyfET2Z1Jbi306STTbW8M5vLXTZJdOtp47KWS3auefLyc0uX+W+n3fj17+cfAq8K8NVs8pcTVshympxDQpqlRzmeAw0sypwUHSjy4t03WUoUm6UKnMpwoydKEvZuUT2SpPfCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+M7/AIOaPE/2v9on9m/wZ5mf7A+C2ueJ/Kz9z/hLvHOo6V5m3t5v/CE7c458nHO2vTwK9yb7zt9y/wCD2+8/gP6X+M5+KuEsvv8A7rw/icZy9vr2Y1aF7f3v7Ot58vkf13fCHwx/whPwn+GHgzy/J/4RH4eeCvDHlY2+V/YPhvTNK8vb22fZNuO2Mdq86TvKT7yb+9n90ZHg/wCzskyfL7cv1HK8vwfL/L9VwlGjb5clj0OpPUCgAoAKACgAoAKACgAoAKACgAoAKACgDk/HfgXwf8T/AAZ4o+HfxB8OaV4u8EeNdD1Hw34q8M65apeaTrmh6tbSWmoafe27/finglZQ6Mk0L7ZoJYpkSRevA47GZZjMLmGX4irhMbgq9PE4XE0JclWhXpSU6dSEujjJLR3TWkk02jmxmDwuYYXEYLG0KeJwmKpToYjD1YqVOrSqRcZwmnfRpvVap6qzSZ/Al+2F+y/+0h/wQY/bX8H/ALRX7OeravqPwP8AEWuXzfDPxPqX2m90bWNAu5FvfE37PnxhjtjBHe3P9nW/+iXEr2z+I9LsrHxn4buNP8VeHtRTwx/enCHE/DnjvwXjOHeIqVGnnmHoQ/tLDU+WFajiIJ08NxBk7lzOEfaS9+KUlh6tSpgsTGphMRSeK/jjibh/PPB/ivC53klSpPKa1af9n4ipzTpVaM/fxGS5ny8qnL2cfdl7nt6cIYug6eJoVIUP7T/2FP23/g/+318BPD3xw+E16LWaXy9H8f8AgS9u4Z/Efw28bwW0UuqeFtcWJYvOjXzVvNC1pLeC18QaJPZ6nBFBJLcWVl/GPHPBOb8BZ9iMkzaHMletgMdCEo4bMsFKTVLFUG9m7clei3z4etGdKTmlGcv6o4Q4syzjLJ6ObZbPlbtSxuDnJSr4DFqKdTD1rWuteejVSUa9FxqJQblTh9lV8cfUBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iP0z/in/8Ag42k/wCWfn/tUat7Z/4SXwXeY9P9Z/av47u/8Xqb4L/uH+T0/I/zvpf7L9K99ObjSt/5d5dU9N/b2/z3P7cK8s/0QCgAoAKACgAoAKACgAoAKACgDyL49fHD4ffs3fCDx78bvilqy6N4I+Hug3OuatOvlteX0qlLfS9D0iCSWFbzXfEGqz2eiaJY+an2zVb+1tzJGrvIlQhKclGKu2/6b8lv19HseFxNxFlfCWRZnxFnNf6vl2VYaeJryVnUqNWjRw1CLaVTE4qtKnh8PTvH2larCPNFNyP4pP2WfhL8Uv8Agtn/AMFEPFnxk+MsF9b/AAe8Oappvir4lxWtzc/2T4Y+HmnXU8Pw9+CHhq9XyjDdeIYrOXTp7u3Fndy2MHjTxm3/ABO28u79SpKOFoqMfiekfN/ak/hva/da2VrH+e/BmR519IfxUx2f5/GpDIcJWo43N1CU/YYPKqU5LKuHMJUXJaeLVOVKdSDp1JU45hmFvrF1P9gf+C3v/BI7wR+0R8KNT/aZ+BWk+GPAXxw+C3gkPr+kw/2X4Y8L/E/4X+C9I2RaJfSubDSdJ8V+C9BsVh8HazcNb215o1nF4N1WQWMPhu88PfhHih4dLiWhPOsnopZ/hqf7yjCNv7XoQWlKXfHUoq2GqNXqxSwtRtewnh/+j/6CX00aPgBjaHhn4k5lTwvgrmFb/Y8zxdaNHCeGWNqP38wpynalhuEcQ/fzzBx5KOWz5s7wnJNZnQzD8Qv2cP8Agud+2h8Dv2TtN/Zq0ew8O+J/GmgzQ6B8M/jH4sFz4m8XeDvAZtVtdO8JJ4ZuIX0vxLq+h3Ajh8Jaxr9zqVvpmjeToF94e1aGz097T7HwyyfinAcOYfDcWumqlLlWXUHUdTHUMDyLkw+YVEnTU6T0owjVqVaVFqjWcZUvZw/zU/aSfTJ8AuJ/G7PKv0PsPicfSzCWIhxpxlWy2GH4NzXi36zKGJzfw8ymsoYvGUcc5OePzLMsHhcszDM4VcwyvL8xwmO+v1/dPg5/wR//AOCjP/BQjX4fjb+1h8RNe+GOk+IVjuYvFPxxn1nxV8T73S7lvNiXw18LReWE3h3SIQSLTRvEGqeAba3gNu2kaZNYMjL+iSxNGiuWnFSa6Qso/fezfe3N5ta83+feQ+BHiv4o4qPEPG+a4nJ6GKSksbxHLEY3OZ0ZaxWEyX2tKWEoRu+TD4qvlsIx5fYUnTaZ4j/wVc/4Jyfs/wD/AATu0D4L+GfB/wAXfiD8S/jL8R59d1jXrLX4PDGleHdJ8D6DBBYrq0OhaZp0ur2F1rviO9Fto0l34jv7Z7bRNfhMUs8CTpeHrTrOTcVGK0Vr3u+l+ZrRb6Lp6Hz3jZ4T8L+FWF4fwmAzzNM3z/Np4mviaeKjg6OEo5dhYxp+3jhqNKVelPE4uqoYdzxVWDhh8UrSnFSh/Xh/wSv8MeM/B/8AwTy/ZN0Px9NezeIl+E+masF1FpWvLPw94j1DUvEfgvSplm/ewf2P4M1XQNKitJArWUNkloUTydi+diGnWqNbc34pWb+buz+6PBjB5hgfCzgjD5nKpLFrJKNa1a/tKeFxVWrisvoyUvej7DL6+GoqDs6cYKDS5eWP39WJ+nBQAUAFABQAUAFABQAUAFABQAUAFAHOeIPB3hPxW2mv4n8NaD4hfR7n7ZpTa1pNjqbafdHZunszeQzG3kYxxFzFt3tFEzBjEm3yM14fyLPJYSWdZPlmbSwFb6xgXmOBw2NeErvlvVw7xFKp7KTcIOThy8zhByu4QcfZyjiPiDII42OR53muTxzGh9Wx6yzH4rBLGUFzWpYlYerS9tCKnNRU+blVSoo2U5qXlv7Q3xkk+B/gEeLbbQW8QX17rFroWn2zzPb2Ftd3lrfXa3upzxxSyLaQx2EiiGLZLdXEkFussAke4i+J8WPEKfhtwss9o5Y81xOJzChleFoyqSo4WjXr0MVXWIxlWEZyVCnDCzSpwUZ16sqVJVKSk6sPu/B/w3h4ocWvh+tmqyjC4bLsRmuLrxpwrYqth8NXwuHeGwVGc4QeIqTxcG6k3KFCjCrWdKs4xpT/ADZHiP8Aa6/aakf+x/7fg8MXMjIV0XPg3wXFEWKywSalLPbPrSQnJltrjUdZvF+XEOQit/H6zjx68ZZy+of2pTyarJxay2/D3DkIXanTnjJ1aEsxjTd3KjWxeZYiNklF+4j+03k30efBGEf7RWU1c8owjNSzP/jJOJZ1Ek6dWGChSrxy2dTRQrUcJleHerdS3PIz/GP7M3hb4N6EusfGT4nWi65dQNLpXgLwLaC/1zWJTkKRqurtbpp1lHIuy71O40OaziIkWB7q5EVrdcvEPg3knh7lscf4hcZ0FmVem54HhfhnD/Wsyx89bNY7HeyjhMPGSca+NrZZPDwakqUq9ZU6Ffr4b8bc+8SM0ll3hvwRiHleHqRhj+K+KcR9UyvLodU8BlyryxmJnFqVDA0MzpYia5ZVYYei6tehzv7LHwg8QfEr4o6Hrum295p3hHwV4g03xBq+tSPuEL6XeRalp+iW92sVul1q188EMUhhhi+zWrS6hJFEFt7efyfBLgHNeMeNcszPB0sRhMh4czXB5rj8xnK/s3gsRDGYTLqNeNOlGtj8TKnThN04U/Y0HUxUoQtSpVfZ8ePETKOCuBc1yrG1sNjOIeJsoxuUZflkI2dSOOw1TBYzM62HlUrSoZfhY1as4KrOp7avGnhITq3rVaX7m1/paf5aBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAcrq3gTwRr98uqa74N8K61qaIka6jq3h7SNSvlSMYjRbu8tJ7gIgACKHCqBgYxXh4/hnhvNMSsbmfD+R5jjIxjGOLx+U4DGYmMYq0YqviKFSqoxWkUppJaJLRnvZfxVxPlOFeByriPPsswUpSnLB5fnGYYPCuU9ZyeHw2IpUnKT1k3G8t3c37KwsdNt0tNOsrSwtY/uW1lbQ2tun+5DAiRr0H3VHT2r1cNhcNg6UaGEw9DC0I/DRw1GnQpR/w06SjBfJI8nE4vFY2rLEYzE4jF15/FWxNapXqy/xVKspzl82W63OcKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4i/wDguJ/xdT/grJ8L/hx/x8/Z/CH7P3wy8j7+P+Ep8Z61rv2fb/00/wCE437T187P8Vephfdw7l5zl9yS87fD2+8/zu+kZ/wteN2S5T8fLgOF8n5d/wDfcwxGJ5ba7/2je1ut9bn9uleWf6IhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHiX7RX7PPwo/ap+DvjX4FfGrwzb+Kfh/460x7DUrR9kWoaZeRnztK8ReH9QaKWTSPEmgX6Q6nomqwoz2d9bxl457Zp7ef2+HeIc14WzjBZ5kuJlhcfgaqqU5q7p1YPSrh8RTUoKrhsRTcqVelJ2nCTtyyUZHlZ3kmXcQ5ZisozXDrEYLF03CcdFOnJa069CdpOlXoztUpVErxnHW8W0fwb6hYftaf8G737eUV7ZNe+Ofgx40Zhbyv5+m+CP2ivg9b6iDLY3mz7Va+HPih4KN6pLBbvUPBviG4iuoU1jwN4o8vxN/ddOpwn9IXgRwnyYHOcFbmS5auN4ezeVPScL8ssTlmN5O8aeMw8XF+wx2F/2f8Aj+cOJPBPjBTi5YzK8Xflb5qeEzvLIz1hL4o0MwwnOv554SvJSSq4TE2xH92/7MX7TPwh/a8+C3g748fBHxJF4j8D+MLPeqSeVDrXhvWrdY11nwl4q01JZm0fxPoF0/2XU9Pkkkjb9zf6fcX2k32n6hd/wxxNw1m/COc4zIs7wzw+Owc7aXdHEUZX9ji8LUslWw2IiuelUST3hUhTqwnTh/XmQZ9lvEuVYXOMprqvhMVG+tlVoVY/xcNiKab9liKMvdqQba2nCU6c6c5e/V4B7IUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//1v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+I74vf8AFPf8HG2k/wAH2j9qn4Ie2f8AhJ/BfgDHp/rP7W/Hd3zmvUj/ALk/+vc/wcj/ADvz3/ZfpX0OnNxpw5/5eZdln5uv/Vz+3GvLP9EAoAKACgAoAKACgAoAKACgAoA/ii/4LBfto+NP+CgH7Tvg39hv9l/7X4w8A+D/AB7B4XtLfw/OJLT4s/GmWWXSLzWPtaObSTwd4Eim1DS9K1SV00pMeKfFtxeXOiyaRd2XqYakqNN1J6Sau7/Zho7bKzdrte89ldNPm/z28d/EDMPE/jHL/Djg3nx+WYDM44KEcLLmp55xDKUqFTEc6fs3gMsjKrRoVm40P99x0qssNKhOl/RT+z78Lv2cf+CQH7Elna/ETxjoXhzSfDdsPEvxa+IdxE66h8RvijrFnEL2HQdNSP8AtXWrqY2cXh7wP4asrebUV0HS7ITRPcpquoS8U5TxNV8sXrpGO/LFd3su7fvK70WvKf1Vwvk3CfgR4dwhmuPw2EoYOH1vO81lFqrm2c14L2kcNSSdbETl7NYXLsJTjKqsNQp8yc1Xqz/mL/ab/bT/AGyv+C0Hxutv2cf2b/CHiLQfgy2pfa9H+Gmn3gsre40bT7uJR8R/j34ot3OmR2ljI1veRaXLcyeG9Au30/TNEtvEHitrXU9X76dKlhouc2nLrLzd/dguVNX2+03u3FaH8e8YeIPH30geIocJ8JYHFYXh/wBrz0MppVPZwnh6U0v7W4nxkX7FU6bcZxoOTwmGm6VLDQxWOcKuI3/29f8Aggd8T/2Yf2WfDfx4+DPxG1/4tfEH4aWtz4h/aB8OaLp4023s9Jh8m+Txh8KYbSGPxDNpvgAwynxDFqtzc6pqWlh/GVnb6BFpd7oifinjLhuKMwySOKyPHYqll2CU6mbZVhf3dXE0ItTjjHVpP21aGF5XKthHJ0lC2JUXOi3L/cP9kd4e/Rq8GPE9YDxd4R4e4l8VeKHhcLwB4n8S0Vjcr4XzirTnQr8M5RlWZe2yzJ8RnftFQy3ip4eGd1cS6uUPFYbB5xHBw/Vj/gjX/wAFl/Cv7SHwk1T4RftUeNtL8NfHv4JeCdV8SXnjjxFeR2Vl8W/hf4M0mbUtY8aSXMmFbxv4Q0Symu/Hlgge41bTrZ/GmnR3ER8SW2gcnhb4hLibDQyTNqq/t/C00qVSbs82w8Fb2sbvXG0o/wC9U7p1Yr6zDmXt40P3j9oB9EKn4B5lmPi7wThPY+DObV6+LzejTjJ0fDjMqnNWq4PEuKfsuGMbLnlkmMkuTAVf+EPE8tT+y6uYfjl4E03xV/wWv/4KvXXiTW7LU4/gtY6vHrusWdx5iL4R/Zw+G9/FBonhiSSJ3FhrPju5ubaxvBbSS+R4s8b63rFvE9jZz+V+7O2Gw9k/etZdeab668mi316K3kf83uWUsb9IXxsni8RTrLh6nXWJrwk2lgOE8pqqOGwbav7LEZlOcKVRQcuXG5jia8b06c+X+7e2traytrezs7eG0tLSCK2tbW2iSC3traCNYoLe3hiVYoYYYkWOKKNVSNFVEUKAF8k/0mhCFOEadOMYQhGMIQhFRhCEVaMYxjaMYxSSjFKyWitYnoKCgAoAKACgAoAKACgAoAKACgAoAKACgDP1W00q+0+6t9bttPu9KMRlvYdVhtrjTzDB++aS6ju1a28qHZ5peUbI9nmErtDVyY6hgcThK9LMqOExGBcHPE08dTo1cI6dL945V4V1KjyU+T2jlUXLDl5nblvHrwGIx+GxdCtllfF4fHqooYWrgKlali1Vq/u4woTw7jWVSpzumo03zS5uVX5rS/Pr46ftt6L4ZiuPB/wWSx1XUreM2Uvi0wRyeHdIEa+SIvD9ntEOsTQAYhu5FGixbIzDHqsEhEX8q+Jn0j8uyeFbIPDqOGx2MpReGnnzpwllOAUF7NQynD6U8wq00v3decVl1Plg6UcfTm1H+vPCz6MWZZ5OjxF4lyxWAwVaaxNPh9VZwzjMHN+0c83xOtTLqVW96mHhKWZVOaaqzy+rGLl+Zk3iWfXvFA8SePJdY8Xvd3q3et+ZrLWeqarGOtuur3Fnqv2JSoWKMpYzJb26+TbRRBY2i/japnFTNM6/tjieeYZ9KviVXzLnzB4fG46K3pLH1cPjvq6so04uOGqxpUl7OjCCUHD+3KWSUspyJ5LwpTy3h2OHw0qGWcmWLE4HATe1aWXUcVgPrUk3KpPmxdKVatL2tapNympfuT+zX45+H3jn4Y2E/wAOfDo8I6Tol1Lot74ZwjPpepww291MXvE+bVReRXUN2NXmAub55ZGuwt4lwif6V+D3EvCnEvBmFqcI5SsgwGW16mXYnJvdlLBY2nTpV6jeIWuOWIhXp11j6j9tipTnLEKGIjUhH/Lfxq4W4v4W44xdLjLOHxDmGZ0KeZ4bO7zUcfgqlWrQp8uHlpgHhqmHq4f+z6TdDCxhCOHcsPKjOfv9fqZ+SBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQA1HSRQ8bK6MMq6MGVh6hhkEe4P58UJ31Wq8htOLcZJxadmmmmn2aeqY6gQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/EX+05/wAXX/4OJvDWmj/SbLSv2n/2YtONv99BZfDrw18LbzWrc/8ATOW40LVnmHG3zpQCMA16tP3cH/3DqP7+b/M/zu4w/wCFv6VWDor36dHjHg6ly7r2eU4PJqmJh10csNXcu3M9rWP7dK8o/wBEQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+S/wBtT9jL4N/t2fAnxL8CvjLpXmafqSnUvCXi2whgPif4d+MraCaPR/GXha6mU+Tf2DTSQ3tlIwsdc0i4vtE1RJbC+nSvrOC+Ms44Gz3DZ7k9W1Sm/Z4vCTlL6tmODlJOtg8VGLV6dRJShNe/QrRp1qbjUhFnzfFXC2V8X5RXyjNKd4T/AHmGxMIp4jA4qMWqWKw8m1acLtTg/cq05TpVE4TkpfxE/An41ftYf8G+f7bviD4TfFvSdS8V/BTxXfWU3jfw1pjzL4W+LHw+e6ms9C+MXwqnv2js7Txjo9uk8a29xNAzTwan4E8VvayxW+paR/bGe5Lwp9IDgnD5rlFWlhc6wkJrBYmqo/WsqzBQU6+T5rGmpTlg60nF80VJcsqWOwiknKnV/lDKM14j8F+LK2W5lSniMqxE4SxdCm39XzLBczjRzPLnL3Y4qnHmSjKUfeVTB4jlaU6X97XwX+M/wz/aF+F/g34yfB7xZpvjb4dePdHh1rw34h0uRjFcW8jNFcWl5bSrHdaZq+l3kVxpmtaNfw2+paPqtpeabqNrbXtrPbp/B2c5NmXD+aYzJ84wlTBZjgK0qOJw9VK8ZKzjOEleFSjVg41aNam5U61KcKlOUoSjKX9h5VmmAzrL8LmmWYmni8DjKSq0K9N6Si9JRlF2lTq05qVOrSnGNSlUjOnOKnGSPUK8w9AKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4jv20/wDin/8Ag4n8E6h/q4bv9p/9h+8Y9MQXfhz4E2F62ec5KXTH1JIOOtepS/3N/wDXut+cz/O/xB/2X6VeXVdoz4x8Oqj/AMM8Jw1SqP8ACb6dtbXP7ca8s/0QCgAoAKACgAoAKACgAoAKAPwA/wCC5P8AwUoH7MXwvl/Zo+D+v+R8fPjDoMy+ItY0u52X/wAK/hjqQmsrzVEuIWElh4u8ZKl1pHhrYVvdK0tdW8SJLp95F4auL3swtD2kueXwRei/nl22ei3e13p/Mz+YvpG+Lf8Aqdk0uEchxXLxPn2GksVXoy/e5Lk9bmp1KynF3pY7HpToYS37yjR9vi06VSOEnV+B/wDgm98MPgd/wSy/Zxb/AIKJftluLH4vfFrQbuw/Zx+FAht7j4gHwdf2kc5vPDuiXbQta+JPH9rPaTajrl0bfT/B3gO5sI9T1W1uPF+o6O21aUq8/Y0/hi7zlra66Xs7qPbdy6S5bn5l4TZPw54McJvxV4//AHWe55hp0uFMk5YTzT6hVgpc+Ew03TccXmcJQlWxM+SlgMtnSjWrQljq1CXxTJJ+3D/wXs/aeCID4R+EXgu9yFzfy/CT4B+EdQmx5khxat4x+JGu2tuenleIPFt7AQn/AAjXgvSSPDOn7rCU+8mv+3qjX3WSb7NL1fv/AJ634i/SY4xSS+o5Fl9Tb968j4ZwNWW7fuPMM3xNOPaGKx1SNksFl9B/V/7FP2Nf2KPgb+w58K7T4ZfBrQBHcXS2l1438d6rHbz+M/iHr1vE0Z1jxLqcUUeYYTLOuj6HZrBo2hW88sOnWkctze3F15tWrKrLmk/RdIrsl089ZX6vQ/vPgHw94c8Oclhk+QYW0pqE8xzKuoyzDNcTCNvrGLrJL3Y80vYYany4fDRlKNKnFynKf1u6LIrI6q6OpR0cBldWGGVlOQysCQQRgg4Oeazavo9U9Gn1Puk3FqUW4yi04yTs01qmmrNNPVNPTyP8+P8A4LYfsn/s6/ssftsXlt+z3rsOm/8ACd+F28e+OvhFpVusOj/CPxF4nnuU/s7Rry2m8uz0fxfpj3Gv2ngqS3jPhiwvohZsvhrWPD+n6f8AB8P+FmTZTxjW4tw1oYdUqk8FlnJajg8xr89PE4mk7tKgqM5LD0OW1CrWqOm4wo0IQ9n6cH7THxL41+jDlP0Qa9WeK4izLHZa/EPjyGLc80z3w+yl4bHcNcKZlTUJVXnWYZth8Li88zT20K+Z5NlWX0cZSxM88zSvX/Xf/g2r+NH7KkXgf4rfB/SNRGi/tXeI/E0viTxJbeIms7ebx78PPD9p5PhuH4d3KsDqOneEftWtX3iDRHUa1bXmsXetkXWhmF9L78n8RMg4pzfMsowGI5cRl1erSw6qSjyZnQo+7VxuBkrKpTVRTXJf2ioRhiOVQnLk9LJP2fni99FPwS4D8S+Osh5qnihlGVZ7xXPC0K0sZ4fZjmMalbJOCeKqU6angcbRy7EUK1au7YVZ9jMyyZ1ZV8Fhniv6p6+tPkwoAKACgAoAKACgAoAKACgAoAKACgAoAKAPMvjH8PZvip8N/E3gS31qbw/NrtvaJFqkUTTrE9lqFrqCw3MCTW7zWd4bT7JdxpMhME7n58eW3xviDwpU434QznhilmNTKqmZ0qEYY2EHUUJYfFUMWqdalGdOVTD4h0PYV4RnF+yqSfvW5Jfb+HHF9PgPjPJOK6uWU83pZVWryngak40nOOJwmIwjq0KsqdaNLE4f6x9Yw85U5JVqUU+S/PH5S+Hn7Avw/wBESG8+Ietal40vwdz6bYPL4f8AD6DOfLc20z61dlcDEy6lp6MCwa0OQV/DuE/oucK5dGnX4szHGcRYpayweFlPKsqX9yToylmNdxe1SOLwsZK6lh9UfvnGH0s+Ls0lUw/B+WYLhnCP3Y43FRp5vm8tPiiq8I5bh1K7/dvCYucdGsQrNS+bf2nfHHwjtkX4P/BLwR4TRo7+2h8S+KtD0Oxnv728tJ1+y+HdG1hYJtTvyLxY31G9iuZftMyRWFtLNG96H/H/ABn4k4CoxjwB4ccN5FFwxVGnnGeZbluGq4vE16FVewyjL8wVKpjcVbEKEsXiYV5+1qQhhaM6sJYly/afA7hfxCryfiL4ncTZ/NTwlepkuRZpmmKpYTC4evSf1jOcyy6VangcInh3OODw08PD2NOc8XVp0Zxw/L99/sr/AAlvfhF8KbHStbj8nxL4hvZvE3iC2JDHT7q9trW2tdKLAkGSw0+0tkuwrNGuoPeiKSWIpI/9S+CPAuJ4C4HwuCzGPs84zXE1M5zWi7N4WviaVGlQwLktHLC4TD0I10vdWLliVCU4cs5fyX48eIGG8Q+PcVj8sn7TJcow1PI8orWssZQwtavWr49LdQxeLxFeVByUZywccK6kITUoR+ka/Xj8XCgAoAKAP5LP+C7P/BRr9o/4LftPeAvgV+z18WfEvwr0rwD4F0Dxz4wufCF1DYahr/jXxPqOp3Wn6brszQTNqOgaR4ZsNFuodCuS2k6jPr1+dXsL9IbA2/o4SjCVOUpwUnJtK/SK7dm3fXfTS2ql/EH0kvFfizh/jHLOG+Fs7xmS0Msy3C5lj54CcaVXFZhjK1adKjiZcsva4Whg6WHnHDTUqFWWJq+3pVUqXJ/RF+wr+0Fd/tT/ALInwE+PWprarr3j/wAB2c3isWEawWP/AAmvh+8vvCnjZrG2XItbJ/Fmhay9pabnNpbNFbmSUx724qsPZ1Jw6J6ej1X4M/qjw34onxnwLwzxNW5PrOZ5ZTljfZpRp/2jhalTBZi6cFpCm8dhsQ6dPXkhaF3ytn1jWZ9uFABQAUAFABQAUAFABQAUAfj9/wAF1/j1qnwE/wCCbfxmvPDmt3vh/wAW/FHUvCHwc8N6np15LY3sZ8Y61HeeLILe4t3iuEe8+HWheM7TMEqOqzGQkojo/wCc+K2bVMp4KzOVGrKjiMfPDZbQnCTjJfWaqliFGUWpJywVLEx0fXqkz+0/2fvh7hPEP6UHA9DM8BQzLJ+E8NnXG2aYTFUYYihJZLgZ0cnqVKVSM6co0OJcwyOtapGUW4KNk2nH+VT9kP8AZ/8A+C13i79k34c+Lv2JfHHxbPwD1vxl8R7vR/Dfw5+N2h/DW90XX7DUdO8P+ILi8svEPizwhdahoGqX2iyNpNvpd7q2k2Ws2via6k03StR1S5uta/AuHcn8T8Rw9gsRwvisx/siricbKnRwWaUsDKlWhOFGs5RrYnDynSqTpXpxpyqU41Y15clKc5Tr/wCuvjP4jfQTyXxi4mybx4yDg1eImAyThijjc04m4DzDimhjsuxGGxWZZdToV8syXOqOGzHCYfHxWMq4yhhcZXwNbK6UMVjMLhKVDAe7f8KQ/wCDmPS/+Y1+1tLt/wCrhPA+sZ/8yVeb/wDx/Pt1r1v7K8cKf/L3iF/91jCVP/d6d/w876M/P/8AX39lji/+YHwchf8A6tvn2B/99bDtfhby2j9WfsQeF/8Ag4e0v9qv4IN8Y774zD4ORePdBb4ut8X/ABV4D13wY3wyF/B/wm8ckS6tqWpS67N4fN9F4XOiI2qJ4hfTpUlhtEvJk9/hah4x08/yv+0p5n/ZqxdF5i8xxGDq4b6jzx+tJr2lWbrOjzqh7JKp7bka5YqUj8g8es2/Zr4vwh49XBNDgf8A12lw9mMeDFwXlHEWXZ4uKvq8/wCwZRm8HhsLHL4Zj9Xnmv1+SwcstjioONStKjTl/YVX9HH+KwUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfxF/syf8AF1v+DifxLqTf6RZaX+1B+09qAn++gsvh14a+KVnotwPvfu5J9B0pITkbfOiPGNq+rU93Br/r3TX38t/uv/Vj/O7g/wD4W/pVYys/fp0eMeMavNuvZ5Tg85p4afXRyw1BR7cy2tc/t0ryj/RE+Yf2lP2z/wBlv9kHQP8AhIf2jPjZ4I+GUU1tJd6bomq6i1/4z16GMsrP4b8CaJHqXjLxEqyKY5JNG0S8hgcgXEsQOa+m4b4N4o4uxH1fh3JcdmbjJRqV6VLkwdBvZYnHV5UsHh207pVq8HJfDGR4Ge8U8PcM0fb55muEwCcXKnRqVOfFVkt3QwdL2mKr66N0qM1F/E1dcv8AM5+1b/wdK6fbTah4a/Yv+A7as4aW2tvif8eJJrWykcEw/aNI+GPhHVEv7mGXP2jT77WvG+l3C4iGoeF8vJbJ/SvCv0XqklTxPGeeqktJSyzIkpzS35a2Z4uj7OEl8NSFHA1Yu79nitIzPwXiL6QcIudDhbKPaPWMcwzhuMX0vTy/DVFOSfxU51cXB7KeHV3E/O74K/8ABc//AIKt3X7WPwn8PeO/iAniCz8VfE3wB4W1f4E6p8Hvh/4X0/V9I8ba5o1nb6FZCx8G6Z450y+1Kx1i3uPD+sDX5tRMlzYXM0+p6a7Wd1+h514HeFcOFM2xGBwDw88LlmYYqjntLOMfialGrgqFacq8/aYytgalOnUoyjiKPsY07RqRXsqiU4fE5V4t+IsuI8to4zG+2jiMwwWHq5PUyzBYeFWli61KKow5MLTxcJ1IVYyo1fbOo3KEnKUG4S/0Eq/gE/s8KACgAoAKACgAoAKACgAoAKACgAoAKAPgr/gob/wT7+D3/BRD4F6h8KviPBHoni/Rhe6v8JvilZWMVz4h+G/i6aBY1vLcM8D6n4a1jyLaz8XeF5bmG013TooZYpdP1zTND1vSPu/D3j/N/D3PKea5dJ18JW5KOa5XOpKGHzLCKV+SVrqniaPNKeExKTnQqSaaqUKtehV+O414MyzjbKJ5djkqWJpc9XLcwhBSrYHEuNlJbOph6toxxOHcoxrQSacK1OjWpfxx/sW/tg/tN/8ABCf9rjxb+zH+054e1u++B+seILaX4i+C7KSbUdPWxvn+xaL8fPgneXS29vqMd7p9qjX1rCtpF4s0uxl8N+ILfSfF3h+yfw9/YXGfCHDPjnwlhOJuGcRQhnlHDyWX4yajTqe0prnrZDnUI80qbhUk1Cb9o8JVnHE4edbB4iaxH8xcK8T594RcSYnIM/oVZ5TVrReOwsG5wUJvkpZzlMpWjNThBOUUorE04+wrqliaEPZf3ufDn4jeBfi74E8K/E34Z+KdI8a+AfG+i2fiHwr4p0G6W80vWdJvo98FzbygK8ciHfBd2lzHBe2F5DcWN/b217bT26fwfmOXY7KMdisszLC1sFj8FWnh8Vha8eSrRrU3aUZLZp6ShOLcKkJRqU5ShKMpf2Jgcdg8zweHx+AxFLF4PF0o1sPiKMuanVpzWkovRp3TUoySnCcXCajOMkdrXEdQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iO/wCCo3/FO/8ABc/4b679zf8AET9kDX9/T/kHXXgaz39vu/2Rjr/D2r1KGuEa/u1Fr58337+f6R/zv8Zf9k+kflGJ2vmvAmKv/wBeqmW079P+fHfpuvs/2415Z/ogFABQAUAFABQAUAFABQB8b/t2/tk+A/2Gv2ePFnxs8ZfZ9S1iJf7A+HHgxrkW9347+IOo29w2h6BCw/exafCLefV/EV/GrPpvh7TtSu4Y7m8SzsrjWlSlVmorbeT/AJY9+vey7vTS9z4LxJ4+y3w44Vx3EOP5ateK+rZTl7lyzzLNKsJPDYWPWNKPLKvi6qV6WFpVqkVOoqcJfwH+DPj34Z8afH/xt+13+1uJPjZ4s/4SGTxrp/wtuHaGy+KnxFkcP4c0jxVPia38NfBjwXHbWLazpUEc1zq2j6fofw78OaYdLv8AW9c8Keu4NQVOn7itbm/lXVrTWT6P3bP3nqkj/MfL+JsHmHFGY8dccp8Q4361LMaWSyfLTzrNpO+EoY16wwnD+XqFJ4ihFSnXw9LDZVhKPsauIxGC/Qj9mL9jr9r/AP4LU/HbUP2hv2hPFmueHvgvbakNP134jSWJstLh0jTrl3T4V/ATwzc+bpsUenB5bWa9jjuNE8OTS3WseJLrX/FN0+m65jOrSw0OSCTlbSPn/NN3W+/nsrWvH9S4O4C47+kHxJV4q4px2IwvD0K3ssTmrp+zoqhSm2sl4Zwc70kqV5QlUSnhsJJzr4ypicbP2OK/tM+AvwA+En7Mvwx8P/CD4KeDdN8FeBvDkRFvYWKmS81O/lSJb7XfEGqTbr/XfEOptEkmo6xqU9xeXJSKIyJbQW8EXlznKpJyk7t/h5LayXb89Wf6CcM8MZHwhk+FyLh7AUcuy7CR9ylTV6laq0lUxOKrO9TE4qs4p1sRVlOpOyTahGEI+yVJ758n/ts/tZeCf2K/2c/Hvx48ZmC8m0Kz/svwT4YkuBb3Pjb4gatFPF4W8K2jDdKEvLuJ73WLm3jll0vw7p+s6x5MsenOjaUqbqzUFp1b/lj1fX5d3ZaXufE+IfG+XeHvCmZ8TZhyzeGp+xy/BuXLPMc0rqUcFgofatUqJ1K84qUqGEpYjEcslRkj+UX/AIJB/si+L/8Agoj+1v4+/bW/abtz408AeCvG9x4t199ds1udG+Jnxm1Nk1XRvCYsLhZLKXwn4IsprHW9V0Rd+nWdjF4N8LNYz6JqlzBB34qcadH2KSfPFw5Wk17Nq0rq6T5ldWa6t6tJH8W+AXBua+JXH+N8TOJ51cRhMmzZZq8TLmgsx4n54YvBUKNmlDDZSvY4udKm1CioZdhVB0KsoQ4z/gsV/wAEvo/+Cf3xJ8Lftj/se+P9P+G3hLWfHNtqGlfDy18Z2Xhbx98LPHqXAvodT+ES3eoWereJvBazkSzaPpP27WPA6ShJYL3wjI8+g/y5xb4SZxg84w+b8BUqrjUxUKn1OhXhhq2U4lyvGvhsRWq0oLBc3SVRSwzfKlVoS/cf9Tfgv+028GoeFWdcEfTUz/KcrpYLIcVg48S5zleKzzB+JGT0qCp18mzDIcrwWYZhjOLFQas8Fl9WjnUE8TU+pZlSvjfQ7b/g5G/ayl+Dng3wTp3wb+F1x8crexTR/FHxY1GXWtZ0zxTd7xbWWraL8MNHi8O2mh+JLuIwyagn/CQa3oFzrDTS6b4d0/TprfSLX+ieHcBnUcqwceJamDnm8aajipZbKbw9SS+Gb9pQpctaUbe3jSj7H2qk6Mo05xhD/nS+kT9Lrw5xXiJxLR+i9wzxJhfDvEY6b4dxPibRw88+oQqvlqYbC5ZlOZ4xVMDTr8zybE5pmdbM6mBnh6WbYL67SxFSrwms/tef8F/9Z8Ma58crtf2h/DPw+8M6RqPi7UtaH7P/AIQ8JeENJ8L6PaT6pqGsHTNS+HVmmp+H9L06Ce8u9Uu7fVYBZW8tzeXkqQySL7ipYRNQ9xybslz3bb6fHu30t6Lofz9iOOvpPYjB4niOouKsHleDoVcfWxH+q+AwGBoYOhTlWq1/Y1srgq2Fo0oyqTrTjWj7OMpzqNRlI/fP/gi5/wAFEviT+3p8JfibYfGex0Z/il8E9a8J6frHirw/p0ei6f4x0DxtY67NoGqXui25Nhp3iCG88K+ILfVl0iKy0ieH+zp7PTbFmuIq5MVRjSlHl+GSdk3ezW6WidrNbtv00P6a+j94q5t4l5HnFPiClh3nPD2IwVLEY3C0lh6WPw2Y08TLC1qmHj+7pYqNTBYqFdUFToSj7KVOlC84n7RVyn9AhQAUAFABQAUAFABQAUAFABQAUAeX/GX4lJ8I/h3r3jx9GuNfOkfYY4tNgn+yrLPqF/bafC91eeRc/ZLSKW5V55xbythRGiF5Fr4rxC4wjwHwnmfE8surZp9Q+rQhg6VT2CnUxeKo4WnKviPZ1vq9CE6ylUq+yqPaEYuU4uP3XhvwVLxC4xyrhSOZUcpWY/Wpzxtal7d06WEwlbF1Y0MP7Sj9YxE6dCUaVL21JNtzlNRgz8wPiF+1b8Xfj0LX4e/D7wzdeHIdaiFrf6V4aubrWvEGuF123MEuqLZ2DWOjFctcxQWtuBbeaupahNZPNFX8X8V+OXHvieqPCvCmTV8op5jBUMTgcnrV8xzXMuZctalPGxoYaWGy9p3rwpUaVqPOsXi6mGlUhH+5OEPAPw88KHX4v4vzuhnNTLKjxGFx+dUKGW5RlajK9CrDAyxOJWKzJNJUJ1a9Vut7P6lhKeJjCpL6w/Zn/ZIsPhg1p428fJaax4+2LLp1ghS60rwiXGcwSfNHqGuKDtk1Ff8ARrFt0emmUr/aFx+5+DngPheC3Q4j4pjh8w4p5VUwmFi418DkLa3pTtyYrM0tJ4uN6OGd4YJzcfrdf8B8bfpB4vjlYjhjhOWIy7hLmdPGYuXNQx/EKi9qsNJ4TK21eGDf77FK08byKX1Sl9v1/SR/L4UAFABQAUAfwwf8F2v2Tf2lNH/a7+N37U3iDwLc3PwD8UP8LrTw38RbHUtKn0a1W28B+FPBNvoF7Ym/XV7DWRruiaiJLN9PZbhJf7VgkaznaRfVwlSDpwpp++ua8eu7d+zVn37J3dj/ADh+klwRxdh+OuIuNMVls58M415NDCZrTrUJYeChluCy6GFqU/a+3pYhYnD1b03StJS9tGUoTvH+gD/ggRq0uo/8E1vhjZyOWTQfHfxb0mBSciOKbx3quuFF9AZ9ZmkwMfM5PfLcmL/jy81H8rfp5fheX9PfRkrur4R5NTbbWGzLPKEfJSzKvibL/t7ESfq/U/Tbwd+0d8BPiF8SfGHwd8DfGH4deLfin8P0nk8Z+AfD/ivSNU8T+HVtLuKw1A6jpVrdS3CHStQng07WVjV30XUbi3sNVFpeTQwPg4TUVJxkovaTWj7a+e679Oa7cf2DAcWcM5pm+PyHLc+yrHZ1lak8wyzC42hWxmFUJxp1fa0IVJzTo1ZRpYhLXD1ZRpVvZzlGEvaag+gCgDyD43fH74M/s3eCz8Q/jn8RvDXwz8GnU7TRYda8S3bwR3usXyTy2ulaZaW8VzqGqalLb2t3diy02zu7lLKzvL2SJbS0uJ4qhCVR8sIuTtey7d9fX+rnhcRcT5Bwnl/9q8SZthMowHtoYeOIxlRxVSvUUpQoUYRU6tatKMJz9nRpzmqdOpUaUKc3HvfCPi7wv4+8L6B428E+INJ8VeEfFWk2Ou+G/Emg31vqeja3o+pQJc2Opabf2ryQXVrcwSJJHLGxBDYOGBCppptNNNOzT3TPTwOOweZ4PC5hl+KoY3A42hTxOExeGqRrYfEYetFTpVqNWDcZwnFpxkn91joqR1BQAUAFABQB/Jh/wdR/FF7P4f8A7JHwVt7jdH4i8Y/Ej4o6xaq/+pfwZougeE/DdxLHnn7Svj3xVHbvt+X7JcjI3Yr+fPHvHuOE4dyyL0rYnHY+pG+zw1Kjh6Da/vfW8Qk+nK+5/sT+yO4TjX4j8ZOOqtO0ssyThjhPBVXH4455j8wzjNKcJdPZPh7KJVI319tSevKfux/wS3+FifBn/gnj+yD4F+zi0uV+CPhLxhqlrt2Nba78TYJfiX4gt5Rgfv4db8XahFOejTJIQSCpb9W4DwCyzg7hzCW5X/ZeHxM42ty1ccnjqyfmquJmn3d2f5+/Sz4tfG/0k/GjiD2ntqT48znJcJVvdVcv4VqR4Wy6pB3f7upgMmw86a3UJRTSaaj9719afzwFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBDcXFvaW891dTw2trbQyXFzc3EiQ29vbwo0k0880jLHFDFGrSSSSMqIiszMFBKuMZTlGMIuUpNRjGKblKTdlGKV2227JJXb0V7ilJRTlJqMYpylKTSUUldtt6JJatvRLVn+db+xh/wUA+Cn7KX/BQD4pftYfFO18UeM9NkPxz1Pw9ongG003VNY1zxX8Qddni02AXmp6npej2FjJY6rqlxf6ncX7PbW0Uht7O+upILKX9v4d8E+PeKaVFxyz+xMDP2d8dnnPgl7NWfNSwfJUx9a8VzU5Rw0aFT3U68Yy9pH/NTwszunw54n5vxznWDxs8FN8R1sKqNOn7fE4zNcTJUVCNatScaUqVavOdeXuqC93nk4Qn9LfGj/gvF/wAFKf26fFs/we/Yi+Fms/Caz1vzYLPQfgzoGqfFP43X2myOIZbnU/HMmjGDw1ZxBoriXWPCvhbwlc6Jula48Ty2ymav3rJvArw24Gwkc442zWjm06FpTr5zXp5VksKiV4wp4FVlLEzesVRxWJxca9ko4WMnyn7bmvi/x3xdiXlnCmXVcujVuoUcqo1MxzadN6OVTF+xtQgtJOrh8PhZUrvnxEormO9/Zp/4Nuf2s/2hNf8A+Frft4fGaf4XHxFcx6t4g0WPXP8Ahb/x48RyS7TN/wAJF4ovNR1Dwl4fvriExtHqlxrnj3UIXR7fUfD9vIoC8HEn0juE+H8P/ZXAmTRzP6tF0cPWdD+yMiwyV7fVsLCFLF14Ra1pRoYGnJNSp4lptHZkPgZxJnVb+0eL80eX+3l7WvSVX+084rt2v7fESqTw1Gcla1SVbGVE1y1KKdj9bfjf8Iv+CZn/AAQk/ZyvPjR4O+CvhLxV8e7mC50L4MX/AMTJ4/Hnxa+IPxGS1Btru01jVoyngvw5oYkttV8c6r4D0rwlplnpaRWkNvJ4g1nRLDUPybJM38S/HTiKGS4zOcXhMhg4185p5bF4HKcvy5z96E6VGV8bia1pUsDSx9XFVZ1bzclQo150v0nNss4C8IcjnmuFyrDYjOZKVLKp4+X1zMsbjlFcso1Kq/2WhRvGri6mDp4anGmlFRdarRhP8iv+CBn7H3xG/bG/a/8AG3/BSD9oRb7xB4d+H/jjxD4r0bX9bt8R/Ef9orxLJNqUuo2MZAhOl/DWDVW8RObQQW2meJLnwZZaYrwadqVrafrfj1xfl3B/COC8OeH+TD4nH4LD4Wth6Etct4dwyVNU5u6ftcylSWH9/mlUw0cbOpaVSnKf5r4OcM47ifibFcc51z1qGCxdbE0q1Zf79nddubqQWidPAqp7d8vLGnXlhYU1JRnCH9xtfxEf1oFABQAUAFABQAUAFABQAUAFABQAUAFABQB+an/BTX/gmn8J/wDgo78F5PCPiQWfhP4weD7e/v8A4N/FuOzEuoeFNZnjDy6HrghUXWreA/EUsNvD4h0bc8kLpb61pSx6vp9u7/pPhp4k5r4dZysXhufF5RjJU6ecZS52p4qjF6V6F2o0cfh05Sw9a1pJyo1b0akj4Tj3gTLeOMreGr8uGzPCxnPK8yUbzw9WS1o1re9UwddqKr0r3Vo1adqkIn8mn/BPT9vv9oP/AIIuftL+Kv2PP2wfD/iOD4FyeK/s3jjwpItxq1z8M9U1N4xZ/GH4WSIGXX/B2v2Zt9T1rTNI3W3inRmj1rRo18SWb2Wq/wBXeIPAXD/jNw1heL+D8RhpZ4sLzYLFLloxzOlTT58ozRO7w+Mw8+alRqVrSwtZOhWlLDT9pQ/nHgrjLOvCzPsRwzxNRrxyh4jlxmGfNVlgKlS3LmeXOz9tha0eWpVp0rxxFL97STrx5J/3peDvGPhX4heFPDvjrwN4h0jxZ4O8W6Pp/iDwz4m0G+g1LRtd0TVLaO70/U9Nv7Z5ILq0u7eVJYpI2IIbBwwYL/COMweKy/FYjA47D1sJjMJWqYfE4avCVOtQr0pclSlUpySlGcJJppr0uj+wsLisPjcNQxmErU8ThcTShXw9ejNTpVqNSPNCpTnG6lGUWmmn9+p0lcxuFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4jv8AguF/xTf/AAVm+Fev/wCr8zwj+z74h39P+Qb421qy354+7/Y+Mg/w4yMfL6mF1w7XnNfgvTv3+av7v+d/0i/9k8b8kxW18Dwvir/9ecxxFO/nb2Hnt8o/2415Z/ogFABQAUAFABQAUAFABQB/n7f8Fhv2rfiT+2T+254r+GekaN4kl8I/Avxh4l+Cnwt+HdjYX99q2o+IdF1yTRPGHiUaHaxTXl34h8a+IdJAtIIbT7XH4d03w3pj25vLW7muPYw1ONOkpXV5JTlLpa11vaySfbe7u7n+YHjzxtm/H3iJjsnoYfGPA8N4/GcPZNlNOnVqV6uLw+JeGx+M+rQjKpPFZhiqH7uEYOawlLCUXFVITlL7o/4Jv/8ABAnxp4+vtD+MH7cOmal4C8AwyW+paN8B1uZdP8e+MQpWaL/hYFzaSLceBPD8oCpcaBbzxeN75WuLe8Pg94YZb/Gti1G8aXvS/nt7q9Lz95+duX/Ff3f0jwm+jHmGZ1MNn3iNRrZZlkZRq4fhrndLM8fa0o/2pOD5stwr0U8LFrMaq5oVPqHLGVX+wLwt4V8NeB/DmieD/BugaP4V8KeG9NtdH8P+HPD+n2uk6LoulWMSw2mn6ZptlFBaWdpbxKqRQQRIijtk5rzm2222227tvds/u7BYLCZdhMPgMBhaGCwWEoww+FwmFpQoYfD0KcVGnSo0acY06dOEVaMYxil0Wvu79I6SG4uLezt57u7nhtbW1hluLm5uJUgt7e3gQyTTzzSFY4YYY1aSWWRlSNFLuQoJoJlKMIynOUYQhFynOTUYxjFXlKUnZRjFJttuyWrtqfwx/t7/ALQ/xL/4LC/t4+Bv2a/2dZZtS+EvhbxLfeC/hcwa4XQdSMb7viF8d/EixKzpokem6fcXelyyI9zaeCtJslsrKDXdf1Oyu/VowjhqLnPSTV5aartBbdd1d3b1lZJn+cXibxVm/jx4l5bwjwpJ1sjwWMqZfkzXOsNWs75pxLi0ldYeNKlOdFuMpwy+hT9nTjicVVp1f04/aS/4KXfs6/8ABJz4I+G/2H/2MLHQ/iv8Yvh1o0ug+IPEV2UufBfgzxbO8k/ijxN48utMuIj4s+I2ra5Peahe+D9IvIrDw/cy/wBm6zqemRaNbeF7rGFCeIm6tW8Yt3UerXRK97Rt1dr7rfmP2Hi3xd4U8EeHcJ4dcAU8PnefZVh3hsVip2ll+X46TcsZjMznRf8At2bV8RKpVqYChUjSws37GvVoqhDCT/Nj9mf/AIJl/ty/8FWPG8X7Sv7VfxD8V+Dfht4kaK7j+I/j+2lvPF/i3RGla5h0z4RfD9/7P07RfCRWVhpeqG30HwVZxXQvPDem+I/Ju7KtqlelQXJCKcl9mOyf953V33Wsujcbo/I+EPCDxH8asxXF3Gua47L8oxbjUWbZnCU8fjsO3zxo5Fld6NLDYFqX7mvyYbL4KftMJSxfLUpR93/4KS/8G++tfDDwVo3xq/YA1b4g+KtR+HWlWN34y+E+r60dT+IOr3Og7br/AIWH8NNW0q10h73xTE8C6hqHg21tLa7nuImufA229Fn4Yn/CPFnhrivO6Mc0yXNsxr0MJGM6/D1GtKjTvR99YvA06Di8RiINKbpYh18Re7wlRtxw5/0EfsyeKvoo/R8x8+BeN/CngjKuIc/rV8Ll3jxn2W4fO+IJrMYPD1sg4pzbOIYxcP5Li4VPqyxXDtPJ8i5HCGf5c6ar5vD4/t/+C6nxx+JH7A/xl/Y9+OOiar4j+NOt+HtO+Heg/HBWhtr3VfAd5qlrY+ONI+KGmTtb3Nx4zPhm31Hw9beIrCJn1+LUprnxJaQ61plzq3iTXwc40zjid4rKc4w9XEVsmw9Oq830XtIyqeyo4bHQdn9dbjOdOtFfv6dCs66jWpupX+D/AGz3gR4a/Rs4EyvjPw0zzA5PS8bs6xfDWD8N1KVR4GjTwazXiTiHhWrD2lP/AFVp4OphMsxuXV6i/snMOIspWWVa+W4qOCyr92v+Ddf9n3UPhf8AsceJvjBrtnJZ6r+0P8QJ9a0dZUMckvgHwDDceFfDlxLG+JFN34ik8cXtszBUuNMutOu4d8M6Sv8AtONnzVFFfYWv+KWr/C3T7z/K/wCirwvVybgHF59iabp1+KszliKCacW8syyM8FhJNPX38U8xqweilRqUpxvGSZ/QBXGf08FABQAUAeA/tQ/tF/Dn9lD4FfED48fFPX7Xw74T8EaUkv2q5tNQ1E3uu6rdQaR4Z0W203SYp9Tv7nWNfvtPsFhs4t0cU0t3cS2tnbXF3b+Rnuc4Lh/KsZm2PrRoYfC0780oznzVqklToUowpp1JyqVpQhaKdk+aTjBSnH9F8KPDPifxf8QOHPD7hHLquZ5xn2MlH2NKthsMqGX4SjUxua46risZOnhcPSwWXYfE4hzrytOUI0acKtarSpT/AIgvhX/wcHf8FOvhld3fj/4hJ4N+M/w48Ya/qI0y38e/CweGvDFjPbS7r7RPAPi7wDF4LnVtOjaGD7Lrd14ueyiVZLu1e7mmuZf5cwHjBxzgZSxeM+rZlgsTVn7OOLwCoUIuL9+lhMThPqzvBWjy1ZYlxWso8zc5f70cW/s4Pop8VUaPDvDbzzgfifJMuwzxdTh7i7+1c2rwqwth8fxHk3EVTO6bWJkp1Pa4Chk0a85ONGrGjThTh+h/gj/g6r0SSGGH4j/sZ6pZ3CBRcaj4I+M1pqUM7Y+d4dF174eaU9qM/dik169JHWYV9lhfHyk0ljeGqkX1nhc0jNN9WqVXB03H0daXqvs/zXn37IvHxnOfDHjfhK9Ntunhs+4GrYWdNdIzx2X8TYyNZ95rL6C7Qex7/pP/AAdIfsfzIp1z9n79pPTpCBvXSbT4X6yinuFe8+IeglgOxaNM+g52+vT8d+HGl7XKM7g+vs1gKiXo5Yylf7kfnOL/AGTPjVCT+oeI3hdiY9Hi6vFmBk/WNHhvMEvlKW9tbXOrj/4OhP2Byv7z4Qfteo3cL4D+DLr9Ax+Pak/iq/Xk7eheOvCXXLuI7+WFy3/57HkS/ZQfSIT93jPwYkvPiHjiD+7/AIh3UX49fI9r/Z1/4OFf2HP2kfjZ8OvgV4d8I/tD+B/EvxR8S6Z4N8Ka78Q/BXgCz8LS+KtduY9P8P6NfXXhD4qeMtXtJtd1We10nT7j+xJLFL67g/tC6srUyXSenk3jDwtnWaYLKqOHznC18fXhhsPVxmGwkaDxFWXJRpSlh8diKkXWqONOD9k4KclzyhFuR8L4l/s3PHzww4E4m8QMyznw1z/K+E8qxWd5xl/DWe8RVs3hlGX0pYjMsdh6Wc8I5Hgq0MvwlOtjMTS+vQryw9Gq8NSr1VCjL916/Vj/AD9CgCC6tba+t57O9t4Lu0uYngubW6hjuLe4hkUrJDPBKGilikUlXjkVkZSQQQSKyrUaOJpVMPiKVKvQrQlTrUa1OFWlVpzVp06lOacJwkm1KMk4tOzTvY1oV6+GrUsRhq1XD4ihONWjXoVJ0q1GpB80KlKrTlGdOcZJOM4SjKLV07r3cHw94L8HeEvtH/CK+E/DXhn7Wc3X/CP6FpejfaTndm4/s61tvOw3I8zdg8jHRfMyrh3h/Ifa/wBh5Hk+Te3d6/8AZWWYLL/bO9/3v1SjS9pZ6rn5rdNrnrZxxLxHxB7H+3s/zrO/q6tQ/tfNcdmXsFa37n65XrezutHyct+t9zpa9g8QKACgAoAKACgD8Sv+DgiSNP8AgnF4vV/vS/FH4VRxf9dBr0sp/wDIUUnT+tdWD/jL/DI/nj6UDS8J8envLOclUfX61zflF9/xvH88v2M/2s2/Yu/4IPeJ/itpt7HafEHxB8T/AInfD74QI5Qyv8QPF9+LDT9Tt45P3creEtNste8aSQSBormLw3JauCblVbapT9ri1H7KjGUv8K+T3bS6b7n5bwBxu/D76NWMzulUUM0xWcZxleRJ25nmmPq+ypVoqWkvqNKnicwlBqSnHCOD+Kx+MH/BI34v6h8MP+CkX7M/ie81C6nHjj4hzfDXXpLq4lml1dvi7p+peCLdtQnkLy3Mg8R+INK1YyTOXkvrOGaRmIYN1YiPNQqLtG/pyvm8+it8+m5/P3gZntXJ/FrhDGTqzn/aWaSyjEuc5N13ntKtl0HVk7ynL63iaFe7d5VacW27Pm/0Ya8U/wBWgoA/hf8A+DgL9sE/HX9qu3+AfhXVPtPw6/ZmgvPD18trNus9W+LetLazeOryTy2CzN4Xgt9L8FRRXEZl03V9J8U/Z5PJ1OTf6uEpclPna96pr6R+z9+stL3TW1rH+cP0n+O/9ZONYcM4Ktz5VwhGphaqhK9OvnmI5JZlUdrXeDjGjlyjNOVKvQxvLLlrNH9L/wDwRh0bxDof/BMz9liz8SyTvf3PhzxrrNmLjJeLw94g+KfjrXPC0as2GaH/AIRvUNKe2yMJbvFFHuijRm4sVZ16lu6+9RSfb+u+5/XfgBQxWG8IOC6eMcnVlhMwrw5r3WFxWc5licElfVx+qVaDh0ULJe6kfqDXOfsYUAFABQAUAfwrf8HIOtah8Vv+CjnwW+DWiTGWfRPgx8N/CNraDMnleLfiL8Q/GN67iNTw1zpeoeFFKAB38lSSQybf5U8aas8w40yzLaTu6WWYLDxj2xGNxmJk313pzw+y6dbpH/QB+zEwOG4Q+jJx1xxj4KEMfxzxPnNWt8PPk3DPDWSUYpye6pYvD5w+bZc7VlZuX9yOhaNpvhbQNG8PaXEtpo/h3R9O0bToSVCWum6RZRWNpET8qhYbW3jTOFUBc8AV/U9GlDD0aVGmuWnRpwpQXSMKcFCK67RS6/ef4GZhjsVm2Y47MsXKVbG5njcTjsTPVyq4rG15160ratyqVakn1bb6n4oft8f8F4P2Tf2Q7TXPBfwx1bT/ANpH472iz2UPhHwLq8M/gLwtqgDR7/HnxDs0u9JjaxmWRbzw34WfXPEa3dudM1WLw5541KL8w4t8V+HuHY1cLgakM6zaN4rD4SonhKFTvi8ZHmprkafNQw/ta3NH2dRULqZ/dn0d/wBnz4w+M9bAZ5xXg8T4YeH1Z068854gwU4cQ5thHaXLw9w1WdDGTWIg4ujmmbf2flnsaqxWDqZr7N4WfgX/AARD/br/AOCjH7cXxS+NPjj9orR9Lvv2Xz4au7jwT4l074faV4K8PeG/iZD4l0W3tPAnw+1m1totZ8aaQnh248SXHiN9f1XxhqWhXWmaEt54g0+fUks9V8jwu4r4z4px+Z4rOadOeRewk8LXhg6eFo0Mcq9JRwmDqxXtMVT9jKvKv7ariZ0pQpc1WDmoS/RPp5/R++jN4B8JcDZD4aY3F0PFdZrRpZ9leJ4kxme5lmnC08rx1StxDxHga1WWCyLGSzOlldPK45dg8lwuYUcXmDoZdiaeGlXwn9IlftR/mEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHxD+2v8A8FDv2XP+Cf8A4Z8NeIf2i/Geo6Re+NpNXi8D+DvDGgX/AIn8YeLn0COxk1l9L020ENjZ2enDU9OjudU1/U9G0lLi/tLX7cbmeOJvtuC/D7ijj7E4nD8O4OnWhglReOxmJrww2DwixDmqKq1Jc05zqeyquFOhTrVXGE5ezcYtx+T4r414f4Mw9CtnmKqUp4t1VhMLh6M8RisS6Kg6vs4RtCEaftIKVStUpU7zjFTU2lL+a79o/wD4OoPEeo/bdC/ZG/ZstNH85mg0/wAdfHfVX1jU3Ex8tHi+GngS+trCzv48iS3kn+ImvWjTsizabNFG6XH9IcOfRcw9Pkr8W8STrctpVMDkVJUaemrUsyx1KU5U3tJRy+jPlTaqxbTj+E559IWvU56XDeRQpX0hi84qe1qO+mmAwc4whNbxbx1eLbs6bStL4I8T/Cj/AILn/wDBT7w7r/jn4wXPxb0n4Hafo2qeKtSn+Jt0vwD+CNvoOj2M2rG/0r4a2VnoUvjaG3s7aRLHWdI8FeLr6Qxn7VqrSvPO/wBt/bvgV4Tp08tjlVXNqK5OXK4f2/njqbThUzKpUqxwc29ZUK+NwdNbRpxSjE+LxuC8WuOcJiswzaWZ08mw+Hr42tLHyWTZUsPQpSrSqUsBGFL62o04Pkq08LiJ6WlUbbkN/wCCHH/BNv4D/tq/Hb4lWP7Rtj4i8W+Cfhd4C0zxND4V0LX7/wAKaZrev6v4ktdOs7PX9T0gw+IpdKGn2+qyeRo2r6DdyXAhdrtoYpLeX8t4x+kpxBiYSocKZbhskozbjHH45QzHMbWdp06MoxwGHk9LwqUcely3U9WpfK+AuWZT4k8SZ1h84wNZ5Xk2W0cXCjDE1KUsTia+LhSpxxE6PJOFL2Ua7dOjVjNz5WqrUZQl/eV8F/gD8Ev2dPCUHgX4FfCvwL8KPCcPlM+j+CPDunaFHfzwoUW+1i5tII77XdUdWbztW1m4vtSuGZ3uLuV3dm/mzOc/zriLFyx2eZpjs1xbulWxuIqV3CL15KMZtwoUv5aVGMKcbWjFbH925Vk2U5Hhlg8oy7CZdhla9LCUIUVOSVlOrKK561S29WrKdSW8pXb5vnb9vX/goL8A/wDgnv8ACO5+JPxg1lb7xJqkN7bfDX4VaPd23/Ca/ErX7aNSLHSLWTzDp2h2Mk1u/iTxbfQnSNAtZog/23V73SNH1T6HgPw/z7xAzaOW5RRcMNSlCWZZpWhL6lluHk/jqzX8SvNKSw2Epv21eaduWjCtWoeJxjxpk3BeWyx2Z1VOvUU44DLqUl9bx9aKXuUo6+zowbj7fEzj7KjFr46sqdKf8XnwU+C37Yv/AAcHftmav8WPizquo+FPgj4T1C2sPGHi3ToJ18E/CTwKlwdQ0/4SfCezv/NtdT8baraymZnmF3Ok93P418YvMstlp+pf2XnWdcH/AEf+DaWU5TSp4vO8XCVTCYSpKLxubY5x9nUzbNp0+WdLBUpJJKPJFxhHB4NLlnUpfy1lWVcT+NHFFXMcxqTw2VYacYYrEwT+qZZhL88Mty2E7xqYupF397mfNKWLxV7whV/vb+C/wa+G/wCz38LfBPwY+EXhex8HfDr4e6HbaB4Z0DT1Oy3tYS8txd3lxJuuNR1fVb2a51XW9XvZJ9Q1jV7y91PULie9u55m/g/Oc5zLiDNMbnOb4qpjMxzCvKvicRUespPSMIRVo06VKCjSo0YJU6NGEKVNRhBI/sPKsrwOS5dhMqyzDwwuBwVGNHD0YdIrWUpyfvVKtSblUrVZtzq1ZzqTlKcnKXp9eYegFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAflR/wVS/4JcfDL/go/wDCP7Kx0zwX+0L4E0+8k+EPxVe1b9zIxkun8C+NmtYnvNT8Ba5dFjIES4v/AArqc58Q6HDOzavo3iH9T8LfE/M/DnN+f97jeH8dUgs3ypSXvL4VjsEpzjClj6EdtYwxVKP1evJfua+F/O/EPw+wHHOW8rdPC51g4TeWZi4vS/vPCYvlTlPB1pb2U54eo/bUYy/e0q/8vn/BMn/gpN8bv+CSPx78RfsSftsaL4o0n4H2ni6bSPEOh6tFPqWtfATxLqU6z/8ACdeDBb/aRr3wz8SLcw65rmlaE17Y6tp97H488EG71GfUrDxh/TviZ4b5J4s5Dh+NeCq2Gq53PCKrh69Fxp0c+w1KNvqOM5lH2GZ4dxdChVrqFSlUg8DjeWnGnUwn8/8AAPHWa+G+cV+FOKqWIp5THEulXo1E51cnxE5c31vCqPMq2AxHMq1anSlKFWE1jMJzVJVIYj+8Hw54j0Dxf4f0TxX4U1rS/EnhjxJpVhrvh7xBod9bapo2t6LqtrFe6ZqulalZyzWl/p9/Zzw3Npd20skFxBKksbsjKa/hXEYfEYPEVsLiqNXDYnDValDEYevCVOtQrUpOFWlVpzUZU6lOcXGcJJSjJNPVH9f0K9HE0aWJw9WnXw9enCtRrUpxqUqtKpFTp1KdSLcZwnFqUZRbUk7pvRmzWJqFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//0v7+KAOQ8beNtG8B6P8A2zrP2iSOS4js7W1s40kurq5kSSQRxLJJFEqrFFLLJJLJGiohAYyNGjg0m3Zf1+K/P77B4J8baN480f8AtnRvtEccdxJZ3VreRpHdWtzGkchjlWOSWJlaKWKWOSKSRGRwCwkWREAaadn/AF+L/P7rnX0CCgAoAKACgAoApalqFppOn3uqX8ogstPtZ7y7mIZvLt7aNpZXCqCzkIh2ogZ3bCqrMVWgDzvwL8W/DPj/AFC90vS4dSs720ga7SHUobeP7VaJIkTzQNbXFwu6J5YvMilKOFlVo1dVlaIKcWt/8v8A26X9d7+76jQSFABQAUAFABQB/Ej/AMHHsT6H+3t8H/EMCkGT9mrwBfhhwWvNJ+LPxfBAPHIhjs+c5GeoGNvq4L+E/Ko/u5Yfef54fSxTw3iZkOKit+Ecsq3Wl6lDPM9/KKp/1Y/sMi+OHgubxZH4TjbUGllvU0yPVhBD/Zbag8ghWASeeLryzcEW32j7N5PmndvFt/pFeUf6IJXipppxaUlbqnqnfm6rX4fLzPYqBBQAUAFABQAUAFAHl3jr4t+GfAGoWWl6pDqV5e3cC3bw6bDbyfZbR5HiSadrm4t13SvFL5cURdysTNIqK0TShSi3t/n/AO3R/rtb3m+G/hd8GU8XXXxp8MfDL4cWPxD8Y6davqnxO0zwP4b0/wAe+INOltYkt4dY8XQaXD4k1CIWiwwfZ7+/kEccawGMKgVa5pNKLlLlW0buy9Fdrz2XzPIpZDkeHzOvnVDJsqoZziYqnis2pZdg6eZ4iCioqFfHwoxxVaKilFRqVZJRSWySj6nUnqhQAUAfzRf8F9f+Cjo+Fngu5/Yp+D2u+X8RviPo0U/xt1vTLnFx4N+G+rQh7XwQk0B3W2v/ABCtW83WIXdJrLwM/lS27xeMLK7te7CUbv2slon7nm9r7PRdNVr6H8i/Sb8WP7Fy+fh7kOJ5c2zbDqXEOIoz9/L8prxvDL1KNnDE5rB3rxck6eWuzi1j6c4fzY/A39pfxL+z98M9d+Hv7MVlrEf7RH7QEVv4R8b/ABa0Oxu5vG3h/wAFaheQppfwY+C0FpFJq9jq3inUPsuoeOPGFlHHrep6kNC8MeE7WyXw2PE/iTulBTac/ghqovZv+aXonorvq3/LH+SeHOLsZwvk+Jyrg6nXXFXFEYYHMc8w1ObzHC5fVqRVHh/h+MFKvTr42r7OrmOOpqOIrVvq2DwMKf1RYzFf0bf8Etv+CF2i+AY9A/aE/bc0Gx8UfEOY22t+DvgTqnk6p4b8FyORc22r/E2Imey8U+LSxWWHwrI914d0E7n1n+2dYkW38PcNfFN3hSdls59X/hd9F58uvTk+1/V3gz9G/D5WsLxT4iYanjM2k4YnAcN1uWthMub96FfN4+/TxuOvaSwTc8Jhv+X/ANYxD5cJ/SJ4z8Z6J8P9ETVdVSb7P50VjZWVhFG0887Ru8cEEbvDBHHHDDI7tI8Uccce1T5jRRy8J/YUY7RikklZJLRJaJJXWnRK+nnYZ4Q8eaB4z0CbxFp80lnZWck8WorqXk2r6c9rClxMbpxK9ukK27pcfaFmaEQtl3V0lSICbVNSlOUYxjFylOTUYxildyk22oqKTbbdktXbU/gH/atsLr/gp9/wUu+Juk/safDTwqr+NNT1bTvC9xpNvZ+F9M8dwfD/AEW+m134teM9XWKOxtp/Gl1YXmpRa3qMNpcXFnfeHNP1Mza5NNcXbjl+HyXCZtjsry7CrM8dGpjK0IKGH/tHMIUHHDRxFVKKXPJRpzqOyi51azvKU5H8K8ZeIHEn0sPG7w04B4o424gqeGPCONwnBPD2OrPEZ1Dgfw6ecxxnFuf5Tl03ery0ZYzMsDgVyVMTRwuS5JDkhh8HTj9F/wDBO3/gsF8fP+Cb3jyT9jb9u7wl42u/hP4M1f8A4RlrbXNOnPxS+ALtIHiGl28mH8Z/DQRTpe2uiQz3c1rok9rqnw+1K90qOy8N6v8Ay9w14pZ/w3m2Lynjani8RRnjK0sTOvBrMMrr16sqs5Qi2/rOBcqnPChFy5KMozwVSVJQw8/+r7xf/Z9eDPiz4W8JcYfROxHDuR18n4RyfK+HMDlWJprg/jfJMhy2hleBw+KrRX/CNxXTw+ChhsTmlanT+t5lTr0eJ8LRx9XEZrhP7aPhr8Tfh98Y/A3hv4mfCzxhoPj3wD4u06LVfDnirw1qEOpaRqlnISjGKeEkxXNtOktpf2FysF/pt/Bc6fqFtbXttPbxf0tgcdg8ywtHHYDE0cXhMRBVKOIoTU6dSL7NbSi7xnCSU4TThOMZqUY/4lcU8K8R8E5/mnC3FuS5jw9xFk2JnhMzyjNcNPC4zCV42aU6c9J0qtOUK2HxFJzw+Kw9SliMNVq0KtOrPua6jwAoAKAP5l/+Dofx/d6L+yF8Cvh1a3L26ePPj9HrmopG5U3umeBfAvicfY5gCBJbDVfFWkX7IQ2LqwtJBjZX4f47YuVLh3KsHFtLF5uqs0n8UMJhK/uvvH2mIpz3+KEXrof6o/sneHKOO8Z/EDiatSjUlw94dywGFlJX9hiuIM/yp+3g/s1Xg8oxmHTT/hYitHXmPSv+DdE+EtX/AOCdsPgHXNLtNVfWvij8UPEd9pWtabaajo+r6c1/ouisGt7pbi3ufs76ZCk8F1APvI8Syqsjxep4N4enPgWnGrThVp4jMswnKFSEakJpTp07ShK8Wv3WzX3nwX7SzOMbh/pWYzEZfjMVgcXlHBfB+GoYrB4irhcTh5zw2Lx96VehUp1acrY6/NCUWr76s/U3xp/wTk/YH+IMs1z4r/Y4/Zvvr24ZmudSs/hD4K0LVrh2yS9xq2gaRpepTvknDy3bsOxXnd9tieC+EsY3LEcN5LOT1c45dhaVST7upShTqN+spW+5S/l3I/pNfSH4bhClk/jb4n4ehSSVLC1+M89zDB0oraNLB5jjsVhacfKFKKezieC6r/wRR/4Jc6yzPd/sieCoS5JI0rxV8TtCUZ/uponjjT0T2CIuOoxgCvJqeGHAdX4uHcMr/wDPvEY+j+FLFRt9/pbXm/Q8J9Ov6WWCio0fGfPZqOi+t5Rwrj5ad5Y/IMTKX/b0pecna0uVk/4IQf8ABKKVtzfsn2gOc/u/jJ+0JCv/AHzD8WkUfTGPY9F534T+H734fj8syzhflmK/L77nrx/aDfS/grLxgrNf3uCfDeb++fB0n8739fs+p/Bf/gkR/wAE6P2e/iN4Z+LXwm/Zm0Dw98QfBt5/aXhfxBqfjX4peNToephGSHVLHS/HXjrxLo0WqWe8y6dqR01r7TblY7uwuLa5jSZO/LPDrgzJ8bQzDL8jpUcZhpc9CtUxWPxXsqnSpCni8ZXpKpG94VOTnpytKDUkpHyPHP0zfpM+JHDOacHcY+KeY5lw3ndD6rm2W4TIuEsiWPwrknPCYjF8P8P5Vjp4Sty8mJwv1qOHxVJyo4ilWpTnCX6RV9qfzCFABQB5D/wuvwd/wmP/AAhv/Ex+0/2j/ZH9p+RD/Zf9p+d9n+zb/P8AtWz7T/ov2j7N5PnfN5n2b/SKCuR2v03/AKfN/wC2+XmevUEhQAUAFABQAUAfgD/wce+KodE/YR8H+HxMou/Gf7RHgfTlt8/vJLHSPB/xD8QXU4HeKC707TIpD2kuoRg7iV7MEr1W+0H+cV8t/P8AWP8AMX0scbHD+GuAwvMufMOKsto8vV06GAzXFTl6RqUaKfnOOju3H+T3xr8Wdf8Aix8B/wBjL9kPwILjUB4NvfH2sajotszL/bHxi+M3xY1yx0i0dVJgu/7P8CWHgWPTZyWexvPEviK0KxObhW9BRUZVKkna9te0IxTvfXrzX06LfQ/ijGZxjOIOHfDzgDKYzrzwlfMaksLDfE8Q8RZ7iKOGp6aT9nl1PLY0XvTqYzFQfLeSl9k/ta/Bfwh+yH/wUj/ZN8DfD+SBtD8E6R+xlria1bQm1/t/XNMu/DS6/wCLZomSNorzxHr+kahrt4rojRXV5NH5cezYuVObq0Jyd7y9ol1sney6bJ2td/4up9/x9wzhPD7xf4MyfAcsaeU0+Aqsq0Vy/WMXhq2Fji8bJLl/eYrFYeriZ6R9+o0rJH9+9eQf6anyN+3Z+0/pP7Hn7K3xd+PN89q+seF/Dkth4F0y7KsmufEXxCw0bwVpZgJElzanXLu1v9YSBXlg0Cw1W+2+XayOulGn7SpGHRu7/wAK36Pptpv2PhvEnjGhwHwXnvEtVwdfB4SVPLaM7NYnNcU/q+X0eW6c4fWZwq11G8o4alXqWahJx/zUo/8AhIviT43T7dqL6r4t8e+Kl+16vrN6qPqXiLxTq4+0ajquo3LBEe81O+e5vr24YKpklnlYAMa9mc4Uqc6k5Rp06UJTnKTUYQhCLcpSbtGMYxTbbdkld2sf5K4PCZtxNnmEwGEp4nNM84gzWhhMNRhGdfF5jm2bYyFGjThCEZVa2JxeMxEYxjCMp1KtRKMXKSUv9E3w7+25/wAE7P2WPhT8O/hLffti/s52emfCrwF4S8AWGnaV8VPB/iLWk0/wd4fsNAtXuNA8LapresRzTwaekrK9iJJJWcgyuWNfnmN424SwkpyxPEmSxlzNyp08ww9eom3dp0qE6lRf+AfJH/QJwH9Ez6QWKyXJcl4c8E/EytgcsyzAZZhMViuD85ynA1aOBwtLDU5Rx2a4XAYJ3jSUpyVeSTd5NXtL5y8e/wDBwN/wS98FedHpvxs8TfEW8g3B7PwF8KPiLPudc/JDqXivw/4U0O53fwy2+qywcgGUYNfMYvxe4Ew11DNK+Mkt44TL8a9eynXp4elL1jVt5vRn9DcPfs5PpYZ77OWJ4EyrhqjUs41+IeL+GadovrUwuUZhnOYUrdYVcHCp/caaZ8T+P/8Ag6S/ZZ0oTJ8Mv2c/jx41lj3LE/jG/wDAXw8s7hlyAyTaVrvxEu0gcgFXl05Jtpy9ujDa3zGL8d8hp3+o5Nm2Ka2eJqYTBRfo6dXHSSfdxv3itj924d/ZMeLeL9nLirxM8PcihKznHJMNxDxLXpp9HDGZfwxRlUWzjDEOF9FVkvel8da5/wAHTnxm1TxBpkfgb9j74eabpMup2kVxouufEfxV4u8QanayXCI+n6Zqmj+G/CNtaaneK3k2l1J4e1aOG4kRm0292+U/zdXx5zOrWprCcOYOEHUinSq43EYqtUi5W5Kc6dDDKNSV+WMvY1fef8OVnE/asB+yU4GwWWYupxD41cR4jF08HXqQx+A4YyfJcswlWFKUlisXhsdmucVKuDoNe0r0lmODlOlCS+t0LucP6/PhT8SdO+K/gjRPGVhpeq6BLqdhYXGpeHNcijh1rw9qN3YWt/Po+ppC7wm7shdLDK8LvGZFdcrIrxp/SeHquvQo1pUp0ZVqVOrKjVVqlF1IRk6VRdJ02+Sa/mi+x/iTm+Ap5XmuZ5bSxuFzOll+YYzBUsywUnPB5hTwuJq0KeNwkpe9LDYqNNV6EnZypTi2lex6PWp5x/nl/wDBV34keNbv/gtp8T/Gvw78L/8ACf8Aiv4SfEX4Laj4L8FPpupa5b67qfwd+G3w+8SXGi3mkaNPbavqem3muaFq8mp2GlXNrqM9jNdQWVxBdFJl/jvxAxuKl4n47FYKh9bxGX43LJ4XCunOsqs8twWDrOnKnTlGpUhKrRqOpCEozcHJRfNbl/6TPogcMZFR+ghwpkXE2bf6u5Pxlwzx1hs9z1YrC5fUy/CcbcUcR5XSx1HG42lWweFxVHL8wwUcLiMXRrYaniIUqlanOipwPQdRn/4Lt/8ABWqSTRLzT/i9Z/CLXJjFdWb6XH+zx8AY9MkcrLFfXVxD4c/4WLY2DMZJLO6uPiFr0bbPLt5ZFhVOub8V/EK9KUMxjl1V2lFwWTZQqbeqnJxofXYQerjKWMrLonpE+cw1P9n39DqMcdRxPBlfjPL4c1KusXLxK8RZYqKvCdClTlma4ZxGIS5Y16NHhrL5K/NUhGU5S/X79iD/AINrvgl8J7nSPHf7Y3i+D4/eMrNoLyL4Y+F11LQfg3pd5Hh/L1i9uPsPi74hpDOiSwpdxeDtDuYzLY6z4a1i1f5v0bhbwTyvASp4viTErN8TG0lgaCnRy2ElrarN8uIxiUkmuZYWlL4KtCrB2l/F3j1+1E474wpY3h/wTyap4dZHWVShPivNnhsw42xdCV482Cw9P2+TcNSqU3KE3RnnmPpSUK+CzTBVoo/pd8PeHdA8JaHpPhjwroej+GfDeg2Ftpeh+HvD+m2WjaJo2mWcaw2mnaVpWnQ29hp9jaxKsVvaWkEVvBGqpHGqgCv2+jRo4elToYelToUKUI06VGjCNOlShFWjCnTgowhCK0jGKSS0Wx/lpmWZZjnOPxma5vj8bmuaZhiKuLx+ZZjiq+Nx+OxVeTnWxOLxmJqVsRicRVm3OpWrVZ1Jybc5SbvHYrQ4j4d8Mf8ABR79jjxj+0p48/ZJ8O/GCwv/AI5/Di38RyeJPC40TxFDYG/8GW0134y0DR/Es+lR+Htb8R+E7e3uZNd0TTNSub61NjqkUcU02ia1FYfMYXjHh3G59ieGsNmMamcYX2samH9lWUHUw6viKNOvKCoVK2HSbrU4Tco8lRaulVUP3XP/AKNfjNwx4TZL43Z1wbiMH4c58sBUwOcvHZdUxEMHm8owybMsblVLFTzPA5bm85045djcThadGv7fCNuEcfgZYr6R8C/Fvwz4/wBQvdL0uHUrO9tIGu0h1KG3j+1WiSJE80DW1xcLuieWLzIpSjhZVaNXVZWi+nPwxxa3/wAv/bpf13v7vqNBIUAFABQAUAFABQB5D/wuvwd/wmP/AAhv/Ex+0/2j/ZH9p+RD/Zf9p+d9n+zb/P8AtWz7T/ov2j7N5PnfN5n2b/SKCuR2v03/AKfN/wC2+XmevUEhQAUAFABQAUAFAHl3jr4t+GfAGoWWl6pDqV5e3cC3bw6bDbyfZbR5HiSadrm4t13SvFL5cURdysTNIqK0TShSi3t/n/7dH+u1ve9E03ULTVtPstUsJRPZahawXlpMAy+Zb3MayxOVYBkJRxuRwro2VZVYMtBJdoAKACgAoAKACgD83f8Agoj+wj+yB+2RoHw71j9qPwx4p1W7+GeralH4L1HwN4juvDXiGaDxItjNrvhu7nh3Wt7oep/2FYXdz9qSO8057IyaNqGnz3t4l793wT4j8UcASzH/AFdxOHp080hSjiqOLw0MVRdTD+09hiKcZSi6dekq1WKalyTjO1anUUYKPyHFfAnD/GqwKzuhWnPL5VJYerhsRLD1FTrez9tQm46TpVHTptprng43pTp80+fo/wBkD9iL9gz4G6PZ+Iv2b/2bvh54J1nTbg2Z8Vaton/CVfEuxu4Y4pHQ/EDxheeJvF0ccyyxXIWz8QLZuXXEMTxMkXPxD4h8a8Vc8c94kzPGUJ35sHGt9Uy9+uX4OGHwTaTspSoylbTmd2o75LwPwpw24vKMjwGFrQty4uVN4rGrzWNxUq+KWurjGqo31VrJHrn7cHiD/hFf2MP2tfESv5cuj/s1/HC+tmzgm9i+GniX7CgPZpbwwRqf7zj0r5Ckr1aa/vw/9K+X5/ccviLivqXh/wAcYu9pYfhHiOpB/wDTyOUYv2aXm6nKl5vU/nR/4NgfD+68/bM8VSJjybb4E+H7OTH3vtMvxZ1HUkz22fZNKYgE7t4J27V3duOelJd3N/dy/wCff77n8p/Q6w158f4xr4Y8NYam+/O88q1V8uSi9+ut9D9BP+Cnf/BcT4CfsLWWv/DH4YzaL8cf2o4oprJPA2m37XHgz4aag6Mkd78Vte02VTDeWTnz/wDhANGuh4pvdkcGrT+E7O+s9Zb9f8MvBHPuOZ0MzzJVsk4XcozeOqU+XG5lTVm4ZVQqJ80Jr3fr9aP1WF3KksXOE6B/QXH3i1k/CMa2X5e6WbcQJOH1SnPmwmAnspZjWhtOL1+pUpfWJW5arw0ZwrH86P7HH/BO79s7/gtb8crn9rD9rvxn4x0H4HalqC/2x8UNWtotP1PxhpOmXcuz4d/AHwxPbrpGleHbCRrnTz4gttMXwZ4cuX1KeOLxN4oj1PTLj+iOMPEPgzwXySPCnCODweIzylT/AHWWUpSqUsHVqQV8wz/FRqKrVxNRctT6vKr9cxEfZpvCYZ0qh+I8L8E8U+Kuby4j4lxWKo5TOa9rmFSKhUxNOnJ2wOTYeSVKnQg3KHtow+qUJOo+XEYhTpH90PwN+Bfwn/Zt+F/hX4NfBPwXpHgH4deDbEWWi6BpEb7S7nzLzU9Tvp2lv9Z1zVbkvfazrmq3F1qmq30st3fXU08jPX8O55nma8R5pis4zrG1sfmOMnz1sRWavZaQpU4RUadGhSjaFGhSjClSppQpwUUlH+uMoyjLciy/D5XlOEpYPA4WHLSo0l1es6lSTvOrWqSvOrWqSlUqTblOTbuetV5J6RS1LULTSdPvdUv5RBZafaz3l3MQzeXb20bSyuFUFnIRDtRAzu2FVWYqtAHnfgX4t+GfH+oXul6XDqVne2kDXaQ6lDbx/arRJEieaBra4uF3RPLF5kUpRwsqtGrqsrRBTi1v/l/7dL+u9/d9RoJCgAoAKACgAoAKAPIf+F1+Dv8AhMf+EN/4mP2n+0f7I/tPyIf7L/tPzvs/2bf5/wBq2faf9F+0fZvJ875vM+zf6RQVyO1+m/8AT5v/AG3y8z16gkKACgAoAKACgAoA/DP/AILP/wDBP34Kftu+ALExRReFP2qPBmhz3Hwx+ItpZQi0vtJ865mTwB8SZ0ZLm/8AB+r332qTSruCK91bwXqs1xrmlwT2N7reg+JP1zwo8Vcx8O809lW9rjeGcfVi80y1SvKjNpQ/tHL1KUY08ZSioqpT5lTxtGCo1XCcMPXw/wCa+I3hxg+Ocv8Aa0fZYTP8FTksvxzVo1oq8/qONcfelhakm3TnaU8LVk6tLmjLEUav4Af8Enf+CqfxR/4JpfFe+/Yn/bVsfEulfAqHxK+kka/Dc3evfs7+JNVmS7GuaTHH9ok1f4UeIzexa3q2naT9stFtr+Px54Ka8F9qtj4n/o7xS8MMp8Tcmo8c8D1MNXzmrhI4iMsPKMMPxHhIQ5VRq8yXsc1w6g6NKpWUJuVN4DG8jhRqYX8L8PPEDMvD/NKvCPF1PEUcrpYmVCca8ZSr5HiZSu6lNLndXLqzkqtSFJ1Ics1jcI589SNf+7nRdZ0fxHo+leIfD2q6drug67p1lrGia3o97balpOsaTqdtFe6dqemajZyzWl/p9/aTw3VneWs0tvdW8sc0MjRujN/DNajWw9arh8RSqUK9CpOjWo1oSp1aNWnJwqUqtOajOnUpzTjOEoxlGUWpJNWP66pVaVelTrUakK1GtCFWlVpTjUp1adSKlCpTnFuM4Ti1KMotxlFpptNM0qzNAoAKACgAoA5Dxt420bwHo/8AbOs/aJI5LiOztbWzjSS6urmRJJBHEskkUSqsUUsskkskaKiEBjI0aODSbdl/X4r8/vsHgnxto3jzR/7Z0b7RHHHcSWd1a3kaR3VrcxpHIY5VjkliZWililjkikkRkcAsJFkRAGmnZ/1+L/P7rnX0CCgAoAKACgAoApalqFppOn3uqX8ogstPtZ7y7mIZvLt7aNpZXCqCzkIh2ogZ3bCqrMVWgDzvwL8W/DPj/UL3S9Lh1KzvbSBrtIdSht4/tVokiRPNA1tcXC7onli8yKUo4WVWjV1WVogpxa3/AMv/AG6X9d7+76jQSFABQAUAFABQAUAeQ/8AC6/B3/CY/wDCG/8AEx+0/wBo/wBkf2n5EP8AZf8AafnfZ/s2/wA/7Vs+0/6L9o+zeT53zeZ9m/0igrkdr9N/6fN/7b5eZ69QSFABQAUAFABQAUAeXeOvi34Z8AahZaXqkOpXl7dwLdvDpsNvJ9ltHkeJJp2ubi3XdK8UvlxRF3KxM0iorRNKFKLe3+f/ALdH+u1ve9E03ULTVtPstUsJRPZahawXlpMAy+Zb3MayxOVYBkJRxuRwro2VZVYMtBJdoAKACgAoAKACgDkPG3jbRvAej/2zrP2iSOS4js7W1s40kurq5kSSQRxLJJFEqrFFLLJJLJGiohAYyNGjg0m3Zf1+K/P77B4J8baN480f+2dG+0Rxx3ElndWt5Gkd1a3MaRyGOVY5JYmVopYpY5IpJEZHALCRZEQBpp2f9fi/z+6519AgoAKACgD/0/7+KAOQ8beCdH8eaP8A2NrP2iOOO4ju7W6tHSO6tbqNJIxLGZEkiZWilkikjljdHR8gCRY5IgabTuv6/B/l91w8E+CdH8B6P/Y2jfaJI5LiS7urq7dJLq6upEjjMshjSOJVWKKOKOOKNEREyQZGkklAbbd3/X4L8vvsdfQIKACgAoAKACgClqWn2mrafe6XfxCey1C1ns7uEll8y3uY2ilQMpDISjna6FXRsMrKwVqAPOvAvwk8M+ANQvdU0ubUb29u4WtUm1GWCT7JaPIkrwQLbwW6lpHii8yaQO5WNVjMatKsoU5N7/5/+2x/rtb3vUqCQoAKACgAoAKAP4w/+DmXTPK/aX/Z41nbj7f8C7/TN/8Ae/snx/4hutv/AAD+2s/8D969PAv93Nf37/fFf5H8AfS+o8vF3CuIt/F4cq0b9/YZnip2+X1jt163P6qPhr8JvB2taV4A+Je/UXudW8NeFfFX9nefCdMbVL/SLHU/te3yTclGupftX2f7R5Jm42m2/wBHrzpaSku0n+fz/P7z+8coxDxGU5ZW3VfLsFVv3VTDUp7Wf8383nrsfSlSdwUAFABQAUAFABQB5b46+Enhnx/qFlqmqTajZXtpCtq82nSwR/a7RJHlSCdbiC4UNG8svlzRhHCyMshkVYliClJrb/L/ANtl/Xe/u+i6bp9ppOn2Wl2EQgstPtYLO0hBZvLt7aNYokLMSzkIg3O5Z3bLMzMWagku0AFAHwZ/wUV/bk8G/sF/s7a98UtYNjq3xA1z7T4Z+D/gi4lIl8WeObi1d7aW7hikjuV8MeGoiNb8VXsbwBLCGHS7e6j1jWdIhuNqNJ1ZqP2VrJ9l22lq9lp56pPl/NPFXxGy/wANOFcTnVf2VfM8Rz4PIstnLXHZlKDcHOMWprB4Rf7RjakeW1KMaMZqvXw6l/nsaXo3x5/bJ+PNzb6Ppvif4xfHT4zeLdQ1a6is4hd6truu6vcS3upahdOfs+n6Po+nxtLcXd3cyad4f8N6Lal5ptP0ix3Qex7lOHSEIr5JdO13+Lb6t2P8t6OH4m4/4mnDD0sZn3EnEGOq15qnFVK+JxNecqlarN+7SoYekuac6k3RwuEw8Lt0qFL3f7cP+CXf/BH34b/sQ6XpnxU+KK6N8Sv2n9QsczeIhD9r8LfCuK9gKXehfDuK8hSSXVGikks9Y8c3Vvb6pfQNNp+j2+jaTc6jDqvl18TKreMbxp9usv8AF70vuXzu7cv+iHg34EZT4dUKOc5ysPm/GVWneWL5faYPJY1I2qYbKY1Em6zjJ08RmU4RrVYXpUI4ehOrGv8AtVXKf0Gch428E6P480f+xtZ+0Rxx3Ed3a3Vo6R3VrdRpJGJYzIkkTK0UskUkcsbo6PkASLHJEDTad1/X4P8AL7rn8+f/AAW7/bE0T9kP9nZP2RfhBrVwnxa/aE06+m8aaml4h1jwr8I7lm0vXL24a3EQtb74gPaXHg7SIo4Qg8P2vi+632+oRWFxP2YSlzz9o/hg9POXT/wHf7Nnb4rtR/l76TXid/qzw6uDsqxHJnvFGHqRxsqU7VMv4fk5UsRJtWcauayVTA0bx1w0cfK8Jwozl3P/AAQP/YLf9nj4EXH7S/xF0b7J8Xf2htIsbjw5bX1v5eoeDvgyZIdS0Cyw48y2vfH11Ha+MNVQOwfR4PBtvLHaX9jqEDmLrc8vZxfuw37OX68u32bO/wAWji/ozeGj4V4anxdmtDkzziqhSnhYVIWq4DILqthaeusamZzUMfXWzoRwEGoVKdVS+4f+Ch3/AATD/Z7/AOCiPgX+zvH+nr4N+LegafNbfDz43eHdPtpPFnhp8yTwaTrcDPap4x8FyXcjy3nhfVLqMw+feXPh/UvD+qXUmpN+fcY8C5PxlhOTGQ+rZjRg44PNKME8RRe6p1VosThnJ3lQqS0vJ0alGcpTP9Pfo1/Ss8SPo1cQfWeHMS874NzHE06vEnAeZ4mrHJ81jaNOpjMBUSqvJM9jRjGFHNsJSqe09nQpZlhcwwlKGGP5C/BnxJ/4KH/8G/X7Q03gvxfo7+Kfgv4t1WW+uPC1ze6lefBH416NatDb3XiX4f8AiFrV5PBvj61sfs0d1cJY2/iLSnGl2/jHw3rehHTba9/nXDY3jHwhzl4XE0/b5ZiajnKhKVSWV5nSjZSr4Ota+GxcY2UnyRrU37OOJo1aPs4y/wBnc84X+jX+0a8NoZ5kuNjlPHOTYOFClm1LD4Whx5wLjaynUpZVxHlqrcud8O1sR7WVGnLEVcsxa+t1MkzTA5gsVWof2ffsRft+fs6/t8/DZPHvwP8AFKtrOmQWi+O/hlrz21j8Qfh5qVyvy2niHRY55xNptxIkq6T4m0qW98PayIZ47O/N9aajY2X9McL8XZNxbgvreV1/3lNR+t4GtyxxmDnL7Nakm7wbuqdem5UanK+WXPGcIf4c+PP0dfEz6O/FEuHuPcoawWKqVnw/xTlyq4jhviTC0nrWy3HSpU3TxNOMoPGZXi4YfMsFzwlXw/sK2GxGI+16+nPwoKAP5xf+DnfTfDz/ALBvwz1rUNKsbnxBZ/tN+DdG8O6vNCp1DSotY+HnxR1DWrayuOJI4NTt/Dtr9ut8mG4NlaTSRtLZ27xfi/jnCi+E8DVnThKtHPMNSo1Gvfpqrg8dOrGD3SqKhHnjs+SLabinH/Tj9lNisyj9ITirA4bF4illtbwrzvHZng4Taw2LnguJeE8NgauIpfDKphamZ1fYVLc9P29WEZKFarGXu3/Bvp8OdI0P/gmv8C/HwWeTWvGN78YpXaV18i1tLP41+OtD220SorB7keH4JJZZWlYqiLCYo2dH93wip8nAOTS/5+1c0qfdmmMpa/Kn9x+UftGMb9a+lz4lUL3WX4LgXCLycuAuG8a0vR4131+K6ajb3v3Er9LP4ePNfi98Yvhf8A/h74j+K3xj8b6B8PPh74Ts2vdc8T+I7xbSxtk+7Ba20arJd6nqt/MUtNK0XS7a91fV7+WDT9Msbu9ngt5eLMcywOUYOtmGZYqlg8Hh481WvWlyxiukUtZTqTfu06dNSqVJtRhGUnGMvqODOCeLPETiTLOEOCchzHiTiTOK6oYDKssoOtXqvepWqybjRwuEw8L1sZjsXVoYPBYeFTEYuvRoQnUj8O/sHf8ABVX9mf8A4KHeJ/ip4Q+CFj8SNG1r4Vx2Oo3kHxC8OaVoieJvDOpX1zptr4n8OPo/iHxB/oH223SK5sdcXRdZtlvrB205vMuVtPleE+Psj4xr4/DZXHG06uAUZyWMo06Xt6E5uEa9H2devaHMknCr7OqlKDcFeaP3z6Qf0RfFP6NmU8I51x7X4YxuB4uliMLQqcN5ni8fLKs1w2HpYqrlWZrG5Zln+0ewqSlTxGA+vYGq8PiEsSuSk6v6WV9ufy2FABQAUAeQ/wDCk/B3/CY/8JlnUftH9o/2v/Zfnw/2Z/afnfaPtOzyftOz7T/pP2b7R5PnfLs+zf6PQVzu1um39Ll/9u8/I9eoJCgAoAKACgAoA/kX/wCDm74uRXPin9l74EWdynnaNoPjf4s+IrQPudk8RX+n+EPB87ID+7EX/CM+NkBYEy+f8uwRt5vo4GOlSXdxin6Xb6dbx69Ntbn8NfTAzyM8Zwbw1TmuahhsxzzFQvq1iqtLAYCVulng8xWt782lre98Y/8ABBT9jSP9o79pnX/i54rhvYvh7+z1okGqR3MEcWNR+JPiz7XpvhPTY3uopIHGl6TbeJfEc00Qlm07UdP8Pu8ai+hddMZU5aXKt6jt58q1b++y1vv5Xj8T9Frgt59xxW4nxVHny7hDDrEUnNXp1c6x8atDAQ1VpfVqEcXjeaPNKjXo4NuKVSLlY/4OCNI17wP/AMFBvCtxpbWulRx/AT4S6r8P59LkmW/srHRte8Z6PZ3F9Nc/L/a1t4m0HV2gmjdovsMWmySubk3FctBV54PGwTSk3VjhXC/OlLDU7OV9FUVd1HHl05OS+rkfS/SRq5TlnjbwHmVWnVq0IZLwvmOe08VGDw9WWF4tz2NWFBQ994SeVYXCQqKpao8T9aS/d+zcqx+EH/BzF4tzD/a37W9r53yZHxw8EeCsZ7icfEDQfJ/3xJHjs4/i/kf+zfG/Eae04ijfT/ka4XC/j9cpcvrf5tu5/wBfv+un7LHJv3n1Pwcrcmtv9Qs/z2//AHCfDuZe09OWXpsfm58eNO/b4m+Lx/Zm/ar+Jnxm+Jvxfs/FXhXSrT4X+MfjtffG6LTPGPimztE8NafZTWnjbxn4Tj8S3tt4ktrJINN1FrvTf7Rk0u6NncPe2aft/hTw5xRlOEzHM+MMdmNfMsZUhQwuGx2azzOOEwNBKcqqlHF4ihGpiq0rSjGXNGnhqT5o88on/Ph+2A+kf4H+L3iF4b+B30WeF+EMBwPwbR/tnifNOEOAcPwTX4q8ReJJfUcryirhqmR5JmmJw/DGScksLUr0adOvmPFWZ05xqywFCsXv2Pf2HviB+3D+0Dcfs2eAvFfhjw5qcOjeLNa13xxfpqOr+GdK0HwpJFZ3mp26abAt5qNtqmpXmmaZpTYtEmk1a1mmkhQstfb8W4DHZxwvmmV4OtSwWLzTBrBOrW56lOjTxLhDGRfs1zTbwsq9OFuVOUk21G/L/D/0Gcw4V4I+mH4Xca8Q5bjuMOFPCrizGcdPC5Z9Ww2KzTFcIU8VieEMbSeLnKhhaa4rhw9j6rqSrTo0I1FSVWsoKf7yeBv+DVXQITDP8S/2y9Y1EHabjTPA3wastGMePvLDruv/ABB13zs87Xfw7Bt7xvn5f5+wvgHRVnjuJak/5qeFyyNO3pWrYyrf1dBem5/0/wDEH7XTMZ89PhbwRwWGtf2eK4g44r47m7OeX5dw3l/JbrGOZVL9JRvc+z/Af/BtB/wT38LeTN4r8Q/tCfEy4XabiDxD8QPD2haVKw+8IbbwT4J8N6nBE3dJNauJRk4nHy7fpsJ4I8H0LPEVs4xz6xrYyjRpv0jhcHSqJetWT66aKX4bxD+1L+kjm3tIZRlvhvwtTd1SqZbw5mWYYuCeznVz7P8ANMJUmr7xy+lB/wAm/L9seAf+CL//AATE+HHkton7I3gDWZodpM3j7VPGnxM8+ReTJNbfEDxR4ksDvPLQx2iWwztSFUwi/UYTwz4FwVnS4dwlVrri54rG3fdxxmIrwd+ygo9rL4fwriL6cn0rOJ/aLH+MvEeBhO9qfDuEyPhb2cekadXhzKsrxCsnZTlWlVe8pyl7x9Z2P7Iv7Nfh7Ro9F8A/BD4VfC6K3miuLG6+GXw58FeCLuynhR0R4W0HQrNGVo5ZI5IpEZHVy3EyxyJ9Rg8myjLrfUMqy3A22+p4HC4Zr0dGlD8LfI/BeI/EvxG4w5/9buPuNOKVUv7RcR8U55ncZ3195ZljsSn06SWn/bp6/wCCfBOj+A9H/sbRvtEkclxJd3V1dukl1dXUiRxmWQxpHEqrFFHFHHFGiIiZIMjSSS+kfFNtu7/r8F+X32OvoEfwaf8ABUBPEP7AH/BcHw5+1FcaXdX/AIP8ReOfhT+0Vo6JEHbWvDHkad4U+KOgW1wx+zpqz6hoHjG1tUJEthbapod5NEyTQPP/ACdx0q3CHilRz105Tw1bFZfnNNWv7WhaGHx9GLbUVUc6OJjHVOEalKTWsXL/AKE/ooSy76Rn0Cc08J6WLpYfO8syDi/w0xspS5Vgc158Tm/CeYVaSvUeDWGzHJatWVuTEVcJmFGnJSp1FD+6bwZ4y8L/ABE8I+GfHngjXNP8TeDvGWhaV4m8L+IdJnW503WtB1uyh1DS9Tsp1/1lveWdxDNGSFcB9siI4ZF/qrDYmhjMPQxeFqwr4bE0qdehWpvmhVpVYqdOcXpdSi01p11tZn+AOeZJm3DWc5rw9n2AxOVZ3kmYYvKs2y3GU3SxWBzDA16mGxeFr03flqUa1OcJWbTcbxcou50tbnlBQAUAfwdfs2WNn4a/4OUPG2k+IIfL0/xD+1d+2PYXNu5ZBcQfEvwV8bF01dysrKbyTxNYyQujK6vJG6HcBt/lHIf9k8b6/tPd5+IuI/n9dw2Zul2+J14NebW9kj/oJ8WV/rB+yzyh4X99LC+Dfgs219n/AFazvgWOM6P+DDK8RGXlCSur3j/bn4F+EnhnwBqF7qmlzaje3t3C1qk2oywSfZLR5EleCBbeC3UtI8UXmTSB3KxqsZjVpVl/q4/5+HJvf/P/ANtj/Xa3vepUEnBeHvir8L/F3ivxX4D8KfEjwF4n8c+A5IYvHHgzw94w8Pa14r8GS3JK28fivw7puo3OseHZJ2BWFNYs7NpSCIwcEVyUcwwGJxGIwmHxuEr4rCNLF4ajiaNXEYZy+FYijCbqUW7aKpGN+l9T6HMuEeK8myfJ+Ic44Y4hyrIOIY1J5BnmZZLmWByfPIUlerLJ8zxWFpYLMo0006ksFXrqKd5W3Pzc/wCC4eq+MND/AOCXH7VGqeB9c1fw9rMGkfDe3ub7Q72fTtQl8Oap8Y/h7pHizTvtls8VxHY6l4Zv9VstVijkRb3S5rywn8y1uriJ/ivFKpiaXAef1MLVqUaqp4KMp0pOE3QqZlg6eIhzRaahOhOpCok1zU3OD5oylE/p/wCgTg8lx/0s/CPCZ9l+CzLA1MbxPVpYfH0KeJw0MzwnBPEmNyfE+wqxnTlXwua4fB18JOUZOhi4UcRTtWpU5Q+S/wDg2n+JWv8Ajr/gn/4o8PeIvEWqa7L8Mf2hPGvhDw/barfz3z6F4RvPBXw48Vabpen/AGiWV7XSF1rxB4kmtLRCsMM8l4IUVDtX57wRx1bF8I4ijXrVKzwOcYnD0Y1Jubo4aWFwVeFOHM240/a1a7jGyScpWP2P9qRwtl3D/wBIzKcyyzLMJl8OKvDfIs6zGrg8PTw8cwzmjnvE+UYrF4n2cYRq414HLsshWrPmnOnGi5ylJXP6FK/YT/NwKACgDyH/AIUn4O/4TH/hMs6j9o/tH+1/7L8+H+zP7T877R9p2eT9p2faf9J+zfaPJ875dn2b/R6Cud2t02/pcv8A7d5+R69QSFABQAUAFABQAUAeW+OvhJ4Z8f6hZapqk2o2V7aQravNp0sEf2u0SR5UgnW4guFDRvLL5c0YRwsjLIZFWJYgpSa2/wAv/bZf13v7voum6faaTp9lpdhEILLT7WCztIQWby7e2jWKJCzEs5CINzuWd2yzMzFmoJLtABQAUAFABQAUAch428E6P480f+xtZ+0Rxx3Ed3a3Vo6R3VrdRpJGJYzIkkTK0UskUkcsbo6PkASLHJEDTad1/X4P8vuuHgnwTo/gPR/7G0b7RJHJcSXd1dXbpJdXV1IkcZlkMaRxKqxRRxRxxRoiImSDI0kkoDbbu/6/Bfl99j83v+Cy3x2+GvwZ/wCCfn7RGneNfHXhvwz4j+JXw+1TwL4D8O6lq1pb+IvGera9dafpd7p/hnRPNOqa1JZ6bfXF7qbWFrPDpthHLeajLbWivKv1HCfCfEHF2aUsBkGWYjMK0ZRlXqQjy4XCQd7VcZiqnLQw1O692VWac37lKM5uMZfk/jZmGHw3htxTgniaFLHZvldbLcvw1StCnWxdXFTpUKkKMJNTqKnSqTqVXGMlTpxcp8sVzH8Jv7M/7Yn7amieEfGH7Jf7FaeMNK1z9oXxRpU2vy/CvR7+/wDjH4nt9H0q606y0DQtb0sTah4R0S3hvtS1HWdV0EafqkcDSPd+IrHRYdRguP7E4W8EuEOCsKuJeP8AHZfmOIwMFWmsbONLh7LpXTTdPEcjzKtzJRpvFQjTqTko08C6yhOX8ZeHWI4t4cyvH8McNVq8sbxJjKFbFvKqNSWPqRw9GdKlhcNXinVo0oKpWq1q9KNKpaXvVIUYz5v6Lf8Agmv/AMG4WkeF7vRvjZ/wUKk0/wAa+KjLDrOkfs66Tqg1Xwtpl8zC5Wf4t+KLKV4vGeopcMXufCXh67k8KNJDjWNf8WWF7d6RB8H4kfSLrYqFbJPD5VMFhEnRq8Q1aXssVVgly8uU4Wdng6bjpHF14xxSTvRoYWcIVZf0rwL4HUsPKlmvGrhi8RdVaWSUqntMPTn8V8yxEG1ipqW+GoP6s2v3lfEQnKlH+prUvFPwx+Fmj6dpmseI/Anw58P6Tp9rYaTp+pax4f8ACGj6ZpVhAlrZWWnWl1cWFlZafZW0KW9rbW0cVtbwRJDEiRoFX+XaeFzPNK1SpRw2OzHEVqk6lWpTpYjF1qtWpJyqTqSjGpOdScm5TlJuUpSbd22f0HUxGX5dShTq18HgaFKEYU4VKtHC0qdOC5YQhGThGEIRSjGMUoxSskkrHjOpftwfsWaNMbbWP2vv2XtJuA2w2+pfH74UWMwbONpiuvFkDhs8YK5zx6V7NLgnjOtHmo8I8T1Y/wA1LIM1qR9bxwj/AK6qyZ5dTi3hWlLlqcTcP05fy1M5y2EvS0sSn+HpfU9r8CfEv4c/FLRz4i+GPj/wT8RvD4l8k654E8VaF4u0cTFd/lHU/D+oajZeaUw3l+fu28gEHNeLjstzHK631fMsBjcur25vYY7C18JWttf2VenSna+l7Nfcz1cHj8DmNL2+X43CY6he3tsHiKOJpX7e0oTnC/lzP8TqdS0+01bT73S7+IT2WoWs9ndwksvmW9zG0UqBlIZCUc7XQq6NhlZWCtXEdZ514F+EnhnwBqF7qmlzaje3t3C1qk2oywSfZLR5EleCBbeC3UtI8UXmTSB3KxqsZjVpVlCnJvf/AD/9tj/Xa3vepUEhQAUAFABQAUAFAHkP/Ck/B3/CY/8ACZZ1H7R/aP8Aa/8AZfnw/wBmf2n532j7Ts8n7Ts+0/6T9m+0eT53y7Ps3+j0Fc7tbpt/S5f/AG7z8j16gkKACgAoAKACgAoA8t8dfCTwz4/1Cy1TVJtRsr20hW1ebTpYI/tdokjypBOtxBcKGjeWXy5owjhZGWQyKsSxBSk1t/l/7bL+u9/d/Kn/AIKx/wDBIP4cft+fCq01r4f22jeA/wBpv4ZeHRp3wz8azJ9m07xfounRyS2/w0+Id1FFLcXWh3UplOg+IJEutR8IatdS30AutLvtb0vUv2Twk8Wcf4eZj9UxjrY3hbH1k8wwEXzVMHVlyxeZZfGUko14RSVeheFPGUoqEnGtChVpflniV4b4PjfBfWsL7LCcRYOm1g8Y1y08XTV5LA45pXdGUm3QrWlPC1JOUU6Uq1Or/P3/AMEmf+CrfxO/4JyfFTUf2D/267LxN4e+EGieKrrwtbz+K4LmXxH+zZ4tnu908cyf6RJqHwn1i4uF1G9g05ru20lL2Pxj4Ue80rUNSttS/oHxX8K8s8Rcqp8d8DTw2IzevhYYqUcK4rD8R4SMNGnoqebUYx9nCVTllVdP6nieWrCE6X4t4ceImP4HzGpwhxdGvQyyliJYdPERk6+RYly1T+J1Muqyl7ScYOcaSmsVhnKnOcZ/3PaXqmm63puna1ouo2Or6Pq9jaappOraXd29/puqabf28d3Y6jp19ayS2t7Y3trLFc2l3bSyW9zbyxzQyPG6M38O1aVShUqUa1OdKtRnOlVpVYSp1KVSnJxnTqU5JShOEk4zhJKUZJppNNH9b06lOrThVpThUpVYRqU6lOSnTqU5rmhOE43jOE4tSjKLtJO6umXqgsKACgAoA5Dxt4J0fx5o/wDY2s/aI447iO7tbq0dI7q1uo0kjEsZkSSJlaKWSKSOWN0dHyAJFjkiBptO6/r8H+X3XDwT4J0fwHo/9jaN9okjkuJLu6urt0kurq6kSOMyyGNI4lVYoo4o44o0RETJBkaSSUBtt3f9fgvy++x19AgoAKACgAoAKAKWpafaatp97pd/EJ7LULWezu4SWXzLe5jaKVAykMhKOdroVdGwysrBWoA868C/CTwz4A1C91TS5tRvb27ha1SbUZYJPslo8iSvBAtvBbqWkeKLzJpA7lY1WMxq0qyhTk3v/n/7bH+u1ve9SoJCgAoAKACgAoAKAPIf+FJ+Dv8AhMf+EyzqP2j+0f7X/svz4f7M/tPzvtH2nZ5P2nZ9p/0n7N9o8nzvl2fZv9HoK53a3Tb+ly/+3efkevUEhQAUAFABQAUAFAHlvjr4SeGfH+oWWqapNqNle2kK2rzadLBH9rtEkeVIJ1uILhQ0byy+XNGEcLIyyGRViWIKUmtv8v8A22X9d7+76Lpun2mk6fZaXYRCCy0+1gs7SEFm8u3to1iiQsxLOQiDc7lndsszMxZqCS7QAUAFABQAUAFAHIeNvBOj+PNH/sbWftEccdxHd2t1aOkd1a3UaSRiWMyJJEytFLJFJHLG6Oj5AEixyRA02ndf1+D/AC+64eCfBOj+A9H/ALG0b7RJHJcSXd1dXbpJdXV1IkcZlkMaRxKqxRRxRxxRoiImSDI0kkoDbbu/6/Bfl99jr6BBQAUAFAH/1P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Qj/AIOeNL8nx9+yFrW3A1Dwh8YNL34+9/Y+teALvbnvs/twHGeN/bNejgX7tRecX96f+R/Cn0w6PLmfAuIt/FwGfUb/APXjEZZO3y+sfj5n9Pv7Kuqf25+y/wDs363u3/2x8Bfg/qm/rv8A7Q+Hvh273Z77vOz+NcNRWqVF2nJf+TM/sXgut9Z4O4TxF7+34ZyGtfv7XK8LO/8A5Me9VB9MFABQAUAFABQAUAFABQAUAFAH8eH/AAVJ/Yw/4KHfty/8FILrwTpPwy8Sv8HNH03w7oPwh+IeoW99afBLwl4FudJ03UfFPiDWPFsUM+mQeJbrxJJrE/iDRo45/GuofYNL0rTdJ1LTrDQS/pUKlGlQu5LmbblFazbvZJLmi3ol2Xm9Wfwd4zeH/ip4j+LM8uoZPi3kFCjhcNkWa1Y1KfDuBy2dCjVxuKxGOUZUY4yeLeIlisOlPMavsqNCjh61KnhWf0Df8E//APgnD8Dv2APAH9keB7RPFnxT8Q2NvF8RvjFrVjDF4k8TzoY55NK0iHdcf8Iv4MtrtFk0/wANWFy4kMNtea5fa3qsS36cdatKtLXSK+GKei833fnf0Udeb+n/AAw8J+HPDDK/YZdBY7OsVTgs2z7EU4LF4yStJ0aEbz+pZfCavSwdKbvywqYmpXrx9rH9CaxP1IKAPCP2mf2h/h7+yp8D/iD8ePidffZfC/gLRZb/AOxRSRJqXiLWp2W08P8AhTRElIWbWvEmsTWmk6er/uYZbk3d48FhbXVxBdODqTUI7t79l1b32Xl990fN8X8VZXwVw7mnEucVfZ4LLMPKr7NNKrisRL3MLgsOndSxGLryhQpJ+7GU+eo40oTnD+NP9gT4AfEf/gr/APt+eOP2k/2hbZ9T+FPhXxNY+PfilFIkzaBqHlv5Xw3+BegmYsToq2GmW1nqUA3TReCdC1EXt3BreuabeXfpVprDUYwh8TXLHv8A3pvzvrs7yfw2TUf4E8MeGM28dvE7MuLuKYOtkmCxlPM85i+d4WrZ2ynhvDOWv1dUqMadaNuaOXYeqqk44jE0pz/ugiiigijhhjSGGFEiiiiRY4ooo1CRxxxqAqIigKiKAqqAAAABXlH+j0YqKUYpRjFKMYxSSikrJJLRJLRJaJaIfQM8b+Pf7Pvwd/ad+GWv/CD46eA9F+IXgHxFGBd6PrELCayvY0lS01vQdUt3g1Tw94h07zpH03XdFu7LVLF3k+z3SpLKj+bm2T5bnuBrZdmuEpYzCVl71KqneMkrRq0qkXGpRrQu/Z1qUo1IXfK9Wj7fw88R+NvCnirLuNPD/iHH8N8RZZL9zjcFNclehKUZVsBmGEqqeEzLLcVyRWKy/HUa+ExCjH2lJyjCUf5WtF/4IM/tlfsj/t1fCr4pfsTfGOyPwZtPHOjanfeOfEPieHw5448EeBhrNnc+K/Bfj3w5awRWfxK0vU9Eim02KPRLR7DxW7CHXtB8MRqt4v4HS8JuJeHuK8Bj+GMyh/ZkcVTqSxdauqOKwuF9rGWIwuLoRjGOOpzpJ017JcmJvarRw6Skf65Y79oT4IeMn0f+L+EvHbgmuuOK2QY7CYfIMtyqeaZBn2fvA1qWT55w9mdWrOtwti8Lj5wxU5Y+usRk6XPl2Y5tNyon9hNf0cf4rBQB/ND/AMHRd80f7FfwK00E7Lv9qLRL5l7FtO+E/wAVrdSR6qNUcD03H1r8R8d524YyqH82fUp2/wAGX5gvw9p+J/qX+ybw6l46eIGKtrR8Jsfh0+yxPGHB9Rr5vCx+4/Qb/giDYrp3/BLL9ke3QYEnhfx5fEf7WqfF/wCIepue33nu2b8e/Wvr/C6HJwFw9HvQxc//AAZmWNqf+3H84fT0xDxP0tvGSo3dxzbh7D/LCcF8NYWK+SopfLyOt/4KAf8ABVD9mL/gnx4auE+IGvJ43+MV9p5uvCXwK8H39pN401ZpoybHUPEk5Fxa+A/Cs0hVn8Qa9D593bJdN4b0fxJeWkthXRxfx7kfB9BrGVfrWZThzYfKsNOLxNS69ydd3ccJh2961VNyjzOjSrzi4HjfRz+iR4rfSPzSnLhzL5ZDwTh8SqOc+IGdYetDI8GoStiMNldNezq8Q5vCKko5dl8/Z0asqSzTG5XQrQxEv5E4bb/gpB/wcEfHwTTt/wAI58FfBuslfOKarpX7P/wM0y5UF47eMs8/jf4lXmmzLuUPqfjDWjPH50vhvwZEraL/ADuo8a+L+bpv9zlmFq7/ALynk+VQluorWWKx04P/AKeYmrf3vq+FSlS/2ZnV+jD+zj8O3Cmv7T47zvAp+z5sJi/Ebj/FUn7sqkuWNPIOF6OKg7Plw2S4BU5OnHNs8nKGP/sf/YD/AOCdPwA/4J5fDS48GfCTT7nWvGPiaLTZviZ8WPEMcTeL/H+p6ck/2bz1iZ7bQfDemy3d5/YHhXSz9i02K4knvLjVtaudS1q//pLhHgzKODsC8Nl0JVcTXUHjswrJfWcZUhflvbSjQg5S9jh6fuU07ylVqynWq/4l/SK+kx4i/ST4pp55xliaWByTKp4qHCvB+Wymsm4cwmJlT9r7NztVzHNMVCjQ/tHN8WlXxU6cadClgsDSw+Bwv3xX1p/O58//ALT/AO058If2P/gx4p+PHxv1270LwF4VbTba5fTNNuNZ1rVNV1m+h0zR9E0PSbX97f6pqV7cJFEjPBaW0K3F/qN3ZadaXl5b+RnueZdw5llfNs0qypYTDuEZOEJVatSpVmoUqVKnHWVScmkvsxV51JQhGc4/o3hR4VcZ+NPHGU+HvAWX0cw4hzdYqrSjisVSwWBwmDwOHnisdj8fjKt4YfCYWhTlObUalarN08PhqOIxVajQm/8AZj/aY+Ef7XnwY8KfHj4I67da94B8Xf2jDZy6jp1xo+s6ZqejahcaVrOia3pN0POsNU0zULWaCeMNPa3MXkX+nXd7pl5ZXtwZHnmXcRZZh82yurKrhMTzqLnCVOpTqUpunVpVactYVKc4tP7MladOU6coTlPir4WcZeDHHGceHvHmX0sv4iyb6tOvHDYmnjcFisLjcNTxeBx+AxlG1PEYTF4arCpTlywq0p+0w2JpUMVQr0Ye+165+dhQAUAFAH8cn7a/7eX7TXhb/gvT8OPg7o/7QXir4TfA74ffF39mjwBqXhO68WXegfCvUvBfjzQ/h34o+IuoeOvD0l3aeGtbfXLfxnrVnBrOvxS3WnWkGjy6bqukyWNrdWn83cUcWZ5Q8WcFltPOMRl+V4PMcjwk8PLESo4CeFxdLBV8bPF0eZUKvtY4mrFVa15QiqThUpOEHD/bLwJ+j14VZt+z04n42xvhxlHGPH3EfBvilxHhc4o5PRzHi7C55w9j+Jcp4Zw3D+ZRpV80wCwFTI8BXqYHLpQpYqtPGwxWExccRWo1f7E7S8tNQtoL2wure9s7qNZra7tJ4rm2uIXGUlgnheSKWNhyrxuysOQTxt/pCMozipQkpRkrxlFqUWn1TWjXmv8AI/xSrUa2Gq1KGIpVaFelJwq0a1OdKrSmvihUpzSnCSejjJJrqlsWKZkFAH+c/wD8FffjoP2gP+ChH7QfiCxvPtvh7wR4li+D/hby386BNO+GFsnhfVHspASs1pqni+18S65byRkxSJqu+JnjZHb2cPDkowVrNrmfrLXX0Vl0+erP8pvHbiT/AFn8UuKMVTqe0wuXYuOQ4Kz5oqlk8Fg67pyWkoVsfDGYiDjZNV7xurM/s4/4JN/sk/8ADHv7Fnw08Ea1pv8AZ/xJ8dQn4rfFdZYvKvbfxj4xs7KaHQLtWBeObwf4attB8KXMIkeA6lpGo3sG37c4rzcRU9pVbXwx92Pouvzd3003StY/v7wR4H/1D8Psoy7EUfZZtmUf7bztSVqkcfj6dOUcLUTSalgMJDDYKcbuPtqFWpC3tGfzy/8ABzJ4de2/af8A2fPFhjIj1v4C3Hh1JccO/hf4heKdSkjDdCY18XxMR/D5oJ+8K7MC/wB3Ndp3++KX/tp/LP0vcK4cY8LY62mI4anhU7bvB5pjKzV+tljk7W05utz+nr49ftb+Ev2dv2L9Z/as8TS295Z6b8KfD/irw7pks3lnxZ4v8W6Npw8F+HIGVlmP9veINV062uZ4A72Omve6nIht7Kdl4YU3Or7Nae803/Kk9X12Se++2jaZ/YnE3HGB4V8P8RxrjJQqU6OS4bG4WjKVvruOx2Hpf2fhI2k5P61iq9KE5RcnTpOpWfuU5SP4yP2IPBvivxrpv7cH/BT/AOL91cavN8CvBPxC1/wr4j1NcReJP2r/AIxWt7pPg/U0JBhk/wCEI1bxZZ+JZbWDyptN1nVvBE1kVVECenVaTpUI6c7V0ulOOrW/VK2zvr/27/AHh1gMbmFLxG8Y89nKvLhvLs1xWCxdZe7i+Ns+hVoYCtr7r/s6vjYYtwioypYivl0qdtOX9Mf+DZL4OK1x+09+0Fe2o3xQ+Dvg54ZvdnO24efxt44tfMI4Gbb4eS7EJz96QDbEW58dL+HD1k/lpH85dPuP176H+QLm4x4oqQ1UcBkGDqW6ScsxzGF/+3crlZPXd2tE/rOrzz+3goAKACgAoAKAPzD/AOCpn/BNfwZ/wUf+CFj4Tk1az8FfGT4d3Wo678HfiHd2st1Y6ZqGpQ20Wt+FfE8FsrXk3g/xbFYafHqclismoaPqWnaRr1lbaiNOudF1X4Xj3gnDcaZXDDupHC5lgpTq5bjJRcoQnUUVVw9eMU5PDYhQgpuF505wp1oRnySpT/q36JX0os8+jFx7XziGDr57wTxLSw2X8bcNUasKWIxeGws6s8Dm+VTqyjQp53k8sRiZYSOIccNjcNisbl9erhfrVPH4L+T7wT4z/wCC4n/BIxr74V6T4I+J03wrsL+6m07Sbz4fSfHP4GyvcXDXDX3g/wAW6RY6tH4Wi1KSaTULrQ9I8QeFruW5vJbnXtBh1QzCL+f8LifFLw858vp4XHPARnJwpywf9q5U3J358NiadOoqCm25ypU61CTlK9ajGo24/wCwOfZH9Aj6Zaw/F2Mz7hWHF2Iw9GnicZQ4jjwBx9GNOmqaw+dZPjcRhZZtPCxhHDUswxuWZtRhSoQpZdmMsGoc/d3f/BVj/gvF+0Sp8NfCr4f/ABB0ae+H2aeT4MfsrX95eiKQYdpNb8R+GfGsmiIFO99St7zS5LRV80XkIDM3XLj/AMWM5/cZfg8ZTc/dbyzIJylZ6a1a1HFOktf4kakHG11KNm5fP0foh/s9/DSX9q8X8ScOY2GH/e04cceLmGoUHKLvFRwGWZrkccfJv3VhatHFRqt8jo1G1GP1v/wTx/4Jlf8ABWrxB+138Iv2vf2s/i142+Hmm+BvFFl4i1+L4j/F/UfHXxR8ceF4t0t74CtfDej6v4i0zRfDXiaHdoWt6V4m1fw9/ZGkXM81joFzc21rat9DwdwN4hVuIsu4i4hzDFYOGFrxrVljcxni8fiqC1lhI0adStClQrr9zVp1p0fZ05NwotxjGP439JP6VP0Oct8GeM/Bjwd4OyLiTFZ/lNfLcunwxwXhuH+E8hzadoUOIauZ43BZbi8dmmVT/wCFDA4zK8HmP1zGUqcK+Y06VWtUP7C6/o4/xVP4Ov8AgoFMP2Tf+Dgzwt8WrtxpvhfVPjX+zd8X57qfESHwl4isPB3h/wCIk5lIEYSS803xxGs+NsQwJN7xOzfyfxe/9XvF+hmMvcw880yTMnJ6f7NWhhqWNd7JK8qeKV9bdXuf9CH0cof8Rh/ZwZtwdRi8Vm2E4F8UOC6dKn78v7Zy3EZ3mXDVNQTcnKNHFZBN0/dc3flspxZ/eLX9YH/Pecf8QvHXhz4X+AvG3xK8Y3yaZ4S+H3hLxF428T6jIVCWPh/wtpF5rmsXZ3sinyNPsbiUAuoYpjIyK5sZi6GAwmKx2JmqeHweHrYqvN7Qo0KcqtWWttoQb3+49rhvh/M+LOIch4XyTDyxec8SZzlmRZVhY3bxGZZvjaOAwVFWu/3mJr0oXS05r62Z/E9/wbiad4v+Lf8AwUY/aD+PV0b6LTbX4TfELXPF12Lq4njuPE/xY+JPhjUNK0fUJ2Ia8N4LDxLrEb3RZpbjw+LgoZlV0/mLwXhiMx4zzjN5c6hHL8ZVxErtqVfMMdh506U2/i5uSvVXNe8qN91eP+7P7TjE5Lwb9Gbw38PKKw88VV4x4by/JqLpUoTpZVwfwvmuGxmNw1NRtRVF4jK8FJUVBQp5j7O6g3CX9e37aPwRm/aQ/ZM/aJ+BlkkT6x8TPhF428N+GvPZEgi8XzaLdXPg24naQqggtfFNtpFzNudP3UTgSR53r/RXE2VvOuHs5yqCTq47LsVQoc3wrEulJ4Zu9tI4iNOT12XQ/wAYfA3jyHhh4xeGnH9eU44LhbjPIc0zT2ak6k8lp4+lTzulTUbydStlNXGUoWUvemvdl8Mv5Pf+DZ79p/SfhR8cPjf+x18RbiXw5rHxeOneJvh9YaxHLYunxH+G1vrtn408HywTKslvr2r+GJl1GKC6SDb/AMIJfWJY39zZ20v8/eCGe08vzTNOG8a3RqZjyV8HCreLWNwUascThnFpONapQfOlLl/3ScNJyhCf+wX7U3woxnGHAXAfjZwzThmeC4M+s5VxJiMFKFdS4Y4oq4CtkedQqU+aNXL8FmsHhpVKU53/ANYaGIS+r0q9WH9rtf06f4UBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHG/ED4i+AfhP4Q1rx/8TvGfhj4f+CPDlq17rvizxjreneHvD+lWwOBJe6pqlxa2cJkciKCNphLcTukECPM6I/Zl+XY/NcXRwGWYPFZhjcTPkoYTB0KmIxFWXaFKlGc3ZaydrRiuaWiZy43HYPLsNVxmPxWHwWEoR562JxVaFCjTj3lUqNRV3olu27JNtKX8qP7fv/BzN4X8OjWvht+wJ4ai8Ya0v2iwuP2gviHo91beE7CQZia7+H3w/v0tdV8RzKG8yz1vxrHo2lW91B8/hHxLp06Tt/U/AX0asVifY5lx7iXg6Hu1I5Bl9WE8XUW/JmGYQUqWGi9p0MF7erKEtMZhqsWo/wA78ZePWHo+1wPBuHWJq+9CWdY6lKOHg9nLBYKdqlZreFbF+ypxlHXC14SjI/kM+M/xy+L/AO0R491b4n/HD4i+K/if481pv9N8R+LdVn1K7S3V5JINN06Fitlo2jWZldNO0PR7ax0fTYW8jT7G2hCxr/XGTZHlHD2ApZZkmXYXLMBR+DDYSkqcXJpJ1Kkv4latOydSvWlOtUetScpXZ/NWaZtmed4ypj82x2JzDGVfjr4mo6klG7apwXwUqUbtQo0lClTWkIRVox++f2Dvil/wU+8G+EfE3hP/AIJ8fDb4hLbeLtblfxp8RvhL+zxonjTxZesLLS7eHw7rHxk1XwN4k1Lw34d0xrSHUbLQ7fxJoWm2WqalfagIxcalIzfnHGOTeGVfFxxfiDn2GxlTDtywmX57xF9UwuFve/1XJcFisBQq1HH3ZVKmExGJqQSVSrVspR+r4Kx3H+Cw2Mw3BeGzCssXiZyxmPwGS4bGYlP2dGCwk8z+oVZ4XDUeSNSnh1iKShVq1KrlKdWTPv8AX/gmr/wcJ/tMgXHxX8b/ABm0nR9T+cRfGH9rCK30eKOQ5cf8IR4d8deJbzR4wSd1ofClk3UrbEEV8W/Ej6P3DXu5Vgcmq1qel8o4Vcqza2/23EZfh4Vn2n9al/iWp9yuBPGnPvezHF5pTpVNbZnxGlSSf/UJQxledJJ7x+rR7qm9Ts/C/wDwa2ftna/L9v8AiN+0N+zv4enu3866fR774meOtTDPjebptQ8EeEoJrkH7/l6jPGxHFyw+ZePFfSg4NoL2eXcPcQ4iMPdiq1PLcDSstuRU8fi5KPa8I+iujqw/0fOKaz58dnWSUHJ3k6U8fjKi/wAXPhcMnL0m1p8Tvc960v8A4NPPEUsIbWv25tFsLjbzFpf7O99q8Ib0E938adEcrn+L7Mp77egXwav0rMOpWo8D1qke9XiGnRl/4DDJ66/8n+49in9HOu1+94upQl2p5HOqvvlm1B/h+bPzI+Ffg34t/wDBKP8A4LD/AAy+AXwf+NkfxS1Wy+MPwU+GnjufwfY6l4e0X4h+G/ivf+FV1z4e+KvCkmqazaNqdrpnikRxwPqOup4f8SR2Gq2dzb61ppitP0vNcZlPir4P5nn+cZI8rpTyfOsywEcXUp4itl+JyqninQzDC4tU6M1SlVwusvZ0HiMO6lKpF0at5/A5dhcy8OvE7AZNlmarMKkM0yrAYx4WE6FLHUMxnhvbYLEYd1K0HUjDEWUeesqFdQqQca1O0f8ARlr/ADuP7fCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPxP/AOCvv/BIfwP/AMFC/AcvxA+H0Oj+C/2sPA2jSQ+DPF8yJZaX8RdIsllnh+HXxBuIkJe0kkaRfC/iaRZbvwtfzsknn6Hd39lX7T4ReLmO8PsesvzB1sZwpjqyeNwibnVy6rO0XmOXxbVppWeKwyfJiqcdOWvGnOP5T4meGuE41wbxuCVLC8R4Ok1hcS/cp46lHVYHGyW8W7/V67Tlh5ys70pzifgl/wAEj/8AgrR8R/8Agn78Srr9g39u+DxJ4c+E2g+J7nwhpWqeMILkeJP2bvFRvPLm0nV0l82e6+FGoXUwuZRbG5h8Mfal8RaE1z4dvLyKv3nxa8J8u4/y2PHfAssNic2r4aOLq0sHKP1biPC8l1Vo2Vo5rTiuVczjLFcv1avyYiMJR/HvDbxHx3BmPlwfxeq9DLaOIlhqdTEqXt8ixPNrTqX5nLLpyfM+W6w/N7ejzUJTif3I6fqFhq9hY6rpV9Z6npep2dtqGm6lp9zDe2GoWF7ClzZ31jeWzyW93Z3dvLHPbXNvJJDPDIksTsjKzfxBUp1KVSdKrCdOrSnKnUp1IuFSnUg+WcJwlaUJwknGUZK8WrOzR/WsJwqwhUpzjUp1IxnTqQkpwnCa5ozhKN4yjKLUoyi7NO6umXKgoKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//V/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5Uf8Ag5+0rzfD37GWuBf+PDWvjvpTPj/oLWPwkvEUnHP/ACBXKgnj5sDljXoYD/l6v8H4c/8An3+8/iv6YtDmwnAGJt/CxHElBv8A6/08jqJPr/zDu3zP3r/4J6ar/bX7B/7G19u3sP2Y/gjYyPnJabSfh14e0qdmPdmmsnL/AO1n0rkrfxqv/Xyb++Tfn/XbY/pjwtrfWPDXgGpe7/1P4cpt95UMpwtGTe+rlTd/PtsfYdZH3gUAFABQAUAFABQAUAFABQAUAFABQAUAFAH89v8AwXG/Y6/bg/bI1P8AZ38E/s76HZ+LPg/pd7rN3400U+K/D3hiDQ/H15PBYaX4z8WR69qeny6poemeGrjULbSpdFttZv8ASXm8RodPafWNPjuOzC1KVNTc3aTtbRu6XRdnf79Ox/Ln0jOAvEXj6rwrl3CuHp47IaNWvPMMP9dwuDjh8zqSjSoZhjVia1KVfDUcHOtCi8PGvVoOWKXsnOvSU/1e/Yj/AGSPAv7E37O3gj4E+CVhvJ9Itzq/jnxUtuLe78cfEDVYbdvE3im8XmVY7meCHT9GtJpJpNK8Oado2j+fOtgJn56tSVWbk9F9lfyx6Lr8+7u9L2P2zw74Gy3w84Vy7hrLuWpKhH2+Y43kUKmY5pXjF4zG1N3acoxpYeEnJ0MJSw+H5pKkpS+tKzPtwoAKACgAoAKAP5l/+Do6zlf9jn4BX4U+RbftMWFnI3YS33wt+JE0Kk9Msmnzkc87TjODX4f47xb4byifSOeQi35ywGNa+9Ql93kf6o/sma0I+NniJh217Sr4WYitFdXChxbwxCbXkniaaen2ltcpfCrV/wBtd/8Ag38/Zkm/4J/2uoXvxlnhvtG16Xw0uky+OLH4c2/xI+KemeLrrwBHq5Nu3iqPWrbQrTzLVX1iy0SfXb7Q/J1mzsriCMvqcTvwhyN8IRnLMmp0qzo+zeKhgo43HwxEsGqnu/WFVjRjeKdSNJ1ZUrVYwlHbi/B+BMf2jPirT+kZVw9DgiE6GNy6GaPGRyGvxNU4Y4TxWTUuIpYLlqrKJYGrmFbkqyjgq2Pp5fh8fz4GtXp1fj39hv8A4N3Pi98X/FUfxz/4KQeLde0W01nUf+Ei1H4T2ni2TxJ8WvHt9cyC6mufif8AEOK91OLw3b6ixVtRtdI1TWfGd9FPcw3OqeDdUtlkf5zhXwbzHMcQs041xFWlGpP208vjiHXzDFzb5m8djVKoqEZ6c8ac6uJmnJSqYaolI/a/Hz9pXwXwXlEuAPow5Nl+OrYHDf2ZheMK2Txyvg7h7D0oujClwpw1PD4SeZ1cMrrDVsbg8BkeHnTpVKWDzzCVXE/r6+GPwt+HXwW8DeHvhn8J/Bfh34f+AvCtkthoHhXwtptvpek6fACXkdYLdFM95dzM91qGo3TT6hqV7NPfahdXV5PPcP8A0XgcBgsswtHA5fhaODwmHjyUcPQpxp04Ld6R3lJtynOTc5zbnOUpSlKX+L3FfFvE3HOf5lxTxhnmZ8R8RZvXeJzHN82xVTF4zE1HpFOpUdqdGjBRo4bDUY0sNhMPCnh8NSpUKUIR7CLUtNnvrvTINQsptS0+O3lv9Piu4JL6yiu1ZrWS7tEkae2julR2t3mjRZlRjEXCtt6VODlKCnFzgk5wUk5RUvhco3bSkk7XSv0vqeLPC4mnQo4qphq8MLiJVIYfEzo1I0K86LSrRo1nFU6sqTlFVIwlJwbSly3SldqjA/Bz/g46Vz/wTS8SFc7U+MfwnaTAz8n9pakoz6DzGj5OecDvlfyfxov/AKkVv+xll9/Tnn+tu342l/oR+zIcV9KXK093wTxgo/4vquFend8ql8tejND/AIN0mRv+CZPgULjcnxT+LqyYOTvPifeM+h8t4+PTB71fgzb/AFHwtumPzG/r7e/5Nd/xtHm/aYqS+lTxA3e0uEuDHH/D/ZXLp/29GXfX5qP7p1+qn8AH4d/t0f8ABbHwJ+xn+2D8Mv2TLH4Pat8W9T1x/BL/ABT8QaJ4si0rUPAQ+IGoxW2gaNoPhkeH9Xl8WeKRo1zYeKp9MudS8P202napodhZ3stzqlxcaV+WcVeJ+E4a4jwPD8cuqZhOr9VePrUsQqc8J9cmlRp0aHsqjxFf2Uo4iVOU6EXCdKEajdVypf3v4AfQT4h8b/BXirxixHGuD4OwuXrPY8JZdj8nnjMNxC+HMNOrmOOzDNf7Swccnyl46liMop4ulhcyqU8ThMdiK2HjSwkKeL/cSv1M/ggKAPwj/wCCqf8AwRL8Aft/+LbX46eCviTD8Ffjhp/h6z0HxHquq6I2veBvHui6Ikq6PJ4lt7a+07UtD1zRrNzYx+J7J9TSXRbWz0y+0SdbKyvLT8o4+8MMJxdiI5rhcasszSFGNGtUqUfbYXF0qS/duulOnOlVpRfIq8XO9KMacqb5ISh/oJ9Eb6d3EX0dMmrcAZ7wxPjngLE5lWzHLMJg8esuz/h3HY+UXjo5XVq4fE4XMMBjq8VXllVeOFlDHVa+KoY6Dr16Ff8AmU/4JWfEn49fszf8FQPhb+zz8C/jLH8VvAHiH42j4Z/ES0+HWr+I9U+DfxK8DwzXUHjXxtpej6zZaWl5H4T0K11jxXoni2PR7aaP+w3utN1O98O30z6l+HcA47Nsj46wGT5VmSzDCVs0+o4yODqVqmW43CqUo4nFU6dWFPmWHpRqYiliFSi17K8JyozlKr/qn9Lrhfw88VPoocWeJPH/AARLhDiPLeBP9aeGq3E2CyzCcb8L59UhSqZFkOLxuBr4uVCWcZhWweUY/JpYyrTl9fjSxWFoZlh4Rwv+iPX9kH/NQfOX7Xnx1sv2Z/2Y/jj8drySBJfhv8OvEGt6JHc7fIvvFs1t/ZngrSpN/wAu3WfF9/omlchubwfI/wBxrpQ56kIfzSV7dt5d9kn0+8+U464kp8IcH8R8S1HFPKcqxWJw8ZpONTHOHscvoNOytXx1XD0f+4nXY/hs/wCCOH7KN5+2J+3F4W1Txjaz658PvhFdf8Ls+KV7qCtcwa1faXqkc/hTw/qMs3mRXk/irxpLZT6lY3LM2peHdO8Tkb/JkK+rians6Tto5e7Hy7tarZX62T76H+cngJwTU498RsFXx8JYjK8in/rFnNSqnOOIqUaylgcLVlJ2nLG5g6cq1OfN7XCUsZdPlfN/oQV45/qMfy+f8HNfwqvdW+FX7Mfxps7R3tPBHjnxz8O9cuYoy/lr8RNF0XX9Da7ZQTHbwz/DvVoYZXxGtzqQhJMtzEK78DJc1SHVpSXy0f8A6Uun3WP45+l/ktSvknB/EFOm3Ty7MsyyrEzir8qzXD4fE4Z1N7RjLKq8YyfLFTqqLvKcEfjP+1L+3D8Rv27PhL+wd+xT8K9D8QX/APwrjwD8MvA+t6HGgW9+Jfx5ttJtvhzotzFEJWSXTdH0KGH+zLydrVf7T8V+KJryIWdnp9ynTTpRpSq1ZNe9KTvsowvzW20d99JbLaz5vwHjPxGzbxJyPw18Pclw2Kq/2TlmT5diMMlapm/EsKEMpw81FNqVGhhor2NSXKvbY3GyqL2dOnM/Y3/gp38FNA/YB/4It/Db9l7w5cWtzqfjP4q/Dfw98Q9Zs1aP/hMPG00Ov/Fjxn4hbeqXEun/APCQeBdP0/RhdhprHQbHw/psjE2sVc1CTrYl1HsotpdlpFLeWtpNvVX17H714w8PYbww+j7lHBuEnCdbH51lOEzXEU7r6/mEo4nO8wxWtpul9by2lToc6cqWGp4Wi37kT7p/4IC/DyPwR/wTf+H2vCEQ3PxV+IHxR+IV4NmySR7bxRN8ObWaXoWMumfD6weJm+9bNCy5Qqayxkr1mv5Yxj/7d/7d5/i1H9I+jHlSy7wmyvE8vLPOs0znNaitZtxxksphJ9+ajldJxfWHLbSx+0tcp/QQUAFABQAUAFABQAUAFABQAUAfzTf8F4P+CVP7QH7b/j74D/GT9mTwx4f8WeL/AA74c1H4WfEbStW8VaB4Ru7fwuNefxF4P8Q2954jvtN0/UNN0S+13xkmt2lvdy65Gl/praRpOrb7tbT8R8V+Ac34pxmU5lkdCjiMTRozwGNhUxFHDyVD2vtsNWUq7jCcKU6uJ9rGM/arnh7OlUvLl/1I/Z8fS68OfAbh3xC4J8Vc1zLJ8lzPM8Lxbwzi8HlGY5zRqZs8vWWZ3ltShllHE4jDYrH4fAZHLAVqtCGAk8PiljMbg+Wi6/8ARF8M9H8UeHfhv8P/AA/441e28QeNdC8EeFNH8Ya/ZiYWet+KNM0GwsvEGr2guVS4FtqWrQXd7AJ0SYRToJVV9wr9kwNKvRwWDo4qpGtiqWFw9LE1o35atenRhGtUjzWlyzqKUldXs9bH+avFONynMuJ+I8xyDBVcuyLH59nGNyXLq/I62AynFZhiK+XYKs6TdJ1cLg6lGhU9m3DnpvkbjZn4Mf8AByT+0J8QvhJ+xV4b+F3gnSdVi0j9ojx4PBnj/wAaWkc32HRfCnhq1g8UP4SluolBtNS8e6jb2cMIeYJfeG9B8W6a8E8d4/lfk3jXnGMy7hihgMLTqKnnOL+rYvFRT5KWHoRjX+ruS+GeLmopXdpUaOJg4yUm4/6Ffsv/AA34b4x8dMz4sz7GYOeN8NeHv7b4cyKtKH1jHZxmtaplKzmFGbftsLw9hqlepPlg5YfM8wyfFRqQnRipezf8EGP2J9Q/ZH/Yt07xV440abR/i9+0hf2HxS8Y2N/bPa6toHhNbF7X4ZeENQhlWK4huNP0C6vPE97Y3cEN9pWteNNY0i7USWKqvp+E3DE+HeGYV8VSdLMc6nDH4mE4uNSjh1DlwOGmmk1KFKUq84ySnTq4qpTklyWPh/2hXjthvGXxyxOUZBjoY3gzwww+I4TyTEYerGrg8xzh4hVeKs5w04OVOpTxOY0aGU0K9Gc8Pi8BkeCxtFuOJvL9uK/UD+Dz86NI/wCCVv7HGg/tmzft16P4F1fTvjZNqGq+Ins7PX5oPh8PG+uadd6VrPj9fCMduiDxZqdrf3897Mb9tHn1i8ufEjaP/wAJHK2rV8ZT4C4bpcSviunhKkM0c6lbljWawf1qrCVOrjPq6jb6xUjObl7zpupKVf2arP2h/TOM+lx425h4Hw+j/jeIMHieBKeGwmWqtWy6FTiN5DgMTRxeB4cecyquX9j4Srh8PChBYZY2GCoUssWO/syH1M/Revsz+ZgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPh3/go9+0Z8Xv2T/2Ovi78d/gZ8NIfir8R/BNlob6T4dvLDV9W0vTrTVfEOmaRq/izWtH8Pz2muato3hTTL251vUbPTryyYW1q91e31hpdte3kX2/h1w7lHFfGGUZFnmZyyrLsbOuquJhOjSq1J0sPVq0cJRrYhSoUq2KqwjRpzqRmuaXJCE6soQl8lxznmZ8OcMZnnGUYBZjjsJGi6VCUKtWnCNSvTpVcTVpUJRrVaWGpzlVnCE4e7HmnONOM5R/iws/2V/8Ags5/wWg8Uab8QfifD4uT4dG5a68O+KfjJPP8I/gX4ZtrnMS3Pw/8CWmlrdaxEbZmtJ/EPgvwT4l1C+W28rX9dubpDI/9nT4p8G/BrC1Mvyx4R5jy8mIwuTqObZ5iZR15Mwx06zjRfMlJUMZjMPThzXo4eEWfyvDh7xR8UsRDG49Yn6lzc1DEZo3lmUYeL0UsFg40uaquX3JV8JhcROdrV68p3kfr3+zt/wAGsvwS8OpYat+0/wDtBeOPiZqaiOe58I/CjS9P+HXhWOYf6ywvPEOtp4r8Ta9Ynk/a9PtvBF625QI4tj+b+R8RfSizvEupS4YyDA5ZSd4xxea1amY4trpUhh6MsNhqE/7tR42CtrzXXL+mZJ9HvKqChU4gzrF4+ppKWGy6nDA4dPrCVet9Zr1of3qccJPyVven/wCCxf8AwT//AGJf2Lf+Cf8AFcfs/wD7PXgPwT4p174y/Drwovjm8g1Dxd8QXtJNP8U+IL+1j8ceM7/X/E9rb6gPDoe+srDU7WwnWMRm1WGONF/HMx8TePeJa01m3FOa1aM4ycsJha/9nYJq6SjLCZfHC4eoknZOpSnLq5Nts+P+kPwnwxwd4Yc2Q5RhsBisXn+VYH66nUrY503SxuJq0/rmIqVsQoVVhb1KcKkackrOCikj9Ev+CBWhjSf+Cavwtvgmz/hJfHHxb1vOMeZ9n8fax4b3j1wPD4jz/wBM8dq+Dxjbryu23aOr3d1dvru2+v36n3X0ZcP7HwjyWra31zMc8xN+/LmmIwl/P/dbddvRR/Z2uU/fwoA/LL/gq1/wUu8B/wDBOf4C3muJPpfiD4/fECy1LSfgh8Op5Vma81dI/JufHHia0ikS4h8DeEJJ4bvUW3QPr2pGx8NWM9tLqFzqWm/qPhX4bY/xEz6FBxq4fIMBOnVzvMYqyhRvzRwOGm7xljsYouFNWl7Cnz4malGnGnP898RePMHwRk8qqdOtnONhUpZTgm781VK0sXiIqzWEwralU1i60+TDwcXUlUh/PV/wb7/sIfEH9o39oLX/APgpl+0adV1zRfD/AIs8Vaz8N9V8TI0l/wDFb44a9c3w8U/EaQzIqXujeB7jUNTMF9FCttc+P7u2OmXEdx4L1SyX+gvH/jrL+HeH8P4acO+yoVsRhMJRzKlhmlTyrJKEaf1XLlazp18dGnS5oNylHARl7SPLjaVQ/FvBjhDG55nVbj3PHUrUqOJxNXA1K6vPMc3rSl9YxzvZSpYSVSfLNLlljZJ05RlhakD+2Kv4sP6rCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8Qf+CwP/BIDwV/wUG8ETfEr4aQaP4M/az8E6M0PhfxPMIrDSPiho9hG8lv8PvH9yiABxlovCXiuYPceHrqX7FfPLoE8iWX7b4Q+LuN8P8astzKVbGcJ42snisMr1K2V1pu0swy+PMt98XhF7uIivaU+WvFOr+T+JnhnheNMI8fgFSwvEeEpWw9d2hSzClBNxwWMkuu6w2JetGT5J3oy938J/wDgkb/wVy+In7BPxEm/YN/byh8SeHfhV4e8SXHg3RNb8ZW92nib9m/xMl2YJfD/AIgin8y5ufhVc3MglBiNwPCInTWNIa58MXM0Np+5+LXhLl/HmXrjvgV4bEZriMNHGV6GDlB4biPDOF1iMO43jHNYxVteX63y+xqpYqMZVfyHw28ScbwfjXwfxgq9DLqNeWFpVcUpLEZHiFKzo1lL3pZdKTvp/u3N7WnehJqP9xen6hYatYWOq6VfWmp6Xqdpbahpupafcw3thqFhewpc2d9Y3ls8lvd2l3byxz21zBJJDPDIksTsjqzfxFUp1KVSdKrCdOrSnKnUp1IuFSnUg+WcJwlaUJwknGUZK8WrOzR/WkJwqQhUpzjUp1IxnCcJKUJwmuaM4SjeMoyi04yTs07q9y3UFBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9b+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/mf/wCDmnSPO/Z3/Zu1/bn+zfjRrukb8fd/tzwPqF7tz23/APCP5x32e1d2BfvzX91P7n/wT+Q/pfUObhXhLFW/g8QYmhft9Zy2rUt8/qt/kfqd/wAEl9X/ALb/AOCcX7JF7v3+T8LYNIznOP8AhH9d1rQdn/bP+zfLx2247Vz4hWr1P8V/vSfn/Xa9j9o8EK/1nwn4GqXvy5LCh/4S4nEYa3Xb2Nv8rWP0SrE/VAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/HH/gu5+zR4o/aZ/wCCePxD0/wPpVzr/jL4PeJvDnx00PQbGB7m/wBXt/Blrrej+LINPgiDTXF9a+BPFPirU7Szt0ludRuLCPTrWJ7m7iWvzbxXySvnnB2Mhhacq2Jy2vQzWlRgm51Fho1aWIUEruU44TEYipGKXNNwUI3lJH9s/s+/FLKfCz6SnDWJz/GUsuyTjXKs04Ax+Y4ipGnh8HUzyrgcbk9TE1JuMKeHrcQ5RlGErV6koUsNTxEsTWmqVGbj+NH/AARK/wCCzv7M37Nn7NFv+yz+1d4m1f4aRfDrxF4p1b4aePIfCfirxh4b1Xwz4x1u78V6h4b1O18FaP4j8Q6Zr2neK9X8Q3sF1JozaNe6ZqdtC17Z3li6X/5r4X+JeR5JkayHiCvUwKwVbEVMDilh8RiaFShiassROhOOFp168K0MRVrTUvY+ynCpFOUZRfN/b/07/oO+Knih4p1PFvwgyrB8Uz4my3KcHxTw/POMoyXNMHmuS4Cjk+GzTC1c9xmWZZi8uxOT4PLaFSlHHxx2HxeFqzVCvRxEHh/0Y+Nn/Byb/wAE/vh5Y3K/CqD4rftAa3sYafH4Z8GXvgPwzJON20anrnxKXw1rlhbtjHnaf4O1uZSy/wCisu9k+zzTxr4QwcZfUFmGb1fsKhhpYOhf/p5VxvsqsU+8MNUa7OzP5m4E/Ze/SN4kr0nxdPhDw6wHMvrEs1zyhxDmkabtd4TAcLf2pgMRVV/4eJzvAQfK/wB9fljP8Tvip/wWx/4Ki/t/+Jrr4R/sdfDnXPhbY6srRf8ACN/s/aDrXjn4qjS7lzGLjxB8Up9O+0eGrW2bDv4l8M6P8O1sljkku9RW3EpX8wx/ifx3xdXll3DeCq4CFTT2OT0quLzD2ctL1se4c1CMd/b0KWC5bXlUSUj+7eEfoJfRN+jplVLjPxs4nwHFuIwbU/7T8RsfgeH+EHi6MVL2eW8JU8U6eaVqqullWa47iV13KMKOFlU5eb9QP+CNf/BIb9rT9mT4/XX7Yf7VPxIi0LxbrvhDxNot18K9P8V3fjjxf4lu/FwszdXvxa8XQXdz4fuv7Ontk1W20vTNV8XSXmuQaXqd1q+mzaW1pd/d+Gvh1xDkeby4jz/GqliKuGr0pYCFeWKxNeWJ5eaWY4lSdGXI4+0VOnUxLlVVOpKrB0+Sf8ofTd+mf4O+Kvh1S8FfCPheeYZPl+dZVjqPF2JyijkGS5XRyZ1lRocG5LOhSzGj9ap1ZYOri8XhMmjRy+pi8LSwWJhjFWof0/V+6H+UR+LP/BwT4cl13/glr8dL6GMyHwp4m+DniN1XJZYm+LHhDw7LIFAJIjj8QNJJ0CRLJIx2o1fmXi/RdXgPNZpX+r18trfJ5hh6LfXZVrvsk3pa5/c/7OLM4Zf9LXw/w85KKzjKuNssi3s5rg/OcyhFvo5yy5RjvzTkor4k4+Jf8G0PiaHW/wDgndr2jpIGm8HftG/EjQposjfGt94X+HnimJyvURyDxC4Rvus8cqgkowXy/BCuqvBtWnfXDZ1jaTXbmoYOuvk/bfenq7Wj93+1LyueA+krl+NlFqGd+GXC+YQnb3ZPD5rxLlM1fbmi8tXMt0pQbSUouX7y+P8Axz4Z+GHgTxp8SfGmox6R4P8Ah/4U8Q+NPFOqy48vTvD3hfSbrW9ZvWBZQwttPsribZuUuUCg5I2/rOLxVDA4TE43EzVPDYPD1sViKj2hRoU5Vas3/hhBs/z24cyDNeK+IMj4XyPDSxudcR5vluRZRhIfFicyzbGUcBgaC0dva4mvShe2nNd2sz+F3/gk54G8S/8ABSv/AIK8+Mv2sviZp0l34b+H/i3X/wBpTxHbXWbqx07Xf7W/s74H+B4LplYD/hGNQOjX+jRyqwn0T4b3cDOHw9fyr4fYSvxt4iYniDHQcqODxFXO66l70IVvacmV4WMrf8uKnsp0k96WClG+tz/fz6Yef5V9Fz6GOR+D3C2JjRzPiPJ8u8Lssq0v3NfE5f8AU/rXH2f1KSab/tbDfXcPjpQtyY/iejUUFG8D+9Cv6yP+eoKAP5QP+DkD/gof8SfhV/wjH7Dnwm1K/wDCUXxL+HsXj740eLtOlktNV1jwTruta94c0T4caVexlJrLTNYl8NazfeN5LZll1bSpdI8Pi5Gl3niTTtQ/n/xp4xxuA9hwtl854dY7BrF5niIPlqVMLWq1aFLBU5KzjCo6FWeK5eX2lN06PNySrwn/ALA/sxPo18L8X/2r4+cY4XD5zLhbiWfDvA2TYmEauEwWfZfgcuzPHcT4yhJSp4jFYKGaYGhkMavuYLFwxuYulLF0csxOF/Nv/glN+2p/wTa/4JveENQ+M/xCtvi98cP2tPG+jzaU9t4G+HumReG/hJ4YunSWTwjoWt+OfEvhKO81zWHht5PGni2wtrtBFFF4d8Nwz6XBqepeKfieAOJuCuCsNPM8ZHMc14hxVJ0+XC4OCoZdQk7vD0quLr4dSq1Wo/WsRCMkklRoKVNVKlf+n/pe+Bn0ofpPZ1huB+G6nBnAXg5kOOhi1Vz/AIkxU8z4yzWlFwjnOYYDh/Ks5lRwGBjUqxyPJsRVotzlPMszq0sXPC4XK/qf42f8HSnxQ1n7RpX7N37L/hHwk8zNbWPiP4teKdX8eahP5x2RTw+EPCUHgq0sL1dw8mCXxN4gt2nCGRJ4ybdvfzTx4x9W9PJMiw2HbfLGtmGIqYycr6JrDYdYWMJronXrxvupL3T8k4E/ZL8J4H2WM8T/ABXznOIwSq4jLODsowfD2Gp8i5pU551nNXPK2IoOz9pUhlWW1VTuoTpySqx+JP2of+Clv/BQH47fspap8E/2wvC114dtPil8SPB3xB8Ba9f/AA5/4VfqfiL4e+E7fxLJr2hxaIttpn9ueDovGU/gLUfDfieTS2NzqWg6/p/9v6/PY3UOi/qfhJnXGGf0M2xnFGElRw9OphllWIqYH6hOs6qrPEwp01Gn7bD0IRw/JXcNZVZQ9rWkpql/jr+2e4U+jZ4MYXwr8NvADiSnmHEHEUs6zDxIyXA8U/624bKsu4fnllPh+tmGMdbE/wBnZtneaYrMalXLI4pqFLIqdd4DLoVKE8f/AFAf8ENf2SIf2aP2KvDPjTXNPS3+JP7SI034t+KJ3jAu7TwlfWB/4Vf4deTCP5Fl4Wuz4le2mjSex1nxjrdnIWEMdfpuKqc9VpfDD3V6/afXrpe+qS0R/I/0cuB48IeHuDx+JpKObcW+xz3GyatOGCqU/wDhGwre/LTwVT624SUZU8Rj8TTfwo/ZeuY/fTxf9oT4AfDH9qD4QeMvgf8AGDQ217wJ43sYrXUYLe4NlqenXlndQ6hpGu6HqKpI2na3omp2trqOm3flzQi4txDeW15YTXVnPUJypyUouzX9NPbRrTf7rHz/ABTwxk/GORZhw7n2GeJy3MaShVjGXs61KpTnGrQxOHqq7pYjD1oQq0Z2ceeNqkZ03OE/z4/Yi/4I0fstfsQfEq6+MPhfU/HXxQ+I0Fvf6f4R174k3Ph+4i8CWGpQyWl9P4d03QdC0W1XxBf6fNPpl94gvBc3A06e5tNKt9IhvtRW/wB6uJqVY8rSjHqo319W5S08vd9Xoo/l3h14BcGeHWb1M+wVbMs5zaMKtLA4rN54aay2lWi4VHhKOGw2HgsVVpSlRqYqopT9lKdOhGhGrWUvzn/4Oc/EzWvwq/ZQ8HByE174g/EvxM0eeGbwn4c8M6Wjle5jHjR1Bx8vmEcbq2wK96o+yivvbf8A7aflH0wsW4ZJwTgL6YnNM3xbXd4HCYOin8v7Qa2+10ufsz/wTC8MJ4R/4J7fsfaUkYjF38CfA3icqBtBfxtpq+M5JMccyvr7Ssf4mctzuzXNXd61T/G192n9f8A/f/B3BrA+FvAdFK3Pw1luMttrmNFZg30+J4nm8731vc+7qxP0kKACgAoAKACgAoAKACgAoAKACgAoArXdlZ38P2e+tLa9g8yGbyLuCK5h863lSaCXy5lZPMgmRJYZMbo5USRCrKrVMoxmrSjGSunaSTV07p2d9U7NPo9dLXNaNeth5+0w9arQqcs4c9GpOnPkqQcKkOaDjLlnCUoTje0oScXdNqVmqMgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5zP+DlzWvs/7H3wS8Ph9p1X9pLSdWKA4Lx6F8MfiVanPIyivr8RIII3+W3BVa7cCv3k32hb75L/ACP5R+l1iOTgPh7C3t7fi2hXa6tYbJ83h918Sm99beTj96f8EYtF/sD/AIJl/sq2OzYbjw1441ojGCf+Ej+K/j3xCH9941MMDzkEY9FxxLvXqesV90UvL+u9rn6Z4AYf6r4QcFU7W5sHmOI/8K87zPFX6bqtf/O1z9P6wP2I/L//AIKYf8FS/gd/wTj+HD3fiOe08c/HXxRplxN8L/gppuoJFq+sSEy28PibxdPEJpfCvgKzvI3judYuIWvNYnt7nTPDlpqF5b372H6d4a+F+d+IuZcmGjPA5HhasVmmdVKbdGivdk8NhIuyxWPnBpxoxfJRjKNXEzhCUFL4DjzxByngfA81dxxeb4inJ5flVOolVqvWKxGJaUnh8HCSalVkuarJSp0Izmp+y/k6/Yh/Yi/ai/4Li/tR+If2rv2rvEPiG1+BVr4hiTxz45SKbSbbXrbSZjNYfA/4H2Exlt9L0rS7eb7HqOoWZubLwjY3FzqWpXWq+MtWRNU/qzjbjXhfwQ4Xw/CvCuHw889nh28Dgm41ZUJVY8s87zuouWVWrVlHnp05qM8XOMadOFHB0n7D+cuE+E+IPFriCvxFxFXrRyiNdLGYy0qca0abvDKMpg7KnTpxfJUqQvDCwcqlSVXFVUp/3s+BPAng74YeDPC/w7+HvhzSvCHgfwVoeneG/CvhjQ7VLLSdD0PSbaO0sNPsrdPuRQQRqpd2eaZ9808ss0kkjfwhjsdjMzxuKzHMMTVxeOxtepicVia8nOrXr1ZOdSpOTvdyk9lpFWjG0VY/sPB4PC5fhcPgsFQp4bCYWlChh8PSio06VKnFRhCCVtEktXq3q7ttnWVyHSFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB+IP/BYD/gj74I/4KDeCp/iX8NIdG8FftZ+DNHaHwz4omWOw0f4oaRYRs9t4A+INxHHw4AMPhPxbKstz4euHFjfGfQJnjsv23wi8Xsb4f42OW5lKtjeE8bWvicLG9StldabSlj8vi5q6ejxeEVo4iK9pDlrxTn+TeJnhnhONMK8fgI0sLxHhaVqGIdoUswpwV44PGyS36YbEvmdFvknei7R/CD/gkt/wVx+JP/BP/wCI1x+wh+3lbeJ9B+E/hzxJP4O0rVvF9tdnxV+zd4kW68qTR9XhkEt1f/Cm6nlW4Mdsbr/hF4riPXPDxvPDtzLZ1+6eLHhLlvH2XR464Elha+a4nDrGVaWElD6rxJh3G6rUWkoU81jFON5OP1qUfY4nkxMVM/IfDjxJx/BmOfCHGEcRRy2hXlhqdTExl9ZyKvzWdKovelPLpS960b+wUvbUOeg3CP8Acfpeqabrem6drWi6jY6vo+r2Npqmk6tpd3b3+m6ppt/bx3djqOnX1rJLa3tje2ssVzaXdtLJb3NvLHNDI8bozfxDVpVKFSpRrU50q1Gc6VWlVhKnUpVKcnGdOpTklKE4STjOEkpRkmmk00f1pTqU6tOFWlOFSlVhGpTqU5KdOpTmuaE4TjeM4Ti1KMou0k7q6ZeqCwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP59P8Ag5I0Y6h+wr8O9TRMyaD+034HupHxkraX3w5+LWmSr7B7q6sSTnqijnNdmC/iy/69v/0qP9f8Mfy99LTD+18NsrrJa4XjDLZt9oVMpzyi16OdSn93ofUf/BDfWf7Y/wCCYX7Nys++fSJPi1o0/Odv2T41/ESS1T226fcWYx+XGKzxf8efny/+kRX6eX4Xl9l9HPEfWPB3hK7vKg88w8vL2fEOauC6bUp0/wDg7n60Vzn7eFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB+K/7SX/BAr/gnn+0j421b4hTeFfH3wW8T+IbyfUvEUnwK8UaP4V0bWdUuneS51GTwr4o8K+NfCuk3NzI/m3Q8OaLolvdXO+8uYJby4uprj8xzvwk4OzrFVMY8Pi8rr1pOpWeU16WHpVZv4pvD18NisPTct5ewpUFKXvNc8pTn/dHhf+0S+kl4YZFg+G6eb8O8c5VltCGFyyPiBlONzfHYHCUoqNLDRzfKs4yHN8ZSoxjyUf7Tx2NqUaXLRpVIUYUaVLH+En/BvP8A8E0vhffW2pax8PviB8Zby0kWW2Pxb+IupXtisq4w1zongS18B6FqcfB3WmraZfWT7j5lu+E255d4O8EYGSnVwmMzKUXeP9o42co386WEp4SjUX92pCUe8XY7eMv2kn0peLMPUwuC4k4c4IoVouFVcG8M4ahiHB3uqeP4gxHEWYYWW1quDxeHrxsuWqry5/2A+Gvwo+F/wa8M23gz4SfDvwT8MvCVng2/hvwF4X0XwnoqSBAhnOnaHZWVtJcyAAzXUsb3E75kmld2dm/RsDl+AyyhHDZdgsLgcPHajhKFLD0r9+SlGEXJ9ZNOUt22z+LeKOMOLON81q55xlxLn3FWcVrqpmnEObY7OMdKLd1TWJx9fEVY0ot+5ShKNKmvdhCMUkegV2HzgUAfI/7e3wP1D9pH9jH9pf4JaJaC/wDEnjz4ReLrHwhYlo0W88b6Zp7a94JtXklZI4kuPFmk6NE8zsqwq5lP3CG+d4tyued8M55ldKPPXxeXYiOGhoubFU4OthY3dkk8RTpJtvS99LI/Zfo8cfYbwv8AHHwt48x1Z4fK+HuM8mxGdYhKUnQyHFYlZfn1WMIKUpyp5PjMdONOKbm0ofaPwx/4Nmvh3+0N8KvAX7WnhD4u/CX4gfDXwa3jz4e6l4Tn8feFtc8H3F/41j0rxVo3xB06w07X7KxurxtLsNK8EpqVxBAIrK4kitJZHmkaO3/K/A/B5zgMJxDh8xy/GYHDfW8HUw7xdCrhnPE+zxFLGQhCtGEpezhTwqm1G0W+Vtt2j/fn7U/iXw24u4i8Hc54M4x4c4oztcPcSYXOIcO5tgM6p4bIpYvKMdw3icRicuxGIpUFi8Ri89eGpVJ89enGdaEY0481X98f2xP2do/2s/2Y/jL+znJ4w1HwB/wtfwhN4ci8X6Xa/b7jRLpL6y1SznuNN+12B1TSp7rT4bPXNKW/sW1TRbjUNPS9tWuRcRfrfEmTLiHI8yyZ4meD/tDDuisTTjzulJThUi3Dmh7Sm5QUatPnh7SlKcFKPNc/zw8FPEuXg74q8EeJkclw3EX+qGdQzOeS4ut9Xp46k8PXwlaFPFexxCwmMp0sTOvgMY8PiFhMdSw2JdCsqTpy+Tv+CVX/AATU0H/gmv8ABrxh4Lk8aWvxL+JHxL8WQeJ/Hnjqz0BvDlnLZ6PYHTfCnhXS7CbUNTu20jw7FcazfxXV7c/abrVfEesTeRa2zW1tB89wDwTS4Jy3E4Z4mONxuOxCr4vFRo+wi40ocmHw9ODnUk6dFSqTUpy5pVK1V2jFxjH9g+l19KPMPpQ8b5LnkcjrcL8McLZPUyrh7IK2YrM68K2NxCxWb5vi8RDD4Wisbmc6WBw86VCj7Klg8swNN1KtWNWrP9Rq+8P5NCgD4H/bP/4Jofsjft6z+GtV/aC8BahqHi7whYS6P4d8d+EvEOo+FPF1joU11LfSaBcX1k0ljrGjLf3FzfWdlrenakml3d3f3Gk/YZNS1Jrv5Libgjh3i10KmcYSc8RhoOlRxeHrTw+JjScnN0XOKlGpSU5SnGFWnNQlKcqbg5z5v6H8DvpS+Mv0eYZphPDjiHD4bJs6xEMbmfD2cZbhs3ybEZhToww8cxp4euoV8Fjnh6dLD1q+AxWFli6NHDUsWq8cLhvYfHvgr/g3n/4Jg+E7uO71X4UeOviC0LCSODxr8W/HK2m9SCpktvBup+EI7hQwBMNz5tvKMpNC8bMlfN4Xwe4Fw8lKpl+LxltUsVmOL5b+ccNLDXt2k5Lo1JM/a89/aSfSuzijKjhOMMg4bU04yqZFwdw+63K73Uaud4bOpU207KpS5akdHCUZJOX6R/Bf9jP9k79nb7PL8Ev2dfg98NtRtl2J4g8N+A9At/FkigYAu/GE1lceKb4qMhTe6xcFdzbSNzV9rlnDPD2TWeV5NluCnHRVqGEorEP/ABYlweIl1+OrLfTdn8wcc+OHjD4l+0hx54mca8UYaq+aWW5pxDmNTJ4t7+xyWnWp5Th7u11QwdNOyutFy/nH/wAFJ/8Agj5b/wDBQT4//CP4zP8AGeT4e6b4S8H6R8OfHfht/DT63c6v4R0fxb4h8Vx3nhS/XVbKDS/EN1/wlWs6ZOdStLywRV0y/CO1ncWV/wDTUMT7GEo8nNduSd+rSWuq00vpr063j/E3i34EQ8UOJ8iz98QSyujgcBQynMsI8I8ROvgaGOxWNVTBVfb0o0cVP67iKMnWhUpJKjU19nOnP9o9J0rTtB0rTND0ezh0/SdG0+y0rS7C2XZb2OnadbR2ljZ26fwQ21tDFDEv8KIo7Vyt316vU/oGhRpYajRw9CnGlQoUqdGjSgrQp0qUFCnTiukYQioxXZeRoUGoUAFAH8i//Bz5qbS+Kv2NtG3krY+H/jjqYjzwrarqPwstWfHq40ZVz/scdDXo4FaVH5wX3c3+Z/DP0xa3NjeAKF9KeF4krW7e3q5JC/z+rpb/AGeh/S/+yBpi6L+yX+y7oyJ5aaT+zt8E9MWMDAjWw+Gvhm1VAOMbREFxjt2xXFV1q1H3qT/9Kfp+X3H9ecCUVh+CODcOlZUOFeHqKS6KllGDhb5ctj6JrM+qCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+XL/g511nyPhn+yV4e3Y/tTx38U9Z2f3v7B8P+ELHdj/Y/wCEjx0439s134Fa1H2UV9/N/kfxt9MLEcuT8EYW/wDGzPOcRbv9WwuBp3+X1u3zP2o/4JmaN/YP/BPv9jyx2bPP+AHw51nGMZ/4SPQbbxDv6D/Wf2p5me+7OTnLctd3rVP8bX3afof0H4Q4f6t4X8B07W5uF8pxH/hXhYYq/wA/bX+fmflF/wAFS/8Agv78Kv2XYPEXwT/ZMvfD3xm/aHj+16PrXjGKSPWPhV8Ib5d8F19rvLaT7N478badJ+7i8OaVPJoGjX6yDxTqcl5pt34Tv/6I8LvAPNOJ5YbOuK4YjJ+Hny1qODadHNc3ho48kJQcsBgqi1eJqp161P8A3WlGFWGKh8l4heMuXcPqvlXDc6GaZ0ualVxSaq5dls1pLmlFuOMxcHoqFN+xpTX+0VOeE8PP8jv+Cdf/AAR0/aK/4KSfEhv2zf8AgoB4i8eWHwm8ZanB4tlk8U3t5Z/Fb9oHeI3sk0sSLFceB/hg9pHBbWutwW+nyXPh6Oz0r4c6bZaVNZ+JNF/WfEPxf4d8OMt/1N4Aw2AqZrg6UsIlhYQnleQWupura8cdmik5TlRk6ijiHOrmM51VPD1/zbgjwxzvjrHf608ZV8ZDLcVUWJbxE5RzHOr2cVTvyywmXuKUY1kouVBRp4CEKcoV6X9wvgHwD4K+Fngzw18O/hx4W0TwT4F8HaTa6H4X8K+HNPg0zRdE0qzTbBZ2NlbIkUSAlpZZCGmubiSa5uZZrmaWV/4kx+PxuaYzE5jmOKr43HYyrKvisViakqtevVn8U6k5NtvZJbRilGKUUlH+s8Hg8Ll+FoYHA4elhcJhacaOHw9CEadKlThtGEY2SXVveTblK8pNnXVyHSFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH4n/wDBXf8A4JA+Af8AgoX4Im+IPgCPRvAv7WHgzR2h8IeNJo1s9I+Iul2KPJbfD/4jS28bySWjsWi8NeKTDPqHha6l2MLzQ5bzTq/afCTxdx/h9jVl+PdbHcKYytfF4KL562X1ZtKWYZcpSSU0tcThbqnioK6cK6hOP5V4leGeD41wjxuDVLCcR4Wk1hsU/cpY6nBXjgsc0m3F7UMRaU8PJ2tKk5wl/P8A/wDBKr/grL8Wf+Cb3xQvf2Fv279M8WaP8HvDviWbwrHJ4otbu48X/s2+IpbgFgsK/aJ9b+E+ovcJqNzp+mm9j02zvIvFvgqS/wBNvLnTNX/ffFPwoynxGyuHHPAtTC1s4xOGjinHCyhHCcR4dR3cnyxo5rTUXTjUquDqzh9UxnsqkI1aX4z4d+I+ZcDZhPhHi+niKWWUMQ8NfERm8TkVdvWyXM6uXVHJVJQpuahGf1nCc8JShV/ub0PXNF8T6LpPiTw3q+meIPD2v6bY6zoWu6LfW2qaPrOkanbR3mnappepWUs1nf6ff2k0N1Z3lrNLb3NvLHNDI0bKzfw9XoVsNWrYbE0auHxGHq1KNehWhKlWo1qUnCpSq05pTp1Kc4uE4SSlGSaaTTR/W9KtSxFKnXoVKdajWhCrRrUpxqUqtOpHmhUp1INxnCcWpQnFuMou6bTuatZGgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8Uf+DgPQ/wC1v+Cb3jm/2bv+EY+JXwo1zOM+X9o8Tx+G9/tn/hIfLz/t47iurBu1ZecZL8L/AKf1qfz39J/D+38Jcyq2v9TzbJMR6c2NjhL/APl1b5+Zk/8ABvXrn9rf8E6tEsN+7/hGPjB8UdDIzny/tF1pHiXZ7ZHiHzMcffz3yxjF++fnGL/T9P6sYfRbxPt/CnDUr3+p59nOGt25p0cXb/y6v8z9xK5T+iwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+PD/g5ylY/F39lWH+GP4cfEOUf70vifQlb9IVr0sD8NT/Evyf8AW/3H8G/TBb/tzgqPRZTmr+csZhU//SV0+8/qu/Z5iWH4A/A2FfuxfB74ZxL/ALsfgvRFHp2Hp+VefP45/wCKX5s/tThaPLwxw5HpHIcnj92X4dfoew1J7wUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfG/7bv7cXwe/YJ+FGm/Fn4xWfi7WdO17xZYeC/DvhzwNpmn6p4j1rXb2w1LVWSFNY1fQdItLKx0vSb+9vr2/1a1RVijt7ZLq+uba1l1pUpVZOMbXSu3J2Vrpfyyd7vZRffSzZ8F4ieIuQ+GeSUs8z6njsRSxONpZfhcJltGlWxeIxNSlVrWiq9fDUKdOnRoVatSpVrQSUVGHPUlCEvbvgR8bPAX7Rvwg8AfHD4Y313qHgX4kaBB4g0GbULX7DqVvG001nfaZqtmJbhLXVtG1O1vdI1W3hubq3i1CyuUt7q6gEdxLE4uEpQlvF2dtvVbaNarReajsfQ8NcQ5ZxZkWV8RZPUnVy3NsLHFYaVWHs60U5ShUo1qfNJQr0K0KlCtGM5wVWnNQnKKUpetVJ7gUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/Hn/AMHRPxL8LweNP2RvBB1/TbjW/DHhz4y+IdV8PWd9bXOtafB4svvhlaaRc6jpkMr3VjBqS+FtQ/sy4voreC7Fre/ZpX8mcL+i8B+H3FXGtWccky2pPCqpCnXzTFc2GyzD2vzc+KlFqpUhzJyoYWNfEqPvKi02z+KPpZYbEZxmfAuWYL2dSeCw2f4nFXqRSw0cdUyeFGddXcoqosFV9kuWUpqNRwi1Gbj+ZXiT/gpV/wAFCf29/APwa/YC/Y78C+KvCHgTwj8J/AHwnuPCPwhe+uvH/wARNJ8FeEtE8GXuu/Er4hj+zYPCXga/Ww+06ppVvP4a8KadYajNp/jHXfEtpHHdL/WHDfhN4f8AhZhHxTxjmODzDMMPL2qx+aRjTy3BV9Zxp5XlsvaTxWMvpRqTjisXOcI1MJQw024y5KPGfGvE2TZBwFwzhcRQwmW5JlWSyw+V88sXj6eXYHD4GdfG421NYbB1PY886SlQw1OnP2eKq14JTj+6v/BMj/g3g+GX7Pk2gfGj9s4+HPjT8ZbR7XVdA+F1sn9p/CD4d3qbJoJdZjvYY1+JniiycD59QtYvBmmXJmFnpHiCe203xEv5D4mfSEzPiBYjJuDfrOS5NNTpV8zl+6zfMYP3ZKi4Tn/ZuGnrpTk8ZVhbnrUIyqYeX7PwD4KYDJXRzXin2Ga5pFxqUcvivaZZgZ7xdXnssfiId5wWFpyvy0q0owrx/prVVRVVFCqoCqqgBVUDAVQMAAAYAAwBwMYr+aG76vVvVt9T97FoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/G7/grN/wAEjfhp/wAFFfAT+KvDQ0jwB+1L4L0eWDwB8SJLcw6d4rsbYS3EHw++JRtIZbm/8N3M7yDRtcSG61fwZf3El9p8V7plxq+hav8AsXhR4tZl4eY9YXE+2x/C+MrKWPy5S5qmFnK0ZZhlvPKEYYmMUvbUHKNLGQiqdR0qkaOIh+X+I/hrgON8H9Zw/ssFxDhaTjg8c42p4mEbyWCx/KuadCTuqVZKdXCTk5wjOnKpQq/zg/8ABM3/AIKkfHL/AIJT/GLVv2I/24/D/jCx+Ceh+JpdD1PR9btrjUPFn7PWt31wJ28R+E0ha7PiX4W639qTW9S0TQ5b+yvLG9Xxv8Ppbye8vtM8Xf0X4l+F+R+KeT0uNuCMRhJ51Xwqr0qtCUKeE4hoU48v1fFOSj9WzSjyujTr1405wnB4LHqMYQq4L8O4C8Qc38O80qcJ8W0cTDKaOIdKpSqqU8Tklab5vb4ZR5/b5fW5lVqUaMpxnCf1zBOUpTp4r+67wl4t8L+PfDGgeNfBPiHR/FnhDxVpNjr3hvxN4f1C21bRNd0bUoI7qw1PS9Ss5ZrW9sru3kSWCeCV0dGBBHIr+GsXhMVgMViMFjcPWwmLwtWdDE4bEU5Uq9CtTk41KVWnNKUJwkmpRkrprqf11hsTh8bh6OLwlalicNiacK1CvRnGpSrUqkeaFSnON4yjKLTTT+86Guc3CgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8tv+C1Gg/wDCQ/8ABMj9qSzVN8llovw+16MgZaP/AIR34vfD/XJnXg4xa2E6uRj907jOCa6MK7V6frJffFr9T8a+kHhvrXg/xnTtd08PleJXdfVM9yvEya/7dpST7q66nw//AMG1Gu/a/wBjT4x+HWfdJon7Suv6gik8x2uu/DL4YRxIB2Q3Oj3sg45eR+vNa45fvIvvC33Sf+fb77n5z9EbE+04Az/Ct3eH4uxVVeUMTk+TqK9OfD1Jesn2P6Ka4j+qwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8Hf8Agsf/AMEvPjV+374p+Afiz4MeK/AGj3HgGz8S+EvFun+PL/WNJih0jxDqWkajaeItKudI0XXGvzp72d/FqOlyQ2tw6PZSWElyzXKQdeGrxoqampNNppx11XS3NHytr62t7381+Pfg3xB4nY3hnHcP47LMPPLIYvA46lmdXEUIxw+KrUKtPF0J0KGIdV0nCqq1FqE2nTdNzvKMP20+H/hVfAvgPwT4IS9Oor4N8I+G/Cq6g0Itmv18PaNZaQL1rcSTCA3Qs/PMIllERfyxI+3fXLJ8zcu7b+938vy+4/obLMEsty3L8uVR1VgMDhMEqrjyOqsLh6dD2jjeXK5+z5uXmla9ru1zrqR3BQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB+ev/BUP9kA/trfse/EP4VaPbxS/ETQTb/Ef4SySska/wDCwvCVtfNY6UZZMRwp4r0W/wBc8HNcSukNkfEC6hLuFmFrahU9lUjJ/C/dl6Pr8mk/l5n5b4x8Cf8AEQuA81yShGLzXDcubZG5NJf2pgYVfZUXJ6RWNw9XEYBzk+Wn9aVVqXs3y/hf/wAG8X7bU/hfXvFn7A/xVvLjS5rzUte8YfBSLW/Ms7nTfEtoJZ/iP8Mmt7rbNa3N0tpceMdJ05oYPI1Gx8arcF77UbKCuvGUrpVY62spW106Svs+17vpps4/zh9FjxDlgsTjvDLOqk6MqlbE4/h6OIvCVHF0+aebZO4zSlCc1CWPoUrQ5atLMVO9SrThL+tqvOP7hCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDL1zW9L8NaJrHiPXLyPTtE0DS9Q1vWNQmDmGx0vSrSW+1C8lESSSmO1tLeaeQRo7lUIRGYha1oUauJrUcPQg6lfEVadGjTja9SrVmoU4K9leU5KKu7XettTOtVp0KVWvWmqdKjTnVqzd7Qp04uc5u13aMYtuyvppc/h7/4KBf8HKHxg+KkuufDb9iDSb74I/D53udPn+MPiC3srv4v+J7TLQtc+G9Ob7dofw2sLuJpPJnX+3fGCp9l1Cz1jwrfrNZJ/bfAH0b8oytUMy42rQzvMEo1I5Ph5ThlGGno+XE1UqVfMakHa8f3GDvz050cZTamfybxn465nmLrYDhOnPKcE3KEszrKEszxEdnKhB81LAQkr2a9til7s4VcPNOEf5yNeQeKr208e+PPizH448WeN31DXfFMl9qPizW/Glrqhv5bZv8AhNdf8T6XFHf61qiw/wBpi603VfEcb2M9sbvULe/eeztf0zjHP+LuH8Ksq4E4CrY1UKMaVDGr6hSyjCU+VcscFlmExUMVXdO7iqc4YGlTlG6VeDcT+b+Isfm8FTxOEjLOMbjo1K+KxFSrXrVcNU9o4cuLdeNOdfEVEvaqVOrWpqEoOVSU3OlH/SC/4J2+Ov8AgmL8Ovh74F+Bf7HHxV/Zei8V6v4f0ifWPCXgL4heDb74oeOvEWnaIk+s6xr9pcaxP4+8YarbFb6ee61FdRfTLNXgg+xadBHAn8PcdYHxRzHEV8944yviiUKUmnjMfluLo5ZgYVJqMaVBworLsFSnNxUadF0o1J2bU5ycj/QHgTF8B4HLsBlHDeY8P/XKmGoPEYfB4zCyzDGYmFBOvVrRdR4vE1FLnk3JT9nBOMeSnFRj+ptfmh+ihQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH5P8A/BUr/glN8I/+Cj3w38+Q6d4B/aL8GaXcxfC74ux2ZO6NWluk8D+P47WNrrXPAmo3ckjxsqz6t4Rv7qfW/Dyyrca5ofiL9W8L/FTN/DnMeVe0x/DuMqxeaZQ6ltXaLx2Ac7RoY6nBJPWNLF04xo4i3LQrUPznxC8O8t45wN37PB55hacll+ZqF7rWSwmN5bSq4Oc22viqYacnVofFWo4j+Wv9gT/goj+0z/wRf+P+vfse/tieFPFk3wMtfETReKPA13u1LV/hhcatctInxP8Ag9emQ2Wv+DNeVm1fUtE0y4bRPE8Dy61oUll4jN+ur/1Dx74e8NeMuQUOL+D8XhI55PD3wuOh+7o5nGlGzyzN4cjnQxmHa9jTr1IqthZKNGuqmG5HS/nzg3jbPvCzOa3DPE+GxLyiNe2Iwkn7Srl8qjuswyyXwVsLWX72pSpy9jiFetRca7n7X+774b/EjwH8YPAnhb4nfDDxXovjjwB410i213wt4q8PXiX2k6xpd0D5c9vMuGjlikWW2vbO4SG90++gubC/t7a9tri3i/hXMctx+UY7FZZmeEr4HH4KtKhisLiIOnVo1YbxlF7ppqUJxbhUg41KcpQlGUv6+wGOweZ4PD5hl+JpYvBYulGth8TRlz06tOWzT3TTTjOEkpwnGUJxjOMox7auI6woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/0v7+KAKWoajp+k2kt/ql7a6fZQAGa7vZ4ra3j3MFXfLMyICzMFRSSXdgqgsVFABp+o6fq1pFf6Xe2uoWU4Jhu7KeK5t5NrFW2Sws6EqylXUEFHUqwDBhQBdoAKACgAoAKACgBCQoLMQqqCWYnAAHJJJwAAOSSePagDI0rxDoOum5XRdZ0zVmtHCXS6ffW12bdm3BfNEEjlA5VgjEbX2tsZtrbQdmt7/db+v67mxQIKACgAoAKACgD4h/4KV6B/wkv/BP/wDbE04J5ht/2e/ibrwXGefCvhq+8UBgMHlDo4ccdVyMYrWg7Vqf+OK+92Pzrxcwv1vww49pWvy8LZxibf8AYFg6uMv8vYXPw8/4Nj/GOnjwP+1d4GudRtYL638Z/CzxDYWE1xHHcXQ1vQvGthcvawOyvOY18MRmURBmVFDMNoBXqxy1pvupL7uX/Pv9x/PP0PMTz5Vx1g7/AO75hkeKt2+uYbMaV/K/1K2+vL0sf1Q1wH9lhQAUAFABQAUAFAGPqviHQdCNsutazpmktduUtV1C+trQ3DLtDeUJ5ELhCyh2A2puXey7l3A7N7X+6/8AX9djXBDAMpDKwBVgcgg8ggjIII5BB596BC0AFABQAUAFABQBS1DUdP0m0lv9UvbXT7KAAzXd7PFbW8e5gq75ZmRAWZgqKSS7sFUFiooANP1HT9WtIr/S7211CynBMN3ZTxXNvJtYq2yWFnQlWUq6ggo6lWAYMKALtABQAUAFABQAUAISFBZiFVQSzE4AA5JJOAABySTx7UAZGleIdB103K6LrOmas1o4S6XT762uzbs24L5ogkcoHKsEYja+1tjNtbaDs1vf7rf1/Xc2KBBQAUAFABQAUAFAGN/wkegf2t/YP9taX/bWN39lfb7b+0Puebj7J5vn7/K/e7Nu/wAr95s8v5qB2e+tvT9TZoEFABQAUAFABQAUAY+q+IdB0I2y61rOmaS125S1XUL62tDcMu0N5QnkQuELKHYDam5d7LuXcDs3tf7r/wBf12NcEMAykMrAFWByCDyCCMggjkEHn3oELQAUAFABQAUAFAFLUNR0/SbSW/1S9tdPsoADNd3s8Vtbx7mCrvlmZEBZmCopJLuwVQWKigA0/UdP1a0iv9LvbXULKcEw3dlPFc28m1irbJYWdCVZSrqCCjqVYBgwoAu0AFABQAUAFABQAhIUFmIVVBLMTgADkkk4AAHJJPHtQBkaV4h0HXTcrous6ZqzWjhLpdPvra7NuzbgvmiCRygcqwRiNr7W2M21toOzW9/ut/X9dzYoEFABQAUAFAH8Zv8AwXJ/Y38WfspftGeEf2//ANn37d4Y0Lxz440vX/EmpeHovKf4cfH3SrldasvE67EMcFh8QnsH1vdNFPbt4usfESahKqa/pNhL6eFqqpB0p6uMbK/2oPS26+Ha3u6Ws3Zs/gP6RvAOO4K4rwPifwv7TB4bMcyoYrGVsKrPKuJ6E/rFPGKyajSzR0niLyUo/XqeKVV2xVCmf0of8E9f20/CP7dX7NnhL4waM1jp/jO0jj8MfFnwfay7pPCPxD022hOrW0cMjyTroetxyQ+IPDFxI8pm0TUba3uJv7TstSt7fhrUnSm49N4vuvuWq2enTqmj+tvC3xBwPiRwlgc+w7p0sfBLB53gIPXAZrRhH28FFty+r4hOOKwc3fmw9WEJSdanWjD7J/4SPQP7W/sH+2tL/trG7+yvt9t/aH3PNx9k83z9/lfvdm3f5X7zZ5fzVkfo9nvrb0/U2aBBQAUAFABQAUAFAGPqviHQdCNsutazpmktduUtV1C+trQ3DLtDeUJ5ELhCyh2A2puXey7l3A7N7X+6/wDX9djXBDAMpDKwBVgcgg8ggjIII5BB596BC0AFABQAUAFABQBla3NosGlX/wDwkUmmpok1tLa6kusG2/s2e0u0NvNa3iXn+jTQXSStA9vMrpOshhMb79jVCcqcozhKUJwkpwnBuMoSi7xlGSs4yi0mmndNXVtBShGpGUJRU4zi4yhKKlGUZK0oyi7qUWrppqzTs73Z+F3jX/g3d/4Jd/FO9v8AxP4X8LfEXwDa65c3N6sPwt+Kt4fD9tNPK7zppFl4rsvGtpYW0c7OItOt9tjYgC0tbW2too7ZP3HLvpE+JeAo0qNXG5ZmapRjBVMxyynKtOMUknVqYOrgZVJNL3qkv3k3eU5Sk3I/I8d4H8BYyrUq08JmGXupJzdPBY+pGnFyd2qdPFQxSpxv8MIrkgtIJRSjH+Wr/gqX/wAE3Pgt+xr+174N/Z6+CHi34m654f8AFHw98C+Jbq8+I+qeF9e12z8ReL/F/izQ5bK1ufDXhPwdZnS4NP0jSJrWGfTpr0XE92019NHJDFb/AGeX/Sa4ulT5sbkXDla0mn9WhmWGbiknf95j8Wk99k+luqP5A8YsBhPD/jrL+FsiVfGYXGZVluLnUzKrCrioYrH4/HYaVOE8LRw1L2MaWHoShGVB1OeU3KpKLio/0G/sz/8ABtR8N/2df2lfg/8AH4/tW+OvGGm/B7x74d+I2l+CY/htpXhe/wBX8QeEdUttc8P2+oeMLXxrqax6KNVsrU65p8HhnzdY037Tpq3lit0868HEv0ksy4h4bzfIf9VcDg6mb4DEZdVxrzKriqdHD4ulOhXlTwk8JSbreynL2FSWIapVOWo4S5VE/qHIfAjA5JnuWZz/AKxYvE08sxlDHU8IsBTw86tbDVI1aKnio4upal7SEfbQWH5qtPmp80ObmP6bq/mg/ewoAKACgBCQoLMQqqCWYnAAHJJJwAAOSSePagDI0rxDoOum5XRdZ0zVmtHCXS6ffW12bdm3BfNEEjlA5VgjEbX2tsZtrbQdmt7/AHW/r+u5sUCCgAoAKACgAoAKAMb/AISPQP7W/sH+2tL/ALaxu/sr7fbf2h9zzcfZPN8/f5X73Zt3+V+82eX81A7PfW3p+ps0CCgAoAKACgAoAKAMfVfEOg6EbZda1nTNJa7cparqF9bWhuGXaG8oTyIXCFlDsBtTcu9l3LuB2b2v91/6/rsa4IYBlIZWAKsDkEHkEEZBBHIIPPvQIWgAoAKACgAoAKAPzL/4Kc/8E3vgN/wUH+Dc+k/ES403wB8UfBtldy/Cr43pb2w1PwdqFwS66LrpeS2bxB4F1m88tdY8NXF0jiV/7S0OfT9ajjum/SPDfxLzrw6zb6zg3LF5RipwWbZPUqONDF01p7ai3dYfHUo39jiIx1X7qsqlFuB8Lx3wFlXHOXfV8Slhszw8ZvLc0pwUq2Gm9fZVYqzr4OpL+LQcla/tKThVSnH+Rb9iz9uD9qX/AIIeftKa5+zj+0ToOq+J/gDq+tpe+MPA+mX66xpD6df3D2Vp8bvgFrs72+m36X0Nm7Xtgkllp3iqOxufDniaHw/4w0ZLvw7/AFrxfwbwn458M4fibhnF0KOeU6Dp4LMHFU6ntKceeeSZ9Rh7SdN05StCf7yphJTjXw0q+EquGI/mvhjiniTwh4gr5BxBhq9TKZ1VLF4FNzgoTfLDNsmqz5YTU4xvKK5KeKUJUa6o4mkpYf8AvT+D/wAYPhp8ffht4S+L3wf8YaR47+HXjjSotY8NeJtEnMtpe2shaOaCeKRIrvTtU066jn0/WNH1K3tNV0bVLa60zU7O1v7W4t4v4UzfKMyyHMsXlGb4OtgcxwNV0cThqytOElrGUWrxqUqkGqlGtTlKlWpShUpznCUJy/r/ACzM8BnOBw2Z5ZiqWMwOLpqrQr0neMou6cWmoyhUhJOFWlUjGpTqRlTqQjOMoR9KrzTvCgAoAKACgBCQoLMQqqCWYnAAHJJJwAAOSSePagDI0rxDoOum5XRdZ0zVmtHCXS6ffW12bdm3BfNEEjlA5VgjEbX2tsZtrbQdmt7/AHW/r+u5sUCCgAoAKACgAoAKAMb/AISPQP7W/sH+2tL/ALaxu/sr7fbf2h9zzcfZPN8/f5X73Zt3+V+82eX81A7PfW3p+ps0CCgAoAKACgAoAKAMfVfEOg6EbZda1nTNJa7cparqF9bWhuGXaG8oTyIXCFlDsBtTcu9l3LuB2b2v91/6/rsa4IYBlIZWAKsDkEHkEEZBBHIIPPvQIWgAoAKACgAoAKAKWoajp+k2kt/ql7a6fZQAGa7vZ4ra3j3MFXfLMyICzMFRSSXdgqgsVFABp+o6fq1pFf6Xe2uoWU4Jhu7KeK5t5NrFW2Sws6EqylXUEFHUqwDBhQBdoAKACgAoA//T/v4oA8t+LfgTUPH/AIZh0vS72G0vbPUYdRhS7aRLS68uC5t2gmeJJXjYLcGSGTypFDpsZVWQyIFRdnf/AIH6S/L77+6fCTwJqHgDwzNpeqXsN3e3mozajMlo0j2lr5kFtbrBC8qRPIxW3Ek0nlRqXfYqssYkcCTu7/8AB/SP5fdb3vUqCQoAKACgAoAKAMbxFpJ13QdZ0Vbl7NtV0y909bpBuaA3dvJAJdoKl1Qvl0DLvTcm5c7qBrRp9n/Xf8vvPDvhB8INe8B69qOta1qNhIslhLptra6bLcTLcLNcW07XNy09vbhFQWyiGEK7l5C7tH5arKFSkmrJPfvf/wBtj+f3W976KoICgAoAKACgAoA8R/aZ8Pf8Jd+zf+0D4T2eb/wk/wAEfit4e8vGfM/trwHr2m7Md9/2nbjvnHerpu1SD7Ti/wAT53i/C/XuE+KMFa/1zh3O8Lbe/wBYy3FUrW6357H8jv8AwbiaRdeJPjb8eNFg1CKxhsPDXw28a3eWk+1TxeGPEut2iR2iIpUyNL4gSKSSR0WCOYuBK2In7scvdpvs5L70v8j+NPoeYv2ecccYG/8AvOV5PibX3+p4rG0b7O9vr3db+Z/ahXnH92hQAUAFABQAUAFAHzr8X/hBr3jzXtO1rRdRsI1jsItNurXUpbiFbdYbi5nW5tmgt7gOri5YTQlUcPGHRpPMZYguMklZp797f+2y/P77+77j4d0k6FoOjaK1y942laZZae1042tObS3jgMu0liiuUyiFm2JtTc2N1BL1bfd/12/L7jZoEFABQAUAFABQB5b8W/AmoeP/AAzDpel3sNpe2eow6jCl20iWl15cFzbtBM8SSvGwW4MkMnlSKHTYyqshkQKi7O//AAP0l+X3390+EngTUPAHhmbS9UvYbu9vNRm1GZLRpHtLXzILa3WCF5UieRituJJpPKjUu+xVZYxI4End3/4P6R/L7re96lQSFABQAUAFABQBjeItJOu6DrOircvZtqumXunrdINzQG7t5IBLtBUuqF8ugZd6bk3LndQNaNPs/wCu/wCX3nh3wg+EGveA9e1HWta1GwkWSwl021tdNluJluFmuLadrm5ae3twioLZRDCFdy8hd2j8tVlCpSTVknv3v/7bH8/ut730VQQFABQAUAFABQAUAfLn/CivEH/Cy/8AhKP7asv7E/4SP/hI/O8y5/tfP2/+0PsPk+T5Pmeb/o/2n7Ts8n9/5Xmf6PQac65bWd7W3/8AtP1+fU+o6DMKACgAoAKACgAoA+dfi/8ACDXvHmvadrWi6jYRrHYRabdWupS3EK26w3FzOtzbNBb3AdXFywmhKo4eMOjSeYyxBcZJKzT372/9tl+f33933Hw7pJ0LQdG0Vrl7xtK0yy09rpxtac2lvHAZdpLFFcplELNsTam5sbqCXq2+7/rt+X3GzQIKACgAoAKACgDy34t+BNQ8f+GYdL0u9htL2z1GHUYUu2kS0uvLgubdoJniSV42C3Bkhk8qRQ6bGVVkMiBUXZ3/AOB+kvy++/unwk8Cah4A8MzaXql7Dd3t5qM2ozJaNI9pa+ZBbW6wQvKkTyMVtxJNJ5Ual32KrLGJHAk7u/8Awf0j+X3W971KgkKACgAoAKACgDG8RaSdd0HWdFW5ezbVdMvdPW6QbmgN3byQCXaCpdUL5dAy703JuXO6ga0afZ/13/L7zw74QfCDXvAevajrWtajYSLJYS6ba2umy3Ey3CzXFtO1zctPb24RUFsohhCu5eQu7R+WqyhUpJqyT373/wDbY/n91ve+iqCAoAKACgAoA8q+OHwY+H/7Q/wm8d/Bb4paMmveBPiHoF1oGu2JKJcwpKUnsdV0y5aOX7Dreh6lBaazoepJG0unavYWd7EDJAoaoSlCSlF2ad1/XZrR+R4vEXD+V8VZJmXD+c4dYnLc1w08LiaeinFStKnWozal7LE4arGGIw1ZJujXpU6i1ifxG/Cnx18cv+CE3/BQHXfBPjyHVfE3wf8AEcllZeLoLCF4NO+LPwbvr+6/4Rf4keF7WeX7FH4x8KSNeyw2jXBNhrVt4q8ETanHY6ndak3qSUMXRTTs1t15ZdYvR6P8rOzP878kzLiP6NvificuzONfGZDi3Tp46NKLjSzvIKlWf1LNsHCUvZrH4FupKMHOXs8RDG5dKrGlWnWl/Xp8P/BOm/FTVfC3xv8Ah7470HxX8LvGtxYfEXwx4o0m7uZ7jVdJ1K4XWLWKKI26LFcbm+xXIuJYriydJory0gvoJrFPKknFuMlZp2a7P+v+Af6P5Xm2X51luCzXK8VSx2X5hhqWKweLoT5qVehWgpQnH3Lp2dpwlyzpzUqdSMJxlGP2nSOsKAMbxF4i0DwhoGteKvFWtaV4b8M+G9Kv9c8QeINcv7XS9G0TRtKtZb3UtV1XUr2WCzsNPsLOCa6vLy6migt4IpJZXVFY1th8PXxdejhcLRq4nE4mrToYfD0KcqtavWqyUKdKlThGU6lSpNqMIRjKUpNJK9ubKvXo4ajVxGIq06GHoU51q1etONOlRpU4udSpUqTajCEIpylKTUYxTbaWp/Gn/wAFBf8Ag4f+L3xV8b3f7Pn/AATU0fWLDTrrWItCs/jVaeFbjxJ8UPiJqMVzhrT4U+BbzTNRTQ9F1IxPDbahq+h6r4w1ezlWex07whcxh5/7G4A+j3lGVYKHEHiTWozqQouvPJZ4uOGyzLqbj8Wa46E6br1qd05U6OIpYSlNOM6mMi/d/l7jTxszPMcXLJeBKVWFOVVUY5rHDyr5hjpqXw5dg5UpqjSqWajOrSniqsHeFPCSR++H/BHz4i/t3/E39lCbxB/wUC8MeIPD3xUh+IOt6d4NufGngyx+HnjzxD8NoNG8Oy6Xq/i/wbYaZoY0rUE8QT+I9Ms573QND1PVNM0+zv72xuGlTWdV/BvF7L+Bct4rVDgDE0MRlUsvoVMZHB4yeYYDD5lKtiFVo4PGTqVnVpvDxw1WcYV69OlVqTpwqKzpUv2Lwyx3F+P4cdbjPD1qGYrG1aeFlisLDBYyvgI0qDp1MVhYUqKpzVZ16cJSo0alWnCE5wldVqv6q1+WH6IFAHzr8X/hBr3jzXtO1rRdRsI1jsItNurXUpbiFbdYbi5nW5tmgt7gOri5YTQlUcPGHRpPMZYguMklZp797f8Atsvz++/u+4+HdJOhaDo2itcveNpWmWWntdONrTm0t44DLtJYorlMohZtibU3NjdQS9W33f8AXb8vuNmgQUAFABQAUAFAHlvxb8Cah4/8Mw6Xpd7DaXtnqMOowpdtIlpdeXBc27QTPEkrxsFuDJDJ5Uih02MqrIZECouzv/wP0l+X3390+EngTUPAHhmbS9UvYbu9vNRm1GZLRpHtLXzILa3WCF5UieRituJJpPKjUu+xVZYxI4End3/4P6R/L7re9/G//wAFfP8Aisf+C0Pwz8LZ83ytT/Zb8JeWeQP7Y1zStR8ojn73/CQ7sY/jzg5+b1MNphpP/r49PL9dP6sf52+Ov+3/AEgcnwW9q3BmBte/8fE0atvK/wBa2879T+3KvLP9EAoAKACgAoAxvEWknXdB1nRVuXs21XTL3T1ukG5oDd28kAl2gqXVC+XQMu9NyblzuoGtGn2f9d/y+88O+EHwg17wHr2o61rWo2EiyWEum2trpstxMtws1xbTtc3LT29uEVBbKIYQruXkLu0flqsoVKSask9+9/8A22P5/db3voqggKACgAoAKACgAoA+XP8AhRXiD/hZf/CUf21Zf2J/wkf/AAkfneZc/wBr5+3/ANofYfJ8nyfM83/R/tP2nZ5P7/yvM/0eg051y2s72tv/APafr8+p9R0GYUAFABQAUAFABQB86/F/4Qa94817Tta0XUbCNY7CLTbq11KW4hW3WG4uZ1ubZoLe4Dq4uWE0JVHDxh0aTzGWILjJJWae/e3/ALbL8/vv7vuPh3SToWg6NorXL3jaVpllp7XTja05tLeOAy7SWKK5TKIWbYm1NzY3UEvVt93/AF2/L7jZoEFABQAUAFABQB5b8W/AmoeP/DMOl6Xew2l7Z6jDqMKXbSJaXXlwXNu0EzxJK8bBbgyQyeVIodNjKqyGRAqLs7/8D9Jfl99/d+Af2sv+CWPwg/bU/Z2vfhP8YGttM+Ium3uqa/8AC74saDZrda78L/EV7Z2lt5do0/2OTXvC2rmwtF8YeFrqW0sdagSGW0l07XNL0XX7D77w+8Q878PM4jmOWTdfBV3ThmuU1ako4XMcPFvR6SVHFUlKTwuLjGU6M5SjKNWhOrQq/Gcb8FZTxxljwWPj7DF0FOWXZlTipYjBVpLdfw/bYao0liMNKShVilKMqdaFKtS/ku/Zn/ae/bC/4ID/ALWfiD4B/Hvw1q/iL4I+INWg1Hxt4Bs7qW68NeMPDtzKdP0742/AvWNQFpYrrTWlr5c8UhsINejsJfBXjm10bxBo1jfeFv7D4l4Y4Q8euE8Pn2Q4mlh87w9KVPBY6cVDE4TERXPUyXPKNNVJ+x55XjJOo6DqLGYKVahWqQxX8v5Dn/E/g3xHWyfOMPVr5TXqKpi8FCXNh8VQk+SGbZRVmow9ryws03SVZU3hMWqNelCeH/vI+Bvxy+Ff7SPwt8I/Gf4L+MNL8c/DrxvpqaloWvaXI2OGMV5pupWcyx3mka5pN2k2na1ompQWupaTqNvcWN9bQ3ELov8ACmd5HmnDmaYvJs5wdXA5jgqns69CqvnCpTmvcrUKsGqlGvSc6VWnKNSnOUXzS/r/ACjN8uz3LsNmuVYqni8Di6aqUa1N/KVOpF2lSrUpJ061GpGNSlUi4TipRaPWa8k9IKACgAoAxvEWknXdB1nRVuXs21XTL3T1ukG5oDd28kAl2gqXVC+XQMu9NyblzuoGtGn2f9d/y+88O+EHwg17wHr2o61rWo2EiyWEum2trpstxMtws1xbTtc3LT29uEVBbKIYQruXkLu0flqsoVKSask9+9//AG2P5/db3voqggKACgAoAKACgAoA+XP+FFeIP+Fl/wDCUf21Zf2J/wAJH/wkfneZc/2vn7f/AGh9h8nyfJ8zzf8AR/tP2nZ5P7/yvM/0eg051y2s72tv/wDafr8+p9R0GYUAFABQAUAFABQB86/F/wCEGvePNe07WtF1GwjWOwi026tdSluIVt1huLmdbm2aC3uA6uLlhNCVRw8YdGk8xliC4ySVmnv3t/7bL8/vv7vuPh3SToWg6NorXL3jaVpllp7XTja05tLeOAy7SWKK5TKIWbYm1NzY3UEvVt93/Xb8vuNmgQUAFABQAUAFAHlvxb8Cah4/8Mw6Xpd7DaXtnqMOowpdtIlpdeXBc27QTPEkrxsFuDJDJ5Uih02MqrIZECouzv8A8D9Jfl99/dPhJ4E1DwB4Zm0vVL2G7vbzUZtRmS0aR7S18yC2t1gheVInkYrbiSaTyo1LvsVWWMSOBJ3d/wDg/pH8vut73qVBIUAFABQB/9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAqX9lb6lY3unXaeZa6haXNlcx/8APS3uoXgmTnI+aORl5HfvQRVpxq06lKavCrCdOa7xnFxkvmm0fxQ/8G6N7ceDf2+/jF4E1B9kl98APH+jSRH5d+s+Fvid8NZR8vrHZwax8vBGc9AQ3qY1Xop9pp/JqS3/AOHv+Mf89fopVJYDxNz/ACyq7OpwxmdBra+IwWcZQ9vKEa/p95/bTXln+hoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB+df/BSn/gn54I/b/8AgXdeDbw2Hh/4ueDV1DXPg18QLiFs6D4imgQXOga1LBFJdTeDPFq21tYeILaJJ3tJodN8QWtrdX+iWttcb0KzozvvB6TXl3Xmt91fbXeP5V4ueF+XeJ/Dc8vqOnhc8y9VcTkGaSj/ALri5QXPhsQ4+/LL8coQpYqEeZwcaWJhCVXDwhL+av8A4Jbf8FBviH/wTa+OPiX9in9sK11jwt8JH8Z3Wi6nB4g3y3XwH8fXc6b/ABBaSI0sVz8NfFRmt9Q1z+zpbnS/IvLTx/4dllgutZHiHtxFFV4qpTacktLfbj2/xLpqn0dtz+R/BnxRzXwk4jxfh7x5CvgsjeYVMPVjirufDWZ1JK+Kpv3oyyjG80auJdKU6PLUhmmFlKMsQsX/AGv2d5aajaWuoafdW19YX1tBeWV9ZzxXVpeWl1Ek1tdWtzA8kNxbXELpLBPC7xSxOkkbsjK1eWf6FU6lOrThVpThUpVYRqU6lOSnTqU5rmhOE43jOE4tSjKLtJO6umWaCz+JX/gvD/wUi8b/ALUXxotP+CbP7Js+reJfC+meNdK8HfE7/hDWkutQ+MnxlbVrex034X6X9kkDX3hnwTrxgtNStnYW2s+PYZftEP2PwnpmoX/9q+BXhzguF8mn4kcVqlhsVUwVXGZZ9c9ynk+TKjKdXM6vPH3MTjaHNKnJe9RwElytzxVSnD+UvF/jrF8QZpHgXhx1MRh4Yunhcf8AVbynmmae1UKeX0+W7nh8JWtGcb8tXGRd1y4WE5/uv/wSW/4JJfDL/gnr8NdL8W+LNM0Txn+1f4v0aN/iH8Rnhjv4vBseoQpJc/Dn4b3EyE6Z4e07Itda1u2SDU/GuoRS3+oSxaPHomhaN+GeLHixmfiDmVXCYWrWwfCuDrNZdlybpvGOm2o5jmMYv95iKnxUaEnOlgqbVOmnWlXr1f13w38N8BwVgKeJxNOliuI8VSTxuOsprCqaTlgcBJr3KFP4ataKhUxc05ztSVKhS/ZOvx0/UDm9U8Y+END1fSPD+teKvDej69r7+XoOiaprmmafq+tybtmzSNNu7qK81J94KbbOGdtw24BrppYPF16NXEUcLia1Cgr169KhVqUaK3vVqRg4U1bX35R766GFTFYajVpUKuIoUq1d2o0alanCrWd7WpU5SUqjvp7ibv8AcdJXMbhQAUAFABQAUAFABQAUAFABQB/Eb+2p/wAVh/wcQ+CtIH761sv2mP2KdKYdf9EsPD/wS1HVExyBseTUFPb5ckDkV6tLTBv/AK91X87zt6/0uh/nf4hf7f8ASpy6h8UKfF/h7Ra/uUsLw9WrLqtHKqtVbTW5/blXlH+iAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfDX7fX7APwQ/wCChPwWvfhV8WtPGm6/pgvNS+GPxP0q0t5fFvw08UTwJGup6VJJ5Z1HRNQMNtb+KfCt1cRab4isIYg0ljq9houtaV9xwFx9nfh/nUM0ymp7TD1XCnmeWVZyWEzPCxk37Kqlf2denzSlhcVBOph6knpOjOtSn8lxjwblPGmVTy7Moclanz1MBmFOMXicBiHG3tKbduelO0ViMNKUadeEVdwqQpVIfxefAT4//tkf8G+/7X2u/Br4yeH9S8U/BPxRqUGoeMPBNldTSeDvib4Reb+z9P8AjH8GdVvxBZ2Piy1s4PIkScWZvms5PBPjm2sL7T9Pv/D39l59kHB3j9wjQznJ8RTwud4WnKng8bUhFYzLMWo+0qZPnNKm5ynhZzlzLlUuTnWNwM6tOdSFf+WcnznijwY4mrZXmdGeIyrEVFPFYSDf1XMMM3yU80yurNqMMTGKtZqPPyvCYuMZwhOh/eL8Avj78Jv2nfhP4R+NnwS8X6d42+HnjXT1vdJ1ewYpNbzofLv9F1rT5dt5oviDRrsSWGtaLqEUF/pt9DLBcRKQjP8Awpn2Q5rwzmuLyXOsJUwWYYKo6dajUWklvTrUai9yth60LVKNam5QqwkpRe5/X+TZzluf5dhs1ynEwxeCxUOenVho4vadKrB+9Sr0pXhVozUZ05pqS0R7HXjnqBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/1f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iL/4Jn/8AFrv+C7/xA+Hx/wBGS7+Kv7YXw7WP7iPFoQ+ImvWyDnBjkHhCGSHkrJ+6KZ3JXq11zYRPtGnL7+Vfrf8Apn+d3hF/wjfSUzTK/gU8748ypLZOOG/tXEwXXRrAxcdddLXuf26V5R/oiFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfOPwY/a8/Zp/aH8W+PvAnwU+Mng74jeLfhhdG18baL4furmS40vbdyWDXtpLdWlta69pCX0ZspNc8O3GraLHdtFbPfLNPAj3KnUgk5RcVLZv9ez8mr+tj5Ph/jrhHirHZnlvD2f4DNsdk0+TMcPhak3Kj77pOpBzpwhiaCqL2bxOFlWw6m4wdXmlFH0dUH1gUAFAH88H/AASf/wCC0vxH/wCCg37V/wAcP2f/AIg/CPwP8PdC8N+C/E3xH+F9/wCGbvXm8QW2h+F/G3hjwndeFvHT6vqupaf4g8Q3Ft4ustTXWfD9h4XsLc6Rqds2jTLcW89v/Qnir4MZd4f8KZJn+X5vjswr4nGYbLs0p4mFBYeVfFYLE4qGJwKpUqdShh4ywk6XscRUxVSXtaclWjySjL8T8OfFPHcacRZtk2Ny3CYKjQwlfH5fOhKt7eNHD4vD4aWHxntKlSFavKOJjU9rRjh4R9lUi6UuaEo/0P1/PZ+2BQAUAFABQB+MP/BW/wD4JX6B+3P4Db4k/DGz0vQP2ofAWkSR+G9TlMFhY/E/w/aCW4Hw+8VXjBIorxXaZ/BviG8kEWkX88um6lLFoupTXel9OHxDpPlld03uv5X/ADJe780nrvo1734B44+C+F8SMt/tbJ4UcLxlllCSwlaXLSpZxhYXmsrxtR8qjNNyeX4qbtQqzlSrSjhqs50vyH/4JDf8FVvEn7MviyD9hn9tC61bw34L0bXp/BfgPxd42S40/Vvgn4mtb17CX4dePDqOy4svAp1BWtNN1C9Cf8IDen7JelfB0yz+FOrEYdVF7WnrJq7S+2ns1o1zW8/e8mfhfgV41YvhDHR8OPEGdfCYChiZZflmOzFTpV+HsZCfsnlOZe1tOnlvtU4UatS39mVP3dT/AGBqeC/Xr/gtp/wUUj/YS/ZTurHwBrUNv+0H8eYtV8FfCL7LOhvvC+mi0iHjH4pxoDwvhHTtQtLbQJssreMNc8Oztb3mn2epxr+o+Cnh4+OuKoVMdRc+HsidLG5tzR/d4qo5t4PK29n9cqU5yrr/AKA6GJXNCpOk5f1D4rcbrhDh2UMFVSzrOFUwmWOLXNh6fIvrOYpXf+7QnGNF+8vrVag3GdOFRH5Y/wDBt3/wTg/s7S7r/gob8aNEe48Q+JP7Z0H9nLT9bhaS5sNHle50vxn8XHW5Dzf2h4ilN/4T8KXchimXRk8T6qEurXxFot9F+pfSO8RvaVYeH2TV1HD4b2NfiKpRdo1K0VGrg8pvGy9nh1yYvFQSa9s8LSvGVCtA/PfAzgbkpy41zWi5V6/taORwrK8oUm5U8Vmfva89d8+Gw0nqqSxFT34V6M4/1u6lqWnaNp1/rGsahZaTpOlWV1qWqapqV1BY6dpunWMElze39/e3UkVtZ2VnbRS3F1dXEscFvBHJLLIiIzL/ACZSpVK1SnRo051atWcadKlShKpUqVJyUYU6cIpynOcmoxjFOUpNJJtpH9I1KkKUJ1as4U6dOEqlSpUkoQpwgnKc5zk1GMIxTlKUmlFJttJXP5Hv+CmX/Bxc1hqer/AL/gnUbfxHr8tzJ4e1j9o6fSl1qxXUpZfsZ0/4KeGLy2uLbxHdvcsttb+N9esbzR7mTzB4Y8P6zb3Ol+J1/rTw0+jv7SlSz7xEUsPh1FYijw5Gr7Go6aXP7TOsTCUZYaCj70sFQnCtFW+s1qMo1MLL+bePfG7kqVcm4Ica9ZydCrnjp+1hzt8vJlVCUZRrycvdji60ZUpa/V6NRSp4iP8ANp+2F+zb+2X8FYvhR8ff2w7/AMUaZ8Tf2jZvFHijw3ZfETxdq2s/HJdP8Gv4Zc+K/G9lfPc6p4QivbrxLaW3hrTta1O18SRTaVqsdxoWkQ6fbvcf0dwfxHwbnTzXIOD6eFqZZw6sLhcTPL8JRo5G6mNWJX1XBTgo0sY4Qw05YmpSpSwzVWk4160qk1D8L4myLijKll2c8TzxFPH548RiKEMdiqlXN1DCvDv6zi4TcqmGU5YiMaEKtSNdOnUUqVNQi5f6TP7Efizxp48/Y0/ZP8b/ABGuru/8feL/ANm/4J+JvGOo6gztqGp+JNc+G/hvU9X1PUS4DjUNSvbma+vkcB47u4mRgCpFf5w8a4TBYDjHivA5dGFPAYPiPOsNg6dO3s6eGoZjiadKlTtp7OnCMYU2tHCKa3P7p4TxOKxnC/DmLx0pTxmKyLKcRipz1nUr1sBQqVak+vPUnJzmnqpSaex9QV8wfQBQAUAFABQAUAFABQAUAFAH8R3if/isv+Dja2/5a/Y/2qvCP+1j/hBfBmi/rD/wj3/ASntXqLTBf9w35fE/n0fz8r2P878Z/t/0r4fa9nxpgf8AzG5fh/X4fqv4dNz+3GvLP9EAoAKACgAoAKACgDzb4gfGD4a/C2KGTx14t03Q5blDLa2DC5vtWuYgxXzoNJ02C81KS33gxm5Fr9mV/leZCGFfH8Vcf8H8FQpy4mz7B5ZUrR56GFarYnHVoJuPtKWAwdOvjJUuZOHtvY+xU/dc07n2vCPh1xrx3UqQ4V4fxuaU6E1Tr4uPscLl9CbSl7OtmGNq4fBQq8jU1RdZ1nDWFKSdyh8NPjf8M/i6dQi8C+I01S70pI5b/T7iyv8ATNQgt5X8uO5FrqNravcWrORG1xa+dFFI8cUzRSSIj83B3iRwbx48VDhnN443EYGMZ4rCVcNisFiqVKcuWFZUcXSoyq0XK0HVoqpTpzlCFSUZzhGXVxt4YcbeHqwdTirJpYDD4+UqeExlHE4THYSrVhHmnQdfB1q0KNdRvONGv7OpUhGdSkpwhOUfWK+5PgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPin9u/8AYP8Agh/wUC+Ceo/CH4waZ9l1G0+16n8OfiPpdrbv4u+GXiuWBYotc0KeXZ9p0+78qC38SeG7mZNM8R6dElvcG2v7XS9U037TgXjvO+AM6p5vlFXmpz5KWY5dVlJYTMsIpXdCvFX5akLuWGxEV7XD1JOUXKEqtKr8rxfwflPGeVVMszOnyzjzVMDjqcU8TgMS1ZVqLduaErKNehJqnXprllyzVKrS/iq+Cfxt/bJ/4N8f2xda+FHxY0PUPFnwU8WahBfeLfCFjcT/APCE/FvwWJ/sGn/Fr4SalfiK003xpptpH5DpP9mlaW3l8GeNIYWt7C90j+0M7yTg76QHB9HNcpr08JnWEpyp4XFzjH67lON5faVMqzanTvOpg6knzK3MrSWMwcnecK/8q5Vm3FHgvxPVy7MaU8TlWJnGeJw0HL6pmWFvyQzLLak/dp4qEdHflbcXhcXCLUJUv7xP2fv2gvhL+1F8JfCPxu+CPi6w8afD3xpYC80vVLNvLurK6jwmo6FrunSYu9E8RaJd77DWtFv0ivNPvInjkQoUd/4Uz/IM24YzbF5LneEqYLMMHU5KtKesZxetOvQqL3K+HrRtUo16d4VINNbNR/sDJc6y3iDLcNm2U4mGKwWKhzU6kdJRktJ0a0H71KvSl7lWlNRnCas1pE9nrxj1AoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9b+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4ipf+LQ/8HGgz/ov9rftWw/7G7/hd/hGPHpn7Z/wn4/3/P77vm9T4sF3tT/9If6cv+fU/wA7n/whfSv/AJPb8aryv/rFgF6/xP7U+fN0vY/t1ryz/REKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD4r/4KK/Hl/wBmn9if9ov4vWV7/Z+v6L8O9T0PwddJJsnt/G/jiW38EeD7u3UESSyad4h8QafqckcRDi2sp5C8caPImtCHPVpxtdcybX91atfNK3T1V7n594q8SvhHw84rz2nU9licNlVbD4CadpRzHMZRy7ATj1k6WKxVKs1HXkpybsk5R/BP/g2Y+A7R237R37TWo28ii4k0P4G+Ern51jZIBY+PPiBGwJ2SkvJ8OPIdRmIx3alj5m1evHT+Cn6zf5R/9u6fefzP9EHhpqHFnGFWLXPLD8N4GeqTUfZZlmifR6vKeVra1RPc/rArzz+2QoAKAP4J/wDglW3/AAzn/wAF/wD4gfCG5P8AZ9nqnxO/a5+C6F/3UMllpUnjXxR4dIzjdDqk/gbRfsHH717y0IVd2F/u/wAUl/rF4BZfm8f3k6WWcJZy7atTqrBYXE/OksbW9p25JH8eeHn/AAh+MuMyyXuRqZhxLlWuicaf1uvQ+VSWEpcm9+eHe8f72K/hA/sMKACgAoAKACgD8CP+C0H/AASx8I/tNeAPFP7UHwtXQvBvx++GnhS/17xbPe3Flofh74r+B/Cmly3t7aeJtSuXt7DTfFnh3RrKVvDviy/mgtp9PtV8N+I7lNLj0fVPDfo5e61avQwVGlOvUxNanQw9KnFzqTr1pqFKnTjF805VKklFQSbcmrXu4n8z+Pvgrg+NcuxXFuRQw+C4ryvCTrYrmlChh89wOFpOcqOKqScadLH4ajB/U8bUlGEqcVhMXJUVQrYT+NL4DT6x+3x+1v8Ast/B39pT446hpPwy0678K/B+x8XeN9amMXgr4Q6Jqmp6xaeCtH1S4jnXTbzW7m/uvDHhW81QyWOlaxr+jQ391BoOlolr/fCWB8DPCqpUjCjUzyrD2koqz/tDifMKSST2dXC4CFPWzi54HASkl7ao+b+d+GG82zDgzIuL+IpUsJCWCyKnjsxxDccNhFUrV6WW0K8lNQTc54LBVK37uk50FUnGjTSh/pVfEP4kfAL9jP4EP4q8d694W+DfwN+EHhXSdCsPO/0TSdE0LRLCHSfDnhbw7pdus19qmoPbWttpPh7w9pFtfavqc6wWdha3Nw6o38KZflufcY56sJgKGKzjPM3xVWvPl9+rXr1pyq4jFYirK0KVNSlKriMRWnCjSjzTqTjFH+hGNx2TcLZP9YxlbD5XlGWYenRhf3KdGjSgqVDD0KcU5VJuMY0qFClGdSpK0IRcmfxC/trf8FKP2wv+Czfxms/2Rv2OvA/jTQvgnrWptFpXw10aZLTxL8RNP0+6i3eOfjn4ht7pdG0HwhpjNb6k3h641OPwZ4cle1n1rUfEetW+k39p/bHBfhvwh4N5NPi3jDHYOvnVGmnVzKtHnw2XVKkJf7FkeHlBVq+Mqrmp/WI05YzEJSjRp4ajKrCX8ncV8d8TeKWaw4b4YwmKo5VVqWp4ClJRr42EJK+LzetGUaVHDU241PYubwtB8rqzr1Y05x/op/4Jbf8ABEj4JfsF6bo/xS+Jy6H8Zf2p2tUubjx1d2Rn8H/C+eWLNxpnwp0vU4I5ILuAM1rdfEDVLaDxNqMKy/2ZbeF9Ov7/AEef+efFDxrzvjupWyvLPb5NwspuMcDCfLjMzin7tXNatKUlKEvjjl9KTw1N29rLFVadOvH9u8PvCjKuD4UswzBUc04hcVJ4uUL4bL2171PLoVFzKST5ZY2pGNeok/Zxw1Oc6Mv5tP2uvF2rf8Fov+Cy/hv4S/De/udR+EGl+KtN+DHhPXNMkM1nY/Bn4bX2p678VfibazoptGTXZf8AhNPEnhy7nS3k1KyuvB+hzyfaRbpX9HcJYSl4M+DmJzbMYRp5vVwtTOcVQqJRnPOcyhSoZVlkou006EfqeHxMIuSpzjjK0bw5mfhfEuJqeKfijQy3AzlPLKeJp5Vhq1PWMMrwE6lbMcfF6wftn9bxFCclF1ISwtF3kon+gJo2j6Z4e0jStA0Sxt9M0bQ9NsdH0jTbRPLtdP0zTLWKysLG2jBIjt7S1gighQE7Y41XJxmv4FrVquIrVa9acqtavUnWrVJu86lWpJzqTk+spyk5SfVu5/ZlKlToUqdGlBU6VGEKVOEdIwp04qMIRXRRikl5I0qzLCgAoAKACgAoAKACgAoAKAP4jf2ev+Kw/wCDjXxAf9b9j/aq/ac99v8Awg/g34sAfTyjoAA9CgxzivUnpgl/17p/i4279/8Ahtj/ADv4W/2/6V+K6+z404x/8x2X53+X1b70f25V5Z/ogFABQAUAFABQAUAfiX4r+Ffiy7+IfxM8c/tBxeK9B8L6Pdaxf3GuxwpC3i3UXuzb+GfCvgrUNRinsbgajFsW0ksrfULXRtJspDdwWcUBZP8AOLPOCM8r8WcZcS+KtPPcsyXL6+PxVbM40405Z9i5Yj2WTZJw7i8XCrhav1uDjGhPDUcXQy7AYecsRTowp3h/pzkHHuQYfg/gnhbwhnkOa57mVDLsJRyqdSVRcPYOOHVbPM+4mweDnSxVH6nUUniIYmvg6+ZZhiYLD1sROrafoX/BP/wtq178SfFHjKGKa30DRvDNzos8/wA3l3Gpa1f6fc2mnK5wJ/JtdNuLy425aFksjKq/aYWr6v6K+SY7EcYZ1xDThUpZVl2TVsuq1fe5KuMzHFYWrQwik7Kp7OhhKuIq2u6co4ZzjH20JHyH0uM+y/DcF5Fw3VqU62bZlndHMqVLTno4PLMJi6OIxjirul7SvjKOHo3sqkZYpQlL2M0frlX95H+eoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB8X/ALdX7CvwR/b++CWqfB34xaX5F3B9p1P4e/ELTLa3bxd8M/Fr2/lW/iDw/cy7fOtZ9kNv4h8PXEq6Z4j01Psl35N1Dp2oaf8AZcDcc53wDndLOMnq80ZctLMMvqyl9UzLCKV5YfERW0o+9LD4iP7zDVXzQ5oSqU6vy3F3COU8ZZTUyzNKdpLmqYLG04r6zgMS42VajJ7xdlGvQk1Tr0/dlyzVOpD+KP4L/Gn9sj/g3v8A2yNa+FfxU0W/8XfBTxbf2994t8JWNxcDwR8XvBAnNhp3xY+E+oXwS00vxvpdonkOk/2ebzrebwZ4zihWKxvtL/tLOcm4P+kDwdRzTKq1PCZ1hISp4TF1Ix+u5RjuVVKmVZrTp806uCqyfMnHnjyyWMwcnedOr/KuVZrxR4L8UVcuzGlPE5ViZxnicNCT+qZnhL8kMyy2c7Rp4unFW11vF4XFRjaE4f3jfs/ftAfCX9qH4S+EPjd8EvF1h40+HvjXT1vdK1SzPl3Nncp+71DQ9c06TF3oviLRbsSWGtaLfpFeafexSRSptKO/8KZ/kGbcMZti8lzrCVMFmGCqclWlPWM4vWnXoVF7lbD1o2qUa1O8KkJJrqo/1/kudZbxBluGzbKcTDFYLFQ5qdSOkoyWk6NaD96lXpS9yrSmozhNWa0iezV4x6gUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4iv+Cpn/ABaT/guR8PfiX/x6rd+Pf2R/iiZvuKyeGLjwX4elmJ4BXHgV45D0YI6tnDCvUoe9hXH+7Uj993+v9aH+d3jP/wAIf0jcqzj4FPM+Bs55tk1g55fhXJ+X/Ca4vdOzvu1H+3WvLP8AREKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAr3N3a2cay3dzb2sTywwJJczRwRtPcSCKCFXlZFaWaVlihjBLySMEQFmUUEznCmlKc4wTlGKc5KKcpPljFOVlzSk1GK3b0V27FigoKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/ml/wCDlr4znw5+z78CPgVY3ZivPij8S9X8c6xFDJ88vh34YaIllHZ3cYJ22t74g8d6TfwbwPNuvD5MTH7NOtd2Bjec5/yxSXrJ7/JR79ep/Iv0uuIPqnC3DfDdOfLUznN6+Y14xerwmTYdU1TqLpCpisyoVY3XvTwvu25Jn6T/APBHr4LL8D/+Cd37Oei3Fp9m1vxz4Wm+L/iB2Ty5rm7+KV9P4t0drmPqlxZeEL/w1pDK4EirpqLIquGVccTLmrT7RfKv+3dH363/AOBsfrfgPw+uHPCvhPDyhyYjMcFLPcU7WlOec1JY6g5rdSp4GrhKDT1So2eqZ+mdc5+vhQAUAfwQ/t9H/hkj/g4f8K/FQf8AEs8Na18df2b/AIuzTE+T5nhfxlZeDtB+Jc3mcLi71C28eR+ZjYA+JA5WTd/ePAX/ABlv0e8Vlf8AFxNDI+I8oUd7YrBTxdfLVbV+5TlgXbRu2nRn8d8Zf8Y342YfMf4eHq5vkWZt7Xw+KhhaWPd/7844xXs7X1v9r+96v4OP7ECgAoAKACgAoA/md/4OTv26m+Cf7O+g/sh+A9Z+y/Eb9pKCW/8AHrWU+y+0H4H6NfeTfW0uwpNbn4keI7YeHIXBkgv/AA5oPjrTLpAtzEW/pX6N/AyzriGvxdjqPNl3DclTwHPG8K+d1qd4SV7qX9nYef1l/DKniK+BqRvytH4N468Xf2VklHhrB1eXHZ6nPGcr9+jlNKdpxeqlH69XSoxavGdChi6cl7yPwm+JP/BL3wh+zR/wSx+E/wC2b8VfilY/D/4//E7W4vE9h8IvE83lz+Nfh14wTTB4G8J+ENLhtZNVXx3o+hL/AMLF16S5hTTbXRfEt7pevy6Tc+HbKe79fxEx2eeL3iR/qfwvSeIynht1MHUxjclgMPiudRzXNMZWSlGNGnVgsDhlHnqV/qzeEpzliZRl/OfHXg+l4b5HxVXzenl+fVsT7eGT42fLSx2XY90I4enhqcKcqqzDDUIrH1XP92sNXq0avsqlGDn8g+EfiL+1n/wVR+Lv7Mv7J/xP/aISPw3otxY/D34dX/xR1xbDwZ4Ns2jujHqOqNbxW83jLx9fadEnhrw/d6tJe+LPFF2uheFItWihmSSL9eo4TgTwA4Yq4uovrecY2napVjGH9r59iqaUnRw8HdYLLaE2pSSm8PhYNVK08Ri5w+scWW5jnnFmK4Q4MzzitVHF08qyuvnOIjSpJxjNqUlGKlisXKmo4TC1K0qmKxM3hcG68p1IuX+gf+wX/wAE9P2fP+Ce3wqi+Hvwb0P7b4l1eGzn+I/xW123tpPHPxH1m2Q4udWvYgRpug2Mkk48P+EtNaPR9DgllkC3usXmrazqn8Xcd+IPEHiBmrzDOK/JhqLnHLsqoSmsDl1GT+GlBt+0rzSj9YxdS9avJJfu6MKVCH9ycH8FZLwXlywWV0eevVUHjsxrRi8XjqsV8VSSv7OjBt+ww1N+ypJt+9VlUqT/ADs/4L9/8FF7b9kb9mq6+Avw611bf9oL9pLRNU8P2JsLjbqXgL4TXPm6V408bymFxcafqGuRNc+DvBs+62ma/uNd13TLk3XhCWFv0PwE8O5cW8SRz3MaDlw/w5XpYipzx/d4/No2q4LAq65alOg1HGYyPvJU40KFSKhjE5fEeMvG8eG8ilk2BrcudZ7RqUYckrVMHlsr08Vi3bWE6ycsLhXeEueVWtTnzYZ8vhP/AAbcf8E/Z/gl8EtZ/bM+JWiGz+JH7Qmkw6V8MLW/t9l94b+B8F3Bfx6uiyIkttP8UNbs7PW1UiRJvCmg+EdRtJxHrV7FXufSO4/jned0eDstr8+W8P1XVzOdOV4YnO5QlTdLRtSjllGc6Da5WsVXxdOcW6EJnkeBnBjyrKqvFGPpcuOzqmqeXxnG06GUqSn7VX1TzCrGNVd8NQw1SDaqzUf6c6/mc/fAoAKACgAoAKACgAoAKACgAoA/m/8A2VP+CVn7SPwm/wCCufxS/bA8dTeDW+Db+P8A4/fEnwjr9hr0V3rPii4+NaeL7bTdGXw6inUtG1DQrTxvdnX7nVFg083GmyQ6PdarFeR3EXbUxFOWGVNX5uWEWrWS5ba355XXu6W111W/L/J3BXgtxbknjnnXHmZSy95BLM+J83wOKpYmNTEY2fEP16NLDrCK9bD1cNTzCbxU6yjS5qTjQqVlOMz+kCuI/rEKACgAoAKACgAoA/CT9pf486j8avGcqWks1t4G8O3NzaeF9NBYC5UOYp/EF9GdgfUNSVA0MbADT7ExWkf71ry4uv8AMjxj8T8X4i8QzjQqVKXDOU1q1DJMIm0qyUuSpmuJg2lLFYxRTpxemFw3JQhabxFWv/qr4JeFGD8M+GoSxFOnW4qzmjRxGeYxpN0G4+0pZRhZ2bhhME5NVZRcvreK9piJP2aw1Kl6B4Q/bHvPhh4P03wT8L/ht4e0qxsELTah4j1C/wBb1DWdTmCi91nUI9MTQE+2XsiKwhE0sVpAlvYwObW1gWvqsg+kDiOC+H8Hw3wXwflWBwuFi5VMXm+LxWZYrMMbUS+sZhi44P8AsqP1jEyin7NTqQw9KNLDUpSo0acY/I8RfRww3HHEeO4n4541zjH4rFySp4TJsJhMrwmW4Gm5fVstwc8c84l9XwsJNOo6dKeIqyq4qrFV69SR2Phn9pL9r/xn4g0dtA8LS31lNqNosthYeApo9CuIJJkDxX+tXcFzLptkyE+dff2rbfZk/emdQp3fQZN4v+PvEOaZe8rySeKw1TF0FPC4bherDLK1OU0pU8VmValXqYPDOL/eYpY6j7KP7x1UotHzmd+C/wBHXhvKMxWbZ9TwuJpYPEOGLxXFlKea0asacnCphMsoVqFPG4lSS9nhfqFf20v3fsm2pH61V/dp/n2FABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfF37df7CnwS/b/wDgjqnwd+MOmfZ7yD7Vqfw8+IemWsD+Lfhn4ue38q38QaBcS7PPtJ9kNv4i8PXEyab4j0xPsl15F3Dpupaf9nwNxznXAOd0s4yerzQly0sxy+rKSwmZ4RSvLD4iKvyzjeUsPiIr2mGqvnjzQlUpz+W4v4QynjPKamV5nT5ZrmqYHHU4xeJwGJasq1Fu3NGVlGvQlJQr0/dlyzjTnD+KX4H/ABv/AGxP+DfL9snXPhL8WtE1DxZ8FPFeoW194w8I2FxP/wAIZ8WfBJnNhpnxd+EmoX+y007xnptpGYWSf7LLJLaz+CvGkVs9tY32kf2jnmScIeP/AAdQzbKa9PCZ1hKcoYTF1Ix+uZVjeXnqZTm1OnzTng6sndOKmkpRxuEck5wq/wAq5Tm3E/gvxRVy3MqU8TlWJnGeKw0JP6rmOE5uSnmeWTn7sMVCKtaXJdxeExag4wnS/vK+Anx7+FH7Tfwn8IfGz4KeL9P8bfDzxtpy3+j6xYsUmglU+Xf6NrNhJtu9G8QaNdrLp+t6LqEUF/pl/BNbXMSuoLfwnn2Q5rwzmuMyXOsJUwWYYKo6dajU1UlvTrUai92th60GqlCtTbhUpyUotps/sDJs5y7P8twubZViYYvA4uHPSqw0aa0nSqwfvUq1KacKtKajOnOLjJaI9hrxz0woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//Q/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Kz/g5O8P3Gg/tjfArx/Y7rWTWvgDpOnw3EYwf7V8GfEjx1e/aQ2OZorfxHpad8JBDwOd3qYF/u5LtNv5OMf1T/AKZ/nx9LbCywvHvDeaU7weJ4YoUozXWvl+bZjU5+3NGGLorfaMb2P7MfCHiG38W+E/C/iu02/ZfE3h3RPENtsOU+z61ptrqUO085Xy7ldpzyOec15jVm12bX3H9+4HFRx2BweNh8GMwuHxULa+7iKMKsddL6TXT7joqR1BQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfxX/8ABcD9oPxn+2B+3F8N/wBiL4LXd1rWm/DHxJongK20nTruZdP8Q/Hzx7eWFpqtzeNbuYXj8E2dzpXhf7VdwNJ4b1GHxy6yxW13clvUwsFTpOrLRyTd+0Ft0W9r6Xvprof59fSK4pzDjvxGyjw74enPEUsnxeGyyNClUkqWK4mzKpShWnU5NLZdTnQwfPOMnhKscxalGE5qX9i/ww8JX/gH4a/DzwLqviLUPF+qeC/A3hLwlqXizVneTVfFF/4c0Cw0e88RanJI8kkmoa3cWcmpXru7u1zcyMzsxLV5kneTdrXbdlsru9l6H96ZPgauWZRlWW1sVVx1bL8uwOBrY6u26+Mq4TDUqFTFVm226uIlTdao223Obbb3O4JAxkgZOBnufQe/+e1I9EWgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iO/4Lh65qn7TX/BUv4Z/s1eG7p5J/DWkfBn4I2FtD++jh8Y/FjXovE11eqmWX7RJYePPC9pcjhVXSYkkCvHLXqYVKFBzfVym/SOnl2fX5r7P+eH0i8RW4w8Zsn4Rwk25YShw/w7ShH3lHH55iY4ydW23O6WZYKnNbJUIp6qR/a14f0LS/C+g6J4Z0O1Sx0Xw7pGm6Fo9lH/AKuz0vSLOHT9PtY+nyW9pbwxLx91B0rzG22292236s/0IwuGo4LDYfB4aCp4fCUKOGoU1tTo0KcaVKC8owior0NekbhQAUAfxK/8HVPwqfRfjp+yp8c7SB4v+E1+F/jD4Z3l7ACnl3nww8V23inTTNImNlzND8U7sWsjYlli0+RUYpZgJ/av0Wc0VbI+KsjnJP6lmeDzKEJa3hmeElhatk94p5XDnS0TqK+sz+UvpD5d7LN+Hc3irfW8vxWAlJXVpZfiViIcz2UmsxlyvRtQe/KuX+vP9lz4qp8c/wBmv4AfGZZlnf4p/Br4a+Pbt1IJTUfFPg/R9Y1O2kC8JcWmo3V1a3MfWK4hljPKGv5H4oyt5HxJn+TOLisrznMsBBPrTwuMq0aUlteM6cIyi+sZJq97n9K8P5is3yHJs0vd5hleAxkutp4jDUqtSLtb3ozlKMlbSSa0se714R7AUAFABQBjeI/EWh+EPD2veLPE2p2mieG/DGjap4i8QazfyeTY6Roei2M+patqd7MQRFaWFhbXF1cyEHZDE7YOMVth8PXxeIoYXDUp1sTia1LD4ejTXNUrV601TpUoR0vOpUlGEVfVytpcyr16OGoVsTiKkaVDD0qlevVm7QpUaUHUqVJvW0YQi5SdtEnuf5kPx/8A2yPA37Xn/BRHxf8AtY/tEabrfiD4NweM313Q/hZbN5epeIvhn8PFMPwx+DiTPHPYaFD4xjsNIsPH+uBVi02HXfG3iuws9S1o2mkap/pfkHB2O4R8PMJwpw9UoYfOZYNUK+aS1p4fMsw1zPOGlyzxEsG51p4Cho6joYLCznSo89aH8EZ1xPhOJeNsVxHnVOrWytYp1qOXJ+/XwGCVsBlfM1yUVilTpU8bWslTVbFYmnCdbkp1fsj4HfAP9tb/AIOBP2rNT+KvxS1268HfA/wdfQ6R4h8Y2lhPD8O/hH4RV47yy+EnwY8PXL/ZNS8WXFg8EssZlmlh82PxX461Kaa70211f47O8+4L8AeFaWVZXQjjM8xlN1qGDnUi8wzbF2cJ5tnOIilOnhVUvFO0U7PC4GlaFWdD6jKcn4q8ZuI6mY5hWlhcpws1Sr4qMGsDlmGVpQy3K6Emo1MTKDTau2r/AFnGVG5wjV/Vv/gpn/wQj8F/DP4QaF8X/wBg3wtrdnqHwk8L2dt8R/hjHqWpa/4i8daToNuHm+J3h67neW9uviFapE174o0PT0t7TxBZoLzwxp2n6vpx0rX/AOKM74uznizNsRmvEGMli8ZiZWhL4KGGpJt08JhqKk4UMNS5mqdON9W51JTqTqVJX44fR9pxyylxTwDQxTxeTYOnDNcnVetiK+OwuFi3/amAcuaf9o0UnUxeEoqMMVD97hKdPFQlSxWl+wp/wcD+C/Av7Mfjfw/+2df6xrPxX+C3g17v4c+ILSOa61n9oC3tjb6boXgzUbvyrhLP4jwXlxZwX/iPUQLDVvDy3nifWJV1LRtautV6eFuCc0404gweSZND38VPnxVeUW6GXYODX1jG12lG1GlFpRh8VWtKlh6d51YRl1+EH0jKGI4dxeT8azxGIz7IsB7XLsdCMqlTiHDU3CjSw2JqKM1TzSlOdKFTFVV7PFUG8TWccRSrzr/lt+wX+zL8aP8AguJ+3344/ae/aY+23PwS8L+J9O8SfFi7gN5aeH7izs8P4D/Z28BO0nm2+nnTLa2tdYa0m+3aT4Qg1HWtT1FPFniTSb3V/wCxuPOJsm8EeAsDwzw1yRzrFYaph8pjLkniIznpjuIcerJSqe1lKVFTj7OrjJU6NOm8LhqsKWHB2Q5p4tcZYvP8+55ZTh8RCvmM1zxoyjH/AHPJMG3Zxh7OMY1eWXPSwsZ1alRYmvSnX/v/ANP0+w0mwsdK0qytNN0zTLO20/TdOsLeG0sbCwsoUtrOysrS3SOC1tLW3jjgtreFEhhhRI40VFVa/gapUqVak6tWc6lWrOVSpUqSc51Kk5OU5zlJuUpzk3KUpNtttttu5/ZcIQpwhTpwjTp04xhCEIqMIQguWMIRjaMYxikoxSskrK1i5UFBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHzpdfsm/s/XutXevXPw8tJL29uZLyeFdY8RQaZ9pmkMkskek2+rxadEjuSfs0dqloucR2yA5X8kr+BfhXicxr5pW4ToSxOIrTxFSnHMM2p4P21STnOUMBSx1LBwjKTf7mNFUFe0KUT9joeP/i5hssw+U0OMMTDC4WjDDUqjy7J6mN9jTgoU4TzCtl9XG1JRil+/niJ4iVrzrSZ654c+H/gXwgiJ4W8HeGfD/lgASaRoenWE7EDG6S4t7aO4mkI+9LLI7t/EzY3L95lHCnDOQRjHJOH8myrkVlPAZbhMLVelrzrUqUKtSb6znOUpdW9Wfn2c8XcVcQylLPeI88zfnescwzTG4qkv7sKNWtOlTgukIQjBbJKyJPFPjvwX4Itvtfi/xVoPhuEqXjOsapZ2Ms4HUWtvNKlxdvkECO2imkYghVOCKvO+JuHeG6Pt8/zvK8opuLlB5hjaGGnVS6UKNScateWjShQhOb2SbXuxkXCvEvE9f6vw7kObZ1VUlGf9nYHEYqnSb6161OnKjh466zrzpwW7Z8meNv28vhH4f8638KWWveOr1NwjltbY6DorOvBWTUNXhXUACfuyW+iXUTqCyuAU3fhXEf0nuA8q9pSyPDZnxNiI3UZ0KLyzLpSXSWLx8Y4tJvRSpZbWg1eUZtcsZf0Dwx9FHxCzf2dXP8TlXCuGlZzhXrRzXMlF63jhMvnLBt21cauaUJxdouKfMesfs6fHZvjx4a1rW5fDEvhm50PWBpU0S3zanYXYltY7uKS1vXs7BvPijkCXdq0DGHdbzCZlulji+68JPE1+J2TZjmVTJZ5NWy3MFgqkFiXjMLXU6Ma8J0cRLD4eXtYRmo4ii6b9nelUU2q8YQ/P/GTwqj4U53lmV088hndHNMuePp1JYVYLF4d0688PUhXw0cTil7KpKHNh66qr2lqtNwUqEpz+hq/Vz8fCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+J/28v2Dvgn/wAFA/gjqfwg+LunCz1O0+1ap8N/iRplpBL4s+GXi2S3EUOuaJLK0X2vTrvy4bbxL4auJ49N8R6aiwTta6hbaTqul/a8Ccd51wBndLN8oqc9KfJSzLLqs5LCZnhFK8qFZK/JUheUsNiYx9ph6j5o89OVWjV+U4w4PyrjPKamWZlDlqR5qmBx1OKeIwGJcbKtSbtzQlaMa9BtQr01yvlnGnVpfxYfs/fH79r7/g35/bH8QfBn4z6Dqfij4J+KNStb7xr4N0+4mk8JfErwfJO2n6V8aPg1qOofZ7O18VWlnbtC8c/2M35srnwN42i07UNPsL7w9/Z2f5Dwj4/cHYfOcmr0sLneFpyhgsXUUVi8txij7Srkuc06aqTlhZzkpJrm5OeGOwTqU6lSGI/lfJs44m8GOKK2V5pRqYjKsROM8XhYSf1bH4Vy5Kea5XOdoRxMYx5bPl5+SWExajOEJUP7zvgb8cfhb+0h8K/B/wAaPgx4u03xv8OvHOlx6poOu6a5GRuaK803UrOUJd6TrmkXkc+m63ouow2+paTqdtc2N9bw3ELpX8I53kmacOZpjMmznCVMFmOBquliKFRL1hUpzjeFWhVg41KFanKVOtSlGpTk4u5/YOUZvl+e5dhc1yrE08XgcXTVSjWpv5Tp1IO0qValJOnWo1EqlKpGUJqMlY9Zryj0goAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+T3/g578J5t/wBjvxzDFxHN8avCeozY6+cnw01jRot3bb9n118E87srja9ehgX/ABF/gaX/AIEn+h/Ev0xMDeHAeZRW0uIcDVl35llFfDq/lyYl+d9Nmf0HfsFeLP8AhOP2JP2SfFDS+dcal+zn8HVv5M53arYeA9D03V+ck8apZ3Y5ORjBwc1x1larUX9+X4u/n/Wul7H9R+GmO/tLw84HxrfNOtwpkPtX3r08sw1Kv/5WpzX5n1pWZ9uFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHyX+3L+1Bon7Hf7LfxZ+PWqtaTan4V8PS2fgjSLths8Q/EPXmGkeCtG8oMs09tLrl1bXmsC3DzWugWWrahtMVnIyaUoe0qRh0b18orVvr020373R8R4j8Y4fgLgzPOJq3JKtgsK6eXUJvTFZpiX7DL8PZe9KEsTOE6/IpShhoV6trQkz+Zn/g3s/Zg1v40fH/4p/t0/FJbvX4/AOpa3o3hPW9YXz5vEfxp+IME2o+NvFDzurJcX3hzwvrM/2wyKu7UfH1jfW7i409jF3YyoowjSjpzWbS6QWy6Wu0rWTvytWifyD9Fvg7EcQcT514k5zz4lZZWxGHwOIrrmli+IM0hKrmOMcrWnUwmDxEvaXS/e5nSqQtKkz+xqvNP71P5Qv+Dl+3+JHh/WP2P/AIg6B4r8TaZ4Us5/iLYWtrpGq3+m2vh34haPc+EtZ0fxLbPZTW7QeIb7TLm7h03UY3F5ZReHp/sssHmymX0MDytVItK+m+t4u6t2tffTW+t7H8T/AEu4Ztha/AmaYXHYyjgqcs1pQhQrVaMMLmlCeBxGHxkHTlDlxVWjOpGlVi/aU44WXI43fN/Rn+yJ8YF+P37LvwA+MrXS3l98Q/hN4I8Ra5Kuz5PFFxoVnD4stG2fJ5lh4mg1axl2AL5lu+FUYVeOrHkqTj2k7enTt0t0+4/q7gbPVxPwbwxn/P7SpmuSZdisRLR2xk8NTjjabskuali416UrK3NDS59FVmfVBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8PP7CQ/wCGyf8Agut4h+Lkv/E18MaL8W/jZ8a4ZT++8nwt4NTWdE+Fsgk+ZcadqV58PolmxsYQARCNnj2+rW/d4VR68sIfN25u26v0+7U/zp8Nv+M++kli89f7/B4fPOIeIYy+LlwWXrEYbJnzbfuq1TK1zWs+X3VG8T+4avKP9FgoAKACgD+cf/g50+FH/CZ/sD+D/iTa22/UPg18d/CWqXl3s3G38LeNtF8ReC9ThzjMa3XiXUPBbFydpa2WMqzOjJ/RX0Zs1+pce4vLZStTznIsXShC9ubFYKth8bSl5uOGp4xW/v36M/D/AB8y761wdhsdGN55XnGGqSl/Lh8XSr4WovLmxE8L1+zbW6PpD/g34+K//C0P+CX3wTsbi5+1ar8KNe+I3wo1WTfuaP8AsXxhqPiLw/bMuSY/sngzxX4ZtlQ9Y4kkACuoX5zx+yr+y/E7O5xjyUs1oZdmtJWtf2+Dp4fES8+fGYXEyb7tp7HueDGY/wBoeH+VQcuapl1bHZdUf/XrFVK9GPW3LhcRQj6K+l7H7UV+MH6oFABQAUAfhP8A8HE/7QXiT4G/8E5PE3h/wqbu21H9oP4g+GPgZqOrWokU6X4V1nSvEnjLxbG8wxEE8RaF4Ju/B9zbybmuNN8RX5jQmJpIv3P6PPD+GzzxFw1fFcsqfD+X4rPKdKVv3uKoVsLg8I7b3w9fGwxkZL4amHp3avaX5D4251XyngevQw/NGedY3D5ROrHT2eHqU6+LxKvtavRwksLKLvzU69S2zcf5FP8Aglb/AMEqfip/wUc+KEc8yat4G/Zu8Fapbj4qfFkWoQzsgiuW8BeAGvIZLPV/HeqWrxmWUxXel+D9NuI9d1+KZ5tD0PxF/W3in4p5X4dZW4xdHHcSYylL+y8p5/hT5orH4/klGdHA0pJ2V1VxlWLoUHFKvXw/81+Hnh3mPHGYJtVMJkeFqL+0cy5d7Wl9TwXMnCpjKkWru06eFhJVqyd6NGv/AKN3wS+CPwt/Zz+F/hH4NfBnwfpXgX4deB9Mj0vQPD+kxMERQTLdahqF1KZLzVtb1a7ebUda1vUprnVNY1O4udQ1C6nup5JW/wA687zrNOIs0xecZzjKuOzHG1XVxGIqu7b0UKdOKtClRpQSp0KNKMaVGlGNOnFQjFH9w5TlOX5Hl+GyvK8NTwmBwlNU6NGmnZdZTnJ3nUq1JNzq1akpVKlSUpzk5SbH/Gv40/DL9nf4W+M/jN8YfFeneCvh14C0ebWvEev6k5CQwIyRW1jY20Ya51PWdWvZbfS9E0awin1LWNWvLPTdPt57y5giZZLkuZ8Q5pg8myfCVMbmOPrKjh8PSWrk9ZTnJ+7So0oKVWvWqNU6NKE6lSUYRlKLzXNcBkmX4rNMzxMMLgcHSdWvWqdEtIwhFe9Uq1JNU6NKF51ako04Jzkkf5mX7R2peIv+ChH7Un7R/wAaP2Z/2dtW8J/DWwGt/FXWPBvgrSLvU7fwH8PtNksbHWviH4wisHudO0vUtfvZP+El8T22kbNHsNT1O/h01JdOsLjUq/vbKMu4a8A+Bp4zM61PGZzi1Tjia0XGGJznNXCTw+WYDnUpwwWGvNRlOP7ukq2MrQ9pV9lH/PHiKNDN834w4n4X4Wq4fCtV86xmCy2hOs6GFpclOrjMTGnz08Oq1VvGYxUFHD0Z1cRUhB04TqH9bX/Bvv8Ats/AfxD8CfD37FNv4b8N/Cr4wfDe21fVtNs7Atb2nxysbieXUdb8cQXN7PPd3vxFtVIbxho81zMzaTZ2ur+GIofDWn3mh+Ef4g4xz7NuK88xvEOb13XxONqfBG6o4OhD3cPg8NBt+zw1CHuU1dycuapWlUrVJ1Z/vX0cfFTJOIMnp8F4jD4TJ+I8uVevRpUm4Uc/w8pOrVxlF1XKcsxox0xuGlUlJ0acMThUsNCrQwn9ItfKH9SBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB+V3jP9uL4q+DfH/j3w7ceEPC/wBk0jWtT0fRtP1K11W3vNPGn30kFreX80OoIdSF7aItxKka2kUpmimsporcbJ/4j4i+knxxw9xTxRlNTIMl+r4DMcZl+X4XGUcdSxGEWExMqVGvialPFweLWJoRVaagqEJurTqYepCiuWr/AHlw19F3gLiThLhPOKPEWefWMwy3A5jmWMwVfAVsNjHi8LCrXw2FpVMJUWCeFxEnRhOcsRUgqVSniaU6zbpefn4pftl/HL934Xt/FVnpN3xG3g7SP+ET0VBJ2Hiu5a3nVSvGyfxG42DO0Zd2+VfGv0hfEr3clpZ5h8BX0g+H8Asiy6PN0We1vY1UmrLlrZtJcqv1k4/WrgX6Nvhbaee1shxOYYfWUeIsw/1gzKXL1eQUFWpNp681LJovm06QR1Phb9gr4meJbn+1PiP400vQXumEt2sD3fi3xBK/G9bqeSaw09ZXHyiePVNRC/eaN8BG9vJPov8AGWc1vr3F/EWCyuVaSqV405V8+zWctOZV6sqmGwim7WVWOMxaW7hJK0vCz36WHBOS0PqHBnDWPzWNCLp4eVWGH4fyiEfsuhShDE4uUI7ulLAYJvZSjdyj9Z+Cf2Kvgd4R8mfUdH1DxrqEWG+0+Kr5prQSfxbdI05bHTJISc7Yb+3vyF4aRmAev3Thz6OnhrkPs6uLwGL4jxcLP22d4p1KCmt+XAYSGEwc6b6U8VTxNlo6jbcpfz/xP9JnxR4h9pSweY4PhnBzvH2OQ4RU8Q4P4ebMcZVxeOhUS3qYSrg7vVQivdPqPSdG0jQbGHS9D0rTtG0y2BFvp2k2Ntp1jACckQ2lnFDbxAnk7Ixk8nPWv2vA5fgMrw1PBZZgcJl2Doq1LCYHDUcJhqSe6p0KFOlShfd8sFfqfhWYZjmGbYqpjs0x+MzLG1mnWxmPxVfGYqq1t7TEYmpVqzstFzTdtluaVdhxBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHw1+37+wJ8Ff+ChXwRv/AITfFayGl6/povNU+GHxO02zgn8U/DPxZNAsaarphkeA6jomo+TbW3irwtcXUNh4i06KJTLYavYaLrOl/ccA8e514fZ3TzbKpurh6nJSzPLKk5RwuZYRSu6VWykqdeneU8LioxdTD1Hop0Z16NX5LjLg3KuNcpnluYx9nWp81TL8fTgniMBiWrKpTu17SlUso4nDylGFaEV70KsKVSHyR/wRr/4JnfFn/gmt4B+N3hT4o/GbQviWvxP8Z+HNd8PeG/BsevR+D/CVv4b0/WNOutdgHiC1064XxR41t9R0uHxJDb6f9ltrXwl4ft49T1TyzJF9Z4xeJWU+JGPyXF5Xk1fLf7MweIoYjE4x0HjMXLE1KNSNCX1edSLwuClTqvDOVRzlLF4iTp0uZRl814X8B5lwJg82w+YZpRx/9oYqhVoUMKqyw2GjQhVhKsvbKEvrGLVSnGvFQ5Yxw1FKpUu+X9nK/Gz9SCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//S/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+dv/g5R8Jf2r+xp8JfF8UXmXHhH9onQrKZ8cwaV4n+H/wAQYrl93UBtT0rRIivRjIpJG0Bu3Av95Jd4P8JR+/fv95/K30t8D7fgDJMdGN54HirDU5O3w0MZleaRm79L1qOGjtrfpZH2l/wRR8W/8Jf/AMEzf2Z7mSXzLvQtN8feErtc7jD/AMIx8UvGulafET76LBpkqjjakqr2y2WKVq8/Plf3xX63/pn6D9HrHfX/AAg4Qm5XnhqOZ4GfXl+p5zmFClH/AMJ40Wt7KSXRqP6pVzn7QFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8bP/AAcC/tO698e/2kPhd+wr8J/tXiKH4eaxodx4i0TR389/FHx0+IcVvpvhTw3HErNDc3fhfw3rNrZ2bI6NHrHjfXdMu0WfTRt9LB01CEqstOZOz7QW776tX2ekU1b7X8D/AEoOMMTxNxZkvhtkjni1ldfDTxeGoPmeM4kzWMKWBwiirxnUweExEIU2pXVfMcTRqRU6No/0+fsS/sx6D+x9+zD8JvgFootZ7vwd4chl8X6vaphfEXj7WnbV/Guu+Y6rPJb3viC8vU0pbkvNZ6JBpmmhzFZRKvDVqOpUlPu9F2itl16b2e99z+xPDzg/DcCcHZHwxh+Sc8vwkXjsRBWWLzPEN18wxN37zjUxVSoqCm3Knho0aN2qUT6qrM+0Pxp/4Lx/BBvjB/wTz+IGu2Np9r134H+KPCfxg0xY48zmw0y6uPCnizEgG5La08I+Lda1q6Rj5TjR4nYGSGFl6cJLlrJdJJx+e66rdq3X01PwL6SvDv8Ab3hZmmJp0+fE8O4zA59Rsve9nRnLBY7WzahDAY7E4ia0i/YRb1jBnjf/AAbqfHEfEP8AYm134SX155us/AH4m65o9raGTzJIPBfxBL+ONBuXyd6LP4nvPHtpEhBRYtNURtjKRXjYWqqXScV98dH+HL/VzwPoqcR/2r4eYnI6lTmxHDGcYnDwg3dxy/NL5jhpvqlLGVMypxWyjSVt+WP79Vxn9OBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfN37YvxU/4Uh+yn+0V8WY7n7Jf+BPg38Qtd0SXf5ZPiWHw1qEXheBH/AIJLvxFNplrG4yVedWAJAVrpx5qkI95xT9L6/gfJ8eZ1/q7wVxVninyVMtyDNMTh5Xs/rccHVWDinpZzxUqME+jlpfY/md/4NkPhV9q8b/tR/G65ttv9heFfA3wr0S7ZM+d/wler6l4t8T28T9B9l/4Q3wjJOuct9styM7TXdjpaU4925fcrL830+4/kL6H2S8+Y8Z8RTjb6tgstyXDzt8X12vVx2Min05P7PwDkr6+0jtY/rzrzj+6QoAKACgD88/8AgrH8Kx8Zf+Cb/wC2L4JW2+2XMPwV8SeOtOtVTzJLjVvhQ9p8U9JggTq1zNqXg21itlXBaZ0UEbs1+g+FOaf2P4jcH41y5IvOsNgakr2UaWa82V1XLb3VTxknL+7d62sfFeI+Xf2pwNxPhLc0llVfGQj1lUy1xzGmlv7znhYqPdtLS9z8OP8Ag1N+Kn2/4V/tbfBKe52/8Ir8QPh98U9MtGb/AF3/AAn/AIc1XwlrlxAncW3/AArbw9HdNgYN3aD5tx2/t/0qMq9nmvCedxj/AL3l+YZXVmun9n4mli6EZf4v7SxDjv8ABLa3vfkv0dsx58v4kylyt9XxuCzGnF9frlCrhq0kv7v1Cgpafbhuf1p1/J5/R4UAFABQB5x8V/g/8LPjt4J1P4b/ABl+H3hL4neA9YktZ9R8J+NdDsPEGiXFzYTrc2F59j1CGaOG+sLlFuLG+gEd5ZzKJbaaNxur0cqzfNMixtLMsnzDF5Zj6KkqeKwVeeHrRjNcs4c9NxbhUi+WdOV4TjpJNaS4cxyzLs3wlTA5pgsNj8HVcXPDYujCtSlKD5oT5JppThL3oTVpResXc1vh/wDDvwF8KPCGifD/AOGPgzwx8P8AwN4atfsWgeEfB2iad4d8O6RbGR5njsNJ0q2tbK386eWW5uHSESXN1NNc3DyzzSSNlj8wx+a4uvmGZ4zFZhjsTPnxGLxlepiMRWlaydStVlOcrRSjFNpRjFRilFJGmCwWDy7DUsFgMLh8FhKEeSjhsLShQoUo3u1CnTjGEbyblJqKcpScndybHfEDx/4K+FXgnxT8SPiN4m0jwb4F8FaLf+IvFXijXbtLLSdE0bTYWnvL28nfJ2oi7YoYkkubqd4rW1hmuZoonMBgMbmmNwuXZdhq2Mx2Nr08PhcLQi51a9apLlhCEV1bd23aMYpyk1GMpReNxuEy7CYjHY7EU8Lg8JSnXxGIrS5adKlTV5Tk/TRJXlJ2jFOTUZfwOftt/ti/tJf8F0f2uPCn7M37Muiaxp/wJ0HXryb4eeE9Rlm0rS2sNN3WmvftA/Gu8hW4t9KtrDTLiaWyguVuo/COjXkfh7Q7bU/FviG/Ov8A95cFcH8OeB3CWL4l4mr0ame18PBZhi6ajVq+0qe/Q4fyWMnCVaVSrFKcoqDxdaH1itKnhMPD2H8c8WcT574ucSYbIcho1YZRSryeBw026dNwp+7WzrNpK8aUYU5NxjJS+q0pqhR9ria8/b/tL8LP2wP+CTH/AARD+AsnwH8FfE21/aI+Nl0kd/8AFy4+DOnaX418VfEbx3DbSWtw3ijxUmoReAfB/h7Qp559L0XwRd+MLjU/C2lSXch0fWvEF74g1LV/xfNeD/Fbxtz3+3MdlkuH8kV6eVRzmdTB4TL8BKSlGOGwjpSx2Mr14pVa+MjhFSxdVRXtqNCGHpUv1TL+JvDjwoyd5PhcfHPM1mlPM3lcKWLxGOxajyyeIxCmsHhqFFydOlg5YqVTD0+a9OtWlXqVf5KvjP8AtFXfxQ/aV8ZfHT9j74R+Kf2a9NtNbb4jeH/C3w78R6r4n1P4Z3GnzRXF94n0fxFouheH5PCGlf2iRqqWdnaQaV4VmvH0zS9QTSIbC3t/1vJfAzgHhDBRzLjbNqebyope1rZpXp5RksZ2uorDfWOfESVnFRxGMqwrq18LduJ/ImaYLI5cU4/i7hzLMXw3So4j+16GFwePqujktSi1Opi8NWw1HBTwlH2375UlL2GFlP2NHloKnTj++P8AwbgXfxm+Jf7W/wAaPiz8Uv2qtd1vV2+HF9beIPg9438c+L/FXjv4qXOr6ppD2nj69TxDLdaNfaV4JktZbaTVbTVdR8VaXfara2FxY6VoWsvPqn5Z418deHubZBguGOEMpwtSpgcfSrUs1weWUctwGBoUqdaFXDYFqnRxFX6xKcVUj7Clg5RgqsZ16kacofu30feIFxHxXneJnxXVxeKo5fL6xlWMxWMq4vNFVq0rZhFYpezr0cFKLpzrQnPEUalanFwhQrxnV/tRr+YT+wAoAKACgD+cL9oL/g4b8KfAH9pH4w/AvUf2WPFmv6L8JvGuveAX8XD4kWOha1res+F9Rn0rVtRi8I3ngu6t7XQr27t5ZtAuj4mnm1DSRaapJBB/aQsrLthg3OEZe0SckpW5bpJ62vpr3+7W1z+TuKPpT4Hhji3PuG6vBmOxWHyTMMTljx39rU8NiMTiMHVlRr1Y4Gpl04ww1SpFvCz+tylVocldpe19nDxjXf8Ag568IwxN/wAIz+x34k1KcghP7d+NGmaHEpPRm/s/4b+IHcKeSilC+NodMlltYHvV+6B8/ifpiYCKf1PgLF1pdPrPEFHDpeb9nlGKbt292/dXbPun/glt/wAFdtf/AOCh3xR+Jvwz1/4CR/DJvBXgmPx5pviXQvFN94q0R7P+3tK8PyeHNemvNA0cWWu3cmrLqWiSwv5eqWOma6PsVs2l+bcY18OqMYyU+a75bPR7XutFpprva611P0nwa8dMT4qZznGUYnhlZP8A2dl0cyo4vDY2pjcO4fWaGFlhMTKeFw/s8TN11Vw7i7VqdHE/u4exbl+3dcp/RAUAFABQAUAFABQAUAFABQAUAFAGJd+GvDl/qEerX3h/RL3VIVVItSu9KsLnUIkT7ix3k1vJcRqh+6FkAXsBivNr5NlGKxUMdicqy3EY2mkqeMr4HDVsVBR+FQxFSlKtFR6JTsuid/d9PD53nOEwk8Bhc3zPDYCpKUqmCw+PxdHCTlL4pTw1OtCjKUvtNwbfW90eE/Ff9qn4T/Cea40u+1SXxJ4mt9ySeHPDIhvrq0mHHl6revLFp2lsrY863mun1GND5iWEq4VvzLjnxu4F4FqVcFicbPN85pNxnlGTKnia1CotOTHYiU6eEwUou3tKNSvLGRi+ZYWSd5fqvAHgNx/4gU6OPwuBp5Nkla0oZ1nbq4WhiKb158Bho06uMx6lG7p1qVGGDnJcksXBpnwv4x/b9+JmsNPF4K8N+H/CNkAStzdrN4k1iJdwRZTcXC2Wkxhi6gpLo1wFdlQSt1b+aOIPpTcY491YcO5PlWQ4a11WrqpnGYQV1FT9rV+r4GKk5K8Z5fUSlKMVVe8v6n4c+iTwRlypVOJs6zfiHE3SdDDunkuXVJcrlKCo0XiMwk0k7ShmNO8Yyk6a+zyvwi/aK/aJ8YfFrwVpieMNT8RHVvEOnW2o6JJYaXHpc+jPco2syTWdjp9vDZwWmmLdXUl7brBNaJCZkYFCj+HwF4t+LWf8d8OYOOf4zNnj82wlHF5bPC4GOCq5fKtGWYSqYfDYahToU6GCVevPEUo0p0I03UjJctp+74h+Dng7w74fcTY6fDuCyf8As/J8ZWwWZwxeOnj6WZRoyWWwpYjFYqtUxFXEY54ehDDVpVKdeVVU5RkpXj+0df6JH+aYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//T/v4oA8h+Nf8AwmP/AAhw/wCEN/tH7T/aMH9p/wBked/af9meTcb/ALN9n/0nZ9p+zfafs377yc7v9H+0UFRtfX8f6t9/+QfBT/hMf+EOP/CZf2j9p/tGf+zP7X87+0/7M8m32faftH+k7PtP2n7N9p/feTjb/o/2egJWvp+H9W+7/M9eoJCgAoAKACgAoAxfEf8Aa3/CP61/YO3+2/7Lvv7K3bMfb/s0v2XHmfut/nbfL8391v2+Z8m6ga3V9r6nzt8C/wDhZn/CQa1/wlH/AAkf9ifYpPO/4SP7fn+1/tMHk/Yf7Q/e+Z5P2r7T9n/cbPL8/wCf7NQXPltpa9+lv0/rt1PqOgzCgAoAKACgAoAKAP54P+C3PhX4k+Jv2Pvjxd61beIbnSfCHiXwN4rsQqXr+H4NLh+IWhaHbXNuV/4l0aw6XrsrNJkXHmeck2bl5FbpwjtXjra6kv8AyVu3za+8/C/pKYBY3wf4hqRSlPLsTkmPitOb3c3weFqtdfdo4urJ7e7F9NJdX/wbk+L/APhIP2CvEfh6SXM3gP8AaC8e6HFCWy0dhq3hjwH4sglC/wAMU194g1NF9ZYJjgYBasarVU+8E/xa/Q+Z+ihj/rXhni8K372WcUZnhlHqqdfB5bjoyWr92VTFVktF70Zb6H76VyH9NBQAUAFABQAUAfLnx0/4WZ/wkGi/8Iv/AMJH/Yn2KPyf+Ec+35/tf7TP5327+z/3vmeT9l+zfaP3GzzPI+f7TQaQ5ba2vfrb9f679D6J8Of2t/wj+i/29t/tv+y7H+1duzH2/wCzRfas+X+63+du8zyv3W/d5fybaCHu7bX0NqgQUAFABQAUAFAHkPxr/wCEx/4Q4f8ACG/2j9p/tGD+0/7I87+0/wCzPJuN/wBm+z/6Ts+0/ZvtP2b995Od3+j/AGigqNr6/j/Vvv8A8g+Cn/CY/wDCHH/hMv7R+0/2jP8A2Z/a/nf2n/Znk2+z7T9o/wBJ2faftP2b7T++8nG3/R/s9AStfT8P6t93+Z69QSFABQAUAFABQBi+I/7W/wCEf1r+wdv9t/2Xff2Vu2Y+3/ZpfsuPM/db/O2+X5v7rft8z5N1A1ur7X1Pnb4F/wDCzP8AhINa/wCEo/4SP+xPsUnnf8JH9vz/AGv9pg8n7D/aH73zPJ+1fafs/wC42eX5/wA/2agufLbS179Lfp/XbqfUdBmfOX7W/wC0Z4Y/ZN/Zz+K/x/8AFfkTWfw98LXd/pOlTS+SfEfiy9ePSvB/hiJwRIr+IPE19pelvLGGa0t7me9cCG2kZbpwdScYLTmer3sur+SPlOOOK8HwRwpnfE+N5ZU8qwU6tGhKXL9bxtRqjgMGnunisZUo0XJX5IzlUfuxk4/yj/8ABCL9nPxP+1Z+2H8Tf24/jH5/iKz+GOv6z4ni1jUot0Pij4/fEaW/1Br5VdTbzf8ACIaTfar4imgj2vpOs6t4Ku7YRrGgr0MXNU6apR05klbtBdPiW+2z0v3sfxR9GzhTGca8eZx4j5/zYuGT4qvjFiK0bxxvE+bOrVdVXXLL6hQq1sXKKSdDEV8vnCySP7Ra8w/0CCgDiviT4D0L4p/Dvx78MvFEP2jw18RPBnifwN4gg2q5l0XxZot9oWpoqvlSxsr+cJnjdg8YBpxbjJSW8WmvVO/l+f3Hn5tluGznKszyfGR58JmuX4zLcVH+bD47D1MNWWvV06srH8af/BB/x7rv7Mf/AAUY+LP7Kfjqb+z7r4gaV48+F2q6ezNBD/wtP4JaxqusWEjeZ8pEOjaV8RNPtI3CyTT6rbpFIXYRy+ni0qlCNSPRxkv8Ml216uL30s9X9r+BPo15nieD/FbPOCsyl7KeaUczyavSb5Y/21w7iK1ek3fT3cPQzWlTW7lWio/Fyy/qk/4vF/wuH/mYf7O/4SH/AKfP+EY/4Rn7X/4LPI/s3/t8+2f9RCvLP9D/AHeXpe3zv+e/9WPr2gzCgAoAKACgAoAKAPlz46f8LM/4SDRf+EX/AOEj/sT7FH5P/COfb8/2v9pn877d/Z/73zPJ+y/ZvtH7jZ5nkfP9poNIcttbXv1t+v8AXfofRPhz+1v+Ef0X+3tv9t/2XY/2rt2Y+3/ZovtWfL/db/O3eZ5X7rfu8v5NtBD3dtr6G1QIKACgAoAKACgDyH41/wDCY/8ACHD/AIQ3+0ftP9owf2n/AGR539p/2Z5Nxv8As32f/Sdn2n7N9p+zfvvJzu/0f7RQVG19fx/q33/5B8FP+Ex/4Q4/8Jl/aP2n+0Z/7M/tfzv7T/szybfZ9p+0f6Ts+0/afs32n995ONv+j/Z6Ala+n4f1b7v8z16gkKACgD8S/wDg4D+KP/Cvv+Cdnizw1DceRefGT4k/Dn4bwhH2ztbWmqXHxJ1EJj5hDLZfD6Szum+4Ybz7PIR9oVH6sHG9ZP8AljJ/p+p/PP0n85/svwqx2DjPlqZ/m+U5TGztJwhWlm9W3XllTyt05vblqcj+Plli/wDBvT8Lf+EE/wCCfOn+Mprfy7v4z/Fj4heOlndds0ml6HcWHwzsYckBvs0d14E1O6t1ORuvp5k+WcGjGSvWt/LGK+/3v/bvL8Ly5/otZN/ZvhdSx8o2nxBnea5kpNWk6OHnSyinHvyKeW1pw13qSkrKR+51cp/Rxi+I/wC1v+Ef1r+wdv8Abf8AZd9/ZW7Zj7f9ml+y48z91v8AO2+X5v7rft8z5N1A1ur7X1Pnb4F/8LM/4SDWv+Eo/wCEj/sT7FJ53/CR/b8/2v8AaYPJ+w/2h+98zyftX2n7P+42eX5/z/ZqC58ttLXv0t+n9dup9R0GZi+JNA0zxZ4d17wtrUAutG8S6LqmgatbHGLjTNZsZ9Ov4DkEYmtbiWM5BHzcg8itsNiKmExFDFUZctbDVqWIpS/lqUZxqU5fKUUzKvRp4ihWw9WPNSr0qlGrH+anVg4Tj13jJrb7z+FT/g3M1/U/gV/wU7+Mn7PviOcxXXiT4Y/Ff4b3lm2YfO8b/CjxvoesrN5RLEva6R4d8aRiI5ZFunbfiNw39y/SJw9PPfDLJuIMPG8cNmeVZjCe9sFmuCr0Wr9pVsRgnf8Au2s73j/IvgfWqZRx9meTV3aVfL8xwMo7XxeXYulVvbvGnQxSs9uZ+Z/eLX8KH9fhQAUAFAHyF/xeL/hcP/Mw/wBnf8JD/wBPn/CMf8Iz9r/8Fnkf2b/2+fbP+ohQae7y9L2+d/z3/qx9e0GZ/nzf8FzP+Csfib9sP4p+IP2afhHql9of7MHwk8WXml3wgkmtLn4z+PPDV9LZXfivX0Gxj4Q0PUreeLwLoEuY52iHjDVo21S60ew8Mf6AeB/hRhuEMrw/EmbUoV+J82wsKtPmSlHJsDiYKccJQdrfXK9OUXjq6bcb/U6L9lCtUxX8X+LfiNiOJ8xrZDltSdLh/LcTKnPlvF5pjMPOUJYmt1eFpTTWDovR2+tVL1JUoYX4r/Yy/wCCdf8AwUd/aq0LVdF/Z4+HfxD8MfCH4iLp0XjHx34l1bUPhb8IvFOl2LzNYnV9av2sj8R9K0qe6mmj0fw3p3jKaxnuZLqLSkkkkmr7PjLxD8OeFq9KtxDmGX4rN8udR4PAYalTzTN8LVqJe09lRh7RZdVqqEU62JqYNTjFRdWyjE+V4W4J444io1KWSYLG0MsxvIsVjK9WeX5ZiKcW+T2tWbh9ep03NtU6EMS4OTkqWrkf0mfslf8ABr78DPA/9meJf2wfirrnxs16Lybi5+HPw3e/8AfDSKUY86w1LxMWX4g+KbQkExXulzfDmf5tklm4Xc/84cWfSczzG+1w3CGVUMloO8Y5jmSp4/MpL7NSnhlL+z8LO28Kscyj2mr+7+6cN+AGUYT2dfibMaua1lZywOB58FgU+sKmI5vruIi+kqf1Bq9mna5/Rh8J/wBmb9nr4FeArz4X/CD4L/Db4e+ANUsJtM1zwx4b8I6PZ6f4ltLm1lsrtPFhNs9x4slvbOea2v7rxJPql1fQTSx3dxMkjrX86Z1xDnnEWLeOzzNsfmuKu3GrjcTVreyTd3ChCTdPD007WpUIU6cbJKEbI/bsBw/keV4GplmX5Tl+FwFanKjiMLSwtH2WJpzg6dSOLjKDeK9pTlKFR4j2rqRk1Uckz+QD/gpj/wAE9Pin/wAEyvjf4f8A20P2OtQ1/Qfg9D4ut9a0i/0R5rvUfgR4vv53jHhXXPNE41P4a+JPtE2kaJd6ul5YXVnez+AvFi3Ulzpl34nyoVo14OnUs5Ws0/trurN2a62s0/eXY/gjxf8AC3OfB/iLC+IPAVXFYXIY46OIoVMO5VKvDWOqyt9SxF1JVsoxnPKhhp11OnOnUllmOU5SoTxv9IX/AATO/wCCj3w+/wCCgXwjXU0/s7wr8cvBFnZWvxb+G0Vwf9EupFEEPjLwpHcSyXd94I8QTqzWru9xd+H9QaTQNWmmki0/VNZ4q9F0Zd4Nvkl5dnotV+O6tZqP9ZeEPixlfihkSrR9lguI8up04Z5lEZP93N+7HH4JTbnVy7FSTcG3Kphat8NXcmqdav8ARfx0/wCFmf8ACQaL/wAIv/wkf9ifYo/J/wCEc+35/tf7TP5327+z/wB75nk/Zfs32j9xs8zyPn+01gfsMOW2tr362/X+u/Q+ifDn9rf8I/ov9vbf7b/sux/tXbsx9v8As0X2rPl/ut/nbvM8r91v3eX8m2gh7u219DaoEfmb/wAFMPg1+zBB+y7+0l+0F8SvgF8GvGnxE8F/BrxlfeG/G3in4eeF9T8UJ4qXw/caR4GSbxJPpp1qe2tvEd1o0cNrLfSwxoojiiHArehKp7SEFOai5K6TdrXvLS6tdb2t312PyHxeyDg6PBvFvFGb8MZBmOa5fw/mFTCZhjcqwVbGrGLCzoZapYuVL6xKEMXPDxjF1ZKK0jDRH4H/APBuz+yL8IvjXP8AtIfFr41fCzwF8UtJ8Kt4D8CeCNM+Ivg7QPG2iWGsal/bniLxVqdppniXT9R0+31e0tLLwpb2t/DB9shttSvokliSdxL14ypKPs4xk4t8zbi2npZLaUdNX/wLPm/mb6KvA2RcQy4szziDJcszmjgnlmW5dRzXL8LmOHpV6v1jFY2tTpYunVpQrwhTwUYVIwVSMKtRKcVJqf8AXh4L+HXw++G+ny6T8O/Avg3wFpU7xyzaZ4L8MaJ4W0+aSJCkUktlodjY20jxozJG7xbkQlVIBIrznKUneTcn3bbf43/P79D+6MvyrK8ppOhlWW4DLKEmnKjl+Dw+CpScVZN08NTpQbSdk7Oy06nZUjvCgDyH41/8Jj/whw/4Q3+0ftP9owf2n/ZHnf2n/Znk3G/7N9n/ANJ2fafs32n7N++8nO7/AEf7RQVG19fx/q33/wCQfBT/AITH/hDj/wAJl/aP2n+0Z/7M/tfzv7T/ALM8m32faftH+k7PtP2n7N9p/feTjb/o/wBnoCVr6fh/Vvu/zPXqCQoAKACgAoAKAMXxH/a3/CP61/YO3+2/7Lvv7K3bMfb/ALNL9lx5n7rf523y/N/db9vmfJuoGt1fa+p87fAv/hZn/CQa1/wlH/CR/wBifYpPO/4SP7fn+1/tMHk/Yf7Q/e+Z5P2r7T9n/cbPL8/5/s1Bc+W2lr36W/T+u3U+j9b06TV9F1fSYb650ybVNL1DTotSszi706S9tJbZL61OVxc2jSi4gO5cSxqcjrXFmWEnj8ux+Bp4mtgqmNwWKwkMZh9K+EniaE6McTQd42rUJTVWn70ffitVudWWYyGX5ll+YVMLRx1PA47CYypgsQr4fGQw2Ip1pYWurO9HERpulVVneE3o9j8ptX/Zu+Ff7P8AYS+Lfj14sk8Z3E9xOnhbwJ4Y+06ZN4lmhwxk1C5lmXUVtl8yNr+SGWytNPLIr6hqM1zb2U/8O4/wg4I8K8LUz3xQz2fEVWrVqxyThnJfbYOpnFSnq54qtOrHFqiuaLxM6c8NQwjcVLFYyrWo4ef98Zf40ceeLmLp8PeFGQQ4ao0qNKWe8VZ57HHU8lp1NFDCUIU5YP2z5JxwkKlPF4jF8spRweDp0a+JpePaTo/xK/ab8Qjw34B8JaN4O8EadcRudK0KyTR/BnhyE7lhvvEOo29uk/iDXmiLkXN2t5q10zXLafa2toZ40+AwGX8YeMubLKOFshy/h/hvCVoSeByzDRy/h3KIaqnic1xVKkqmaZpKm5NVq6xGPrt1ZYTD0KDqwpfouYZjwV4H5O864t4gzLiPijG0akVmGa4mWY8S5zU0lVwuT4SrWdLKMqjUUE6GH+rZfh0qMcZia+IVGc/1R+Bn7PPgz4H6Uw0tP7Y8VX8CRa14svYES9ulyrvZafCGkGlaUJUWQWcUsks7JFJfXN28MLxf254aeE/DvhtgWsFH+0M8xNKNPMc9xNOMcRXWkpYfCU1KawOB9pFSWHpynOq405YqvXlTpOH8HeKXjBxL4oY9PHy/s7IMLVlUyzh/C1ZSw1B2cY4nGVGoSx+YOm3F4mpCEKUZVIYShhoVKqq++1+pH5KFABQB8hf8Xi/4XD/zMP8AZ3/CQ/8AT5/wjH/CM/a//BZ5H9m/9vn2z/qIUGnu8vS9vnf89/6sfXtBmFABQAUAFABQAUAfLnx0/wCFmf8ACQaL/wAIv/wkf9ifYo/J/wCEc+35/tf7TP5327+z/wB75nk/Zfs32j9xs8zyPn+00GkOW2tr362/X+u/Q+ifDn9rf8I/ov8Ab23+2/7Lsf7V27Mfb/s0X2rPl/ut/nbvM8r91v3eX8m2gh7u219DaoEFABQAUAFABQB5D8a/+Ex/4Q4f8Ib/AGj9p/tGD+0/7I87+0/7M8m43/Zvs/8ApOz7T9m+0/Zv33k53f6P9ooKja+v4/1b7/8AIPgp/wAJj/whx/4TL+0ftP8AaM/9mf2v539p/wBmeTb7PtP2j/Sdn2n7T9m+0/vvJxt/0f7PQErX0/D+rfd/mevUEhQAUAFABQAUAYviP+1v+Ef1r+wdv9t/2Xff2Vu2Y+3/AGaX7LjzP3W/ztvl+b+637fM+TdQNbq+19T52+Bf/CzP+Eg1r/hKP+Ej/sT7FJ53/CR/b8/2v9pg8n7D/aH73zPJ+1fafs/7jZ5fn/P9moLny20te/S36f126n1HQZhQAUAFABQAUAFAHyF/xeL/AIXD/wAzD/Z3/CQ/9Pn/AAjH/CM/a/8AwWeR/Zv/AG+fbP8AqIUGnu8vS9vnf89/6sfXtBmFABQAUAFABQAUAfLnx0/4WZ/wkGi/8Iv/AMJH/Yn2KPyf+Ec+35/tf7TP5327+z/3vmeT9l+zfaP3GzzPI+f7TQaQ5ba2vfrb9f679D6J8Of2t/wj+i/29t/tv+y7H+1duzH2/wCzRfas+X+63+du8zyv3W/d5fybaCHu7bX0NqgQUAFABQAUAFAHkPxr/wCEx/4Q4f8ACG/2j9p/tGD+0/7I87+0/wCzPJuN/wBm+z/6Ts+0/ZvtP2b995Od3+j/AGigqNr6/j/Vvv8A8g+Cn/CY/wDCHH/hMv7R+0/2jP8A2Z/a/nf2n/Znk2+z7T9o/wBJ2faftP2b7T++8nG3/R/s9AStfT8P6t93+Z69QSFABQAUAf/U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD4j/AOCk/g//AITr9gT9r7w+sXnyp8AviN4itocbmlvPBnh+68Y2Uca85le70GFYR3lKYxnNa0HatTf99L/wL3f1PzzxbwH9peGXHeFtzNcMZtioR3cqmX4Wpj6aX951MNFR87H4gf8ABsR4w+1eBf2uPADy4/sPxb8J/GFtCzff/wCEq0fxrot7LGuefL/4Q6wSdgvHm24JO5RXVjlrTl3Ul93K1+bP50+h5j+fLOOcrb/3bHZJj4Rvv9dw+YYeo0utv7PpKT6c0e5/U3XAf2cFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfx/f8HEf7V2qfEn4sfDD9hT4ZzXWsDwjfaN4y+Iuk6NvurrXPif4vthY/DrwYLaDMs97ovhzV31j7GFmjvbvxvpI2Le6SgT0cHTUYyqy0vdJv+Vbvy1VtX9nofwl9Knjatm+d5P4bZPKeI+o1cPmGa0cPec8RnGPh7PKsv5ItuVTD4Su8R7O0o1J5jQslUoWP6L/+CfP7KOl/sYfsn/Cv4HwQ2p8UadpI8SfEzU7XY6618TfEyRaj4tuvtKcXlrptyYfDWi3TBXfw9oOjo43xE1x1qntakpdNortFbd7N7vV6vptH+rPC7gmj4f8ABOS8ORjD65RofW84rQs1iM4xijVx0+dXVSFGfLhMPPd4XDYdO1rH2lWR+ghQAUAfw9f8FW9K1D9h7/gsH4P/AGkvDlpNbaR4m174UftH2dvZLshvpdN1SLw78SNEMgKiSbxHqHhLXbvVoC6yG38WKWKR3MRr1cParhnB9FKm3+KfXZNdOnU/zp8bKNXw68eMBxbhKcoUMZicj4shCnpGpKjWWEzbDc1tZYupgMTUrxevLjfsxnFy/t20rVNP1zS9N1rSbuG/0rV7Cz1TTL+3bfb3un6hbx3dldwPxvhubaaKaJsfMjqeM15TVtOq0P8ARGjWpYmjSxFCcatCvSp1qNSDvGpSqwU6c4vrGcJKSfZ+ZfoNQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/kt/wCDnH4pB739lX4J2lzgwWvxC+KWv2e/O4Xcuh+E/CFyYx02fYvG8Qdgd28hNuyTd6OBjpUl5xivldvy1uvu8z+IPpg5zepwVw9CfwwzXOcVTv8AzvDYHATt0tyZjG7Wt9LWZ/RF+wj8Lf8AhS37Gf7MXwzltvsmoeGfgr4BGu2+zZ5fijV9AtNe8WfJgFd/iXVNVkw3z/N85Lli3FVlz1akujk7eidl+CP6p8Nsm/1e4A4PyeUPZ1cHw9lixMNrY2vhqeJx3bfF1q72vrrZtn1hWZ9sFABQAUAFAH8EU/8Axib/AMHMakf8S208Tftfwtn/AFNubL9rrwynmHP+rFqW+Mrhz/qoGRgdhgIX+8I/8ZX9Gr/n7PC8IyXeSnwlidPPmtk6trdp7yufx3L/AIxzx5/kjiOJo7bcvEtDXsuX/hU11tHXax/e7X8Hn9iBQAUAFABQAUAfBHhz/gl1/wAE+/C3xg8SfHnS/wBlP4VzfFLxXr134o1XXte07UfFemQ+I7+6kvrvXNA8G+KdT1nwT4T1SW+lkvTeeFfDuizpdu9zHIkzM9feYjxP4/xWUYbIqvFWaRyvC0IYWlQoVKeEqSw9OCpwoV8ZhaVLG4qkoJQ5MVia0XBcrTSsfHUPD7gvD5nXzinw7l7zDE1pYipWrQniKarzlzyq0cLiKtbCYao5tz5sPQotSfMmnrH71REjRY41VERVRERQqIijCqqrhVVQAFUDAHAxivhG2222227tvdvu99X6/efYpW0WiWiS6DqQBQBzfjDwf4W+IPhXxD4H8b6Bpfinwh4s0i/0DxJ4c1u0iv8ASda0bU7d7W+0+/tJlaOa3uIJHRwRuXIeNkkVHppuLTTs07pro19/5fecmPwGCzTBYrLsxwtHG4DG0KmGxeExFNVaGIw9aDhVpVacrqUZxbTXzVmkz+H/APbX/ZB+Pv8AwRm/aj8J/tN/sx61rTfBjUvEUz/D/wAT3H2nU7bQ2vt9xq/wR+K0SyRDVtL1HT4riHTLq9eL/hKdEt/ttpd23inQr24sPUpVIYmm4VEua3vLZv8AvRvJ7emj6NNRl/nX4hcCcT+AHGWB4w4PxGIfD9bFyeWYyXPWhhnUvOvw5nav+/o1qUZRozqP/bcPD2lOcMbhqk6X9YH7Av7d3wr/AG9/gpY/EvwLLFovjDRRZ6T8VPhrc3iXGteAfFUsDOYWOI5NR8Naz5FzeeFPEaQR2+r2MU9vNHZ61pms6Tpvn1qUqMuV6p6xl0a+5Wa6q7+5o/tnwy8Scl8TOHqeb5bKOHx+H9nQzrKJ1FLEZZjXFvlezq4TEcs6mCxSio16cZRlyYmjiKFD7krI/RgoA/If/gur4kl8Pf8ABMr4928EnlTeJtU+E/htXBw3lXHxY8G6leRp6+fYaVdQSA5/cyy98FenCK9eHlzP/wAla/rf83H8L+kji3hfB/iaMXaWMrZJhE+tp53l9Wol/ipUZxe/uyl5OPzp/wAG5mhWPhn9gXxt4ovJILRPEn7QfxA1y91C6kjt4INN0XwV8O9EBmuZWWKOzs20i/uXllZEiM1wzsEBK3jXesl2gl825Pb/AIe/4R+U+ijhqeD8Mswxk3GCxfFGaYmpVm1GMaOHy/KsN70nZRp03h6s25O0eabdlZn2XqH/AAWA/YKtv2gfCH7OGk/GFfGHjLxj4k07wba+JvBmkXXiL4aaZ4r1m/h0rRdD1Hx1aONKuZdT1K4trJNR8PjXNDsJ5wus6ppqxXLwZ/Vq3I5uPKkr2ekrLys/PR8rfldI+/q+O3hpDijAcJ0M+WPzDH4ulgIYzL6E8XlFHG4irGhh8NVzKmvYzlWrShTVXC+3w1KUl9YrU0puP6cVzn7AFABQAUAFABQAUAFABQAUAFABQAUAfl1+1Z+zp8cPiH8V77xZ4X0geLfDl7pukWmkRRa3o1hLoENlYQw3WmyWus6hp5VZ9TF/qizWn2iB/t58145t8a/xV44+EfiTxZx1is9yXArPcoxOEwFDAQhmWXYWeV08NhaVOvg50cxxeEajVxqxWNjOgqtOX1qXPOM7wP7p8A/GTwv4P4AwuQZ7mD4fznDY3McRmNSeV5lioZtUxOLq1cPjYV8tweMTlSwLwuAdPEexqx+qJU41IOMjyrQ/2Sf2phYJpcb/APCN6YHklGmz+PoEsY5JiDLJ9k0O+1G3EkhAMjpGWcqCScZr4fLfAjxt+qxwUJf2RglKc1g6vFNKOGhOprUn9Xy3E4qkpTfxyjCTlbW9ly/fZp9IPwIeLlj5w/tnHOMYPG0uEqk8VOFNWpw+sZphsHW5YJ2hGUrR6KO0tC6/Yc+Otja3Osz+K/AsT2cEt5M7eKPEUdzHHBG00rm6k8OR28exELGSS8jRcZaUAE111/o1+JuGoVswq55wzCWHpTxFSTzrNo1oRpQdSc3WllEKUeWMW3KWIjFWu5JJnHQ+lH4VYqvRy6lkHFM44mrTw9OKyLJ50ZzqzVOEFQhnU60uaUklCNCc5XtGDb5T179g74s+NPEeq+KPh74k1fUdf0rTdBj8QaNdapcTX11pTQajaadc6dHeXDSTtZ3S6hDNBayyvHatZy/ZViWaZX+++jDx1xFm+OzrhTOMfi80wODyyGa5dXx1apia+BdPF0MJWwkMRVc6rw9eOJpVKVCdSUKDw8/YRgqlRH539K3w/wCGslwGRcXZLl2DynH43NZ5RmVDAUaeFoY9VcHiMZRxk8NSUKSxNCWEq06teFOM66xNP28punTZ+llf2IfxQFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOK+JPhSLx58OvH3gacI0PjPwV4p8KTLJjY0XiLQ77SJA+eNhS8IbPGM5704uzT7NP7nc8/NsEsyyrM8ukk44/L8bgpJ7NYrDVaDT8mqmp/Hl/wbSeLJNI/ao/aC+HdyXt38R/AxPET20uULXvgX4geGtK8pkP/LxDF43vG2cuqJOeiuV9LHL93CXadvvT/wAv6ufwd9EXGyocacU5VO8Hi+HFi3CWn7zLc0wlDla/nisxqaatLm7Nx/tCrzD/AEBCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8M/aY+PXhH9mD4C/FL49eN3X+wPhp4T1DX2svOS3m1zV/ksvDfhmylfKJqHifxFd6X4f09nHlrealC0u2NXZbhB1Jxgt5O3ourfklr19HsfOcX8TYHg7hnOeJsxa+q5RgauJdPmUZYivpTwmDpyd0quMxdShhaTeiqVouVkrn8iX/BFH4C+Lv23P27/AIiftr/GqNtf0v4WeJ774oanf3cDHT9d+Ofje/v73wjYWMUxdUsfBcQ1LxXaW9nM3/CP3OjeCrQwixvIUr0cVNUqSpQ05lyrygt3p1e22t5bauP8MfR64Zx3iJ4lZr4h8QJ4mjkuMqZxVqzi/ZYniTMatWpgadOMm7U8viq2NpwhJ/VZ0Mvp2VOcIn9sFeWf6FBQAUAFAH8z/wDwcs/BD/hI/gN8Cvj9p9n5l/8ADD4h6r4A16aGP94vhr4l6SuoWd3euBg2mm+IvBVjYW25sxXXidxGhFzK692Bnac4fzJSXrHt6p9unQ/kP6XXDv1vhnhvielTvVybNa2WYmUVqsHm9BVITqPS8KWLy+lShe/LPGOyXPJn6Yf8Ef8A43f8L2/4J5/s7a9d3n2vXvBHheX4Q+Iw8nm3EN98LrybwnpJu5SWaS61DwlY+G9alkkJlk/tRXlLSF2rDEx5a0/N8y/7e1f3Ntf8Mz9f8CeIv9ZfCzhTFTqc+Jy7BPIsXd3lGrk05YGj7R3bc6uBpYTESb1ftru7bcv0wrA/XQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/h8/4Kiu37Xv8AwWt8H/Ai3ZtS0bSfFn7P/wCz2WQmSGHSL680zxT44kKjlItFv/HfisX+BuB065ZQwC16tD93hXLynP59O26iuuumq+z/AJ1eMjfHX0hcBw1Buth8PjeF+FtNYxoValHG5k7a2jh6uZ45VdLp0ZvVcp/cCqqiqiKqIihURQFVVUYVVUYCqoAAAGAOBjivKP8ARVJJJJWS0SWyXZbben3DqACgAoAKACgD+Db/AIOLdIv/AIGf8FRfg98edBgZLnXfhf8AB/4nW11H+6Mvi74YeOvEWiGASj/ltbaX4U8KSGTqiXUI/gFf3Z9HetTzzwwzjIa8k40MzzfLJQetsJmeBw9ZSa1spVcVi1a32G9bs/j/AMbqU8o8QMsziirSrZflmYRktL4nAYuvRtfvGnhsM79OZH92+javYeINH0rXtKnW60vW9NsdX025X7txYalaxXlnOvX5ZreaOQc9G71/C9alUw9arQqx5atGpUpVIv7NSnJwnHrtJNb/AHn9eUqsK1KnWpvmp1acKtOS+1CpFSi/nFpmlWZoFABQAUAFABQAUAFABQAUAedfFr4TfD346fDnxb8Jvir4Y07xj4B8caTPo3iLQNTjZobq2lKyQ3FvPGUudP1PTruKDUdI1axlt9R0nVLW01LT7m3vLa3mSoylCSlF2kno/wCrbrR66+R5WeZJlfEeU47I86wdLH5ZmNCWHxeGrK8ZwlrGUZK06ValNRq0K9OUKtCtCFalONSEJH5qf8E7P+CSvgT/AIJ5/E34u/Ebwv8AGDxd8R/+Fi6PF4V0DQ9b0Kw8P2/hbwnFrUWtrb6xPYanfw+L/Eaz2djBH4hisPDFtBbLfxwaEn9pStBvWxDrRjFxUbO71vd2tpu0vn63sfkXhV4H5b4WZxnubYLPsfm39q0I4LC4bEYalhoYLAxxEcQoYiVKtUjj8WpQpRjilSwcYQ9qo4Ze2bj+uFcx+5HN+MfGPhT4e+Ftf8ceOvEejeEfB/hbTLrWvEfibxDqFtpWi6LpVlGZbq/1HULySG3treFBy8jjczLGm52RWaTk0km29Eluzkx+PwWV4LE5jmWLw+BwGCozxGLxmKqwoYfD0Ka5p1KtWbjGEYrq3vortpS/lS/4LQ/8FUv2P/2jv2ZdV/Zy+AvjXXfiX4t1Px54Q1u88RaV4T1rR/BGm6f4WvJ769jk1nxRBoV7qdzcStBDYNoekapp0+Jpn1KKOOI3HoYbD1IT55pRVmrX118ktPnK629675f4r+kD408CcWcH1+E+GcwxOb46tmeAxFTFUcDiKGXUaWCqSqVE8RjYYapWnOTjGm8NRr0pe9J1YxUeb8cf2VfhF/wUX/bU+GOmfsv/ALP48eXf7O/h/wARape6/F9vbwR8FdP17XLmDU9UvPH/AIoSK0tvFWpwK9pd2vhy5l8T61Z2ccU+g+HQXleXoqSo05e0nZTa00vJ27K+na+i7t/Z/BeC8i8VvELJ6PBvC/8AaU+FcLi61TEr2n9ncPUsTiZxrV6maY1KnDG1oJ06kMJOWMxFOmoywuE96Upf03/sEf8ABBv4H/sva/4Q+L3xu8SzfHP42+FNS03xJ4ft7aG40P4WeB/EumTR3unalo2jMRrHizVdGvo1uNP1rxPPBp3nxWt9B4P03UbaC6i4quLnNOMFyRd039pr75ct+qXo5NNI/sDwz+jTw5wbisDnvEWLlxHxFgqtLF4WMIyw+TZdi6MlUpVsPh3+/wAdXw9RKdLEYyUKXNGFWOBo1YQnH98K4z+mSOaaK3ilnnljgggjeaaaZ1jihijUvJLLI5VI440Uu7uyqqqWYgAmgUpRjFyk1GMU5SlJpRjFK7bbskkrttuyWrsfEHwr/wCClf7Bvxo1bXdC+H/7UvwnvNX8O6hLpt7YeI9ck8AzX08Lsj3Hhr/hPrbwynjDS9y8az4TfW9IZWidb1llj3ayoVo/FTlZq90r2Xny3t6NprvK5+d5L4ueGnEFfE4bK+M8kqV8LVdKpSxWJeWSqSi7OWE/tOnhFj6N1/vGBeIoO8WqjUoOX134Z8ceC/GkUtx4O8X+F/FkEG3z5vDPiDSddih3/c82TS7u6SPcPu7yu7tms3FrdNeqa/P+vwPucHmOX5hGU8BjsHjYxtzSweJo4mMb7c0qNSaV+l9/L7XUUjsCgAoAKACgD53/AGsf2jfDP7JP7O/xQ/aI8XaNqviLQ/hpotlqEug6K8EOo6zqOs65pXhjQtMhubnMFlFfa9rem293qEsc66fZyXF99luzbrbS3Tg6k4wTs5de1k2316L5+W58rxvxXg+B+Fc54qx2HrYrDZRh6dWWGw7jGriKtfE0MHhqMZz92mqmJxFGFSq1L2VOUqnJPl5JeOf8E8v26PC3/BQT4DXfxq8N+CdW+Hd1ofjrWvh54o8I6tq1v4gGm+IdH0nw/wCIN+ma/bWOkrrGmXeieKdGuI7uXR9KmjvHvbF7PFmlzcVWpOjPlb5tFJPbRu23TVeffyj4PhZ4kYLxR4ZnxDhMur5VPDZliMqxmBr14Yr2OKw9DC4q9HFQpUPrFGeHxuHmqksPQkqjq03Tfs+eX3XWR+kBQAUAQXV1bWNtPeXtxBaWlrDJcXV1dTR29tbQQoXlnnnlZYoYYkBeSSRlREUszAAlcq1ajhqNXEYitSw+HoU51a1etUhSo0aVOLlOpVqzlGFOnCKcpznKMYxTbdk+XWhQr4qtSw2Go1cRiK9SFGhQoU51a1arUkoU6VKlTjKdSpOTUYQhGUpSaSV2ub8sf2n/ANq0+OVuPhP8IZLq+0vU5/7J17xBYRSyXPiZ55FtxoHhyKJTcS6bdysILu7RFl1nd9js0OmyyS6p/EvjR44viVVeBuAZ18TgsbU+o5nmuFp1J1s5lVmqSyrKKcE608JXm/ZV68YRqZjf6vh08HOc8X/d/gb4Brhd0eP/ABEhQwuOwNP6/lWT4ypTjRySNKDqvNs5nU5aNPG4eC9rh8PKbhlvL9YxM/rsYQwH1B+yX8BLj4N+ELvVfEkaL448XraT6tApWQaHptssj2GhrKpdHuke4ludVlhbyXumitUM8enxXMv7T4E+F1Xw+yCvjs3hFcS5+qFXH0k1NZbg6KlLC5apq8ZV4yqzrY6dOThKtKFGLqwwsK0/wz6QPixR8R+IsPgMlnJ8L8OvEUsvrNSg80xtZwji80cJWlGhKNKFHAU6i9pGhGdeXs54udGH1rX7sfz8FABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9b+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Ij/glx/xZP/guR4/+Ff8Ax5wXvj/9rL4SrH9yN7fw1N4z8SWMYJGDFM3gO0e2PCyk2/lk70r1K/vYVS8qcvvsv1P87fBr/jHvpG5pkvwRqZnxvkaW0XHCSzDF00tlyy/syDh/N7trtpn9u9eWf6JBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfyO/wDBxj+1zeeJ/Fvw1/YY+Hl1c6g+k3OkfEb4sWOkeZcXWoeK9ahe0+GXgd7a2BuJrq00u+ufFd1pbRTxXsviLwbdQL9r08BfRwVOylVl1uo36JfE+26tfyei1cv4c+ldxzUxeNyjw3yuc6rozoZtndOhec6uNxEXDJ8ucYXnKcKNWeNnR5ZqpLFZfONp0kj98f8Agmv+yNZ/sWfsifDL4Pz2tvH46u7I+Ofi1eweW5v/AImeK7e1utfga4i/d3cHhq2g03wbpl2gUXWk+G7C5ZBNNJXJXqe1qSl0vaPlFbd7X1b1er0ttH+mfCTgan4fcC5PkMoQWZTp/wBpZ3UjZ+1zfGxhPExc1pUjhIRo5fRqJLnoYOlNpSlI+8axP0oKACgAoA+Hv+Ck3wT/AOGhP2F/2mfhlBafbtYvPhlrHinwxbKm+efxb8PXg8f+F7W2YAtHNqGt+GrLTS6FSYb2WN90TyI2tCfJVhLpzWfpLRvrsnfbp1Pzrxb4e/1o8N+L8njT9pXqZPXxmDha8pY7K3HM8HCGjcZVcRhKdG6+zUad1KSl+GX/AAbK/Gz7R4e/aW/Z0v7vB0vVvC/xm8LWRfcZItZtP+EK8czohOUjtZNG+H6/ICrvfuW2MF83rx0fgn6xf5x/9u6/cfzj9EDiHnwnF3ClWprQr4PiDBU273jiIf2fmUkt0oSw+VrRtN1Xflt739V1eef2mFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAQ3Nxb2dvPd3U0Vta2sMtxc3E7rFDBbwI0s000jkJHFFGrPI7EKiKWYgDNBM5xpxlOclCEIuc5ydoxjFXlKTeiSSbbey1P4hf+CSNvcftc/wDBZDxv+0LfwyXen6Nqvx8/aIlS5RvJt08Vale+E/CtmQ4/dtpNz8RtKn023yrxDRoyi+Xavt9TEfu8Mod1CH3K77b8r6ddlf3f87fA6MuOfHzMuKasZTpYetxPxU1NPlisbWqYHBU9b2dCWbUZUYXTX1dWVoSP7gK8s/0UCgAoAKACgAoA/kA/4Oufhz5uifsbfFu2g2/YdV+Lvw51m6258z+1rTwT4m8MwF/4fJ/sbxZIqknf9oYrt2Pu/rv6KuY2r8Y5TKX8SllGY0YdvZTxuGxMvO/tsIn25V3P5n+kVgb0uF8yjH4KmZ4GrLv7SOEr4eN/L2WJe/2tL6n9En/BNj4jf8LX/YB/Y78cyT/arzUf2efhfpmr3O7d5/iDwr4XsPCXiKUnkhpNd0PUWZSSUYlCWKk1/PPiRl39lcfcYYFR5IU+Ic0q0Y7cuHxWKqYvDr5UK9NdL72V7H7bwJjv7S4N4YxblzSnkuX06st+avh8PDDV301dajPTptra59t18UfVhQAUAFABQAUAFABQAUAFABQAUAFAHh/7SXwB8E/tSfA34j/AH4iy6vbeD/iXoaaNqt7oN1DZ61pstpqFjrOk6tpc91a3tot9pOtaZp2pW8d5Z3dnPJarBd2s9tJLE9wm6c4zjvF9evRrputN/uPneLeGMu4y4czbhjNXXhgM3wyw9aphpxp4ilKFWnXoV6MpwqU1UoYijSqwVSnOnJw5ZxcJSUv5qv2x/wDghP8As2/svfsQ/tGfFzwT4m+KvxI+Lvgjwro3ibw3q/i/WdJs9D8P6bo/jHw1deLriz8N+GNF0hLye48Fp4jtZH16/wBZtbdZ0u7S1tby1jul7aWKnUqwi1GMW2mknd6O2rnLrbZfff3f5G49+jbwlwb4dcV55l2MzrNs9y7BUMZhK+PxFCnhsLSw+PwlTHTp4TB4egqkpZesXTbxNXEQjzqpCEJwjM+k/wDg2q8f22tfsjfGT4dPcJJqngP49XmumAMN9voPjvwR4UXSy0f3gs2seFPFDJIcLIVdF5hctGOX7yEu8Lfc3/mfXfRHzSGI4Gz/AClyTrZZxNUxPLfWGFzLLsD7C63SliMFjWnonql8Lcv6Mq4j+rQoAq39jZ6pY3mm6hbRXlhqNrcWN9aToJILqzu4Xt7m2mQ8PFPDI8UiHhkYg9TQnbXqtSKlOnWp1KVWEalKrCVOpCSvGdOcXGcJLrGUW011TP5gfjr/AMG0Hw88ReJtT139nz9ojWPhvoF9dS3Nt4C8f+Df+E7ttIE7mQ2emeMdP8R+HdV/s2zJMNjBq+i6zqZtxEL3W7u4je4n7446SXv01J94vlv8rtfdyr+6tEfx1xJ9EPKsXjK2J4W4qr5Thqk5ThlmZ4D+0oUOd39nRx9LF4WuqNO7jTjXw+JrctlUxM5LnPx6/bU/4J2ftF/8EmdS+Efxl0T4+aRe3/ibxJqml+FfFvwxuPFPg3xd4f1vQrS01VxdQzII2069tZdpEGr3cVwYJbTULE28yb+mlWhiOaPI9FqpWaab/wAUu3/D2XL+D+IXhVxX4IVci4gw/E1CpVxmLrUcFjsnljcBjsLicNCFd88ZWTpVIO3u1pxnyyp1aXK7z/t1/Yz+MetftBfso/s9/GjxLHBH4n+I3wn8G+I/FAtYUt7STxPcaRbw+IriztowqW1lda1BfXNnbINtvbSxQgsE3N5dWKhUnFbKTS9On3I/0R4Az7EcUcFcLcQYtRjjM2yTAYvGckVGm8ZOhBYudOCSUKc8RGpOnBfBCUY3dk5fTFZn1541J+0R8CYvjHF+z3L8Xfh9H8cJtL/tmL4Vv4o0lfG8mnmwOrK66CbkXpuG0dW1pbDy/wC0G0RTrK2p0tWu6rkny8/K+S9ua2n3+umy10v0l4D4q4bjn8eFpZ5lceI5UPrEcleNoLMXS9n7e6wvOqnO6F8QqVnVeGX1lU/YJzPZak98KAPlT9uP4E3P7TH7Iv7QXwO05UfXPHnw31u18LJKypBJ4z0YQ+JPBcdxI/EVs/ivRtGS5m5MUBklUFkVW0pT9nUhPopa+j0fbo3/AMHY+K8RuG58X8DcUcOUkniczynEQwSk0ovMKFsXl6m3ZRg8bh8Opy+zG71skfzUf8G4f7Tdp4B+JPxl/Y28cyvoeo+P7o/EP4fWOpq1jP8A8J34PsH0f4g+FpLacJP/AG3feGLDS9WhtXjja3tvBGtpNiZoUbuxtO8Y1F9nSVv5Xs/RO6/7e2e8f5H+idxhDLM2z/gHMm8NVzOf9q5XSrL2cv7SwFJ0M1wThK0niKmDpUK8adouEMuxPNzNxif2BV5p/doUAfEP7Uv7THjv4LeI9B8NeEfCmlXa6zov9pnX9ftdTvbSa5e9urM6Zplvp97pqNeWKW8VxdGa6nbGoWgNoqBXn/m3xs8ZOJvDrN8rybIcjwNdZhl3115rmtHGYihUrSxNbDvB4KjhMRhIuvho0YVazqVqrtiqCeHUHGU/6g8CPBLhXxLybNs74hz/AB+HlluZ/Uf7JymvgsNiKdGOGoYhY3HVsXh8XJYfFSrVKNBU6FFXwmIaxMp3hS+QLqz/AGuP2npobHUrXX4fC880cmL2yPg3wPboGBWeUNBatrn2ZvnTCa3qMRbMKDOK/A69Dx48Z6lPDYyhmkMlqVISticM+HuGqcVK6q1L0aLzL2MkpRtHNMXTetOKvaP9EUMT9HvwNp1cVgq+U1c9pU5R/wBmxS4k4oqycXF0abVStHK/bRvGV5ZXhKq/iyVko/eXwD/ZT8HfBoQ69qEkfivx6YiG125txHY6MZU2zQeHrJ2c2zFSYZNUuDJqFxH5ix/YLeeazf8Ap7wu8DuH/D32eaYuUM84o5LPM61JRw2XucWqlPKcNLmdFuMnTnjarni6sOZU/qtKrUw8v5S8WfHviPxJdXKsJCeQcJqomsqo1nPFZjySvTq5xioqPtkmlUhgaSjg6M+R1PrVajTxEfquv3A/BAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAwfE/ibRPBvh/VvFHiO/i0zRNEs5L7Ub2UMyxQx4UKkaK0k080rRwW1vEjzXNxLFBCjSyoreZnWc5bw9lWOzrN8VDB5bluHnicXiKnM1TpxskoxipTqVak5RpUaVOMqlatOFKnCU5QhL1cjyTM+I83y/Ismwk8dmmZ4iGFweGpuMXUqTu25Tk1ClSpQjKrWrVHGnRowqVakowhOR+XnjP9uT4n+L9ck0b4O+Fk0yzZ5FsGl0mTxP4s1BEPFwbGFZ9Oswy/M1pHZak0RODfODX8V8RfSV40z/ADKWXeH+SRwVCUpRwsp4CWdZ7ioxelV4Wn7bB0FJavDww2LlTb/3qd7H90cNfRb4H4dyuGZeI+fSxuIjGDxcaeYwyPh/CSmtaX1up7DG4hxekcRLE4KNSzthYas9V/ZF/aY+IPxQ8Y6x4G+IE1nq8i6Fc65pmsW+mWmmXdvJYXljbXNjeQadDb2UkE0d8JYZvs0U0M0DRO863KCD7jwF8Y+K+NOIMfw1xVUw+PmssrZng8wo4Ohgq9KeFr4ajWw2IpYSFLDzpVIYn2lOoqNOpTqUnCUqqqxVL4L6Q3glwjwNw5l3FPCNPE5fCWa0Mrx2XVsdXx2HrQxeHxVehisNVxcq2JjVpzwrp1Kbrzp1KVWNSMabozdX9DK/q8/j8KACgAoAKACgAoAKAP/X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iH+Jv/Fif+Di3Tbgf6JBrf7VXwvnMw+SNoPj74Y8KRX0xcfL5bSfEO7S6k5VXW4EnKuF9SPvYP0py/8AJL+n8v8Aw+5/nbnH/GNfSsoyX7uOJ40yaXNtFx4nwWCVV32s3mtRTeqTUlLaSj/bxXln+iQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAeO/tBfG3wf+zh8E/ib8c/Hs/k+Fvhl4S1TxPqEKypDcapcWsQi0jQNPeXMf9q+JNZn0/QNIST5JdT1K0ibAfNVCDnKMI7ydvTu3volq9Nu54PFHEOA4T4ezjiPM5cuCyfA1sZVipKMq0oRtQwtJu69vi8RKlhaCas61Wmne7P47v8Agj38E/GH/BQL/god4+/bI+NVv/behfC/xXP8ZPEc9xC8mlal8W/Euo3k3wz8L2CTk+XpnhBrO58SafbQySx6TaeDfDulTxCz1CBX9PEzVGiqcVrJci8or4n5trT/ALev0P4M8B+Hcf4oeKeZ8f8AEMPrGGybGyz/ABcpJujWzzGVaksnwdJSvajgXTni6UI8yoQwGEoSiqdWJ/bnXlH+iIUAFABQAUANZVdWR1V0dSrowDKysMMrKchlYEggjBHBzzQDSaaauno09muz339PvP4df2D2b9hH/guJrfwTuCdJ8Ja78Tvif8AIo2JiN14Q8eyy638HxsOFJ1TVrT4Z3AiLMFFx+6aZ1jL+rV/fYXm68sZ/OPxdHfTm7ep/nP4at+Gv0jMTw7JuhgcTnGc8MRT93nwGZyeJyFW2/fV6eUS5b6c+jbS5v7jK8o/0YCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPhv8A4KW/F7/hRv7Bv7UnxDjuvsWoW/wn1/wpoV0H2S23iT4jeR8O/Dlzb8gtPZ634psbyNQGBMGXUor1tQjz1qa6c136R18+3/Dbn5z4u57/AKueGnGeaxn7OrDJMVgsNO9nDF5ty5VhJx7yhiMbTml/d10R+H//AAbJfCL7N4Q/af8AjzeWu4614j8GfCTw9eFMGFfDWm3fjDxfbxv/ABi7bxV4JkkUEBDYx53Fht6sdLWnDycn+S/KXT77H86/Q/yLkwHGPEtSF/rGLy/I8LUt8KwdGePx0U+qqPG5c2la3slvf3f6pK88/tAKACgAoAKACgD+fH/g5e+Hf/CY/wDBN9fFaQb5vhN8ePhn4zkuFX54LHWrXxP8Npo3cAkQT3vjrTS6khWnitScsiV/QH0bMw+p+I31Vyss2yLM8EovaU6MsLmUWltzRhgalnq1GU0t24/i/jxgfrXA31lK7y3OMBinK20KscRgGm+kXLGQv0clHqkehf8ABur8RP8AhOP+CXvwv0N5/Pn+FXxC+Lfw7nYtukTzvGN58RLSCQ8n9xp3xAsooVP3LZYEXCKgrz/pD5f9R8TszrqPLHNcvynMIrZO2Dhl85L/ABVMBOUt7zcm9W1Ht8Ecb9b8P8vo3u8uxuZYJ91fFSx0U9XtDGxS2tHlSWh+5lfh5+thQAUAFABQAUAFABQAUAFABQAUAFABQBw/xN8AaD8V/hv4/wDhd4pjabw18R/BXinwJ4giQIZH0Xxbol9oOpiLeGQS/Yr+YxFgQsm0npTjJxlGS3i1Jeqd1+J52b5Zhs6ynM8mxqcsJm2X4zLcVFWu8PjsNVw1ZK+l/Z1ZW8/Q/id/4JUfHi//AOCZH/BQr4ofs4ftE3sXhDwl421Wf4MfEDV9Qd7HQtC8aeGdYuLj4Z+P7q5uTHGnhPU01HULS21mcpYQeH/HcHiW4uotLs57ivUxEPb0Yzhq170V1afxR2lrptvdWu2f56eCvElXwf8AFPOeEuKqkcDgcxry4fzSvVfs8Nh8wwdec8nzOc5ySWCrKtWpwryfso4XMo4udSFGEpH9zCOkqJJG6yRyKrxyIwdHRxuV0ZcqyspDKynBByMg15R/o2mmk0001dNapp7NPqmjkvEPxC8A+EtT0TRfFfjjwh4Z1nxNdxaf4b0nxD4l0XRdT8QX87+XDZaJYale211qt3NJ+7itrGK4mkcbEjZjimk2m0m0t2k7L1/r8zixWaZZga2Gw+NzHA4OvjKkaWEoYrF4fD1sVVm+WNPDUqtSE69STXLGFKMpN6JN6HX0juCgD+Pj/g5h+Mdrr/xT/Zr/AGfNIm+1X/grwp4r+JHiO1tT9oc3vxD1PTPDvhaxljj3NHf21n4K1m7S1x5z2uvWcxQxz27N6WBj7s592o/cr/8At3f7rH8IfS8z6GKzrhHhehLnq5fgsbm2KhD337TNa1HCYKm1HVVYQy7ETUNJOGJpy2lBy/qD/ZM+Flz8D/2X/wBnv4Q38Xlar8Ofg38OvCWuJ8vPiHSPCumW3iGT5flHna2uoS4UkDfgM2NzcFSXPUnJbSlJr0vp26f09z+x+CMlnw5wdwtkVVctfKcgyrA4laf71QwVGGKemnvYhVZfM9C8efFz4U/CtvD6fE74m/D74cv4t1RdD8Kp478Z+HPCL+JtacxhNI8Pr4g1LTzrOpsZoQLDThcXR82P90d6UlGUr8sZStq7Juy7uydvw9dz1MyzzJcmeFWcZxleUvHVvq+CWZZhhMC8ZiHa1DCrFVaX1is+aP7qlzz95e67n8af7QU03w6/4ONPD9w0skY1L9qT9mxFmZ2w1t8SvBnwtsZVDk/6kL4nmtXGfLREkiO1EZa9KGuCf/Xup/5K5enVf8PufwJxRKWVfSuws+Zx9txnwiua7+HN8vyanJX1922MlBrZJOOiTZ/bdXln+h4UAFAH8Yf/AAWu/Y58d/sc/tOeGP8AgoD+zob/AMN+GPG3j3TvFmsapoEAUfDL482lyNWfUp41UxDQviRPbXGuAXaT2Fz4ibxRo+pLFZ6ro1jd+nhasalN0p6tJqz+1D17q9tErKz1tc/gD6QvAWZcBcYYPxQ4U9phMHmOZ0sbiK2Gj/yJ+Jac/butJbLDZtKEsT7/ADU54v65Qq2p1sPTq/07fsEftY2H7a37LXw1+P1vor+G9X8RWt/o3jHQNsv2TS/G3hi9l0bxLFpE8pdrrQrvULZtS0SZpp500u9tba/dNSt7yFOGtT9lUlC97ap+T1V9FrbfT0vc/sLwz43peIXBmUcTwwzwlfFQq4fH4W0vZ0cwwdSWHxaoSldzw06sHVw8nKUlRqQhVtWjUhH7GrI+9EKqSCQCVOVJGSpwRkehwSMjHBI74ZWTs2k2tvLS1120bXTT5qTTauk2k1Z2drq97Pur2fqvJC0xBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHj3x6+HF98WPhV4p8D6XeQ2OqanFY3OmTXLOlm99pOpWmqW9teNGsjpbXb2n2Z5VjlNuZVuRFKYQjfAeKHCOJ454HzvhvBYinhsbjIYatg6laUo4d4nA4zD42lRxDjGco0a8sP7GVRQm6LqKsoVPZKEv0Xwn4zwvAHHuQ8UY7DVMVgcDUxVHG0qEYSxEcLj8FiMDWrYZTlCMq2HjiPbQpucFVUJUXOCqOR+XGu+Idf8A2afht4g+DSnRIfih411Ga+8WaxohhuL7wx4NvNNsILHw9LrMUUck2qasIry/SFJZYdH0rUvPgcXuqRyWn8U5nmuaeDvB+a+HqeXU+NeI8XUxOe5hlrp1sTkvD2IweFp4bKZ5hClTlUx2P5K+KVOLnTwGBxntaTWJxsJ4f+68qyjKfGzjXKfEiUczqcDcMYOnhMgy7NFOjhc84jw+MxdXFZxDLalWpClgMv8AaYfCOpKMamYY/Beyqr6tgp08R6v+wjq/wk8N3mqPq3iu0t/ih4rZdF0zSdQtruygt9GjuI5VsLDVJ7dNOu9S1m+it55LRbrz5FttPgtIpZhdLX3H0Y8fwHlGJxksdnlClxrnjWXYPA4qjXw9Kll8KsZxwuFxtWnHB18ZmOJp0as6Ea7qSjRwlKhTlVVeJ8D9KvLvELOsNgY4DIMRW4FyCLzPG4/CVsPiatbMp0Z05YvF4GlVnjcPgstwtSrShiJYb2UHXxlWvUhTdBx/VGv7dP4NCgAoAKACgAoAKACgD//Q/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iL/4LrRSfBf/AIKofC/4vW8bRNe+BfgX8WFuIlOXvfA/jTXvD5wy8m4hg8B2R2g71je3PAZK9TCe9Qcf70o+l0v/AJL+tT/O76SKfD/jRk2exTi6mW8N53zrrUy7MMThd/5oxyyn5pOPdH9uMUsc0cc0LpLFKiSxSRsHSSORQyOjLlWR1IZWBwQQRnNeWf6IJqSUotNNJpp3TT1TTV001qmn99x9AwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Tb/g44/bAnv734c/sOeAr6W5nM2lfE/4w22mM809xe3PmQfDHwPPDbhpZJist54y1DS5EczPceBb+BTIgFejgqfxVX192Pp9p7d7JWb2l393+I/pX8dyqVMq8OcsqSnJyoZxn0KLcpTqT5o5Pl0ox95yd55hVotS5nLLasVdI/b3/gl5+yBB+xZ+x98OfhjqVjFbfEfxHB/wsb4vTqqGeT4heK7SzlvdImlTIlj8H6Tb6R4NgkjYw3C6C9+gD3srPyV6ntajl9le7H0XXru9fn02P6K8HOBI+H3AmU5PVpxhm2Kj/auezSXM80xsISqUJSV1JYCjChgINPlksN7Ra1G5foZWJ+pBQAUAFABQAUAfxR/8F+/A+tfAD/goP8H/ANpzwdF9hvfHfhTwL48sNU2sgf4m/BLXrXSZH3ptLfYdAsPhxIXVvNBl2naqxu/qYNqdGUH9ltW/uy1/Nvt+sv8APb6TuXYjhfxRyHjHAL2dTMsFluZ0q1nG+ccO4mFBvmWr9nhaWUu6tJXt0Tl/ZV8OvHGi/E34feBfiT4ck87w98QfB3hjxvoMu5X83RvFei2Wu6ZJvXCsXsr+BiyjBzkYyK8yScZOL3i2n6p28vy+4/vrKsxw+b5XlubYR82FzTAYPMcNK9+bD43D08TRd1ZO9OrF3S18jsqR3hQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfzmf8HJvxh/4RP9lP4SfBuzuvI1H4wfFo61fQB+bzwn8L9ElvdSgaMYJVfFPinwTdB2yqtahdpZ1dO3AxvUnL+WNvRyfo+ia3XzP5S+ltn31HgnI8hpz5aufZ59YqRv/EwOTYeVStFryxuMy6d+nJazunH7d/4Iq/B8/B7/AIJyfAKC6tfs2s/Emx134way2zZ9qHxA1m61DwxdYIDHd4Dg8JRb2Lb/ACt6FY2RKyxUuavPtG0V/wBurX/ya7P0T6PmQ/2D4UcMRnT5MRm1LEZ9iHa3tP7UxFSrg6nfXLI4GN3e/LdaNKP6rVzn7SFABQAUAFABQB+b3/BX34d/8LQ/4JnftmeGRB9pbT/gzrPxASLbubzPhNf6Z8U0kReSXibwaJU2jduQYySK/RvCLMP7M8SuDcTzcqqZzRwDd7aZrTqZW0/J/XLP11PhvEvA/wBocBcU4e3NyZXVxtvPLZ08xT9U8Ldea0Pxn/4NT/iJ/aXwI/aw+ExnyfBvxa8DfENLYt9wfErwdeeG5ZkQ/wB8/CiJJGUcbIg2Ny1+yfSoy/2ee8KZry/75lOOy9ytv/ZuMhiUm/L+1W1r1drWZ+XfR3xvtMn4jy6/+65lhMby/wDYfhZUG/n/AGak/RX6H9XNfyqf0UFABQAUAFABQAUAFABQAUAFABQAUAFABQB+KP8AwVS/4JA+Fv28vsnxX+GWu6L8Nf2j9C0qLR21jWba5Hg74laJZK40zR/G8ml2t3qemarpG7ydF8X2Nhqt1DpmdD1TStTsYdGn0Dqw+JdL3ZJyg3fzj3t7y0fbvqm7tH89+NHgTgvEv2ed5RicPlHFmFoqh9YxEJ/UM3w9NP2OHzF0YzrUa1C/Lh8fSpV5xo3w1ahWpxw8sP8AhZp//BMn/gu34R063+Gvhbxl8WNP+H2mRrpunWHhn9sWz0bwBb6fEPJijsPDX/CzdKubWwWJQI7YeGIGSLan2VMFF6/b4RvmfLzedK8r+tt/v82j+b6XhB9JPA0o5Rg8wzulldGKpUqeD49hQyuFKPuqNLCf2vQnCkktIfU42Wip7xj6x8If+Dcv9qfx54osfFf7S/x88EeCrW41C0v9aPhbUvEvxP8AiVdRwzRyXMTanqtj4f0Gw1KaNDFZ6sNe8RpZTMt1Jp94sItZZljacVaEJS7XSjHy+2390V+LPbyL6KPGeZY2ljuL+J8uy+EqsKuIeCq4zOM3moyTlF1q9PC4alWklanXWJxaptqbpT5PZy/sitbdbS2trVJJ5UtoIbdZbmZ7i5kWGNY1kuLiUtLPO4UNLNIzPK5Z3JZia8w/veEVCEYJyahGMU5yc5tRVrylJuUpO15Sk229W23ch1PUtP0bTdQ1jVry307S9KsrvUtS1C8lSC0sdPsYJLq8vLqdyEht7a3ikmnlchI4kZ2IAJoJrVaVClVr1qkaVGjTnVrVZyUYU6VOLnUqTk9IxhGLlKT0STb2P4af2U9P1L/gql/wWZ1H4w69aXF98NtE8fX3xs1K0vYneHT/AIVfCW50vSfhR4ZvbaTEBGq3lr4A0LXLTEC3i6hr195DObiN/WqP6vhuVb25F/ildyf2f7zW/bXeX+cnBVKt40+P1XPsTCdTKMNmdTiGrCpG8aWSZHOjQyTB1INKP7+pDLMNiYWjz+1xVXkk3OMv6Qv+Cj3/AAVk+CX7Beh3fhSyex+KH7RepaeJfDvwp0y/X7P4eF3DvsvEPxN1K1Z38N6KEeO7s9GQ/wDCS+JI2hXTrWz0ye48Q6bw0cPKtr8MP5u/lHe/m7WXVt+7L+svFjxu4d8NMNUwVN0844rq0ubCZJRq+7hfaRvTxWb1oXeEw6Vpww6/2zFpxVKNOjOWKpfzZfs4fsdftp/8FqvjbdftDftCeMNd8P8Awaj1JrLVviZqNi1ppMOj2V47SfDf4CeE5ydPaOzczWs+oQpLoGh3ZvdV8S3+veKpZdM1zunVpYaPJBXlbSK795u6tvfq3suVe8fyTwnwF4g/SE4hnxVxTj8ThcgVb2dfN6tN06EcPTqNvKeGMDJ+yapvmhKrGMsLhqntK2Lq4jGuVHEdV/wVb0q1+D3/AAWR+EGvWJnistOuf2SPFVncXVxLcXTWvg6/8P8Ahy3uLm8mZprm4SLwYqzXUrtLLJG0kjFyTSw75sNL/uItPPXT7/61O3xrowyHx9yHFU3JU6U+B8dCVSUpzcMBVwuEjKdSXvTkll65pv3m029Wf3CV5R/osFABQByXjvwF4J+J/hLW/AXxG8JeHvHPgrxJaiy1/wAK+K9Isdd0HV7VZormOK+0zUYZ7SfyLqCC7tneIyWt3bwXdu0dxDFIjTcWnFtNbNaP+v66nDmWWZdnGBxGWZrgcLmWX4uHs8VgsbQp4nDV4KSmo1aNWMqcuWcYzg2rwnGM4uM4wkN8BfD/AMDfC3wjongH4beEfDngTwT4btns9B8KeE9HsdB0HSbeSeW6mSy0zTobe1ha5u7i4vLuVY/Nu7y4uLu5kluZ5ZGJScm5Sbbe7er/AF6af5WsGW5Zl2TYHD5ZlOBwmW5dhIOnhsFgaFLDYahByc5KnRoxjCLnOUqk3bmnUlOpNynKUjr6R3BQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAeMeOf2kP2ePhh53/AAsv48/Bj4efZ932j/hOfij4H8J+Rs+9539v65p/l7R97eVx3HFezgeHOIczt/ZuRZzmHN8P1HK8bi+btb2FCpe/kvv2PLxeeZJl9/r+cZXgeX4vreYYTDWt39tWp2+f4aKXnnwl/bl/Y7+PXj25+F/wX/aW+DPxQ8f22m3Wr/8ACL+CPHeheINSu9MsSPt15pY0+7mg1iGxVllvW0me9NnbsLm5WGArI3o5twPxhkOAjmec8NZzlmAlVjR+tY3A18PThUn/AA4VfaQjKi6m0Paxhzy9xXkvf4ct4u4YzjGSy/Ks+yvMMbGEqv1fCYyjWnKnD45U+STVVQWs/Z8/LH3pWjaR9VV8qfRBQAUAFABQAUAFABQAUAFABQAUAFABQB8ufEf9kT4VfFDxte+O9fuPFVpqupxWianaaPqtja6bfzWNrBYwXUsd1pV9dQzfY7e3glFpdW8MnkpN5QmeZ5/xTi/wF4H404jxHE+a1c8oY7GwoRxtDL8dhqODxM8NQpYalWnTr4HE1qdT6vRpU5rD4ijTn7NVHCNSVWVX914M+kNx7wNwxhuFMopZDiMBgamIlgcRmOAxVfG4WnisRVxVWhTnQzDDYepS+sV61WDxGGq1Ie0dNVHSjShD87P2s/hN8OPgz4o8JaR8PtQ1ZdTvNMu9S13Tr3UVvpNLWO5to9EvIbhIYbiCe/ZdSaSGSRti2dtPCI1my38l+OvAvCPh5nWRYDhTF45Y3EYOvjMzwmJxaxMsEoVqMctxFKrGnTq0qmKccY5U5yfKsPSq01CNVc39jfR+8QOM/EnI+IMw4vwmAeBw+Ow+CyrGYbBywsMc50a0s0w1WlKrVpVaWEUsEo1IRXM8TWpVJVHT9z9ivAVzq174G8F3mv7xrt34T8OXOtCUESDVp9Hs5dR8wHBD/bGm3gjIbIOOa/0C4XrY7EcM8O4jNOb+06+RZRWzHnTU/r1XL8PPF86dmpfWJVOZNXT3sf5ycWUMvw3FPEuGynl/srD8QZzQy3k1h/Z9LMcTTwfI1dOP1eNLls9u51le6fPhQAUAFABQAUAFAH//0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5Bv+DnXwX9k+IH7JfxESLP9v+Dvil4LuJ1H3f8AhEdb8Ia5ZRSNjjzP+E2v3gBPzeXcFR8rmvRwL92ouzi/vT/y7/cfwp9MLL+TNOB81Uf96wGc5fOSW31HEYHE04yfS/8AaNVxTevLO1rM/p7/AGUfGn/Cx/2Xf2cfiAZfOk8a/An4S+KZ5Cdzfatd8BaDqV2knJImjubiWKZWO5JUdWwymuGouWpOPacl9zZ/YvBWYf2twdwnmnNzPMOG8jxsnu+fE5Zha00/7ylNqSeqkmnqme/VB9MFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB5T8c/jH4O/Z8+D3xH+Nnj+7+x+EPhn4S1fxXrBV0S4vE062ZrPSNPEhCS6truoNaaLo9sTm71W/s7ZcvMtVCLnKMVvJ2X+ez232+48XiPPsBwvkObcQ5pU9ngMowNfG4hppTqKlC9OhSvpKviarhh6EPt1qtOC1kfxrf8ABJz4O+Mf+Cjv/BSHx1+158abT+1vDPw18WN8bfF/nJJPpFz8QtV1C4Hwi8B2RmDH+yvDT6Z/a2n2kglhj0HwBa6PdoItQhEvpYiSo0FTjvJci12S+J7LV3ttvK+p/AvgjkOP8WfFnMuO+IIe3weUY7/WLHcyc6E80rVZf2FllPm19jg/Y+3pQalGOGyuFCaSqx5v7f68s/0UCgAoAKACgAoAKAP56P8Ag4++C/8Awm/7HfgL4wWVp52qfA/4r6eL+62bvsfgz4mWZ8Mav84BZPtHi+y+H0XJCPjDZcR124KVqko/zR/GP/Ab6fcfy19LHh/+0eAssz6nDmrcOZ3S9rO1+TL84p/U6+u65sdTytdn11SPqL/ghx8aP+Fx/wDBOj4QW11d/a9c+EGoeKPgzrbb9xhXwnqI1PwrbbSS0Ytvh/4h8IW4Ukg+UXQKjIiZ4qPLWl2klJfPR/8Akyff8LR+y+jnxB/b3hTkMJz58TkVXGcP4l3vy/Ua3tcFC265MrxWAjZ3va6smkfrrXMfuYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8T/wDwX18Y6x+0B/wUS+Ef7M/hCX7XfeCvCfw9+HdhpuWlCfEj40eIItZf93H8ym90HWPh5GYlXzW8jduYPGi+phFyUZTfVuX/AG7FW/NPv+kf89fpN4/EcUeKuRcH4GXPUy/A5VlVKjvbNuIcVGu9F/z8w1fKly2v7t9eZH9mvgTwdo/w78D+Dfh/4dh+z+H/AAN4U8O+DtCgwq+Ro/hnSLPRdMh2qAo8uysoEwoCjbgAAAV5jbk3J7ttv1erP79y3AUMqy7AZXhY8uFy3BYXAYaOi5aGDoU8PRjZaK1OnFaadjq6R2hQAUAFABQAUAcJ8U/BFp8TPhj8RvhvqGz7B8QfAni/wRe+aN0X2TxX4f1DQbnzF5ynk377xjlcjnNd2V42eW5nl2Y07+0y/HYTGwtvz4XEU68befNTVjjzDCRx+Ax2BnbkxuDxOEnfVcuJozoyuuqtNn8Tf/Brn43vPCP7ZP7Rfwd1XzNPl8X/AALn1qeynIRj4i+F/wAQvDumrYsmebu3sPG/iCXAGFjtbr5l4V/7U+k9goYzg7h3OKVqiwmeRoxnHX/Z80y/EVedOz92VTBYdbq7lHc/lP6P2LlhuKM7yypeDxOTyquMv+f+X42hTULfzKGLrvrZQl6x/ufr+HT+uAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8iP+C4H7RFx+z9/wT++Jdto929n4p+N+oaZ8CtBmicrLFZ+M7XUr7xtLtQrKI5fh9oXirTFnRkFve6lYuWLFI5enCw560b7Q9/5rbv1s/wDLc/DPpFcVT4X8MM3jh6jp43iKrR4bwsov3owzCFapmLsrNJ5XhsbSU048lSrSbd3GM/4+v2Sf2+fGv7Gfwa+LPg/9nnw6un/tA/HjXNI0XV/i/f21tqt34K+H2g2Useh6B8ONDeO5WTxfruv67rl3qms6nFJZ2UFnoEdho+o6qlrqei+jUoxqyi5v3Ip+6na8nu5aO6SSsk49byR/CHA/idmHAHD+eYDhbCey4o4lxNDD18+qwhWnl+V4Wm1hsNlOHcanNjsTisTiZ1q9aLp04wwqpUatdQrYf9hf+Cc//BDXxz8YtdtP2l/+ChDeJoNO17UD4ssfg34h1PU2+InxA1C/m+3ya98Y9YuJ31rQbC/kkNxceGjdp4y1eaaQ+Ibnw4kD2Os89fFKKcKNr7cyXuxt0hrZvpquVLa91y/vHhT9HHMs+xMOL/FJ4yNLE1frtPIMVWrPNc0q1Ze1eKz/ABEp/WMNSqtuUsH7T6/WlJ/WqmF5XTxH9b/h7w9oPhLQtI8MeFtF0rw54b8P6daaRoWgaFp9ppOjaNpVhClvZabpemWMUFnYWNpBGkNta2sMUMMSKkaKoArzm2222227tvds/uPC4XDYHDUMHgsPQwmEwtKFDDYXDUoUMPh6NOKjTo0aNJRp0qdOKUYQhGMYxVklsfzy/wDBWb/glD+0J+2d+1v8E/jd8FNX8D6d4ctfBXhT4fePbvxJrE2maj4Rm8L+NvE/iNPGMVitnO/iCzm0rxPHaQ6bpjtqS32irHLEtrfLdW/Zh8RClTlGV78zlGy3ulputbrrpr84/wAs+N/gnxT4gcccO8RcPYjLaWEp5dgsrzOeLrypVcDLBZjjMWswVPlk8VTlRxipxo0f3qqYazjyVFOP9GVcR/VoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAeX/G/UfifpHwY+LWq/BPR9K8Q/GTTPhr441D4U6DrrrHo2tfEaz8NanceCtK1R3urGMWGoeI49OtboS39hC0MrLNfWUZe5T1Mkp5ZWznKaWdVquHyermWBp5rXoK9ajl08TSjjatJKM37SnhnVlG0JtNXVObShPz82nmFPK8yqZTSp180p4DFzy6jWdqVXHRoVJYWnUblFck66hGV5wVnZzinzR/g41X4r/wDBx18dviZD8J7mf9tzw/441t7+WDT9L8FTfs7aBBbWqSzXF63jTS9B+GvgvRtHQL5NrrF14ks9NnuJLS0tL2a8urWKf+66WVfR0yLLJZtGPBWIwNH2alUq41cQ4iUpNKMFgqlfM8bWrO/NOlDDTqxipTlTUIzcf4/qZj445xj1l0nxZRxdbnahTwsskoxjFNubxVOjgMLSpK3LGrKvGm5OMY1JTnFHoH/Djz/gtn8fP+S1fE+Kz+2/8ff/AAvP9qfxH482+Z/rPtn/AAic3xU87GSJPL+07sfLvyDXn/8AEbvBXIf+RLlbnyfB/YfC+GwG23J9ajlnL5XS9Inb/wAQm8Vs5/5GuPUOf4/7X4hr4zffn+rPMObrezl6u9z2jwN/wanfHfUPJ/4WX+1n8JPCW7b5/wDwg3gPxj8Q/Lz97yTr998MPOx/CXFvu7hMmvGx30qMip839m8J5ti/5fr2PweX37c31eOZWv5Xt53PVwf0d84nb6/xHluG7/U8Hisdb09vUy+/z5fkfrp/wT2/4ICfBr9hL49+Ff2kLr45+PfjD8RfA2m+JLTwnbTeG9I8BeEtPv8AxX4c1Pwlq2rXmkWmqeJ9U1OUeH9b1eysbSfX0srea9+2TQ3VxbWjwfkniB495zxzkOK4cjkeAyjLsdVw08VJYitjsXUp4XEUsXSpQrTp4elTX1ihRnOccPzyUOSMoQlNS/SuC/BrK+EM4w2eyzfGZnjsHCvHDRdClgsNCeJoVMNVqSpxq4ipUfsK1WEIusoxc+dqUox5f37r8EP2QKACgAoAKACgAoAKACgAoAKACgAoAKAPlb9qjxZ8c/CPh/wzffBfTLy836jfDxTdaXoFv4l1S0giitDpcUelz2mo40+8Z9Q/tC9jsXktmt7RRc2onZpfxHxuz3xLyHKsnxPh3g8RiObF4n+26+CyulnGNw9KEKDwUIYKpQxVsLiHLFfWsTDDSnRdGglVoqq3P958B+H/AAt4hzjOsL4l47D4blweG/sKhjs2q5JgMRVqTrrHVJ4+liMH/teHjHCfVMNPExhWVbESdKu6SUPkn4E/s1/ET4o+Pz8VfjpZatb6YmoprM1l4mt2tda8W6pCyNa20+lTrDLp/h+28uHzY57W2t57OKDS9NtTZPLLZfhHhl4PcWca8UvjjxMw+Po4OOLjmFTDZzSdHMc+xtNwdClVwNSFOeDyqioU+aFSjRpVcPClgcFReGlOph/6C8VfGng7gXhFcA+FmJy+tjZYOeW08TklVV8t4ewNRSWIrUsfTqVIY3N6/PV5J061atSxNSrj8ZiFiYQhiv1fr+5T+BAoAKACgAoAKACgAoA//9L+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+bv/g5e8Gf2l+yt8CPHyReZL4S+PR8NO4XLQ2fjbwD4pvppCf4Ymu/BWnxOc4MskA5JFduBf7ya7wv9zt/7cfyZ9LvL/a8FcNZmo3lgeJvqjfWNPMMsxtST8oueX0ovX4nFa3R+iP/AARy8Z/8J1/wTW/ZX1VpvNm0rwf4g8GTAnLw/wDCBePfFfg22hcZJXFhodpJEDjMEkTKNrCscSrV6nm0/vSf5v8Aqx+qeAmYf2l4R8F13K8qOAxWXy1u4/2ZmWNy+EXtb93hoNLpGUbXTTP0zrA/XwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5Rf+Djr9sSUxfD39h7wLqMkt1qL6X8UPjLFp7tJJJEJpY/hp4JuUh3GR7m8S78aajpsqiZWtfA1/DuS4AX0MFT3qtf3Y/8Atz+H5fF39D+KPpYcevlyvw5y2q5TrOjnOfxpNtuPM1k+XzUb3c6iqZhVou0k4ZdVV1JH7O/8Eq/2O4v2Lf2PPh/8P9Y05LT4n+Mox8S/i/KyKLpPHHiizs3/AOEemkwTs8F6Hb6R4T2Ryvay32lajqduqNqcxfmxFT2tWTXwr3Y+i6+fM7vaPa2iP3/wW4Cj4fcB5XldekoZxj1/a+eya99ZjjKdN/VZO17ZfhoUMDZNwdSjVrRSdabl+jtYH6wFABQAUAFABQAUAfKn7cvwY/4aE/Y//aN+D0Vp9t1Pxn8J/FkPhq22eZv8ZaNYP4i8EN5fVvJ8X6Rok2Ew/wC7/dkPtZdKUuSrCV7JSV35PSXbo3/wdj4rxH4f/wBaeBOK8hjD2lbMMkxscJC175hh6TxeXO3Xlx1DDy01001SP5yf+DZT4z+R4g/aZ/Z5vrvI1PSPCfxk8MWRkwIn0a8k8FeOLhYzne1ymt+AIyybSi2Xz7w6bO3HR0hPzcX89V+Uj+Ufof8AEHLiuMOFqlT+LQwOf4Onf4XQqPL8yml1c1iMrV1ayp63uuX+uGvOP7jCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAJxyeAOST2oA/h0/Yh/4zm/4Loa18Ypf+Jv4S0P4s/FH46QXGPP+z+D/AIb/AGnRvhDNv+ZP9B1Q/DS287hPkzCEJjVfVq/usLy7PljD1cvi7dOZ/o9j/Ojw7/42P9JDE58/3+Bw2eZzxHGXxcuAynnw+RSv7y/d1v7Ihze6tLx5W4Rj/cXXlH+i4UAFABQAUAFABQAUAfwSfsO/8Ywf8HGniv4fyf8AEu8P61+0T+038OIYP9Vv8O+PNL8faz8PYNuFU+fey+C5NoGxs/us/u2r+8ON/wDjJ/o7YTMF+8xFDh7hnMW97YjAVcBRzCV/d+GCxmttOtt5fx5wl/wgeOGIwT/d0Kud5/gVHvQxlPG1cDH7PxTeE6eiZ/e3X8Hn9hhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHw5/wUA/YW8A/wDBQD4GxfB3xr4k1jwTf6J4psPG/gvxrolnbapc+HvEthp+qaP5l7o11PZxa5o97pWtalaX+lf2jpskrva3cF/bXFlC660aroz5krpqzT6r8LO63/O9j858T/DfLPE/hxZDmOLxGXVMPjaWY5fmGGpwrTwuMpUq1C9TDzcFicPUoYirCrQ9tQcm4TjVhOEWfNP7B3/BGf8AZj/Yk1O08f3L3fxy+Ntk/mab8SvHOj2NjY+E5Bx53gHwXDc6np/hq/ddu7XL3UvEPiSAmeLTdb06xurqzl0rYmdVcvwQe8U9/wDE+vorLvqk5fI+GngFwf4d1oZnJz4j4ipu9HN8xoU6dPAv+bLMvjOtSwdRrfE1K2KxcfejSxFOnOcJfrzXMfugUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHwV/wU1/a41T9h79ir4zftD+GtO0zV/G3hqw0LQfAGm6zFLcaTP4z8aeI9K8K6Nd6nbQ3FpLeadoR1SfxHf2Md3ayX9no89lHcRPcK6/d+GnCVLjfjTJuHsTUq0cFialevj6tFqNWODwWGq4qtCnKUZqFSv7KOHp1HCapzrRm4yUWj4/j3iSpwnwrmmd0IU6mLoQo0cHTqpunLFYqvTw9KVSKacoUfaOvOClBzhScFJOSPjv/AIIX/wDBQH42/t+/s6/E3xN8f28NX/j/AOGPxTPhJPEXhnRYfDkWu+HtV8N6Vr+mPqei2Z/s2DVLC8uNUsjdabFZ213p8eniWyW9gur2/wDsfHHgHJOAuIssw2QLE08BmeV/W3h8TWeIdDEUsTVoVFSrT/eulUhGlPlquco1HUtPklCnS+Y8I+M814yyTH1859hPG5fmH1b29CkqCrUKlCnWpupSj+7jUhKVSHNTUIygoXi5xnOf7c1+Jn6uFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAGJrXibw34ci8/xD4g0TQYMbvO1rVrDS4to6t5l9PAmBg85I/mvm5jnOUZRD2ubZrluV07c3tMxx2FwULLd8+Jq0o2Vnre2mt9OX1MtyTOs5qeyyfKM0zare3s8twGKx1S7tZcmFpVZXd1pa+q01XN47rf7UfwB0AuL34m6BcsmRt0RdQ8RBiOyPoNnqURyeA3mFO5cKK/P8x8a/CzK+ZYjjPK6zj0y6OLza77RlleGxcHd9ebl6uaR+jZZ4FeLWbcrw3A+bUFLW+ZyweT2X96ObYnBTjbs4Sl2hdtR9I8A/EPwh8TvD0fijwTq6azo73U9i84gurSa3vbYRtPaXVpewW91bXEaTQy7JYV3wzQTxF4Zo5H+w4W4syDjPKoZ1w5j45hl8q1XDSqqlWoVKWJoqDq0K9DE06VejVhGpTnyzhHmp1KVWm50pwnL4vizg/iLgfN55FxPl08tzKNClio0nWoYinWwtdzVLEUMRhqlahWpTlSqw5qc3yVKVWlU5akJxj2tfRHzIUAFABQAUAFAH/9P+/igDy74t+O9Q8AeGYdU0uyhu7281KHToXu1leztfMgubhp5kheJ5GK25jhjEsYLvvZmWNo3Coq7t/wAH9Y/n91vePhJ471Dx/wCGZtU1SyhtL2z1KbTpntFlSzuvLgtrhZ4UmeV42C3AjmjMsgDpvVlWRY0AkrO3/A/WX5/ff3fUaCQoAKACgAoAKAMbxFqx0LQdZ1pbZ7xtK0y91BbVDtac2lvJOItwDFFcph3CtsTc+1sbaBrVpd3/AF2/P7jw74QfF/XvHmvajoutadp8ax6fLqVrdaZFcwrbrDcW8DW1ys9xcB1cXKmKYMjB4yjrJ5itEFSikrpvftb/ANul+X33936KoICgAoAKACgAoAKAPlz/AIXrr/8Awsv/AIRf+xbL+xf+Ej/4RzyfLuf7X/4/v7P+3ed53keZ5v8ApH2b7Ns8n9x5vmf6RQaci5b3d7X2/wDt/wBPl0PhH/gvT4MHiv8A4JqfFzVFi86fwD4t+FPjOBQMuhb4gaH4QupUHbydP8W3kkh/hgWUngGunCO1eK7qS/Bv9P6ufz/9JfL/AK74R57W5eaWWY7JMwit2r5phsBOS/w0sdUk9rRUn0tLyr/g3T8Z/wDCSfsAal4feXdJ8Pfjz8Q/DKQlstFaapo3g3xtE6r1EUt14rvghxhpYpwMlWqsarVk+8E/xa/Tz/G0fF+inmH1vwwq4Vyu8r4lzXBqN9YwrYfAZinbpGU8bVs9m1LqmfvNXIf0sFABQAUAFAHzr8X/AIv694D17TtF0XTtPkWTT4tSurrU4rmZbhZri4gW2tlguLcIqC2YyzFnYvIERY/LZpQuMU1dt79r/wDt0fy+63ve4+HdWOu6Do2tNbPZtqumWWoNaudzQG7t45zFuIUuqF8I5Vd6bX2rnbQS9G12f9d/z+82aBBQAUAFABQAUAeXfFvx3qHgDwzDqml2UN3e3mpQ6dC92sr2dr5kFzcNPMkLxPIxW3McMYljBd97MyxtG4VFXdv+D+sfz+63vHwk8d6h4/8ADM2qapZQ2l7Z6lNp0z2iypZ3XlwW1ws8KTPK8bBbgRzRmWQB03qyrIsaASVnb/gfrL8/vv7vqNBIUAFABQAUAeXfG34veDvgF8I/iL8aPiBe/YPB/wANPCeseLdblVkFxcQaXavLb6Xp6SMiz6trN79m0jR7TcHvNUvrO0jzJMitUIucoxW8nZf57Pbfb7jxuIc9wHDGR5rxBmlT2WAyjA18diZK3PKNGDlGjST0lXxFTkoUKe9StUp01rI/ix/4Jo/Dbxn/AMFD/wDgoV8Uf2z/AIz6U/iDwt8JdZvPj/4zsnElxpN5408+4b4N/DS0lmST/iUaE+jQ3lrb3EM8J8KfD59KvEH26LzfTxElRoKnHeS5F3t9qWyvfbpZyvaVj+AvBbIsf4veLmY8ccQU/bYLKscuIswUr1KDzCpVlHIMpg5xs6GF9hGpTpzi4yweV+wnb2kXL+xX4QfF/XvHmvajoutadp8ax6fLqVrdaZFcwrbrDcW8DW1ys9xcB1cXKmKYMjB4yjrJ5itF5R/ozKKSum9+1v8A26X5fff3foqggKACgAoAKACgAoA+XP8Aheuv/wDCy/8AhF/7Fsv7F/4SP/hHPJ8u5/tf/j+/s/7d53neR5nm/wCkfZvs2zyf3Hm+Z/pFBpyLlvd3tfb/AO3/AE+XQ/kV/Zm/4wQ/4Lzaj8NZP+JP4Q1745+NPhRBYn/R0fwR8d7aXUfhPaOchBHDe+JPhzes2PKkNnlFiDIy+rU/fYTm3agpdveh8b69pf8AAvY/zj4Q/wCNa/SWq5RL/Z8BiuI8wySNP4U8u4lhKrkcH0tGpi8pqvZP2enLeLj/AHG15R/owFABQAUAFABQB86/F/4v694D17TtF0XTtPkWTT4tSurrU4rmZbhZri4gW2tlguLcIqC2YyzFnYvIERY/LZpQuMU1dt79r/8At0fy+63ve4+HdWOu6Do2tNbPZtqumWWoNaudzQG7t45zFuIUuqF8I5Vd6bX2rnbQS9G12f8AXf8AP7zZoEFABQAUAFABQB5d8W/HeoeAPDMOqaXZQ3d7ealDp0L3ayvZ2vmQXNw08yQvE8jFbcxwxiWMF33szLG0bhUVd2/4P6x/P7re8fCTx3qHj/wzNqmqWUNpe2epTadM9osqWd15cFtcLPCkzyvGwW4Ec0ZlkAdN6sqyLGgElZ2/4H6y/P77+76jQSfHn/BQP4y/8M//ALFX7S/xXiu/sOp+HfhP4msPDd3v2G38Y+LrdfBnguUHKklfFniHRjsRld/uIyuVataMeerTj3kr+i1ffon/AMDc+D8T8/8A9WPD3i/O1P2dbCZHjKeEne3Lj8dD+z8vd99MdisPorN7JptM/n5/4Nkvg1z+07+0JfWnQeEPg14Yvtnr5vjfx1aeYR7fDqbYh/2pB/qjXXjpfw4esmvwj/7d0+6x/L/0P8g/5LDimpD/AKAcgwdS3+LMcyhe3/YqlZPza+Fn9ZNeef24FABQBjeItWOhaDrOtLbPeNpWmXuoLaodrTm0t5JxFuAYorlMO4Vtibn2tjbQNatLu/67fn9x4d8IPi/r3jzXtR0XWtO0+NY9Pl1K1utMiuYVt1huLeBra5We4uA6uLlTFMGRg8ZR1k8xWiCpRSV03v2t/wC3S/L77+79FUEBQAUAfwSf8FVv+MYf+C/XgP41D/iXaVqfxK/ZO+Ob/wDLGCTSNJfwf4V8V7n6m31S58BeIvtzZBZry7AK8bf7w8LP+Mn8BMfkv8SrSy3ivI1/Mq1VYvF4X+b3qccfh+TTaEdFZn8d+In/AAgeMmEzX4Kc8fw5m76J06f1XD4j+XSpLB13PXectVpzf3t1/B5/YgUAFAHy5/wvXX/+Fl/8Iv8A2LZf2L/wkf8Awjnk+Xc/2v8A8f39n/bvO87yPM83/SPs32bZ5P7jzfM/0ig05Fy3u72vt/8Ab/p8uh9R0GYUAFABQAUAFABQB86/F/4v694D17TtF0XTtPkWTT4tSurrU4rmZbhZri4gW2tlguLcIqC2YyzFnYvIERY/LZpQuMU1dt79r/8At0fy+63ve4+HdWOu6Do2tNbPZtqumWWoNaudzQG7t45zFuIUuqF8I5Vd6bX2rnbQS9G12f8AXf8AP7zZoEFABQAUAFABQB5d8W/HeoeAPDMOqaXZQ3d7ealDp0L3ayvZ2vmQXNw08yQvE8jFbcxwxiWMF33szLG0bhUVd2/4P6x/P7re8fCTx3qHj/wzNqmqWUNpe2epTadM9osqWd15cFtcLPCkzyvGwW4Ec0ZlkAdN6sqyLGgElZ2/4H6y/P77+76jQSFABQAUAFABQBjeItWOhaDrOtLbPeNpWmXuoLaodrTm0t5JxFuAYorlMO4Vtibn2tjbQNatLu/67fn9x4d8IPi/r3jzXtR0XWtO0+NY9Pl1K1utMiuYVt1huLeBra5We4uA6uLlTFMGRg8ZR1k8xWiCpRSV03v2t/7dL8vvv7v0VQQFABQAUAFABQB/KH/wUo/4LIft7/8ABP7/AIKAah4U1T4N+FdR/ZMitPDreBdG1zw9f6cPi5oE/h3Rb3xZ4h0H4s24uWsvFuleJL3VNHNhb2V7pfhyG1sINa8K6pJPHq2pf1V4b+DvAfH3ANPF0s5xVLixzxP16tQxFOr/AGTiI4itDCYevlMlHnwlXDwpVvaSnCriJSqOji6aTpQ/nTjvxP4x4M4znhqmV4efDajQ+qUqtGcP7TouhSnia1HMlzOGJp151KXJGE6dBRgq2GquSqy/UL9jT/grh8F/24NU0pfhNe2FjfT3Fja+IPhR4m22HxT8NLdzQ2kmoS2qX01lrmmw3E8brrHh9dR0YxyRWV1d2WptJDF+J8c+G3FPAGLdLOsE6mAqVHDCZzg1OtlmL3cYqtyp4fENJt4XExo1/dlKEatJKofrXCHHfDnGmF9plWL5MbTpqeKyrFctLH4a3xP2XNJV6CbssTQlOl70VPkqN04/r1XwJ9iFABQAUAFABQAUAfOvxf8Ai/r3gPXtO0XRdO0+RZNPi1K6utTiuZluFmuLiBba2WC4twioLZjLMWdi8gRFj8tmlC4xTV23v2v/AO3R/L7re97j4d1Y67oOja01s9m2q6ZZag1q53NAbu3jnMW4hS6oXwjlV3ptfaudtBL0bXZ/13/P7zZoEFABQAUAFABQB5d8W/HeoeAPDMOqaXZQ3d7ealDp0L3ayvZ2vmQXNw08yQvE8jFbcxwxiWMF33szLG0bhUVd2/4P6x/P7re8fCTx3qHj/wAMzapqllDaXtnqU2nTPaLKlndeXBbXCzwpM8rxsFuBHNGZZAHTerKsixoBJWdv+B+svz++/u+o0EhQAUAFABQAUAY3iLVjoWg6zrS2z3jaVpl7qC2qHa05tLeScRbgGKK5TDuFbYm59rY20DWrS7v+u35/ceHfCD4v694817UdF1rTtPjWPT5dStbrTIrmFbdYbi3ga2uVnuLgOri5UxTBkYPGUdZPMVogqUUldN79rf8At0vy++/u/RVBB/PR/wAHNGtPpX/BN/TLFXKjxJ+0b8L9FkUHHmJB4d+IXiIIR/EA+gJJj1jB7Cv6C+jTRVXxGqVLf7tw7mlZeTliMvw9/uxDXzPxXx6q+z4Gpwv/ALxnmX0n52oY6vb76F+m3yl2f/Bu14I8G/Dz/glz4B+IMdjpHh+8+JXjX4u+NvHPiW4kitDqLeGfHviHwDY32r6jdSrHDZ6RoPg21tIVaWCytI4ri5EaT3V7PPx/SGxuMzDxQx+XupWxEMtwWUYLA4aKc/ZfWsBh8fOnRpxV5TrV8ZKb0lOblGN+WMInV4JYTC4Lw/weNUKdGePxeZYvF15NR5/q+MrYKE6s5O0Y06OFjFaxhFJytzSlI9c/ai/4Lr/8E6v2Y/7R0o/F4fHPxxYebF/whfwCtrXx+RdR5Qw3vjYX2nfDewMNwPJvrdvF8+r2e2X/AIlM0sfkV5HDHgZ4icTezq/2R/YmBqWf13PpywHuvW8MF7KrmU7x1hJYRUZe7++SlzHpcQeL3BGQc9P+0v7XxcLr6rk0Y4z3lpaWL54YGFpaTj9ZdWNn+6bVj6W/4J4ft/8Awy/4KNfA3UvjX8M/C3i3wTD4d8c6t8O/FPhbxhHYyX2l+I9L0nQtf/0HVNLnuNP1fTbvRfEmj3cN3H9muIp5bm0urKBoEkuPm/ELgHM/DrPKWS5lisJjXiMDSzDC4rBuooVcPVq16Hv0qsY1KNWFbD1oSi+aLiozjN83LH3uCeM8BxxlNTNcBh8ThFQxdTBYjD4pQc6denSo1vcqU24VacqVelJSXLJPmjKEbJz+8q+EPsAoA/Mr9pD/AIKY/BH9kfxNE37QXjfwv8P/AApda3faPp2mT2eva3451a30y6+x3+q6V4d8OW2r61qENpI0Ut3JBobadaCe3tLq+hmniuG+q4W4I4p40r1cPw1k+IzJ4fleJrRlRw+Ew/PfkVfGYqrQwtOc1GTp0pVfa1FCTp05crPn+IuK+HOFKFKtn2a0cB7dSeHouNWvia/LbmdHC4eFfEVIRbjGdRU404OUVOcbo9z/AGSP29/2UP25NG8Q6v8As0fFnTvHsvhCW0i8WeH7jSdf8K+LPDo1AzjT7rUvDPivS9G1j+y9QNvOllrVpaXWj3U8FxaQ37XltdW8GvFnAfFXBFbD0eJcqqYBYxTlhK8a2HxeFxHs+X2kaeKwtWrR9rT5oudGbhWjGUZum4ShMw4b4x4c4upV6uQ5jDGPDOKxNCVKth8TQ578kp4fEU6VX2c7SUKsFOlKUZRU3OMox+wq+QPpwoAKACgAoA/Bb/gsX/wWB8ef8E1fHHwD8EfDz4R+EfiPdfEjTtc8Y+MLzxnqus6fBbeFdD1ex0hdD8NDRJoZLXxBqkst/Kdd1NNS07SI7e0H9gaw15L9i/d/B/whwPiTgs+xuYZti8thl1Shg8HHB0qNSUsXXpVK3t8T7eMlPD0lGC9hSdGpVc5/7RS5I8/494neJmM4ExeT4TA5bhsdLHQrYrEyxVSrCKw9GrTp+xoexaca1Rub9tUVSFJRj+5rc0lD9O/Fv7QuqW+neBNW8MaNbQ2HjDwX4e8cL/bkU084tPEdot7a6eos7mGJZLaE7LudZJQ0zbYgixl5fxHGYaWDxeKwc5RlPCYmvhpyjfllKhVlSlKN7Plbg2rq9nrY/XcHVhjMLh8XFSjDE0KNeEZJOUY1qcaiUrTSulJJ2ur7PQ+lfDurHXdB0bWmtns21XTLLUGtXO5oDd28c5i3EKXVC+Ecqu9Nr7VztrmNXo2uz/rv+f3lnVtV07QtL1HWtXu4bDStJsbrUtSvrglYLOxsoJLm6uZSMt5cMEbyNtBYhcAMdorlx2OwmWYLF5jj69PC4HAYavjMZiarap4fDYanOtXrTaTfLTpwlN2TdlZJt2OrL8BjM0x2DyzL8PUxePzDFUMFgsLSSdXEYrFVY0cPRpp2XPVqzjCN3a8ruyR+bfxG/wCCggjnudO+FnhGO5jR3ih8ReLWmCT4JTzrTw9YSwTqj48y3kvdVSUgp9o06Ng8FfyBxd9KpQq1sJwTkMK0IylCnm+eyqKNWzcfaUMqwtSnUUJW56U8RjYVGpR9thKbUqcv7S4N+iI50qOM484hnQlKMalTJuH403Oldc3s6+cYunVpOcb8laGGwE6acZexxk4uMzyNL39tv43/ALy1Pjqz0i75RrXyPh1oLWz9QlwX0H+1LZQecz6lK+NuZXAFfBRxP0j/ABJ9+g+JsPgK/wAMqPsuEsrlRl/LWvlf12ik9ffxs52t780oH6FLC/Ri8L/crrhXE5jh/iVf2vGWbKvHT3qKWaLAV21ovZYOEb3ShFyZ0WifsA/FHWpftnjDxv4Z0eS4bfO0Dar4n1MEgbjcebHpNtJL2+TU5lPXzOdqetlv0WeNcxn9Yz/iPJsvnWfPVlSeOznG8z39sp08DRlNbXhjaqf8+h4+Z/S24Fyyn9W4c4XzzMYUU4UlVWX5HgWle3seSpjq8IP+9gaclr7j3PZdE/4J5eA7cJ/wkXj3xbqzDBf+x7PSNBjcjqNt3F4hdVPcCXdjIDg4av0PLfon8MUlH+1+Kc9x8l8X9n4fAZXGT9MRTzaSi3ulJyttJaM/Nsz+mDxZWcv7H4T4fy+Lvy/2jicxzacU9vew9XJ4uS7uHLdXcLPlPsb4Y/C/wj8I/DC+E/Btpc22mm9uNTupb25a8vr/AFG6jghmvbycrGjTNb2trbqsMMEKQ28SJEu1mf8AoHgzgrIeAsmWRcPUK1LBvE1cZXqYis6+JxWLrQpU6mJxFW0Iuo6VChSSp06dONOjCMYKzcv5x44464h8Qs8lxBxJiKNbGrDUcFQp4agsPhcJg6E6tSnhsPSUpyjTVWvXrN1KtWpKpWqSlUd7FH4t+O9Q8AeGYdU0uyhu7281KHToXu1leztfMgubhp5kheJ5GK25jhjEsYLvvZmWNo3+sPkYq7t/wf1j+f3W94+EnjvUPH/hmbVNUsobS9s9Sm06Z7RZUs7ry4La4WeFJnleNgtwI5ozLIA6b1ZVkWNAJKzt/wAD9Zfn99/d9RoJCgAoAKAP/9T+/igClqGm6fq1pLYapZWuoWU4AmtLyCO5t5NrBlLRSq6EowDI2AyOAykMAaADT9N0/SbSKw0uytdPsoARDaWcEdtbx7mLMViiVEBdiWdsFnclmJYk0AXaACgAoAKACgAoAQgMCrAMrAhlIyCDwQQcggjggjn3oAx9J8O6DoRuW0XRtM0prxw902n2NvaGdlyV80wRoWVCzFEJ2JubYq7m3A7t73++/wDX9djZoEFABQAUAFABQAUAYv8Awjnh/wDtb+3v7F0v+29u3+1fsNt9vxs8vP2ryvO3+V+68zdv8r93v8v5aB3e2tvX9D45/wCClng3/hPP2Av2vfD4i8+SP4C/ELxLbwhd7S3ngjRLjxrZJGvBaZrvw/CIQOTLsAycCtaDtWpv++l/4F7v6n5z4uZf/afhjx1heXma4ZzTFwju5VMuw0swppLrLnwseX+9ax+JH/BsT4y+1/D/APa2+Hzy4/sHxj8K/GVvCW+9/wAJbovjHRLyWNe/l/8ACE2KTMB8vmQBsbkrqxy1pvupL7uV/jd/cfzv9DzH8+V8cZW5f7rj8lx8Y9/r2Hx+HnJLy/s6mpdrxvuj+peuA/s0KACgAoAKAMbVvDug66bZta0bTNVazcvatqFjb3ZgZsFvKM8blVcqpdAdj7V3q21doO7W1/vt/X9dzYACgKoCqoAVQMAAcAADAAA4AA49qBC0AFABQAUAFABQBS1DTdP1a0lsNUsrXULKcATWl5BHc28m1gylopVdCUYBkbAZHAZSGANABp+m6fpNpFYaXZWun2UAIhtLOCO2t49zFmKxRKiAuxLO2CzuSzEsSaALtABQAUAFABQB/KV/wccftjyJa+AP2HvAmpPLd6s+lfE74zxae7SSNapPIvw08EXKQF/MkvL+O58aajpsqCdDZeB7+HdHd4r0MFT3qtf3Y/8Atz+H5fF39D+KfpYcetQyvw6y2s3UrujnPEEaTu3BTayjLpqKd3UqxnmFWk/ej7LLaquqlpfsj/wSn/Y3i/Yv/Y78B+Atc0yO1+KHjmMfEr4wySRL9qj8ZeJ7K1aPwzcMQzeX4K0GDSvCrwK72j6np2ranbBf7Vm3c2Iq+1qNp+7H3Y+i6/N3fTS10rJH774K8BLw+4DyzLMRRVPOcxSzfPm1+8jmGMpwawknq7Zdho0ME4qUqbrUq9anb203L9C9J8O6DoRuW0XRtM0prxw902n2NvaGdlyV80wRoWVCzFEJ2JubYq7m3YH61dve/wB9/wCv67GzQIKACgAoAKACgAoAxf8AhHPD/wDa39vf2Lpf9t7dv9q/Ybb7fjZ5eftXledv8r915m7f5X7vf5fy0Du9tbev6H8aH/BxD8OtW+D37a3wO/aU8JbtKu/iD4F0bULXVY0O/wD4WR8E/EUEZ1ASLsDPaeHtW+HsaIW8xfsed4V0Ceng5KVKUHrytq392a236tS7erv7v+ff0qcqr5D4hcN8XYG9GpmmW0KsKyWv9rcPYuCdW943cMLXypJXTXs/is1y/wBgvwh+I2kfGD4UfDP4saAVOifEzwD4Q8faUEcSCOw8XeH9P161hLD/AJaQRX6wyBsOsiOrgOrKvnSjyylHrGTj9zsf3dkWa0M9yXKM7wtvq+b5ZgczoWd7UsdhaWJhG+usY1VF9U007NNHolSeqFABQAUAFAGNq3h3QddNs2taNpmqtZuXtW1Cxt7swM2C3lGeNyquVUugOx9q71bau0Hdra/32/r+u5sABQFUBVUAKoGAAOAABgAAcAAce1AhaACgAoAKACgAoApahpun6taS2GqWVrqFlOAJrS8gjubeTawZS0UquhKMAyNgMjgMpDAGgA0/TdP0m0isNLsrXT7KAEQ2lnBHbW8e5izFYolRAXYlnbBZ3JZiWJNAF2gD+dr/AIORvjL/AMIb+yP8M/g7ZXXk6l8afizBfX9vvx9s8H/DHS31rVYvLGC3leLdb8BXG85RPK2lS8iOnbgo3qSl/LH8Zf8AAT6/efyt9LTP/qHA2UZDTny1uIc8jUqRv/EwGT0XiK6t/dx2IyyV9UuW1ryUo/X/APwRG+DX/CnP+Cc3wSN1afZdb+KreI/jLrnybPtH/Cb6o6+FrvkBn874faV4OO9uu3CExBC2eKlzVpdo2ivlq/xb7frL7v6O+Qf2D4UcO88OTEZ19az/ABGluf8AtGs/qU+75sro4DV3v093lUf1mrmP24KACgBCAwKsAysCGUjIIPBBByCCOCCOfegDH0nw7oOhG5bRdG0zSmvHD3TafY29oZ2XJXzTBGhZULMUQnYm5tirubcDu3vf77/1/XY2aBBQAUAfxH/8HV3w5Ol/Hr9lD4vJAVPjP4S+Nfh3JdIMbn+GXjG18SwxO4HDoPixK8WTlhv2bvLfZ/a30WMx9rkXFeUN3+p5tgswUX2zPBzw0mr9P+EpJ2Xa9rn8o/SIwPs844czNL/estxeBcvPL8VGuk3/AN1Jtael7M/sF/Zr+I4+MP7OvwF+LQnFyfid8Gfhh8QHn3bjJL4w8FaJ4gmLnqJBLqDrKpwySB0cBlZV/kPiTLv7H4iz7KeXl/szOczwCjtZYTG18OrdLWppq2jWq3P6ZyHHf2pkeT5lfmeYZXl+Nb7vFYSlWlfzvN3216K1j2uvFPVCgDF/4Rzw/wD2t/b39i6X/be3b/av2G2+342eXn7V5Xnb/K/deZu3+V+73+X8tA7vbW3r+htUCCgAoAKACgAoAKAMbVvDug66bZta0bTNVazcvatqFjb3ZgZsFvKM8blVcqpdAdj7V3q21doO7W1/vt/X9dzYACgKoCqoAVQMAAcAADAAA4AA49qBC0AFABQAUAFABQBS1DTdP1a0lsNUsrXULKcATWl5BHc28m1gylopVdCUYBkbAZHAZSGANABp+m6fpNpFYaXZWun2UAIhtLOCO2t49zFmKxRKiAuxLO2CzuSzEsSaALtABQAUAFABQAUAIQGBVgGVgQykZBB4IIOQQRwQRz70AY+k+HdB0I3LaLo2maU144e6bT7G3tDOy5K+aYI0LKhZiiE7E3NsVdzbgd297/ff+v67GzQIKACgAoAKACgDyH45fAP4N/tK/DrWfhP8dfh34b+JngDXk/03QPEll9oS3ukjkjt9V0e/haDVPD+vWIlkbTdf0K907WtNkdpbG+gkJavXyPPs44bzGjmuRZhictx9B+5iMNPlcotpypVqclOliKE7JVKFeFSjUWk4NHmZvk2V59gauXZvgqGPwdb4qNeF+WSTUalKatUo1oXfs61GcKsG7wnG5/G/+3F/wb7ftGfsq+LP+Gi/+CcXjLx1480XwpqD+JtM8FaPrNxo37Q3w0uLbzJluPA2taK+mN8Q7OzTzY7eLSTpfjoQy22mw6L4rmN5qj/2HwR4/cOcVYT/AFd8RsHgcDWxdNYarjK1CNfh7Moy05cdRrOosunJ2cpVVVwN1Ko62FShTj/MPFvgxnnDuJ/tvgfFYzGUsNN4iGFpVZUs7wEo3aeEq0nB46MVdRVPkxlnGmqWJbnVPTv2Cf8Ag5M8XeB7+z+DH/BRnwnq+oNo95/wj0/x08LeG20/xroN1ZTGzuYviz8NLa3sxqU9jMskep6x4PsdO121W18mfwXr+qS3F7Xl8efRwwmOpzznw6xdKCrQ+sRyPFYn2mCrwmueMspzOXP7OM4tOnRxk6lCfPzRxtClGFM7+DvHXE4Sccr43w1Wp7KXsHm+HoOGKoyg+WSzLARjH2koNNVKuFUK0eWzwtao5TP64/hD8Z/hP8ffAukfEz4LfELwp8TfAeuJu07xN4P1i11jTmlVEeexuzbyNPpmrWRkWPUdG1OGz1XTLjNtqFla3CvEv8mZvk2a5Djq2W5zl+LyzH0HaphsZRnRqJXajOHMlGpSna9OtTcqVSPvU5yi1I/pPLM1y3OcHSx+VY3DY/B1l7mIw1WNWDateEra06sL2qUqijVpy92pGMk0em15h3hQAUAFABQBjat4d0HXTbNrWjaZqrWbl7VtQsbe7MDNgt5RnjcqrlVLoDsfau9W2rtB3a2v99v6/rubAAUBVAVVACqBgADgAAYAAHAAHHtQIWgAoAKACgAoAKAKWoabp+rWkthqlla6hZTgCa0vII7m3k2sGUtFKroSjAMjYDI4DKQwBoANP03T9JtIrDS7K10+ygBENpZwR21vHuYsxWKJUQF2JZ2wWdyWYliTQBdoAKACgAoAKACgBCAwKsAysCGUjIIPBBByCCOCCOfegDH0nw7oOhG5bRdG0zSmvHD3TafY29oZ2XJXzTBGhZULMUQnYm5tirubcDu3vf77/wBf12NmgR/Jz/wdTfGPXdO+DX7NXwAi8D6m/hvxf8StU+Lt78SnaZNHttZ+H3hjXfB9h4EtUS2e3n1LULP4k3/iHUGuLy2mtLbS9MFpbXyXl7Lp/wDVv0WsnoVM54kz542ksThMtpZTDLVZ1pUcwxNDGVMdK75o06c8tp4enyxkpyq1eeUHCEav85fSGzOtDK8hyZYSp7DE4+pmc8e3JUo1cFh62Fhg4pRcZTnDHTrz5pxcY06fLGfNJw/D/wDZH/4J2f8ABU//AIKAfBH4b+EPAmqeJ9B/Y+0aXX4vAV/8UviVf+FfgbYyTeM9e1DxNqHhzwJp8mq6x4ku38ZXHiOS+13RvA+rgatFdWNzq0Bghji/beLfEPwu4AzvMcXjqWGxHF9ZUHj6eV5bTxWeTSweHp4anicdUVKjhoLBxwyp0KuPofunGpGjLmcj8m4b4I8QuM8pwOGwc8RR4ZpOssHPMcdPD5RBvFVqledDCQlOrXk8VKu51qWEq2qKUJVVyxR/QH+y7/wa/fsz+Af7O179qb4p+Mvj5r0XlTXXgzwiJvhd8Ng52tNY3t1p97ffEDXYo2GyHUdP8S+DGmRnMulISqp+BcT/AEnOJcf7ShwvleDyGg7xhjMXbNMyt0qQjUUMBQb3dOphsaouyVR29/8AZuH/AAAyHB8lbiHMMVnNZWcsLhk8vwN/tQlKFWWNrJPRVIV8Ldaukto/0XfBf4G/CD9nbwDpfwu+B3w78LfDDwBo8s9xZeGfCWmRadYte3fl/bNTvpF3Xeq6xfGKI32sarcXuqXxiiN3dylEr+d85zzN+IcfVzTO8xxWZ4+soxnicXVdSfJD4KcFpGlShd8lGlGFKF3yxV2z9vyrKMsyTBU8vynBYfL8FScpQw+GpqEeeVuapN6yqVZ2XPVqSlUlb3pOyZ6rXlHohQB/J/8A8FP/APgj1+0/+2t/wU38IfFy6fQY/wBkDWND+GemePvHyeOPDXh7Wfhd4C8HR7/iNo8Oia082r3PiPVv+Kh1rwvqmm+Htd8Ox3+u2beI7rT7ayv2X+qvDDxd4W4J8NMblVONZcX08RmVfBYH6hiK9HNsxxlo5dXnXoclJUKKjhqGKp1cRRxLpUJLDQqylTifzr4geGnEPFnH2EzGpKn/AKsTo4Cli8Z9coUamW4HC+9jqMaNaTqOtUbxFbDzpUKmHVSunXlTSnI/NT/g3qgWx/4Kz+OtP+DF7rV98Irb4c/Hi3lvL2QtdX/wntfEuiQ+B7zXzHFbwy3U2t/8ILLK5t4F/tCXdHFFkov6V9IKXP4T4GpnMKMM3lmORSjCC92nm0sNWeOhh7uTUVQ+vRXvS/dqzbsmfBeCy5PEfFwyqdWeWRwWcJym7yqZbGvSWElWsknJ1vqcm7Jc70SvY/vrr+Cz+xwoAKACgAoA/if/AODrXTZIvjJ+yBq5UiK++GfxO01G7GTSvFPhu5kUdsqusRE8fxjOeK/tP6K1RPJ+LqPWGZ5ZUa8quFxMV9/sX06dT+VPpEwazThmp0ngMfBPzp4ihJ/d7VdOvU/rY/Z6sPDvjf8AZv8A2dNa1XSNL1hLr4J/CnVrGS/sba78pdQ8B+H7sNEZo5NqyB0Z0BKPtTerbUK/yPxLTdHiPiCi9HSzvNabXZwx+Ii/xR/SuQVPaZFktWL0qZTltRNO11PB0ZL8/wCrn0OAFAVQFVQAqgYAA4AAGAABwABx7V4h6xma3o2meI9G1XQNZtUvtI1vT7zStTs5C6pc2N/byW11CXjZJI/MhldRJE6Sxkh43RwrVxZll+DzfL8dleY0I4nAZjhMRgcZh5OSjWw2KpSo16blBxnHnpzklOEozg3zQlGSUjuyzMsbk2Y4DNstrywuYZZjMNj8FiYKLlQxWErQr0KqjOMoS5KlOMnCcZQmrxnFxclLw/4b/sv/AAf+FutL4j8OaFd3WuxJLHZ6lrmoz6pJp6TEeYbG3cR2UE20CNbz7Mb1Ii8aTqs03m/m3CHgtwBwTmKzfKMsr1szpxnDD4zMsXVxs8LGp8bw1KXJhqVSyUFiFRliIw5oQqxU6in+o8aeOfiJx3ljybOc1w9DK6k4TxGCyvB0sBDFypr3FiasXUxNWkm3N4f26w8p8s5UpShB0rHxw/aI8EfAy0sF1xbrWPEOrAS6b4Z0tolv5LBZHim1S7mm/cWOnpJHJBDJLumvLlXhtIJkgvZrTXxJ8WeG/DShhY5mq+YZtjl7TB5NgnBYqWGU5QqY3EVKjVLC4WM4ypU5zcqmIrRlToUqsaWInh8fC/we4n8UsTi3lboZdlGAbp43O8dGpLCQxThGdPA4enS/e4rFyhONWpCmlTw9BxqYirSlWw0MR6h4F8Y6Z8QPCHh7xno0d1DpniLTYdRtYL6NYbyBZMrJBcIjyR+bBMkkTNFJJDIU8yGWSJkdvtOGeIMFxVkGU8RZfCvTweb4OnjKFPEwVPEUlO6nSrRjKcPaUqkZU5OnOdOTjzU5zhKMj4XinhzHcI8RZvw1mU6FTG5NjauCr1cLN1MPVcLOFWjKUYT9nVpyhUjGpCFWClyVYQqRlE6yvdPACgClqGm6fq1pLYapZWuoWU4AmtLyCO5t5NrBlLRSq6EowDI2AyOAykMAaADT9N0/SbSKw0uytdPsoARDaWcEdtbx7mLMViiVEBdiWdsFnclmJYk0AXaACgAoAKAP/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDiviV4Ti8e/Drx94FnCtB408FeKvCcyvjY0XiPQr7R5A+eNpS8IbPGM5704vlkpdmn9zv5fn9x5+b4JZnlWZ5bKzjmGX43BST2axeGq0HffS1TXT7z+PL/g2k8WS6P+1P8AtBfDu5Z7d/EfwMTxG9tL8ha98C/EDw1pXlFDz9ohi8b3jbOWVEnPRXK+ljl+7hLtO33p/wCX9XP4O+iLjZUONOKcqneDxfDixbhLT95luaYShytfzxWY1NNWlzdm4/2hV5h/oCFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAeV/HD4w+Df2fvhD8RvjV8QL37D4P+GnhPV/FmtOrRi5uotNtme10rT1kZEn1fW782ujaNabla81W/s7RPnmQNUIucoxW8nZf57Pbfb7jxeIs+y/hfIs14hzSp7LAZRgq+NxDVuecaMG4UaSduaviKnJQoQ3qVqlOCu5JH8Zn/BLD4P8AjL/gpb/wUm8cfta/Gqy/tXwn8OvFq/G3xrHOr3Ojz+M7u+lj+Dnw4tHmB8zSfD7aTDeWlncxSwSeFvh//Y96FGoxmX08RJUKCpx0clyR7pfal9nXpte8rq9ve/gPwXyHMPF3xbzLjniGn7fA5TjlxDmCknOhLMKlSSyDKYOSadDC+wVSFOcZReDyv2FT+LFn9w9eUf6LBQAUAFABQAUAFABQAUAFAH4F/wDBxR8Ff+Fg/sPaR8U7K083VvgN8UvDevXd0sfmSQ+D/HXmeA9btlx8yJP4k1XwRdzSA7VTTfnUqd6deClaq4/zxa+a1/Lm/qx/Mv0q+Hv7U8OaGc04Xr8NZzhMVOaV3HAZlfLMRDulLF18unJq6Spa6ax9Z/4IL/Gr/hbf/BPHwDoF3d/atb+CPizxj8JNTaSTNwbKyvovGHhctGTuW2tfCvjHR9GtHAETro8iKTJDMFWLjy1m+kkpfo/xXn+No+39GjiH+3PCvLMNOfPiOHcdj8jrXfvezp1I4/B3W6hDBY+hQg0uV+waV5Rmfs3XKfv4UAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/FF/wX98aax8e/wDgoT8H/wBmjwjL9tvfBHhDwH4DsdM3NJs+JPxp8Qxas67EyUN9oGo/DtNgQyt5W7LK8Sp6mDShRlN/abd/7sdPzT7/AKR/z2+k7mGI4m8Ush4QwL9pUy7A5ZltOjq7ZtxDilXastV7TC1cqVkuZ8t9bo/sv+H/AIL0b4beA/BPw78OxeT4f8BeEfDfgvQodqp5OjeFtGstD0yLavyr5dlYwJtX5RtwOAK8yTcpOT3k236t38/z+8/vvK8vw+U5Zl2VYVcuFyzA4TL8NGyXLh8Fh6eGoqy0VqdOKstO2x11I7goAKACgAoAKACgAoA/mL/4Olvhv/b37HXwM+J8EHnXfw6/aAh8P3EgTLWuhfEPwN4na9uGf+GJta8HeGrVl/jluYDg7Mr/AEz9F7MvYcYZ5lkpWhmOQPERV/ir5fjsLyRt1fscZiZrsoy7n4F9IPA+24YyjHpXlgs6VCTt8NLG4PEOUm+i9rhaEet3KPZuP6G/8ENfiR/ws3/glx+yvqE0/nah4U8OeK/hvqEZbe1r/wAK+8feKPC+jwMe27wzYaFdRr/BDcxJ2r898b8u/szxQ4ppqNqeKxOFzGm9lL+0MBhcVVl8sTUrxfdxb6n23hJjvr/h9w9Nu88NQxOBmt+X6ljcRQpJ+uHhRkuykl0Z+s9flB+jhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfmN+3h/wAElP2QP2/LC91X4j+Df+EH+MBtBBpPxy+HUNlovjuKSCIR2UPihTbtpPjzSYBHDB9h8U2d7fWlistroGsaBLM90v6ZwL4scX8BVIUsuxn13KOfmq5JmLnXwLTd5vC+/CrgKsrt+0wsowlO0q9Kuo8h8Dxh4b8M8ZQlUx2F+qZny2p5vgVCljE0rQWI09njKSso8mIhKcIXjQq0W+c/k/8Aif8A8E1f+CtP/BIbxzqvxh/ZT8YeNPHvw7tZBPe/EL4CwXmrx6ho1i7zW8Pxh+BF+mtSXFlax+dd3f2zR/HXgzSEH2l/Etvc7Sv9WZZ4k+E/i5gaWT8VYPB4DMJLlhgM9lCi6daatJ5PntOVJRnJ2hHkq4HGVn7qw7jfn/nPMOBPEfw0xdTNOHsTisZgYPmljcnU6inSjrFZnk8/bOUIrmlLnpYvC0l7zxEZW5fvT9kP/g6MsmXTfCP7b3wWuLG7iMdnc/Fv4IRGa3eRT5IuvEfwu8RailzZlNv2jVNQ8NeKr8ySNKumeD7dUitm+D4u+jDNe0xfBOcxqQd5xynO3yys9eXD5nh6LhO97UoYnDQskva4uV3OP2PDP0gYtU8NxZlbjJWg8yylc0X05q+X1qilG1uapUw+Jndt+zwsbKB/Sv8As3/ty/skftc6dDffs8/Hv4e/Ea8ktvtc/hax1hdJ8fabbhN7S6v8PfEMek+NtJiT5lM9/oEFs7Ry+VO4R2r+beI+B+LOEqjp8Q5DmGXRUuSOKqUfa4CrLa1HMMPKtgqrf8tOu5K6vFaH7tkXF3DfEsFLJM5wWOm48zw8Kvs8ZCNr3q4KsqWLppa+9OhGLs7N8r5fq6vlT6MKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/n6/4OWfh5feNf8AgmxN4ks4Hmi+Enx5+FvxB1N0DH7Pp+o2niz4XCaTaD+7Oo/EnToiXIQM6E5YLX799G3MIYLxIjhpySebZFmmX007e9Upywuacq8/Z5bUemunqfjHjvgp4rgV14JtZbnOX42o19mnOGJy+78vaY+mvmn0R1f/AAblfFHTPHv/AATF+HvhK0uo5tS+C/xH+LHw81qDeDcW82r+ML74q6e0kZw4hk0r4kWcdvLho3+zyxI+63kROX6RWV1cB4m5hi5wapZ1l2VZhRlb3ZKjg6eV1LPa6q5dNyW65k2kpJy6fA/MKeM4BwWGjJOplWOzLBVV9pOrip5jBvrZ08dFRdre64q/Kz92q/Cz9eCgAoAKAPzB/wCCzfiz4o+C/wDgmX+1jrHwgsdVvPFlx4D07w/qE2iwz3GpaX4D8U+LfD3hv4m6xDDag3Qi074eap4mmvL2Ao2j2IudbkkSDTZXr9N8G8JleN8S+FKOb1KUMJHH1MRTVZxjTq4/C4TEYnLKMnK0b1MwpYaMIS/jT5aKu6qR8B4pYnMMLwFxHVyyNSWIeDp0ZuknKdPB4jE0aGYVUo+9aGCqYhznG3soc1ZtKDZ/HR/wRH/4KY/s+/8ABOz4gfEP/hdHwm8Tayvxml8LeH9Q+NPhjVbbUtS+HHhTRp7ydtMHw/m0yC61fRr/AFe/j1vxNqGk+Jhq72+i6XFp3hrVruxhhuP7B8a/DXiDxDwGX/2Nm2Go/wBjLFYink2JpSp08xxdaMI+1/tBVJxpVqdGm6OGp1cL7LmrVXUxVGM5Sh/MXhRx5kvBGNx39q5biKqzR4ejPNcPUjUqYHDUpTbp/UpU1KrSnUmq2InSxHtXGjSVPD1Zwij/AENvCnirw5458L+HPGvg/WtP8R+EvF2haT4m8MeIdIuUvNK13w/rthBqej6vpt3FmO5sdS0+6t7y0nQ7ZYJo3Gc1/nzisLiMDisTgsZRqYbF4SvVw2Kw9WLhVoYihUlSrUakHrGpTqQlCcXtKNujP7Ww2IoYzD0MXhasK+GxNGniMPXpyUqdajWgqlKrTkrKUJwlGUXbVO+lzfrnNjwj9qD44Q/s0/s7/Gf4/XHhTVvHEXwh+Hfibx43hLRJBBqGu/2Bp0t4tiLwwXQ06zZ0WTVNWa0vBpOlx3mpmzuxaG3l93hjJHxJxDk2QRxVLAvN8xw2BWLrq9Oh7eooOfJzR9pOztSpc8Pa1XCnzx5+aPj8QZsshyTNc5eHqYtZZgq+M+rUnadb2MHJQ5rS9nG6vUqcsvZ01Ko4y5eU/NT/AIJAf8FaW/4KZ6L8YNL8WfDLTPhX8SvhDeeG7670zQddu9c8P+JPCPjF9bi0rVNOfUbW21Cy1HR77QbrTddtJmuLd/tWkahZ3C/2hcafpv6T4u+E/wDxDStlFXCZnVzXLc3jiacKlehChiMNi8GqLq0qvs5Spzp1oV41aEkoTXLVpzi/Zwq1fhPDPxH/ANfaWZ08TgKeXY/LJUJyhRrSrUa+GxXtVTqQ54RnCdKdGUK0ZOSfNSnB+9OFL9oq/GT9TP5I/wDg648A3F98Nv2N/ijFA32Twx44+LfgG/uVT5TceOtB8F+ItJglk/vCP4da1JboexuSOjV/WX0VcfGGZcYZW5e/isDlOPhC+vLga+Mw9WSXrmNFSaf8qdtD+bvpFYKU8DwvmCXu4fF5lgpyt9rGUcLXpJvyWBrOK85H7vf8ErPiJbfFL/gnJ+xh4rtbhbryP2f/AAB4LvLhWDmTV/hlpUfw11wyMCw88az4SvluBnicSDC4Kr+F+KWXSyvxF4ywkouPNn+PxkI2tajmdV5lQSX8vscXDl7xs+p+v+HmOjmHA/C2Ji+a2TYLCyle96mAp/UKt/P2uGnzdndH39XwJ9kFABQB+Dv7V3j9PiH8bfFd9azJPpXh14/B+jyR4ZHtNBeaO8lSQcTRXOtT6rdW8o3K1vPFtZlAdv8AMTxy4pjxZ4j55iaNSNTA5TKGQZfKNnGVDLJVY4icZrSpCtmNXHV6U1dOjVhZtWZ/q14BcIy4P8MchwtenKlj84jU4izGE7qUcRmsKUsNTlBpOnUo5ZSy+hWptXjWpVLqLbjH9p/hb/Z3/Csvh2dIQx6UfA3hNtNQsHZbFtBsGtQ7hUDv5JTe+xd77mIBJr/RTgn6p/qbwl9Qi4YF8M5E8HFvmksM8rwroKUuWPNL2bjzS5Y80rtrV8v+aHHf1z/XfjH+0Jc+PXFPEEcZJJxTxUc1xaruMW5OMfaKXLHmlyxtG7smd3X058oFABQAUAFABQAUAFAH/9b+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iI/4Jbf8WU/4Lj/ABA+Ff8Ax6Q3nj39rP4SrH9yNoPDM3jLxJZRjOFMUx8BWr2x+7KWh8vJdN3qYj3sKpP+WnL77L/24/zu8Gv+Me+kbmmS/wAONTM+OMjS2i44OWPxdNLS3LL+zIOGyfu2buj+3evLP9EQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+UD/g42/bHmmPgH9hrwDqEs91eS6R8TPjPDprtLNMWkb/hWfgW4ig3vJLPP53jbUdNkTzCyeBL6Dd5hWvQwVPeq13jH/25/D8vi7+h/E30r+PpS/szw4yyq5TqSoZvxBGk3KTu3/Y+WyUU25SlzZjVoy966yypG92pftH/AMErv2OIv2Kv2P8AwD8PtY0+O0+KHjFB8SfjBOUT7UnjjxNZ2jf8I9LKNxMXgrRLfSvCgSOV7SW+0vUdUtgrapOX5sRU9rUbXwr3Y+aXXru9fRra1j+gvBfgKPh7wJlmV16ShnOPX9r59Ky51mWMp039UlLW6y7DxoYGybhKpQq1oW9tM/RysD9XCgAoAKACgAoAKACgAoAKAPn39rD4NwftC/sz/Hb4KSxRSXHxJ+F3jHwxpDTbfLtfEl5o10/hbUTvwm7S/EkWlalGWO0SWqlsAVdOXJOE/wCWSb811XXdXX+W58vxtkEeKeEeJOHpKLlm+TY/B0HLaGLqYef1Krrpeji1Qqq+l4K+h/Lp/wAG0nxln8O/GH9o39nLWZZbU+MfB2ifErRNPvd0DWmu/DvWZPDPiWzhhk2MNR1DTvGemz3cDJ532fwuXAVbaau/HQvGE/5W4v0e34rv95/G30Rc/lhM+4s4TxEpQ+vYDD5vh6VT3eTE5ViPqeMpxi7P2tWlmFGVSLXNyYO6SUJ8v9hteaf3iFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfw6fsY/8Zy/8F2NX+Lkn/E38JaH8Yvib8bLe6/4+PI8HfCxLvSfhDcb8lD9l1O3+GtqJQQi/ehBIiSvVq/usLy9eWMPnL4u395/o9j/OjgD/AI2P9JLEZ4/3+Bw2fZxxDCfxcuAyVToZFO+q9ytDKIX26xatFn9xdeUf6LhQAUAFABQAUAFABQAUAfkT/wAF2fhv/wALK/4JbftPWsFv52peDdL8FfEjTX27zbf8IR8QvC2r65cAdf8AkVI/EMJYFdizGQ7lVkf9b8DMy/s3xQ4ZlKVqeMq43Laivbm+u5fiqNGP/hU8PK2t2rLvH818XsD9f8Ps/io3qYWnhMdTf8v1TG4erWl/4TKuulr31tY+EP8Ag1w+JH/CQ/sV/GX4a3M/nXvw2/aE1PVLWLd/x6+HvHvgjwjc2EITqqvr/h7xXcB+A7TsAMozN919KDLfq/GmT5lGNoZlw/TpTf8APiMBjcXGo/lh8RhY7/Z6XR8h9H3He34VzTAyd5YHOqlSK/lo4zCYWUFbzrUMRLzv5M/plr+aj95CgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD85f2s/+CT/AOwn+2c2o6t8XfghommePtQErv8AFf4bMvw/+I5u5cg6hqes6HEmn+LbuNSVhHjrSPFNrEOUtgVQ1+i8J+K3HPBvs6WUZ3Wq4CnZLKsyTzDLuRf8u6VGtNVMJF21+o18LN9ZatHw/EnhzwhxTz1MzymlTxk7v+0cB/sWO5n9upVo/u8TJLRfXKOIiukW0uX+b79ov/g15+NXgfUZfF/7G37Q2i+Nk024/tPR/CfxRW6+Hfj/AE2W2fzLOLRfHfhmLUPDWs6wsipJFfXum/Dy0ifJEqNGjv8A0Zw79J3JcdTWD4x4erYJ1Y+yrYrK+TMcBUUlabrYDEzp4mjRabUqcKuYTa6Su1H8Nzz6P+a4SbxPC+dUsWoS56eGzDmwWMpuOsVSxeH56FWqnZqc4YKK11Vve+YIf2vP+C+3/BMUrYfGDTPjFrnw90LbHKfjt4UPx2+GEkNsdsVtF8Z9HvNWvrW2hhXZFp+jfFbT0itWjH2VFigMX08uEvAXxM/eZRVyehmFfVf2Hi1kWaKUt5PJq0aUJyb1dStlc7yu+Z3lGXz64m8Y+AfczOnmlXBUdH/bGH/tfL2o6KKzWlOrOMUtFCjmMEo7QVkfoF8B/wDg6s8OXC2WnftN/ss6zpcqiNb/AMXfAzxXZ6zBM7cSPbfD/wAevostlGh+cB/iTqUjq23AZAZfgM9+ixiYudThrimjVTv7PCZ5hJ0ZRXRSzDARrqba7ZbSS+Z9nk/0h6D5YZ/w9VpvTnxOUYmNVPvy4LGexcUvPHzvtpa5+wvwZ/4Lo/8ABMX40LZwWn7SWkfDXWrrYJNC+M2g6/8ADZrEyYCi88T6zYHwBwSQ7Wvi+5SPaWkdUKO35BnPgd4m5M5ynw3WzKjHavk1fD5kp235MNRqfX//AALBpv7NrM/Tsr8XOAc15Yxz2ngKst6WaUa2A5L9JYirB4L/AMBxU7dbJqR+m/gL4p/DH4q6YNb+F/xG8B/EjRiqONX8BeL/AA/4w0wpJzGwv/D2o6jaFXHKN5uG7dK/NMfleZ5XV9jmeXY/Lq12vZY/CYjCVbrdezxFKnK666aef2fvcHmOAzGn7bL8dg8dS0ftcHiqOKp2e3v0Jzjr01O8rgOwKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDxT9o/wCBfhH9pr4D/Fn4A+OhInhf4s+B9d8G6heQRJNd6RNqdo66X4h0+KR44n1Pw3q6WGvaWJW8n+0NNtjMGjDq3tcOZ5i+Gs9ynP8AA2eKynHUMZTg21GsqU17XD1GrtU8RSc6FW2vs6krWep5WeZRhs+yfMsmxl1h8ywlbCznFJypOpH93WgnZOpQqcland254RvZH8HH7JH7UH7R/wDwQL/bK+JfwV+PXgHV/Efwv8UXenWnxG8J6c5gh8W+HtOu7+Lwb8bfg3qmpfZ9N1Cf7DcagsFtdT2tlrlpLqHhLxNLoPiPRre68M/3Xxbwxw5488HZbnWQ4+jh80wsKk8uxVXV4TEVIU3jMlzilSU6tOPtIwvKKlOjNU8Xhvb4etKGI/j/AIa4gzzwc4ox+VZxg6tfL8RKnHHYam7LE0ISmsLm2V1KnLTm+SU7KXJGtFzw2I9jXpKeH/tt/ZZ/b8/ZF/bM0Sy1T9n343eDvF+rXFoLq98A3eoReH/iboeyLzLmLWfh9rTWfia3jtGEsT6nb6fdaHdNBLLpuq31qEuG/irijgLi3g2vOln+SYzCUoz5YY+FN4jLK93aLo5hRU8LJzVmqcp068VJKpRhN8p/V3D3GXDXFFKFTJc2wuKqyjzSwcpqjj6VleSq4Kry4iKjZp1FCVGXK3TqTiueX2LXx59OFABQA1lV1ZHVXR1KujAMrKwwyspyGVgSCCMEcHPNCdtVo1qmugH8fH/B0B4L/ZW8A/DX9nex8I/Dr4beEf2j/FPxE1jXJNU8HeGNA8PeJb/4Q6V4b1ey19fFcmh2Vnc6hp93401Pwo3hybW/O23Wm+JV0V1K64tf179GPG8U4/MuIZ4vMcyxfDmFy+jRVLGYqviMNTzeriaU6H1VV5TjTqRwVLFfWFQcfdqYZ1lrhz+ZfH/C8O4PA5JDDYHAYbPcRjqtV1MLh6NDETyynQqwrfWXRjCU4SxVTD+wdZS96nXVF6Vj9zf+CMOjeLtC/wCCX37HNj42F2NZl+Gd5q9oL3f5w8J+IPGfijXvAIXzPmFsPAupeHPsIHyCy8gR/uwlfh/jLWwlfxO4wnguT2KzOFGfJbl+t4fB4Whj72+19epYjn68/NfW5+t+FtLE0fD/AIYhi+b2rwEqsOa9/q1fFYitgrX+z9TqUOTpyWtokfp5X5kffniP7TOr2Ogfs3/tBa9qZRdN0T4I/FfV9QaXHlrY6b4D168uzJuwuwQQyF9xxtznAr2+GqU6/EeQUKd3UrZ3lVKmlu51MfQhC1tb80lax5Of1YUcizqtUt7OllOY1Z325KeDrSle9laye7+4/kK/4NS9LvJvjP8Ate60gf7Bp/ww+Gul3LDPli81jxX4gu7EN23mHQ9QKZOdqyYzzX9cfSpqwWTcI0Xb2lTM8yqxXXko4XDwnbyUq9O+nVbH80/R2pyea8S1Vfkhl+Bpy7c1XE1pQv52oztr33P7Y6/iw/qw/Mz/AIK5fsU69+3l+xP48+DHgddLb4paNrnhv4lfCj+2ruLT9Mm8aeE7i4gm0y41CZTFYP4h8I6x4q8NWd7O8FnZ3+sWlzqFxFYRXLV+l+EvGlDgTjXAZzjnVWV1qGJy3NfYwdSpHB4uMZRqxpxalUWHxdHC4mcI805U6U404ubij4LxJ4VrcYcKYzKsJ7P+0KVahj8u9rJQpvFYaTTpym9IOvhauJw8JyahCdWEptQjM8//AOCJn7K/7SP7HX7EWn/Bn9p2HS9J8Y2/xP8AHXifwv4P0zXNK8SHwN4I8RJolxB4e1DWdAvdS0C71C78Ww+L/FUg0bU9Rs4LfxJbQyXRvEuoIO/xq4p4c4w42qZzwy6tXByyzA4bFYurQq4b69jcO68ZYinRrxp14U4YR4TCr21OE5Sw0moqDg5cXhTw9nvDHCcMrz9U6eKjmGLxGHwtOtTxH1PCV1SkqFSrRlUoynLErE4hqlUnBRrxTk5qSj+udfkp+lBQB8kftZfH6D4ReEH8PaFcj/hYHi2ynh0lYmHmaDpcnmW114imxykqMJbbRlb/AFuoK9wBJDp1zE/4P46+KdLgPIJZTllf/jKs+w1WngFB+/leBm5Ua+b1LX5JxanRy9S+PFxlVSqQwleB/Qf0f/CWr4h8RRzfNaD/ANUeH8TSqZg5x9zNcdDlrUMmp30nCScK+ZNJ+zwco0W4VMbQnH8S98ZikDRu1w8sbrOZThYwsvmxmPZ87yu0T+aXBTyioQ+YWX/OLmhySTjJ1XOMlU59FBKfPFw5felOUoS53JcvI1yvmbj/AKc8s1Ug4zjGjGnOLpKGrm5U/ZzVS65Y04xnHkUPe507rkSPt34Oan+2H4w/4QOLwbd+JrXwToA0jTdKvLy0sNF8IDQtLaKyZbqWa1sx4ltILeB4ZwjateuySRQZuFVF/pHw/wAZ4/8AEH+q8OHsRnNDhzK/qGEwOIxFDDZdkCy3BOnh2q86lLDrOMPSpUp06qi8diJuEqdP99GEI/zB4j4L6OfDn+tc+JMPklfifNv7RxmPw2HxGLzLiJ5pjo1MVF0KdOtif7FxNarWhUoyl/Z+GgpwqVU6MpOX7HV/oIf5xBQAUAFABQAUAFABQB//1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Ijxx/wAWQ/4OMrFh/oi61+1b8P23fcV1+P8A4U8OLK2RwRdN8RpFc87mlcNglhXqL38H6U3/AOU//wBmx/ndmP8Axjv0rqb+BYjjXK/K/wDrPgcKm+nxvNmn5yd7u6P7d68s/wBEQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPIfj78a/Bn7OXwY+JXxx+IN19l8JfDPwpqfifU1WRI7nUZbSMR6XoWnmT922r+I9XmsNB0eF8LPqupWcJI35qoRc5Rgt5O3p57PRLV6fceFxPxDl/CnD+b8R5pPkwOT4KtjKyTSnVcFajhqXNo6+LrypYXDxekq1anHqfxv/APBJr4K+Mv8Ago7/AMFF/Hf7X/xttf7Y8L/DXxd/wujxeZ45JtHv/iNqt/cN8J/AdiLjzP8AiT+GDpv9r2ti3nQW2g+BtO0S8T7PqkBb0sRJUaKpw+0uRf4V8T6au+rtvK9lf3f4I8EeHsw8WPFbMuO+IofWMHlGO/1gx3MnKhVzavVl/YmW0+b/AJcYL2Pt4U3zRjhsuo4eouStBn9v1eWf6KBQAUAFABQAUAFABQAUAFABQAUAfw3k/wDDAH/BfQn/AJA/gnXf2hcn/lhpMXw6/ae0/wD4CsukeDz8Q/8AaNtd+FOPMuLPDer/ABsJ3fJ8+aH36vl+fld8v+c3/JsfpN/9A+XYnin/AA0I5VxjS+fNQwDzXz5J4LrOmf3IV5R/oyFABQAUAFABQAUAFABQAUAFABQAUAFABQB8lft5fGT/AIZ//Y1/aT+LcV39h1Pwp8JfFieG7rf5fk+MfENi3hbwUd2QRu8W63oqYQiRt22Mh2U1rRjz1ace8lf0Wr79E/8Agbnw/iXn/wDqxwDxbnin7Otgsjxywk725cfiqf1PL9dHrjsRh1prrpdtI/nf/wCDZL4N79R/ad/aCvbTBtrLwf8ABvwzfbM7/t083jbxza+Yfu+X/Z/w8l2KTu83Mm3bHu7MdLSnDzcn8tF+cun3H8sfQ/yC9XjHiipD4YYDIMHUtv7SUsxzGHN0t7PK5WS15ru1on9atecf2+FABQAUAFABQAUAFABQB4P+1N8N/wDhcf7Mv7Q3wmEH2mT4l/BD4qeBLeELudrzxV4H13RLJoh1E8V3ewy27rh450jdCHVWX3eF8x/sfiXh7NeblWW53lWOk72XJhcdQrTv/dcYNSWzi2npc8fiHAf2pkGd5bbmePynMcHFdebEYSrSg1v7ylNOL6NJq1rn8in/AAam/Ej+zvjP+1t8IXuP+Rv+GHw/+JFtas+cf8K58Vap4YvZ4UP3d3/C07CO4ZMeZttRJnyo9v8AW30qMu9pk3CebqP+6ZnmGXSlb/oY4WliYRb/AO6XUcU9vetvI/mv6O+O5M14kyxv/esvwWOjG/8A0A4mph5NLZf8jGCk+vu32R/bHX8WH9WBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFACMqurI6hlYFWVgCrKwwVYHIIIJBBGCDg5yaE7arRrVNdAPgj46/wDBLr/gn7+0e15dfFb9lT4T6hrV+ZHu/FPhTRZPhr4wup3yRc3viz4cXPhTX9SnjY70OpX95H/A6PGzo33mR+J/H/DihHKuKs1p0adlDC4qusywcYr7MMLmMMVQpxez9nCD7NO8j47N/D/gzPOaWY8O5dOrO7liMNSeAxMpP7U8TgXhq02nr+8nUXRq2kvyC+Mn/Brd+yJ4ta7vPgt8bfjT8Hb+4LtDYeII/DfxW8J2BP8Aq0tdNuLXwb4peJc4cX3je8kcAYlUgs367k30n+LsJyQzrJcmzinG16lD6zlWLn3cqkKuLwt+3JgoJX1vofmmafR94axPNLKs2zXK5yvaFZUMxw0O3LTawuIaXVTxk2/5ou5+Z/jv/g2L/bi+GupnxD8A/wBoT4OeNptNZn067bV/HXwg8cM3VGsIrfSfE2jWspwN/m+NrVUbaFkkGXT9KwH0meCMyp/V8+4fzjBRqWVSKo4HN8Eu/tHKvh6012tgZ310V0j4LGeAXFuBqe2yfOsrxTp3cJupjMsxflyKMMRSi+98VG3mcQvwH/4OVP2V8Dw/q37VniDR9P4sIvDvxe8O/tE6IYIeFGn+ELvxX4/ntbc7flspvDdk7ck2p35bt/t36N3FN3iKPCuHq1P4jxGUYjh6vzPrUxdPC4BTl3nHETX95WOT+x/Hbh3+DV4jrUofAqGZ0c7o2X8mFlicY4x/uvDxvu4q9yQf8Fnf+C6H7PXyfGz4ba3fCw4uT8dv2TdW8Dhljxk3U/hHQ/hb8hUczRyRl1PmeaSQ1H/EGvA7iDXJcyo0+f4f7C4so47f+VYuvmmvk79rK1h/8RS8XMl/5G2Bqz5fi/tjhyphNt+Z4ajl2ltb/NPSx694F/4Orv2hdO8kfEz9lT4M+Ltu37R/wgvi/wAb/Doy4+/5P9v/APC0fIJ527/P299+AK8jHfRY4fqX/szirOcJf4fr2DwWY27X+rrLOb5OPyv73p4P6RGdwt9f4eyvE/zfU8Ti8Dfvb239oW+fN87I+zfAv/B1d+zzqHk/8LM/ZU+M/hHO37R/wgvi/wAD/ETy843eT/wkH/CrvOxzt3+RuwM7M4r43HfRY4hp3/szinJsXvy/XsJjsuv6/V45py9L25vna8fqMH9IjJZ2+v8AD2aYb+b6nicJjrentv7Pv8+X5XR9ieCv+DkT/gmP4p8n+3PF3xf+G3mbd/8Awmvwj1q++z56+d/wru68fBtvRvs/nZ6rngV8fjfo5eJmF5vYYTKMytt9SzahDm/w/wBo08Bv/etbrfY+nwvjnwDiLe2xOZ4G+/1rLas+X1+oyxd/+3b+R9b+C/8Agsl/wTD8e+T/AGH+2T8J7Hztuz/hNH8SfDfG7p53/CxNA8LfZ+vzeeY9v8R4O35PG+DvibgL+34OzafLv9SWGzLbt/Z9fE83/bt/ndI+kwvihwBjLex4oy6F9vrX1jA79/rtHD8vzS9NLH1v4K/ar/Zf+JBhHw7/AGkPgL48M+PIXwb8X/h94naUnoI00XxFfMzHONoBOeMZyK+SxvC3E+XX/tDhzPsBy/F9cyjMMNa3d1sNSS/H8Uz6XC8RcP4631LPMnxjlt9VzPBYhvySo1p3fzPeUkSVEkjdZI5FV45EYOjowBV0dcqysCCrKcEEEZBrwmmm00007NPRprdNdGmewmmk07p6prZrut9/X7x1IAoAKACgAoAKACgAoAKACgAoA+Uv2tf2Jf2af23vAS/D/wDaM+G2l+M7Kx+0y+GfEcDy6P448FX91Gqyah4Q8W6eYdW0iSR47eW80/zp9D1g2trFrulapawrbr9VwnxrxLwTj/7Q4dzKrg51OVYnDSSrYLG04u6p4vCVOalWSTkoVOWFelzSdCvRm+c+d4k4UyHizB/Us8wFPFQhzOhXTdLF4SclrPDYmFqtJtqLnC7o1eWKrU6sEoH89Phr/g2Qf4UftP8Awo+LXwc/a71zTPhp4D+I/hnx5Lp3iDwf5PxZ0i28K67Za3b6Vofi/wAOapYeHtV1LUhZ/YTr0/h3w3FpPnm7Oh6yIjZT/wBBYj6TH9q8MZrlOccJUKuZY7LsTgFUw+LvlNaWKoToSq18JiYVMRSp0uf2nsI4jEOty8nt8Pf2kfxWh4CPLuIMuzLLOJatPAYPHYfGOFbC2zKlHDVoVY06OJoVYUKlSpycntnQoKlzc3sa1nCX9Ydfymf0YFABQB+MP/Baz/goH+0N/wAE8/gb8L/iN8Afh14S8VXHjP4kSeFvFni7x5pGu694V8G2VtpEmq6Zptxpmga34cuF1PxjPBd21hqN3qqWlpa6PqdtHay6lf6ddWX7L4L8AcPeIOeZnl2f5ji8LHB5csVhMJgKtChisZOVZUqtSNXEUMTH2eDjKM6lOFCU5yq0pOSp06kJ/lvirxnnfBWU5fjsmwOGxLxWOeHxOJxlOtWw2FjGl7SnTlTo1aMvaYpxnGE3VUYxpVEoupODj/NL+xD+xL+1R/wW4/aw1D9rj9ri71+H4BQ6/a3XjbxlNa3mg6R4r0zQrknTPgd8EbF3BtdAtFD6Zq+q6VNLa+FrCXU9R1HVNQ8dapGdU/pLjbjXhbwU4Up8JcJQw8s/lQlHBYOM4V62Eq14fvc8zuaXv15u1WjSqpTxU1Sp06MMDRkqH4RwnwpxD4r8R1OJeJJVlkyrRli8U4zo08RToy/d5TlMG/coxt7OrUpOUcNCVSpOpPGTXtf759H0jS/D+k6XoOh6dZ6RomiadZaRo+k6dbxWen6Xpem20Vnp+nWFpAqQWtnZWkMNta28KJFBBEkUaqigV/BlarVxFWrXr1J1a1apOrWq1JOdSrVqSc6lSpOV5SnObcpSbvKTbd7n9jUqVOjTp0aMIUqVKEKVKnTioQp06cVGEIRjaMYQilGMUrJJJWsaNZlnxd/wUX8D/Fb4m/sLftVfDn4I6MfEXxO8d/Bbxp4R8OeH47qCzuNci8Q6a+la/o9jPdSQ2/8AaepeGbrWbLS4Z5oYrrUZ7W1eaJZjIv2fh3jsqyzjnhbMc7rfV8swOdYLF4nEOMpxoPD1FVoVpxjGUvZU8TCjOq4xk404ykovlSl8txvhMxx/CPEWByml7fH4zKsVhqFDmjF1lXg6dalBytH2lTDyqxpqTSlUcYtxu2fk9/wbl/sS/Gj9lD4EfHjxp8evhx4g+Ffjj40/EHwva6X4U8XWf9meKB4J+G2i6pHpOrano8hN7o8d/wCIPGniqCystUS11CWCw/tA2i2F7p9zdfq30ieNcm4rz3IsFkOY4fNMDkuX4qVXF4SftMK8bmVak6tKlWXuVnTw+Dwspzpc9NSqez9pKpCoo/nHgfwpmnDmUZxi84wNbLsXmuMw8aeGxMfZ4j6pgaVRU6lSk/fpKdbFYhRhUUJtQ5+RQnCUv6Mq/nY/cAoAKACgAoA+ZPjJ+yv4D+NfinTfFniDV/Euk6hZ6ZDo90mh3GnpFf2NtcXNzbZGoWF+Le5ie7nQzRIUeIoGgLpvf8a8QvBHhjxGzrB57muPzjAYrD4OngK8ctrYSMMVhqNWrWo3WKweK9jWhLEVY+0gnGcHFOk5Q5z9v8N/HnivwyyLG8P5Rl+S5hhMTjamY0JZpRxcqmExVejRo1rfVMZhXWozjh6UvZ1GpRmpONVRlyHyX+118C/hr8IvhF4Wk8EeH47K+n8d2VjqGt3c81/rV/DJ4e8QzmKe+uZHMUDS2kcrWllHa2RlRJPs4dFavwnx68M+D+AuAsknw3lUcPiavE2Hw2KzHEVamKzHFU55VmtTkq4mq24UpTw8KkqGHjQwznGM/ZOUU4/0D9HnxT418Q/EPPocT5vPE4WlwrisVhMsw9KnhMtwlSGcZPS56OFopKdVU8ROmsRiamIxKhKUHWcZNH2H+yVMZ/2ePho5z8un6xDz6W/ifW7cfkIgB7V+/wDgRU9r4TcHS7YXMKf/AIJznMqS79If8Nsfzn9IKmqXjDxtFdcZl1T51skyys/xqH0ZX64fjYUAFABQAUAFABQAUAf/0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+In/gs/8A8Wf/AOCwfw0+KQ/0U3Vn+zZ8WPtH3Mnwh4l/4R37Tv4/1X/CvxHvzx5GMjbhfUw3vYZx/wAcfv1/9u8v1l/nd9ID/hB8eMnzn4OeHCOd8+3+4Yz6pz38v7LtfX4bdGo/27V5Z/oiFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/JR/wcXftiXeveIPh/8AsJ/Dm8uL6W0udF+InxhtNIMtxdX+v6km34Y+AJLe2HnzTw2l2/jK+0tknS7n1bwNd24FzZFa9HBUtHVfX3YX7fal2Wuid1tJW1bl/D/0rePJ4nE5X4bZTUnUlCeHzXPqdC851cTWVsnyxxheTlGE3mFSg4zVSVfLakLTpNH7of8ABMT9ju1/Yn/ZF+Hvwuv7K3h+I+vw/wDCwfjBexeXJJcfETxPa2kmoaWbmPKXFr4Q0230zwdYyxHybqHQv7RVFm1C4Z+SvU9rUcvsr3Y+i69d3r8+mx/R/g9wFDw84GyvJqlOMc2xMf7Uz6pGzc81xkKbq0edaShgaMKOApte7OOG9qkpVJuX6D1ifqIUAFABQAUAFABQAUAFABQAUAFAH8fH/By58F5vD/xY/Zy/aQ0aCS2/4S3wlrfww1/ULPdAbXXPAOrL4o8K3U00e1hqGo6d4u1mG1nVjMLbwwqFlW2gDelgZXjOHZqS+ej/ABXbr1uz+EPpd8Pywud8KcW4eMofXsDiMmxVWnePJicsr/XcFUlJWftatLHYiMJJ83JgkrpQhy/0+/sjfGiH9on9mH4D/G2OaKa6+I/wv8I+Idb8nb5dt4pk0qC28X6euz5c6Z4ottY05toA3Wp+VfurwVI8lScf5ZNL06dulun3H9i8DcQR4q4P4a4hUlKebZNgcViOW1oYyVCEMdS00/c4yFek/OB9FVB9UFABQAUAFABQAUAFABQAUAFABQAUAFAH89n/AAce/GP/AIQr9jXwN8JbO68rUvjZ8W9KS/td+37X4P8AhxYXHijVjsHzSfZ/Fs/gF+RsXdlsP5ddmCjeq5W0jHftKWi/DmP5b+ljn/8AZ3AGXZHTny1uIs8oKpC/x4DKaUsZX6q/LjpZY9mtb6Ox9N/8ENfg5/wqH/gnN8ILq5tPsmtfFzU/Fnxi1pNm0zDxRqp0nwvdFjhpBdeAvDfhK4DEAASbE3IqO0YqXNWl2ilFfJXf/kzfb9ZfY/RyyH+wvCjIZzh7PEZ5Wx2fYhWtzfXa/scHPZN8+WYXASu+9k2knL9eK5j9zCgAoAKACgAoAKACgAoAKAP4JP8Agkb/AMYwf8F6PH/wNb/iXafqXjb9q/4BKp/c28mneGbrxP4t8PKBgA2+o3Hw20X7AAMSvcWWzG5WX+8PFr/jJ/AjL88/iVKWC4Vz5veSqYmGGwmIf+KnHMq/tOyjPsfx34bf8IHjDjMo+CE8XxHk3ZOnh5YjE0bd4zeApcnfmi1uj+9uv4PP7ECgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPIvHf7P3wG+KPnf8ACzPgl8IviL9o3faP+E7+G3g3xd5+773nf8JBouoebuyd2/rnnOcV6+Bz/Pcrt/ZudZvl3Lbl+o5ljMJy22t9XrU7W6Wa+R5uMyXJ8wv9fynLcdzfF9cwGFxPN6+3pVL/AD/HaPxl47/4I7/8Ex/iL53/AAkH7Gfwf0/7Ru3/APCCWGs/C7bv6+T/AMKy1jwkLbH8It/KCdEC4zX2OB8X/EzLrfV+Ms4qcu316pRzO9u/9pUsXzf9vXv12R8tjPDHgHHX9twtlkL7/U4Vcv8Au+oVcNbfo18rJy+PfGn/AAbc/wDBMjxT5v8AYfhb4xfDfzM7P+EL+Ler332fPTyv+FiWPj3O3t5/n9Pm3chvsMF9I3xMwtvb4rJ8xta/13KKNPmt3/s+rgd+vKo26XuuX5nFeBnAWIv7HD5pgL7fVcyqT5fT69DF/wDk3N+FpfJHjT/g1T/ZrvvN/wCFd/tRfHHwtnd5H/CaeHfAXj3y/wC75v8AYdh8N/Ox/FsMG7ttya+swf0puJKdv7Q4XyPFfzfU8Rj8Bf09vVzK3z5t+lve+axX0eMinf6jxBm2H7fWqGDxlu1/YxwF/vjfysfJHjX/AINSPi3Y+cfh1+2F8OfE2NxgTxr8LfE3gbd/dWaXQ/FPxE2+jOkL+ojGStfW4L6VOUz5f7R4QzHDfzPBZphsd6uKr4fLvub9Xsz5vFfR2zKF/qPE2BxHb61l2Iwd/X2OJx1vx+R4M/8Awb5/8Fcvgo7zfB/4s/Dq8MDtLbH4RftAePPA12x3FlZR4i8M/D+KGcnlsXmxXJxMww7e6vH/AMJc6SWb5TmMOZWn/a3D+Ax0F0s3QxWYSlHt7ibXY8d+C/iTlN3lmY4GbV3H+zM5xmEl3/5f4fBJSfX35K/2tPeYfgV/wcy/AIeZZa3+1xrlnZc2y2Px28K/Hq0aJPuC20Wfx94/nEOB8lnJpUTAfKbZcin/AG59GnP9KlHhOhOfxc+R4vIZ3e/NXjgMBHm7yVWXe/UX9kePOTawq8S1ox1jyZxh84hZfy0njMY7f3HTj/gVmJ/w9d/4L/fs+cfGD4ffEzULKx4Z/jP+x8/h+xkhi7trXhbwL4AlvYSB/wAfo1SZ5Bl/tUhO+n/xCrwD4g1yjMMtpznrbJuL1iJpvtRxWPzBQd/seySWygtg/wCIi+MuS65ngsfOEP8AoacMewg0tLurh8JgnJf3vaO/80rPm9G8D/8AB1D+1VosqW/xR/Zn+BHi1raTyrtPCGofEL4cXrmM7ZFkOua58SIoLnKkSEWYRZM4tkUBK83HfRb4VrJyyviXPcJzK8HjKeAzGCvs17DD5e5R7fvLtfae53YT6QvEVJqOYZFk+JcXaX1aeNwMnbRp+1rY5Rl3921+i2Pt74e/8HV/wB1LyB8Vv2UfjB4MLbRcN8PvGngv4liM/wARiXxFD8JzKByQHMRI4z0NfE5h9FjP6d/7K4qyjGfy/wBoYLG5bfsn9X/tW3qn91z6zBfSIyapb+0uHczwvf6li8Lj7ent45bf5uP/AMj90/D3/g4p/wCCXnjjyE1v4pfED4WT3G1Vt/iF8JPGkvlyNjEc958PbDx9p0HJw00l6tsmCz3CoNzfD5h9HjxPwXN7HK8Bmij9rL82wUbpdYwzCpgKj/wqHM9rNu0frsF43eH+Lt7XMMbl7f2cbluKdm+jlgqeNpr1c+Xq5RR96/Db/gpB+wP8XPs8fgH9sD9nvVr272/ZtGv/AIn+FvDPiKfd0EfhrxTqGi+IGIJAYDTMoxCvhmAX4PMvDnjzKeZ4/hDiCjCHxVoZXisTh164nC062HX/AIN13V9o/Y4Djng7MuVYPibJak5fDSnmGHoV36YfEzoV+uv7vTZ23PsfTdU03WbK31LR9RsdV067QSWuoabd299ZXMZ6SW93aySwTIccPG7L+u746pSqUZyp1qc6VSLtKnUhKE4vtKErST9V92p9PTqU6sI1KU4VKcleM6clOEl3jKLaa9H92peqCwoAKACgAoAKACgAoAKAMzWdE0bxHpl3oniHSNM17RtQjEV/pGs2FpqmmXsSusqx3dhfRT2tzGJI0kCTROodFcDcqmtaNethqsK2HrVaFam7wrUak6VWDs1eFSDjOLs2rxadrrqZ1aVKvTlSrU6dalNWnTqwjUpzV07ShNOMldJ2a3SelkWbGxstMs7XTtNs7XT9PsYIrWysbG3htLOztYEEcNta20CRwW8EMarHFDFGkcaKFRQoAWZznVnKpUnOpUnJynUnJznOTd3KUpNylJu7bbbb1be5UIQpxjCnGMIQSjCEIqMYxSsoxjGyiktEkrJaaWLVQUFABQAUAFABQAUAFABQAUAfDH/BQOIv8GPDzj/lj8StFc/7reGvF8f/AKE6/wCSK/mj6VMObw8ymS+xxjl0n6PJs/j+ckf1N9EWfL4lZxF/8vOCsyivWOdcPT/KL/pHpn7HEol/Zx+HfrGPFcTexTxt4j2/mhU/jX2X0fZ8/hFwl3is8g/Ll4jzhL/yXlfT9ZfEfSOhyeM3GPaTyCa8+bhjJm/ulzLrt8o/Tdfsp+IBQAUAFABQAUAFABQB/9H+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/jM/4OZ/Cv2P9oz9nDxv5e0+IfgprPhXzsff/wCEN8darq/l7u/lf8J1vxnjzs8Zr08C/cmu07/ev+B3+4/gL6X2C9nxXwnmNv8AeuHsRgubv9QzKtXt8v7Svv8Aa6XP68fhH4q/4Tr4UfDHxv5nnf8ACY/D3wX4q87O7zf+Eh8N6bq/mbv4t/2vdnvnNedJWlJdpNfcz+6cjxv9pZLk+Y35vr+V5fjebfm+tYSjXvfrf2lz0KpPUCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPEP2k/jz4O/Zi+BPxQ+PPjyUL4b+GnhW/wBfmtBMkFxreqDZZ+HvDNhLIDGup+KPEF1pnh7TDIDGL7UoDKViDutwg6k4wW8nb07v5LXr6PY+d4t4lwHB/DeccTZm/wDZMowVXFSpqShPEVtKeFwdKTTSrYzFTo4WjdW9pWi5WimfyA/8EcvgN4x/b8/b88f/ALaHxxiOvaD8L/F03xa1+6uYXOl658ZfEt/dXnw+8OafFOWCaT4MFtceJrWztpZI9Eh8MeE9JmhWw1OBW9HEzVGiqcdHJcq8ordvVavbZ3d3pY/hLwE4ax/id4nZp4g8RxeJw2TY6WeYmc4v2OIz/F1ak8rwlJSk7UMv5JYyFODlHDRweBoSh7KtCJ/bbXln+h4UAFABQAUAFABQAUAFABQAUAFABQB+Pn/BdH4Hf8Lo/wCCeHxQ1Kys/tfiD4Kax4b+NGihUzIlt4buZ9E8YSGRQXSC18B+JfFGpSrgxyPp8PmbdiSp04SXLWj2knF/PVd95JL87bn4R9JDhz/WDwrzmtThz4rh6vhOIMPZXajhJyw+Pd91GGWYzG1Xum6UbpW5o/Of/BuR8cv+E+/Y48ZfBq/vPO1b4CfE7UYdPtfM3m18D/E2ObxborFSdyef4wh+IgAA8vZEu0lt6reNhaopdJx/8mjo+i6cvV/I+T+ihxH/AGnwDj8gqVOavwznFWNKF78mXZwpY7Du265ses18rRVteY/oPrjP6jCgAoAKACgAoAKACgAoAKACgAoAKACgD+LD/g4d8fat8Yv24fgj+zj4UY6nd+A/APh/R7PS1ckp8RfjT4mE8lkEXfsa98P6f8PHDbfMfzwCrIkRr1MHFRpSm9OaT1t9mK37uzcv0P8APr6U+Z18+8ReHOE8E/bTy3LMLQp0U9VmvEOMu6dlezqYWjlT2u+bZ2XN/Yp8LvAOk/Cn4Z/Dv4X6AAuhfDjwN4S8B6MAgjH9leEdBsNA0/8AdjITNrp8RKg8HI5wa8yTcpOT3k236t38/wA/vP7zybLKGS5PlWTYVWw2U5bgctw6tb9xgcNSwtLRbe5SWh3dI9IKACgAoAKACgAoAKACgAoA/gk/bP8A+MXP+Djrwx47j/4l/h/XP2j/ANm74gzXP+p3+HPiZpPgTSPiHc5ACnde6h41jzkrLs/esCz7f7w4M/4yf6OmKwL/AHuIocOcR5fGG9sTltbH1svh8oU8E12vpsfx3xT/AMY/440MYv3dCrnuR41yel6GPp4OnjpfZ+3Uxa31tra9pf3t1/B5/YgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHnPjj4O/CP4nRPb/En4WfDn4hQSp5UkPjjwP4Z8WRSR42+W8evaZfo6bQF2MCuOMYGF9HA5xm+WNSy3NMxy+Sd1LA47FYRp908PVptO+t7/fZnDi8ryzHprHZfgcamrNYvCUMSmuzVanO6/rT7Xw/8Q/8Agj5/wTK+J3nnxJ+xp8HdNNxu8xvh/peqfCZgW6tEfhZq/g3yGzyDCEweec19tl/i94l5Zy/VuMc4qKOyzCrTzXbv/alLGX+bl+kfk8b4ZcBZhf2/C+WU+bf6lTqZda/b+z6mEt8reutz4W+If/BtB/wTg8Yee/hST48/CeZ9zW8fg34m2etWMLnlFkh+JHhfx1ezQKcBoxqUU7r8oukY+Yv3OX/ST8RsHyrFLIs1SspPGZZOjOXdp5di8DCMn35HFb8r1ifI43wH4GxV3h3nGXN/CsLj4VYR8msdh8XNrv8AvFJ9LauPwR8Sf+DUbTX+0XXwg/bIvrXG/wCy6J8SfhJBf7+6C48U+GPGmneVjhXMfg6bdneoXbsr73LfpU1Vyxzfg6E/56+W5tKnbvy4XFYWre/ni4221vePxuO+jrB80ss4nlHflo47LVO/bmxOHxcLdnbCve+llE+N9S/4N5P+CrXwDvbjWfgH8XPh1rVwrma1uPhF8bfG3ww8TzGPiNrgeItC8DadbXRAAUR+JLqNBtzdLgq32FP6QfhVn0I0c+yjMKMWuWcc3yTBZnhknuo/V6+OqSj3vh4t/wAj0PmKngp4iZPOVXJ8ywNWV7xeW5ri8BiH25vb0sHCMtOmIklvzfZP6jv+CSHwt/bn+EP7KZ8J/t/eNNS8YfFwfEDxDfeGE8R+NrX4leMfDfw6m0zQINK0LxZ4+stS1q38R6l/b9t4l1Wzf+3fEE2n6PqenWEmsMIU0nSP5g8Wc04Hzfir63wDgqeDyl5fh4Yr6vgpZbg8RmKq15Va+EwE6VGWGp/V5YalNewoKpWpVKipJylVq/0D4bZfxdlvDv1bjLFVMTmX12tPDqvi4Y/FUMC6dFU6OJxkKlaNefto4ipF+3ruFKpTg6q5Y0qX6gV+Yn6AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHyH+3DpT6j8AdZu1XcNC8Q+GtVfjJVJdQ/sXcODj5tYUE8cE81+CfSTwMsX4W5hXSusszXJsdLyjPF/2df78wS9Gf0P9F3Hxwfi3luHlKzzXKM7wEenNKGDeZ8v3Zc2vNK25S/YU1dNS+BFvYqwL+H/FfiLSnXOSn2hrTXF46gMNYyOxO7BOCF5voy4+OM8MaWGTvLKs8zbAyV9V7V4fMlp0TWYad3fszp+lTl0sF4q1sU42jm2QZPj4u2kvZRxGVvXq08us+yt3R9k1/Qh/N4UAFABQAUAFABQAUAf/0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Vz/g558L/aPB37IHjRY8f2R4l+MXheeYD73/AAkel/D3VrSN277P+EWvGiB+75kxH3mrvwL1qLyi/u5v80fxf9MTB8+A4EzBL+BjM/wcpd/rdHKq8E35fUqjjta8rXu+X90f+Ccfij/hMf2Cf2PtbaTzpR+zx8K9FuJSdzS3fhfwlpvhi8kc95HutHmaU8fvC3A6Vy11atU/xyf3u/l3/wCH3P6Q8KMZ9f8ADPgPEt80v9Vclw85buVTB4Gjg6jfm50JOXmfaVZH6AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfyJf8HE/wC15qHjXx78Of2Efhpc3WqHQb3RfHXxV07RvMurvV/HXiGD7P8ADTwH9mtf9InudN0fUn8TXOmeXdQ3934o8KTRKt/pCqno4OnZOrLrpG+lkvifbV2Sd+j2uz+GPpVcdVcwzPKfDXKJzrPDVMNmWdUsPec6+ZYuHLlGWckPelOlh6zxk6XvRqzxuBkkqtC0f3//AOCbv7Ien/sUfslfDf4Ovb2o8c3NofG3xa1G38uT+0/iZ4ot7W41+P7TF+7vLTw5bwaf4P0m6UJ9p0fw7YXMiLPNMW5K9R1akpfZWkfKK+b33evXS1j+nvCbgWl4ecD5TkDhD+0pw/tHPK0LP22cYyEJYpc8dKkMJGNLAUKitz4fCUptKUpOX3dWJ+khQAUAFABQAUAFABQAUAFABQAUAFAHJ+PfBmh/EfwL40+Hnia3+1+G/HnhPxF4M8QWuFP2nRPFGj3miarb4YMp86wvp4/mVl+bkEZFOLcWpLeLTXqnddvz+44szy/DZtluYZVjIe0wmZ4LF5fiofz4bGUKmHrw1uvepVJLVdep/GJ/wQq8aa5+y/8A8FJ/ip+yx42uPsdz450z4j/CPVbNy1vA3xM+DOs6hren3LCQ7crpfh/x5p1lG53SzaxCkTs7pHP6eKSqUI1F05ZL/DLS2/mn123X2v8AP/6N2YYng7xbzrgvMZeznmNHNsjr037kXnHD+Iq4ilPXtQwuZ0qcXdyliIpNtpS/tnryz/Q0KACgAoAKACgAoAKACgAoAKACgAoAKAP4dvgR/wAZv/8ABfi+8byf8TbwtoH7QnjH4gwX5/fwjwd+zvYXNl8Nb1x8y+Te3PgnwLZrHlo431CNCzIuW9WX7rCW68ij85/F22u3/nuf50cNf8bF+k5VzF/v8FhOKcfmkavxR+ocK0p08oqPdKNSeX5bBLVRdVLWzP7ia8o/0XCgAoAKACgAoAKACgAoAKACgD+F/wD4OifA954N/bN/Z1+M2keZp83jD4G22kQX0A2sfEvwt+IPiDUGv1fHN1b6d408Nw9wkdpbEAZbd/cX0YcbDGcG8RZNWtUjhM8lVlCWtsNmmX4en7O2nuyqYLEy31c5bWP5H+kDhJ4XinJM0pXg8VlEaSmlb/aMvxtafOnreShiqC20UY73P7Zfhb44s/ib8Mvhz8SdO2f2f8QfAnhHxxY+Ud0f2PxZ4f0/Xrby2JJZPIv02Ek5XByetfxXmmCnluZZjl1S/tMvx2LwVS+j58LiKlCV10fNTdz+rMvxccfgMDjofBjcHhsXC23LiaMK0bfKaO7rhOwKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgBrMqKzuyoiKWd2IVVVRlmZjgKqgEkk4A5OOaEr6LVvRJdQPxe/YX/4LU/B79u/9rT4rfswfD74XeLtCsPBWh+KfE/gT4pXWt2GsaN8RfD3g/xDpfh/UtTu9Cs9NtrnwZHqR1mw1Tw552p69FqOnu0eoz6NqjWunXf7Nxz4MZxwLwnlXE+YZphK88bXwuFx2VwoVKNbLsRjMPVxFKnCvOpKOMdNUZ0sTanRdOok6ar01OpH8s4R8VMs4w4kzHIMFl2JowwtHEYjB5jKtCrSxtDDVqdGdSVGNKEsKqntYVKF6lZThpUdKo4wl+0dfjJ+phQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBwPxS8Fr8RPh34x8E+ZDBN4i0K9sLK4uAzW9tqWzztLupwgaQw22oxWs8nlq0myNtgL7RXy/G3Dq4t4T4g4c56dKebZZiMNh6tVSdKjjOX2mCrVVFSk6dHF06FWfInPlg+X3lE+s4E4lfB3GPDnE/JUq08mzXC4vE0aLiq1fBc/s8dQpOTjBVK+DqV6VNzahzTXP7vMeA/sifBbx18GfDvi+x8bz6akmu61ZXenabp159vS2SytZra4vpbhY44g+oh7ZY4V3PHDZRtMVkk8pPyzwF8O+JvD3KM/w3ElTBxnmeY4evhMHg8R9ajRjhqNSjVxM6sYQp82MUqKjTinKFPDxdTlnPkj+t/SG8S+FfEnOeHsVwxSxsoZVlmJw+MxuNw/1WVeWKr0q9HC06LnOpy4JxrOdSTUZ1MTNU+aEFOX15X72fzwFABQAUAFABQAUAFAH/9P+/igDkPG3jbRvAej/ANs6z9okjkuI7O1tbONJLq6uZEkkEcSySRRKqxRSyySSyRoqIQGMjRo4NJt2X9fivz++weCfG2jePNH/ALZ0b7RHHHcSWd1a3kaR3VrcxpHIY5VjkliZWililjkikkRkcAsJFkRAGmnZ/wBfi/z+6519AgoAKACgAoAKAKWpahaaTp97ql/KILLT7We8u5iGby7e2jaWVwqgs5CIdqIGd2wqqzFVoA878C/Fvwz4/wBQvdL0uHUrO9tIGu0h1KG3j+1WiSJE80DW1xcLuieWLzIpSjhZVaNXVZWiCnFrf/L/ANul/Xe/u+o0EhQAUAFABQAUAFAHkP8Awuvwd/wmP/CG/wDEx+0/2j/ZH9p+RD/Zf9p+d9n+zb/P+1bPtP8Aov2j7N5PnfN5n2b/AEigrkdr9N/6fN/7b5eZ69QSfzz/APByb4Y/tT9ib4YeJYo91x4W/aQ8LJK+P9Xpmu/D34l2dyc4JG7UbfRlxwD3JIUV24F/vZLvB/NqUf0b7/i3H+WvpbYP23h5k+LirywXFuCUnb4aOJyrOKc9el6scOvP5I+vP+CIvib/AISf/gmT+zXJJL5l1odv8SvDN0M58r+xPi547trCLPXjRzprAHG0MAOAC2WKVq8/Plf3xX637fheX3X0d8Z9c8H+EW3eeGhm+Dn5fVs9zOFJdP8AmH9i/K9tbXP1crnP2sKACgAoA8u8dfFvwz4A1Cy0vVIdSvL27gW7eHTYbeT7LaPI8STTtc3Fuu6V4pfLiiLuViZpFRWiaUKUW9v8/wD26P8AXa3veiabqFpq2n2WqWEonstQtYLy0mAZfMt7mNZYnKsAyEo43I4V0bKsqsGWgku0AFABQAUAFABQByHjbxto3gPR/wC2dZ+0SRyXEdna2tnGkl1dXMiSSCOJZJIolVYopZZJJZI0VEIDGRo0cGk27L+vxX5/fYPBPjbRvHmj/wBs6N9ojjjuJLO6tbyNI7q1uY0jkMcqxySxMrRSxSxyRSSIyOAWEiyIgDTTs/6/F/n91zr6BHhP7Tfx98IfsufAT4pfHvxxIp0D4a+FL7XPsPnrbza7rTbLDwz4YspXV1TUPFHiO80vQLB3Uxx3WoxSTFYVd0unB1Jxgt5O3our67JN7elz5vjDifA8G8M5zxNmLX1bKMFUxPs+ZQlicQ7U8Hg6cndKrjMXOjhabasp1YuV0j+RL/gi18AfF/7cv7d3xC/bX+NyN4g0f4WeK7r4o6rfXcDf2dr/AMcvF9/e3/g3TLGKbeqad4JSO88V21rZzMNAm0TwVYNELC/iVfRxU1SpKlDTmXKl2gt9e721WvvbNtx/hj6PvDGO8R/ErNfEPiJPFUMlxtTOa1SpFuliuI8fUqVMvo0oy0VLLkqmOhCnOX1WWHy6k4+yqwP7Y68s/wBCwoAKAKWpahaaTp97ql/KILLT7We8u5iGby7e2jaWVwqgs5CIdqIGd2wqqzFVoA878C/Fvwz4/wBQvdL0uHUrO9tIGu0h1KG3j+1WiSJE80DW1xcLuieWLzIpSjhZVaNXVZWiCnFrf/L/ANul/Xe/u+o0EhQAUAFABQAUAFAHkP8Awuvwd/wmP/CG/wDEx+0/2j/ZH9p+RD/Zf9p+d9n+zb/P+1bPtP8Aov2j7N5PnfN5n2b/AEigrkdr9N/6fN/7b5eZ69QSFAH8Pf8AwVd0rUf2IP8AgsF4P/aT8O2c1vpHibXfhP8AtHWVvZrshvpdK1OHw78RtDMoKh5vEV/4R1y71WAusn2fxYpZkjuYmr1cParhnB9FKDd7+afXZPt062P86vGyhV8OvHfL+LsLTlDD4zE5JxZTjT0jUlQrRwmbYa9tZYupgcROvF68uO+zGcXL+3TSNW07XtJ0zXNHvIdQ0jWtPstW0q/tm3299p2o20V5Y3kD8b4bm2mimibHzI6njNeU1bTqtD/RChXpYmhRxNCpGrQxFKnXo1YO8KlKrBTp1IvS8ZwkpRdtU+hoUGoUAFAHl3jr4t+GfAGoWWl6pDqV5e3cC3bw6bDbyfZbR5HiSadrm4t13SvFL5cURdysTNIqK0TShSi3t/n/AO3R/rtb3vRNN1C01bT7LVLCUT2WoWsF5aTAMvmW9zGssTlWAZCUcbkcK6NlWVWDLQSXaACgAoAKACgAoA5Dxt420bwHo/8AbOs/aJI5LiOztbWzjSS6urmRJJBHEskkUSqsUUsskkskaKiEBjI0aODSbdl/X4r8/vsfP/x5/aR0TwF+yd8e/j7o081pL8NPhd4/16yt75I4bqPxVpPhq7uPDmnMFkkgMmp61NpNraSJK8TPeRh2DrIkV04884R/mkk/RvV/JHzHG+d/6scIcTZ85KM8pyPMsdQe3NiqOEqvCU1dtc1XFexpRu9ZSW1z+af/AINmvhI+r/Fb9pj496hA8n/CKeCfC3ww0e9uFMn2i+8fa7ceKvETwSuT/pVjb+A9DW6kOJfJ1tEDMk8wrvx0vdhDu3J/JWX38z6dOlj+Nvog5G6+dcX8TVYt/UsuwWTUKkteapmeJnjcW4t39+nHLMMpy0ly4iybU5I/sHrzT+7woAKACgAoApalqFppOn3uqX8ogstPtZ7y7mIZvLt7aNpZXCqCzkIh2ogZ3bCqrMVWgDzvwL8W/DPj/UL3S9Lh1KzvbSBrtIdSht4/tVokiRPNA1tcXC7onli8yKUo4WVWjV1WVogpxa3/AMv/AG6X9d7+76jQSFABQAUAfynf8HV3w4/tT9n/APZV+Liwbm8E/GDxl8O5LgLkxx/E7wZF4jSN2HRJH+E2V3cB1wMFyG/qj6LGY+yz/inKXK313KMHmCjfd5ZjHh20u6Wa9Ht3sfzt9IjA+0ybh3MuX/dMzxWCcu31/Cquk/X+zur++5+xH/BHj4kf8LU/4Jlfsb+JjP8AaJNL+EOn/DuVy251f4R6vq/wq8uQ/eDRp4NVfm5K7W5DBm/H/F/Lv7L8S+McNy8qq5vUzBK1lbNqVLNLrybxl9PQ/TvDHHf2hwFwvXvd08shgX5f2bVq5dZ7bLC2/HW6Z+lNfm592eQ/8Lr8Hf8ACY/8Ib/xMftP9o/2R/afkQ/2X/afnfZ/s2/z/tWz7T/ov2j7N5PnfN5n2b/SKCuR2v03/p83/tvl5nr1BIUAFABQAUAFABQB5d46+LfhnwBqFlpeqQ6leXt3At28Omw28n2W0eR4kmna5uLdd0rxS+XFEXcrEzSKitE0oUot7f5/+3R/rtb3vRNN1C01bT7LVLCUT2WoWsF5aTAMvmW9zGssTlWAZCUcbkcK6NlWVWDLQSXaACgAoAKACgAoA5Dxt420bwHo/wDbOs/aJI5LiOztbWzjSS6urmRJJBHEskkUSqsUUsskkskaKiEBjI0aODSbdl/X4r8/vsfnb/wUt/a20n4R/wDBNv8Aai+M3hm+udM15/AOo/DPwws+y31bT/G/xOmsfAGjXdmkUkqS3WiHxSPFELwvNGLbSpppci3uYk/Q/CnIFxL4g8MZZOHPh45jDMMZFq8HhMrjLMK1Opo1yV1h1h9eW8q0YqSbTPifEjOHw/wVxBj4z5K7wMsHhZJ2ksTmEo4KlOn8Xv0XXddb6UnJ6Jo/Fv8A4NWv2eo7DwP+0v8AtTapYD7X4k8RaD8DPBl9LFslg0vwzZWvjfx6LZ2+aaz1bUdf8CRNIn7kXfhqaHc8sUiRfuP0peIHUx3DXC9Kp7mGw9fPMZBO6lVxU54LA83RTpU8PjnZ+9yYlPROLl+Q/R5yVQwmfcQ1Ie9Xr0cows2rNU8PCOLxnK+sKtSvg1daKWHa1ako/wBctfyWf0mFABQAUAFAFLUtQtNJ0+91S/lEFlp9rPeXcxDN5dvbRtLK4VQWchEO1EDO7YVVZiq0Aed+Bfi34Z8f6he6XpcOpWd7aQNdpDqUNvH9qtEkSJ5oGtri4XdE8sXmRSlHCyq0auqytEFOLW/+X/t0v673931GgkKACgAoAKACgAoA8h/4XX4O/wCEx/4Q3/iY/af7R/sj+0/Ih/sv+0/O+z/Zt/n/AGrZ9p/0X7R9m8nzvm8z7N/pFBXI7X6b/wBPm/8AbfLzPXqCQoAKACgAoAKACgDy7x18W/DPgDULLS9Uh1K8vbuBbt4dNht5Psto8jxJNO1zcW67pXil8uKIu5WJmkVFaJpQpRb2/wA//bo/12t73omm6haatp9lqlhKJ7LULWC8tJgGXzLe5jWWJyrAMhKONyOFdGyrKrBloJLtABQAUAFABQAUAch428baN4D0f+2dZ+0SRyXEdna2tnGkl1dXMiSSCOJZJIolVYopZZJJZI0VEIDGRo0cGk27L+vxX5/fYPBPjbRvHmj/ANs6N9ojjjuJLO6tbyNI7q1uY0jkMcqxySxMrRSxSxyRSSIyOAWEiyIgDTTs/wCvxf5/dc6+gQUAFABQAUAFAFLUtQtNJ0+91S/lEFlp9rPeXcxDN5dvbRtLK4VQWchEO1EDO7YVVZiq0Aed+Bfi34Z8f6he6XpcOpWd7aQNdpDqUNvH9qtEkSJ5oGtri4XdE8sXmRSlHCyq0auqytEFOLW/+X/t0v673931GgkKACgAoAKACgAoA8h/4XX4O/4TH/hDf+Jj9p/tH+yP7T8iH+y/7T877P8AZt/n/atn2n/RftH2byfO+bzPs3+kUFcjtfpv/T5v/bfLzPXqCQoAKACgAoAKACgDy7x18W/DPgDULLS9Uh1K8vbuBbt4dNht5Psto8jxJNO1zcW67pXil8uKIu5WJmkVFaJpQpRb2/z/APbo/wBdre96JpuoWmrafZapYSiey1C1gvLSYBl8y3uY1licqwDISjjcjhXRsqyqwZaCS7QAUAFABQAUAFAHIeNvG2jeA9H/ALZ1n7RJHJcR2dra2caSXV1cyJJII4lkkiiVViillkklkjRUQgMZGjRwaTbsv6/Ffn99g8E+NtG8eaP/AGzo32iOOO4ks7q1vI0jurW5jSOQxyrHJLEytFLFLHJFJIjI4BYSLIiANNOz/r8X+f3XOvoEFABQAUAf/9T+/igDkPG3gnR/Hmj/ANjaz9ojjjuI7u1urR0jurW6jSSMSxmRJImVopZIpI5Y3R0fIAkWOSIGm07r+vwf5fdcPBPgnR/Aej/2No32iSOS4ku7q6u3SS6urqRI4zLIY0jiVViijijjijRERMkGRpJJQG23d/1+C/L77HX0CCgAoAKACgAoApalp9pq2n3ul38QnstQtZ7O7hJZfMt7mNopUDKQyEo52uhV0bDKysFagDzrwL8JPDPgDUL3VNLm1G9vbuFrVJtRlgk+yWjyJK8EC28FupaR4ovMmkDuVjVYzGrSrKFOTe/+f/tsf67W971KgkKACgAoAKACgAoA8h/4Un4O/wCEx/4TLOo/aP7R/tf+y/Ph/sz+0/O+0fadnk/adn2n/Sfs32jyfO+XZ9m/0egrndrdNv6XL/7d5+R69QSfjZ/wXt8Nf29/wTR+L2peX5jeDfF/wj8SqcZMfn/Efw94TeRepGI/FDqxHRGcnChjXThHavFd1Jf+St/ofgf0mMH9Z8Is9rWv9Qx2R4z05s2wmBbXyxrvbZNvZM8x/wCDdTxL/bv/AAT6vdK8zefBnx8+JHhvZn/VLd6L4I8XhMdgx8UtIOmS7fVqxqtWXnBP8Wv0/rU8f6KmL+s+F1Sje/8AZ/E2bYS38vPh8ux1vL/fb/M/eGuQ/pQKACgAoA8t8dfCTwz4/wBQstU1SbUbK9tIVtXm06WCP7XaJI8qQTrcQXCho3ll8uaMI4WRlkMirEsQUpNbf5f+2y/rvf3fRdN0+00nT7LS7CIQWWn2sFnaQgs3l29tGsUSFmJZyEQbncs7tlmZmLNQSXaACgAoAKACgAoA5Dxt4J0fx5o/9jaz9ojjjuI7u1urR0jurW6jSSMSxmRJImVopZIpI5Y3R0fIAkWOSIGm07r+vwf5fdcPBPgnR/Aej/2No32iSOS4ku7q6u3SS6urqRI4zLIY0jiVViijijjijRERMkGRpJJQG23d/wBfgvy++x19Aj+RD/g4p/a31Dxt4/8Ahr+wp8Nri61Q+HrzRvHnxS07RvMurvVvHfiO3+y/DTwMba2xcT3Wm6LqcviWfTdlzDf3PizwtNGq32lKE9HBU7RlVel/djfsvif3q17r4dusv4X+lXxzVzHM8o8NsonOt9VqYfM85pYe8518yxceTJ8t5Ie/KdHD1pYydH341Z43AyXLUoKJ/QP/AME4v2RtP/Yq/ZJ+Gfwaa3tR42ksj4z+K+o2xjk/tT4m+KYLW68Rj7TFhLy18PxQ6f4P0i7Cp9p0Tw5pszoJnlLcdap7WpKXTaPlFbel9W99X02P6h8J+BqXh7wPk/D/ACw/tB0/7QzurCz9vnGNjCeL95NqcMKo0sBQqK3PhsJRk1zOR90Vkfo4UAFAFLUtPtNW0+90u/iE9lqFrPZ3cJLL5lvcxtFKgZSGQlHO10KujYZWVgrUAedeBfhJ4Z8Aahe6ppc2o3t7dwtapNqMsEn2S0eRJXggW3gt1LSPFF5k0gdysarGY1aVZQpyb3/z/wDbY/12t73qVBIUAFABQAUAFABQB5D/AMKT8Hf8Jj/wmWdR+0f2j/a/9l+fD/Zn9p+d9o+07PJ+07PtP+k/ZvtHk+d8uz7N/o9BXO7W6bf0uX/27z8j16gkKAP5r/8Ag5R+BH/CV/s7/Br9oHTbPzdS+EHxCvfBviCeGPDp4P8AifYQmK8vJR9+307xZ4V0DT7RHz5U/iecxY8+fd3YGdpzg/tJNesb6L5Nvpt5JS/kj6W/DX13hXIOKKNPmq5FmlTAYqUVqsBnFKNqlSSTvCljsFhqVNSa5ZYyXLfnkfoV/wAEavjv/wAL7/4J5/AfU7y8+1+IvhppV38FPE+ZPOkgu/hpKmj+HVuJT88lzd+AX8H6pcPKBI0uoOWMufOfHEw5K0+0nzr/ALe3/wDJr/0j9T8AuJf9ZvCzhqtOp7TF5RQnw9jNeZxqZRJUMKpSernUyx4CtJvXmq6uXxH6jVzn7IFABQB5b46+Enhnx/qFlqmqTajZXtpCtq82nSwR/a7RJHlSCdbiC4UNG8svlzRhHCyMshkVYliClJrb/L/22X9d7+76Lpun2mk6fZaXYRCCy0+1gs7SEFm8u3to1iiQsxLOQiDc7lndsszMxZqCS7QAUAFABQAUAFAHIeNvBOj+PNH/ALG1n7RHHHcR3drdWjpHdWt1GkkYljMiSRMrRSyRSRyxujo+QBIsckQNNp3X9fg/y+65+Hf/AAXX8TaP+z9/wTg1r4aeHbq4W8+OPxV8DeCLiaeZG1K8s9NuJviJrF2xiSJUsxF4A07R7hYVjiEOpx28qubyV36sHG9a/wDLGUvnpH9fLv0tL+dPpR588r8LsRgIz5avEWb5ZlSjF2n7ChUnm9eS0T5H/ZtOjUaSTVdU5O07S7D/AIN9PhH/AMK6/wCCfGieMri18nUfjd8TPHvxDeSVNtydK0q8tfhtpELZAcWpXwLd6nZoflZNWkuY8pdbmMZK9a38sYx+esv18u3S8l9F3I/7J8LsNj5w5avEWb5nmrb+P2NCpDKKEXomoWy2damndNV3NaTufuHXKf0WFABQAUAFAFLUtPtNW0+90u/iE9lqFrPZ3cJLL5lvcxtFKgZSGQlHO10KujYZWVgrUAedeBfhJ4Z8Aahe6ppc2o3t7dwtapNqMsEn2S0eRJXggW3gt1LSPFF5k0gdysarGY1aVZQpyb3/AM//AG2P9dre96lQSFABQAUAfiR/wcL/AA4/4T7/AIJc/GXVYrf7Te/C/wAW/Cr4j2MYXdIv2fx3pHg3VbiPsv2Tw9401m6mY4xbQzAZLAV+1/R9zH6h4n5NScuWGZ4TNMum+nvYGrjKUXv8eIwdGK/vNXta5+UeNWB+ueH2aVFHmnl+Jy7HQVrvTGUsLUktrctDFVZN/wAsXvojxL/g2U+I/wDwl/8AwTw1zwZNPuuvhP8AH/4geGre1ZsvDo3iPRvCPj20uFX+CG51fxR4gjQHrNaXBwM5b2vpL5d9U8QqOMjG0c1yDL8TKdtJVsPWxeAnG/WUaWFw7fZTj3Z5XgJjvrPBNbCt+9luc42go32pV6WGxkZeSdXEVkvOMmf0SV/PR+2HkP8AwpPwd/wmP/CZZ1H7R/aP9r/2X58P9mf2n532j7Ts8n7Ts+0/6T9m+0eT53y7Ps3+j0Fc7tbpt/S5f/bvPyPXqCQoAKACgAoAKACgDy3x18JPDPj/AFCy1TVJtRsr20hW1ebTpYI/tdokjypBOtxBcKGjeWXy5owjhZGWQyKsSxBSk1t/l/7bL+u9/d9F03T7TSdPstLsIhBZafawWdpCCzeXb20axRIWYlnIRBudyzu2WZmYs1BJdoAKACgAoAKACgDkPG3gnR/Hmj/2NrP2iOOO4ju7W6tHSO6tbqNJIxLGZEkiZWilkikjljdHR8gCRY5IgabTuv6/B/l91z+UD/g5u8f6P8KP2f8A9mn9ljwte3DS/ET4keJ/jJ4uMs6Nf3Fh8PNCg8LaAupCJYk+wapqXjm/msreOMQm58KedIpuIFlf+q/otZH7fOeJOIqkLxy/L8NlWGlJae2zGt9Zryh2nSpYCnCT0ahibbSal/On0h849nleQ5HCXvY3GV8xrxi9VSwNJUKCnpG8atTG1ZR6c2Hu7OKcv29/4I8fAkfs9f8ABN/9lnwXc2f2PXfEfw9t/iv4nDx+XePrfxdu7r4h+RqK4Ui90fSvEGl+HZEYb4YtGigfLREt+PeL+e/6weI3FONjPnoYfMJZVhmneHsMphHL+anq1yVquHq4hNOzdVyVrn6d4Y5R/YvA3D2FlHlrV8FHMcRdWk6uZSljbT/v0qdanQ7pUknqmfpjX5qfeBQAUAFABQBS1LT7TVtPvdLv4hPZahaz2d3CSy+Zb3MbRSoGUhkJRztdCro2GVlYK1AHnXgX4SeGfAGoXuqaXNqN7e3cLWqTajLBJ9ktHkSV4IFt4LdS0jxReZNIHcrGqxmNWlWUKcm9/wDP/wBtj/Xa3vepUEhQAUAFABQAUAFAHkP/AApPwd/wmP8AwmWdR+0f2j/a/wDZfnw/2Z/afnfaPtOzyftOz7T/AKT9m+0eT53y7Ps3+j0Fc7tbpt/S5f8A27z8j16gkKACgAoAKACgAoA8t8dfCTwz4/1Cy1TVJtRsr20hW1ebTpYI/tdokjypBOtxBcKGjeWXy5owjhZGWQyKsSxBSk1t/l/7bL+u9/d9F03T7TSdPstLsIhBZafawWdpCCzeXb20axRIWYlnIRBudyzu2WZmYs1BJdoAKACgAoAKACgDkPG3gnR/Hmj/ANjaz9ojjjuI7u1urR0jurW6jSSMSxmRJImVopZIpI5Y3R0fIAkWOSIGm07r+vwf5fdcPBPgnR/Aej/2No32iSOS4ku7q6u3SS6urqRI4zLIY0jiVViijijjijRERMkGRpJJQG23d/1+C/L77HX0CCgAoAKACgAoApalp9pq2n3ul38QnstQtZ7O7hJZfMt7mNopUDKQyEo52uhV0bDKysFagDzrwL8JPDPgDUL3VNLm1G9vbuFrVJtRlgk+yWjyJK8EC28FupaR4ovMmkDuVjVYzGrSrKFOTe/+f/tsf67W971KgkKACgAoAKACgAoA8h/4Un4O/wCEx/4TLOo/aP7R/tf+y/Ph/sz+0/O+0fadnk/adn2n/Sfs32jyfO+XZ9m/0egrndrdNv6XL/7d5+R69QSFABQAUAFABQAUAeW+OvhJ4Z8f6hZapqk2o2V7aQravNp0sEf2u0SR5UgnW4guFDRvLL5c0YRwsjLIZFWJYgpSa2/y/wDbZf13v7voum6faaTp9lpdhEILLT7WCztIQWby7e2jWKJCzEs5CINzuWd2yzMzFmoJLtABQAUAFABQAUAch428E6P480f+xtZ+0Rxx3Ed3a3Vo6R3VrdRpJGJYzIkkTK0UskUkcsbo6PkASLHJEDTad1/X4P8AL7rh4J8E6P4D0f8AsbRvtEkclxJd3V1dukl1dXUiRxmWQxpHEqrFFHFHHFGiIiZIMjSSSgNtu7/r8F+X32OvoEFABQAUAf/V/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPzs/wCCtPhv/hKv+CcX7W+meX5n2X4XTeJNuM4/4Q3XtE8X+Z3/ANV/Yfm57bM8YzW+Hdq9P/Fb701+p+V+N+E+u+E/HNG1+TJpYu2//IvxOHx9/wDt36tzeVr9D8sf+DZbxJ9q/Z5/aS8IeZn+w/jPoPiTys/c/wCEq8D2OmeZjt5n/CG7c458rHO2t8cvfpvvFr7n/wAE/F/ogYvn4V4twN/924gw2Lt2+u5dSo3+f1C232etj+mGuE/rwKACgAoAKACgAoAKACgAoAKACgAoAKAPEv2kPjt4Q/Zl+BXxR+PPjqQDw58MvCWo+Ip7QTJBPrOpIEtPD/huxlkDRpqfijxBdaZ4e0wyDy/t+pW3mFY97LcIOpOMFvJ29O7+S16+j2PneLeJMBwfw3nPEuZSthMnwNXFyhzKMsRWSUMLhKbd0q2MxU6OFo309rWjzWjdn8gv/BGH4EeL/wBuz9vn4hftpfGyM69pHws8U3XxX1m8uoXOm618bPF+oX134E0ewimLiPTvBiwX/iqytrWd10FvDng/TniFjfwK3o4mapUY04aOS5V3UVu/V6LZ3u9nqfwp9H/hrHeJPibmviDxCvrNDJcbPO685xfscRxDj6tWpltClGTsqWX8tTG04U5P6q8JgKTTpVIRP7Z68s/0NCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPlH9uf4Er+0v+yH+0H8Eo7VbzVfG3w111PC0DKGU+OdAjj8UeA5CDzti8ZaLocr7Sr+WrhGViprSlP2dSEu0tfR6PqujfX7z4rxH4aXF/AvFHDqh7StmOUYlYKLV/wDhSwyWMyxtb2jmGHwzdrOy0a3P5xP+DZ347vp/iv8AaL/Zj1e7aNda0rRfjP4SsJmMSw6joFzbeCvHqojn95eX1nq3gSTyUVZlttCupSHjicxduOhpCfZ8r9HqvxT69etz+Tvoh8SuljeK+D682liKOH4gwNOT5eWrhpwy/M0k96lSnXy18q95Qw03qlJx/rprzj+5goAKACgAoAKACgAoAKACgAoAKAP4/wD/AIOa/iudQ+JX7MXwMtLg48M+C/GPxT1izjYt583jfXLXwn4cknQE4ks4/AfiRbYAB9mpTk5V0r0sDH3Zy6uSivkr/jddfuP4S+l/nftc24O4bhP/AHTL8fnWIpp/FLMcRTwOEcl3prLcYobNqrK/2XL+nr9kr4Tj4Ffswfs//B9rcW158PPhD4B8M6wgXYZPEVh4bsB4lupEwAst94gbUr2YAACWd8AdK4KkuapOXRybXpfTv08/vP7E4HyT/Vvg7hfIXDkqZVkWWYOurWbxVLCUli5taWlUxTrVJafFJ7H0NUH1IUAFABQAUAFABQAUAFABQAUAfIX/AAUB+HH/AAtz9h39rf4dxwfab3xL+zz8WYNGh2eZnxHY+C9X1Xwy2zq3leILDTZcLhzs+QhiDX13AGY/2RxvwnmLlyww3EOUyrSva2GnjKVLE69L4epVXbXXRM+Z4zwP9pcJcSYJLmnXyTMlSX/T+GFq1KHR7VoQe3pY/mf/AODUb4j7bz9sr4R3M+fPtvhD8R9Etd33fssvjfwz4on2Hrv+2eEI9ygbfLw+7cm3+lPpVZdeHB2bRW0s3y6vK2/MsDicKr+XJi3a3XS9mfg/0dcdafFGWyl8Ucsx1GPbleLw+Il8+fCrbpre6P7Ha/j0/p4KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+B7/gsjqF7+2//wAFsvAv7MeiXU11pXhzWfgP+zLazWbkwWb+J9UtPFvjzVlVciOXQbz4h6zaatcsnmInhhg2+G0gr+8fB2nDgnwVx/E1aKhVxNHPeJZKatKf1WlPCYClruq8cuozoxWjeKvvNn8deJ858WeK2EyClJyp0KuT5BFxekfrFSOJxlTZ2dGeOqxqy5bpYezbUUz+9XTtPstJ0+x0rTLWGx03TLO20/T7K2QR29nZWUMdtaWsEa4WOG3gijiiQDCoiqMYr+EalSdWpOrUlKdSrOVSpOTvKc5ycpyk3duUpNttvVvqf2HCEKUIU6cVCnTjGEIR0jGEEoxilpZRSSWm3YuVBQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPmn9s/w5/wl/wCx9+1V4WEfmSeIP2cvjZpEC4yRdX3w28SwWjoOf3kVy8UkfHDqp5rSk7Vab7Th/wClHyPiBhPr3AnGmCtd4rhTiGhFf36mU4uMGt9VNxa03V9bH83H/BsH4j8rXP2yPCTyZ+3aV8EPEdrET9z+yrz4o6ZfyIP+mn9s6cshxx5UQGMmu3HLSm/Oa+/l6/J9PuP5L+h1i7Yjj7At/wASjw5i4K+3sZ5zRqtLz+sUU3f7K2P63a84/uIKACgAoAKACgAoAKACgAoAKACgAoAKAP5J/wDg42/a6utc8Q/DT9hv4f3lxey2U+lfEz4t2WlGS4ub3X9UjktPhj4Ilgtv38txDY3d54uvNKkjnS8k1nwTewKLmzTb6OCp2TqvreMfRfE/m9Lrs9FvL+HvpX8czxOKyjw4yupKpKnKjnGeU6F5zqYmsnDJ8ucIJTc406lTHVKD51UeIy6pHlnSSl+73/BM79kS1/Ys/ZB+Gnwlu7OCDx/qdofHvxcu4vLaS7+JPiu2tLnWbOSeL93cw+FrKDS/BlhcR4S50/w5a3ZHm3ErNyV6ntakpdF7sf8ACvv3d38+mx/SnhDwLDw+4FyjI5wjHM60P7TzycbN1M3xsKc8RTco6TjgqcaOX0ppJTpYSnUaUpyPvqsT9NCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Vj4C/8ABN39q79nD/gtJdfFr4d/D2W1/ZlvvHfxL8at8QBqmjxeEYvhp8S/D3iC4uvBhs0vxrD61oOva7B4f0nRG05rsX2jaZr7rJoMT6vXoTr054bllL95ZK3XmjbXa2tr3TS1tZN2P4u4Z8JuNuE/pBVM8yrK3T4Pq5lnGYPM/bUFgVlGb4XFTnl/s1VWI+sYXFYmOFoYd0pT9rh6OJd8LF1z+qevPP7RCgAoAKACgAoAKACgAoAKACgAoA/h7/bOH/DYP/BejQfhgv8AxNPDGi/Gz4L/AAmntv8AX+V4V+HNroOr/E+32/c/cX8Pj6fy8BFzibkSM3q0v3WE5tnyyl/2878vX/D1XyP86uP/APjPPpL4XJ1++weG4h4fySUPi5cFlMMNiM5jbVe7VjmcrWsut7M/uEryj/RUKACgAoAKACgAoAKACgAoAKACgCvd2ltf2l1Y3sEdzZ3tvPaXdtMu+K4trmNoZ4JVPDRyxO8bqeqsR3qoTlTnGpCTjOEozhJaOMou8ZJ9Gmk0TKMZxlCaUozi4yi9VKMlZprqmnZn8Gv/AAb/AF3c/s9/8Fdvit8A9RnkSXVfBf7QHwSmtZ22tNrXw08Y6X4oErRnbm8t7T4baygO3ckVxdjADNX92ePsI8QeEmVZ9TimqWNyDOlKOyoZlg6uFsnr7kp5lRe9m4w1dlzfx/4MylkviVmGTVG+aphc5ylxfWtgMTTxF7ae8o4CqttFKW2p/elX8In9hBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBn6vqunaDpWp65q93DYaTo2n3uq6pfXDbILLTtOtpbu9u5252w21tDLNI2OEQnnFaUaVSvVpUKMXOrWqQpUoR1lOpUkoQilpdylJJa7voRVqQo06larJQp0oTqVJy+GEIRcpyflGKbfkfwaf8ABEfSdR/bN/4LM/ET9qLxFaTT2/hqb48/tJ3q3i+Zb22tfELWrrwj4X0lv9ZGk+lt8SXv9It0YJbr4YD2+1LJVX+7PGurT4N8G8u4Yw8lGWJWRcNw5NJSo5fRhi8VV7uNX+zVCtLVyeJs/jbj/H3hRTqcU+KON4grRbjQecZ7NT1UauNqyw2Hp9UpU3juenFaL6veNlBI/vbr+Dz+xAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDnvF2hR+KPCfifwzMFMPiLw9rWhSh/umPV9NudPcN/s7bg59qadmn2af3HLjsMsZgsZg5fDisLiMNK+1q9KdJ3+Uz+M7/g2n12TTf2vfjt4PnLQvq37POoas8DnaTdeFviX4BsPLKnrLGniW5O3O4Ksp5AavTxy/dxfaa/GMvu27fcfwH9EXEypcdcS4CV4uvwtVruD09/BZvllK1v5orGS0u3a9r2k4/2pV5Z/oMFABQAUAFABQAUAFABQAUAFABQAUAeV/HH4weEP2f/AIP/ABI+NXj26+yeEfhn4R1nxdrJV0S4u49KtHlttJsBIQsuq63ffZdH0i2+9d6pfWlsgLzKGqEXOUYreTsv89ntvt9x4vEee4DhjIs24hzOfs8Dk+BxGOxFmlOcaEHKFCleylXxFTkoUIfbrVacFdysfxr/APBJH4PeL/8Agol/wUg8eftffGW0/tbw98M/Fc3xv8V+cjz6TP8AEjXNSuj8JfBdkZlYrpvhiXT5db0u2O6K20nwDYaXOghvI1f0sRJUaCpx0clyLvb7T2Xz85bPc/gXwOyHH+KvizmfHefw9vhcnxsuIsbzJyoSzbE1p/2Hl9Pm2o4N0niaMLOMKGWUqMoqNSMZf2+V5Z/ooFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfz2fsl/8ABIr4yfBv/gp78Uv20Pij468B+J/AcnjH4zePfh0dKutYuPGWteIPjDceIbZH8RaPd6NaaZobaBoPivXItRlttY1JZdVFgNKjmtJJrqw7KmJjKgqcYtO0VLslG23vO92uy036I/lzgfwMz7IPGLOvEHOcyyzGZbLH8QZnlPsJ4ieYYjFZ9PFRTxdCph6VHDvC4XG4mNWUK9VSr+y9jF03KcP6E64z+owoAKACgAoAKACgAoAKACgAoAKACgD+CXWh/wAMuf8ABzRFKP8AiXQeJf2wdImMv+riaD9rPwtZi8lL/KnlXDfGK5W4cnYjNMJGBSQ1/eFH/jKPo0tfxJYbhCqrbtS4UxU+RW/misnjyrrpbc/jur/xj/j0n8Cr8T03fZW4kw8eZ9NH/akuZ3t8V7e8f3tV/B5/YgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfmd/wWJ+N/wDwoL/gm1+1b4xt7v7JrPiH4c3Hwq8PGOTy7t9W+L9/ZfDczWDZVheaVpfiTUtdSRGWSCLSpriPLwqtfpXhBkn9v+I/CuDlDno4fMY5riLq8FSyiE8xtU6clWrhqVB30k6qi9z4PxOzb+xuBeIsVGXLVr4GWXUbO0nUzOcMDeD/AJ6dOvUrJqzSpOS1ilL8dv8Ag1a+CJ0T4I/tM/tDX1ptuPiF8R/DHwr0C4mj2yrpPw00CXxJrU1kxAJs9T1T4jWNrcSKWSS78OCIYe1kFfsH0pc79vnfDXD8J+7l+XYnNK8YvR1cyxCw9FT6c9Oll05RVrxhiL6qaPzH6POVeyynP86nHXG47D5dRbWqp4Ci69Vw7xqVMdCMns5ULbxZ/V1X8qn9FBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iM/wCCMn/Ft/8AgsP8TvAXNv59t+0r8PfI+7n/AIRzxMdZ8gr/ANM/+EP37eceVnsCvqYn3sNGX+CX3q3n37/N297/ADv8AP8AhI8ec4yz4eaHF2Vcu3+6Yz6xy212+oXtfTl66n9udeWf6IBQAUAFABQAUAFABQAUAFABQAUAFAH8sn/ByH+102j+Fvhr+xh4R1PbfeMHtPix8XI7WX518NaTfXFp8PPDN2Iy6PHq/iOz1PxTe2kyx3FtJ4X8L3ibrfUAW78FT1lVfT3Y+rXvP7nZerVno4/xj9LPjp4fBZR4f4Gtapj3DO88UJarB0KkqeVYOoldNV8XTrY2pTlacHgsHUScKyZ+tn/BJb9kNf2Ov2Mfh34P1vTBYfE74gxL8VfiwZYfLvrbxX4ssrOSy8NXW5fMjfwZ4ag0Xwzc2wke2GsWGsX9tt/tGXdz4ip7Wq2n7sfdj2suvXd3fpa9rJH7j4IcC/6heH+VYDEUfZZxmkf7azzmilVhjsdTpunhJ6Jp5fhI4fBzhdwVelXqwt7aZ+l9YH66FABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/Bl/wcQ6fefAn/gqr8Ivjto8DrPrHw0+CnxYguYfkabxL8NfHXiLw+YFc7c3Nvp/gnw5JuzhY7q2G4YIr+7fo91IZ74WZvkVaScaOZZ1lTi/s4bMsDh8Rfr7sqmNxC0W8ZaPTm/j7xshLKPETLc3pJ3q4DKsyUlpevgcXXocqf80YYSg/JTjq9VH+8DTdQs9X06w1XTp0utP1OytdQsbmM5juLO9gjubaeM90mglSRT/dYetfwrUpzpVKlKpFxqUpypzi94zhJxlF76qSaev3n9fwnGpCFSDUoVIxnCS2lGaUoteTTTRdqCgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+T/wD4OpPjqNF+DX7NP7OGn3mLvx94/wDEfxa8SW0Mm2WPRvh1og8M+Hob1QQWstX1bx5qt1bRkMj3nhcytte2i3f1Z9FrI/bZzxJxHUh7mAwGHynDSktHWzGt9ZxDg9ffpUsBSjJ6NQxVrtTaP5z+kNm/ssryHIoS97GYyvmVeKeqpYGl9XoKa3catTGVJRWzlh7vWKP2R/4I8/As/s9/8E3v2V/BV3ZfYtd8QfDyD4qeJlkj8u8OtfFy+vPiKbfUVwCt7o+meItM8PyI6q8MejxW7gvExr8d8X88/wBYPEbinGxnz0MPmMsrw1neHscphDLuanuuStVw9TEJptN1nJWvaP6h4ZZR/YvA3D2FlHlq1sFHMa91aXtcynLHWnt79KnXhRa6Kkk72ufpfX5qfeBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/9H+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4jP2YP+La/wDBxV4msW/cWup/tR/tUWfk/cQ2vj7wx8WbvSoQP+eaT65prwj+LyovWvUqe9g1/wBe6b+7lv8Ak/yP87+Dv+Ej6VeMp/DCtxlxpDl6cmZ4LO6lGPTRSxFFxX91J3+1/bnXln+iAUAFABQAUAFABQAUAFABQAUAFAGD4p8TaF4K8MeI/GXijUrfRvDPhLQdX8TeItXu22WmlaFoOn3Gq6vqV0wBK29jp9rcXUzAHEcTHBximk20krttJLu3sun5/cc2MxmGy/B4rH4ytDD4PA4avjMVXqaQoYbDUpVq9ab6Qp0oSnLyiz+Hn9irwtrv/BV//grl4g+Ofj7TLm6+HHh7xfd/HHxRpmoqJ7XTfAngW8sNI+D/AMOrrcWs7nz7i28G6JqtiGA1XRtP8U3yxvtuAvqVX9Xw6gn71uVer1k/s/3n01t6H+dPh7g8T42+OeK4kzOjOeU4XHT4jxlGqueFHLctqUqGQ5VPVU580oZfh69O6VehSxtRRlaZ/dJXlH+j4UAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/HV/wddfDzn9jP4sW0HUfGL4ea1c7fQ+A/EnhmDePXPi2Tax7ZTHz1/YH0Vcw/5LLKpP8A6E+YUY/+F2GxL3/7BFt6vZH8x/SKwWvC2Yxj/wBDTBVZen1Ovh4/jiXv6X1P6Uf+CevxD/4Wt+wr+yF4+kn+03uv/s6/CQ6xPu3b/EOmeC9H0bxJzkk7de07UU+Y7htw+GzX83+IOX/2VxzxdgEuWFDiLNvYrth6uMq1sN0X/LipTe3pc/deCsb/AGjwhw1jHLmlWyTLfayve9enhaVKvr5VoVF3763PsSvjz6cKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/gX/4Ky397+39/wXA8Ifs0aFdT3vh7w14s+Df7L9vcWUjFNPsf7Si8T/FbV/Lj/wBVP4Z1bxj4zh1KcBrg2/hhAd6wQRJ/efhRThwF4JYziWvGMMRicJnPE0ozSvUn7N4XKqN3usTSweDdNO0ebE9OaU5fxz4jzlxl4s4bIaMnOjQxOV8PxcHpCHtFXzGrbSzw9XE4pVJL3uXD9eWCP73bCwstLsbLTNOtYLLT9OtLawsLK2jWG2tLKzhS3tbW3iXCxQW8EccUUajakaKowAK/g+pUnVnOrUlKdSpOVSpOTvKc5tylKTd25Sk2229Xrqf2JCEacIU4RUIQjGEIRVoxjFJRjFKySikkklouxbqCgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iM+M+fht/wcaaMR+4GpftV/AfBHyhx8VfCHw7VsHofPbxeynH3mdlPJNerDXBvr+7qf+S835W/U/zvz/8A4SfpX4f7PtuNOGvK/wDbWAypfPmeOd+7bTP7c68o/wBEAoAKACgAoAKACgAoAKACgAoAKAPwe/4OB/2pW+CP7HEPwa8P6l9k8bftM67J4QZIZfLu7b4aeGfsWs/EK8jKtnytSln8NeDruGRNl1pnirUwrq8GG68HT5qvM9qav/287qP3ayW2sde0v5r+lBxn/q7wFHIMLW5Mx4vxLwFoytUhlGE9niM1qLd2quWEwE4tWnRxtZJpxLf/AAQA/ZXX4GfsaJ8YNe077L47/aa1iLxvLJNF5d3a/DfQftukfDjT3JB3QX8c+v8AjW0mjfbPY+MLFXVXtyFMZU5qnIn7sNPLmesnu/JbLb0L+jDwX/q3wAs9xNLkzLjCusxk5RtUhlOG9pQymk97xqxlicwpyWkqWPp3s42P3WrkP6RCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+Jv27P27vhN+wD8KtE+KXxV0fxf4mh8UeLrXwX4a8M+CbPTbnWdT1afTtQ1e5nlm1nU9I02x03T9N0u5murqa8aZp3s7a3tZ3uGaLWlSlWk4xaVldt9vkpdfL7/s/nniT4k5H4YZLh85zqhjsZHGY6nl+EweXU6M8RWrypVa85OWIq0aNOjSo0ZynOVTmcnThCEnK8fcPgv8ffhz8dPgZ4G/aG8JalNpfw48eeEbfxlZXvixbXQrnRdOdZVv7fxF5t3Lp+n3ei3dvd2OqSRajdaalxaTSWmoXdkYbqeZQlGbg17ydtNb+mzd1qtE/KN7H0fD/E2VcScOZbxTga0qOU5lgYY+nUxvJhp4ek0/awxV5ypUp4ecZ0qzVWdJThJwqzg4zl8GfGv/gtZ/wTv+CPiC38L33xrX4j6wb+Oy1MfB3RLz4haPocTSeXLqF/4p01oPCl7bWrBzc2uga3rOsJ5bBdLdyiy6xwtaSvy8q/vNJvyty3Xz5fx93804h+kJ4V8O4qODq8QrNsR7VU6yyHD1M1oYZXSdWrjKXLgpwhrzwwuJxGIXK17GUnHm/UPw74h0Xxb4f0LxV4b1GDV/DvibRtM8Q6Dq1qXNrqmi61ZQalpeo2xdUcwXtjcwXMJdEfy5V3KpJFYNNNp6NOzXZr7/z+8/ZMLisPjsLhsbhKsa+FxlCjisNXhfkrYfEU41aNWF7PlqU5xnG6vaWtjZpG4UAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH86n/AAc4fD3/AISv/gnr4Z8YwQbrn4XftDeAdfuLkLlotG8ReHfG3gm7gY/wRXGseIfD0jHgmW1gXoxDf0P9GfMPqniDicHKXu5pw/j8PGPeth8RgsbCS7uNHD4hek5Poj8R8fMF9Y4Kw+KS97L87wdZyttSr0MXhZLyUqtai3vrGK84++/8G9/xC/4Tv/glr8D9Oln+0X3w38SfFb4e30hbc6/ZPiJr/inSoHH8H2Xw94r0a2jXj9xFE38WW8H6QGX/AFHxQzyoo8sMxw+VZhBdPfy7D4arJf4sRha0nv70n6R9nwWxv1zw+ymDd54GvmOCm+vu46tiKa/7doYilFeSXc/a6vxY/VQoAKACgAoAKACgAoAKACgAoAKACgAoAKAOG+J/xB8P/CX4a/EH4qeLZ/svhb4a+CPFXj7xJcblQw6F4P0K+8QatIGfChksdPnKbuN2BznFd2WZfiM2zLL8rwkebFZljcJgMNHfmr4yvDD0Vp3qVInJmGNoZbgMbmOJly4fAYTEYyvLRWo4WjOtVeumkIM/h7/4N6fh/wCIP2p/+Cm3xj/a78ewf2hd/DvRPiN8WNX1NlaeEfFr4865qmiWMbGXIH2nQ9a+Jl/ayOxljm0uFo0LL5kH9t/SCx+H4W8M8n4RwEvZwzCvl2VUaV0pf2TkNClXm1a1+WvQy2nJLRqq7p3sfyZ4K4KvxDx7mfEuMXPLBUsdmVWpa6/tLOK1SlBO/wDNSq4+cW22nTVr7x/u9r+Fj+vgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//9P+/igClqGo6fpNpLf6pe2un2UABmu72eK2t49zBV3yzMiAszBUUkl3YKoLFRQAafqOn6taRX+l3trqFlOCYbuyniubeTaxVtksLOhKspV1BBR1KsAwYUAXaACgAoAKACgAoAQkKCzEKqglmJwABySScAADkknj2oAyNK8Q6DrpuV0XWdM1ZrRwl0un31tdm3ZtwXzRBI5QOVYIxG19rbGba20HZre/3W/r+u5sUCCgAoAKACgAoAKAMb/hI9A/tb+wf7a0v+2sbv7K+3239ofc83H2TzfP3+V+92bd/lfvNnl/NQOz31t6fqbNAgoA+OvGn7A37KPxB/aY8J/td+LPhXZap8ePBraLcaR4rOsa9b2UuqeGYkh8K69q3hu21KLw9q+v+GIYoI9D1a/06e7sxZ6WxeWTRtGfT9VWqKDpqXuO+lls90nvZ9ve3fw3bl8FmHhlwTmnF+B46x2S063EuXvDyoY118TGm62DSjgsTXwkK0cLXxWDjGKw1erRlOnyUW3J0MP7D7FrI+9CgAoAKAMfVfEOg6EbZda1nTNJa7cparqF9bWhuGXaG8oTyIXCFlDsBtTcu9l3LuB2b2v91/6/rsa4IYBlIZWAKsDkEHkEEZBBHIIPPvQIWgAoAKACgAoAKAP4Yv8AgpX4xv8A/gof/wAFctE/Z68O64tv4H8D+MPD/wCzrpmqrcRLZaLY+HdSuNU+NfjGRZGNqZ9D1WTxiZp18xr7SfCWkoS5SKFPVoJUMO5yWrTm76Xv8Mdrq6sutm9HreP+c3ixisT4teO2E4Ry+rKWCwGPwvCeHnT95UYYSrOvxFjuRXi5YWs8wcpLmc8PgKN3oox/t08D6Z4U0Lwf4Y8PeBY9Ng8HeG9C0rw34ZtNIljm02w0PQLGDSdL060eJ5EEOn2VpDaJHu3RrCEbDKwry222292236vVn+iODweHy/CYXAYSlGhhMFhqGEwtCCtCjhsNSjRoUoLW0adKEIRV9orc6mkdAUAFABQAUAFACEhQWYhVUEsxOAAOSSTgAAckk8e1AGRpXiHQddNyui6zpmrNaOEul0++trs27NuC+aIJHKByrBGI2vtbYzbW2g7Nb3+639f13NigQUAFABQAUAFABQBjf8JHoH9rf2D/AG1pf9tY3f2V9vtv7Q+55uPsnm+fv8r97s27/K/ebPL+agdnvrb0/U2aBBQAUAFABQB/KL/wczfGzwhJpn7O37OVu17N48tL/UvjXqqLBt07TvCV9ba54G0AyXLMPOvtY1iw8R+Vbwo/2W30SWW6aL7bZCX0MDB+/U0tpBd77v5LT7/I/ij6X3EOBdHhThSLqSzOFWtxDXSj+6pYGpDE5bhrzbXNUxFeli+WEVLkjhpOo489NT/LL9m/9h3/AIKd/wDBQX4ZfDnwnpGo+LdF/Ze8J6fFpXgTVfip4q1Hwb8GNO021vrl3vfCvhCxguL7xjc/bTfLN4k0LwjrZmv4JbTU9fgliUJ0Tq0KMm3bner5VeXzd1bTo5R8k7tn4xwn4c+MXijk+U4GhVx2H4NwVJUctrZ1jauX8P0qUKsm6mCwFOMqmPn7T2ieMw2BxLdSLhWxUWoqP7gfs/8A/BvT+yN8Hm0XW/2pfitrXxo8RySRSr4Yivo/hZ8N5pkaOSW1ks7HUbnxrrkVtJsiN6vizRLS6iY/bNGh89I4uSeNqPSEVBd370vxlyr0s/V2sf0nwh9E/g/KvY4nirMsfxRioOM54ShzZTlF93CdOhOpmGIUXZKf1/DwqRvz4aPMox/o40nTdM0XS9N0fRbKz03RtJsLPTdJ07ToIrXT9P0yxt47WwsrG2gVYLeztbWKKC2ghVYooY4441CKAvEf1PRo0sPRpYehThRoUKdOjRo0oqFOlSpRUKdOnCNowhCEVGEYq0YpJWSL9BoFABQAUAFABQBS1DUdP0m0lv8AVL210+ygAM13ezxW1vHuYKu+WZkQFmYKikku7BVBYqKADT9R0/VrSK/0u9tdQspwTDd2U8VzbybWKtslhZ0JVlKuoIKOpVgGDCgC7QAUAFABQAUAFACEhQWYhVUEsxOAAOSSTgAAckk8e1AGRpXiHQddNyui6zpmrNaOEul0++trs27NuC+aIJHKByrBGI2vtbYzbW2g7Nb3+639f13NigQUAFABQAUAflz/AMFp/h9/wsr/AIJe/tf6GsHnTaN8O9P+IMJC5kg/4Vh4y8M/ES5njOCU22Phi6WZlxm2eZGIR3Dfp/gxmH9m+J3CFdy5VWzGpl71spf2ng8Vl0YvveeJjZa+9y2s0mfn3ipgvr3h/wATUbXdLBQxq7r+z8Vh8bJrR7Qw8r7e7dN2bPyy/wCDVv4g/wBq/stftJ/C95/Mk8EfHjS/GqRM257e0+I/gHRtHiVQSSkEl18Nb6VEACec1y4y7vX6l9KXL/ZcUcN5mo2WNyKrg27WUp5dj61V3fWSjmUE+vLyrZI/Pfo8432nD+e5fe7wmcU8XbrGOOwdKkvROWAm0tr8z3bP6ev+Ej0D+1v7B/trS/7axu/sr7fbf2h9zzcfZPN8/f5X73Zt3+V+82eX81fy8f0JZ7629P1NmgQUAFABQAUAFABQBj6r4h0HQjbLrWs6ZpLXblLVdQvra0Nwy7Q3lCeRC4QsodgNqbl3su5dwOze1/uv/X9djXBDAMpDKwBVgcgg8ggjIII5BB596BC0AFABQAUAFAH4W/8ABxB+0P8A8KQ/4Jx+NfB+m332TxR+0R4u8MfBzSxFLtu00Geabxj45uRF1ewufC/hW88MX8hBSP8A4Si1jOJJ4TX7j9Hvh7+2/EXBYupDmwvD2ExOc1br3HXilg8DFuztUjisVDFU0mm/qsnqoyPyPxszv+yeB8Xhac+XEZ3iaGWU7P3lRbeJxkrdYSw+Hlh5t7fWIrdo8d/4NsfgVYfBX9gTXfjp4nFro+p/tGfEvWvEkep6g8dj/wAUD8PpZfAHhS1uGuCh2/8ACTWfj3VLGR223Nrr1tJbRFJEluPV+knxD/avHdHJ6U+bD8N5bQw04p3isfmCWPxUl0T+r1MBRmldqdCSbTTjHzvAfJHl/CFXNJwtXz3H1a8Xa0ng8DzYPDxa3/jxxlWL2cKqa0alL+ifT9R0/VrSK/0u9tdQspwTDd2U8VzbybWKtslhZ0JVlKuoIKOpVgGDCv55P20u0AFABQAUAFABQAhIUFmIVVBLMTgADkkk4AAHJJPHtQBkaV4h0HXTcrous6ZqzWjhLpdPvra7NuzbgvmiCRygcqwRiNr7W2M21toOzW9/ut/X9dzYoEFABQAUAFABQAUAY3/CR6B/a39g/wBtaX/bWN39lfb7b+0Puebj7J5vn7/K/e7Nu/yv3mzy/moHZ7629P1NmgQUAFABQAUAFABQBj6r4h0HQjbLrWs6ZpLXblLVdQvra0Nwy7Q3lCeRC4QsodgNqbl3su5dwOze1/uv/X9djXBDAMpDKwBVgcgg8ggjIII5BB596BC0AFABQAUAFABQBS1DUdP0m0lv9UvbXT7KAAzXd7PFbW8e5gq75ZmRAWZgqKSS7sFUFiooANP1HT9WtIr/AEu9tdQspwTDd2U8VzbybWKtslhZ0JVlKuoIKOpVgGDCgC7QAUAFABQAUAFACEhQWYhVUEsxOAAOSSTgAAckk8e1AGRpXiHQddNyui6zpmrNaOEul0++trs27NuC+aIJHKByrBGI2vtbYzbW2g7Nb3+639f13NigQUAFABQAUAFABQBjf8JHoH9rf2D/AG1pf9tY3f2V9vtv7Q+55uPsnm+fv8r97s27/K/ebPL+agdnvrb0/U2aBBQAUAFABQAUAFAGPqviHQdCNsutazpmktduUtV1C+trQ3DLtDeUJ5ELhCyh2A2puXey7l3A7N7X+6/9f12NcEMAykMrAFWByCDyCCMggjkEHn3oELQAUAFABQAUAFAFLUNR0/SbSW/1S9tdPsoADNd3s8Vtbx7mCrvlmZEBZmCopJLuwVQWKigA0/UdP1a0iv8AS7211CynBMN3ZTxXNvJtYq2yWFnQlWUq6ggo6lWAYMKALtABQAUAFAH/1P7+KAPLfi34E1Dx/wCGYdL0u9htL2z1GHUYUu2kS0uvLgubdoJniSV42C3Bkhk8qRQ6bGVVkMiBUXZ3/wCB+kvy++/unwk8Cah4A8MzaXql7Dd3t5qM2ozJaNI9pa+ZBbW6wQvKkTyMVtxJNJ5Ual32KrLGJHAk7u//AAf0j+X3W971KgkKACgAoAKACgDG8RaSdd0HWdFW5ezbVdMvdPW6QbmgN3byQCXaCpdUL5dAy703JuXO6ga0afZ/13/L7zw74QfCDXvAevajrWtajYSLJYS6ba2umy3Ey3CzXFtO1zctPb24RUFsohhCu5eQu7R+WqyhUpJqyT373/8AbY/n91ve+iqCAoAKACgAoAKACgD5c/4UV4g/4WX/AMJR/bVl/Yn/AAkf/CR+d5lz/a+ft/8AaH2HyfJ8nzPN/wBH+0/adnk/v/K8z/R6DTnXLazva2//ANp+vz6n1HQZhQAUAFABQAUAFAHzr8X/AIQa94817Tta0XUbCNY7CLTbq11KW4hW3WG4uZ1ubZoLe4Dq4uWE0JVHDxh0aTzGWILjJJWae/e3/tsvz++/u+4+HdJOhaDo2itcveNpWmWWntdONrTm0t44DLtJYorlMohZtibU3NjdQS9W33f9dvy+42aBBQAUAFABQB86ftc/Hew/Zk/Zl+N3x4vjAX+Gvw917XNGgusfZ9Q8Vywf2X4L0iXcQNmteLr/AETSSecfbchWICtdOHtKkIfzSSfp1fySufKcc8S0uD+EOIuJarjfKMrxOJw8Z/DVxso+xy+g79MRjquHodf4mz2P5Kv+CDH7K3iT49/E348/tN6zd/aL7wFaW3hjw/q2umaVNd8ffEW4u9X8Xah9vSOWZdU0zw7ZeVezOj+YvjWMPG3nNLb9+NnaEKa05ndpfyx2Xzb0sl8O/SX8b/RN4aqZpxPxJx1mCnXeWYd5fhK9V3lVzXOZSr47ExnyybrUcHSlSqt7wzO9m3eP9h3wk8Cah4A8MzaXql7Dd3t5qM2ozJaNI9pa+ZBbW6wQvKkTyMVtxJNJ5Ual32KrLGJH80/vWTu7/wDB/SP5fdb3vUqCQoAKACgAoAKAMbxFpJ13QdZ0Vbl7NtV0y909bpBuaA3dvJAJdoKl1Qvl0DLvTcm5c7qBrRp9n/Xf8vvPDvhB8INe8B69qOta1qNhIslhLptra6bLcTLcLNcW07XNy09vbhFQWyiGEK7l5C7tH5arKFSkmrJPfvf/ANtj+f3W976KoICgAoAKACgAoAKAPlz/AIUV4g/4WX/wlH9tWX9if8JH/wAJH53mXP8Aa+ft/wDaH2HyfJ8nzPN/0f7T9p2eT+/8rzP9HoNOdctrO9rb/wD2n6/PqfUdBmFABQAUAFAH8r//AAc4eEvCq+Cv2WvHY0LT18cTeKPHfhJ/EyQ+Xq0/hW20nTNYi0K5uEKm60+11e6l1CxhuFl+wXN5qD2Rt/7Svxdd+BbvUV9LJ289db+nlr52P4v+mDgcEsv4MzL6tSWYyxmZYF4xRtXlgo0KNdYaclbnpQrzdWnGal7KdSq6fJ7arz/tR/wS2g+z/wDBPH9kGPGN3wT8KT/+BUU1znt187P49+tc2I/jVP8AEz+hPBqPL4WcCLvw7gZf+Bxc/L+b/h9z2v4x/CPW/G2t2Ov6Vqmm28NvpqWF9Dq089vFaRW89zcm8hliguFMRS4c3EbiMoYhIryB3WDE/TlOMIty0Su227JJLVu6skkr3cl8tz3Dwxp8ek+HNB0yK9GpRWGkafaR6grB0vEgtYo0uY2VnUxTKoeHa7gRFQHcDdQQpKaU4tSjJc0ZRaaalqmmtGmtU1o1qtzdoGFABQAUAFABQB5b8W/AmoeP/DMOl6Xew2l7Z6jDqMKXbSJaXXlwXNu0EzxJK8bBbgyQyeVIodNjKqyGRAqLs7/8D9Jfl99/dPhJ4E1DwB4Zm0vVL2G7vbzUZtRmS0aR7S18yC2t1gheVInkYrbiSaTyo1LvsVWWMSOBJ3d/+D+kfy+63vepUEhQAUAFABQAUAY3iLSTrug6zoq3L2barpl7p63SDc0Bu7eSAS7QVLqhfLoGXem5Ny53UDWjT7P+u/5feeHfCD4Qa94D17Uda1rUbCRZLCXTbW102W4mW4Wa4tp2ublp7e3CKgtlEMIV3LyF3aPy1WUKlJNWSe/e/wD7bH8/ut730VQQFABQAUAFAHjX7RngD/ha/wCz38dvhb5P2n/hZPwb+J/gH7Pt3+efGHgnW/Dwh2/xGQ6jsA75wK9nh3H/ANlcQZFml+X+zc4yzH817cv1PG0MRe+lrezvv91jy88wX9o5Lm+X25vr+V4/B8u9/rWErUbfPnsfx4/8GqHj/wDs74+/tX/C0zbf+Ew+EHgnx8LfdjzP+FbeNLnw6Zgvfyf+FqhCccefg4yK/r76U+A9pkPCmaW/3TN8bgObt/aWDjiLX8/7Kuv8J/Mn0d8ZyZzxHl9/96yzCYzl7/UMVKhf5f2jb/t7zP60P+FFeIP+Fl/8JR/bVl/Yn/CR/wDCR+d5lz/a+ft/9ofYfJ8nyfM83/R/tP2nZ5P7/wArzP8AR6/ig/rPnXLazva2/wD9p+vz6n1HQZhQAUAFABQAUAFAHzr8X/hBr3jzXtO1rRdRsI1jsItNurXUpbiFbdYbi5nW5tmgt7gOri5YTQlUcPGHRpPMZYguMklZp797f+2y/P77+77j4d0k6FoOjaK1y942laZZae1042tObS3jgMu0liiuUyiFm2JtTc2N1BL1bfd/12/L7jZoEFABQAUAFAH8NP8AwctfGTW/jj+2v8BP2QfAnm61d/C/wppUJ0K0kxLdfFv496tpTWWjyQA7Zbj/AIRPTPh9Np0kx3xf8JHeJEsaTSPP/b/0bMnoZJwXn3F+OtRhmeKqv281pDKcho1eesnuo/W6uYRqJb/V6bbk4pQ/knx3zSrm3FeT8M4O9WWX4amvYxessyzipTcaTWzf1angXTb1Xt5pWu3L+t/wh+zBafDf9l/4Lfs7+Cb20t7X4MeB/BHhKxmlEsFnrkvhbw3FomoajdmON5UvNZvTd61PcNDI0l/dTtMoM7yp/HPEWcV+Ic+zjPMRdVs2zLGY+UW7+zWJrzqQordctGnKNKCTsoQilex/UmQ5ZRyPKMsymjZ0stwGGwSlHTndCjCE6r91+9VmpVJtq7lNtttvm9l+EngTUPAHhmbS9UvYbu9vNRm1GZLRpHtLXzILa3WCF5UieRituJJpPKjUu+xVZYxI/jHqSd3f/g/pH8vut73qVBIUAFABQAUAFAGN4i0k67oOs6Kty9m2q6Ze6et0g3NAbu3kgEu0FS6oXy6Bl3puTcud1A1o0+z/AK7/AJfeeHfCD4Qa94D17Uda1rUbCRZLCXTbW102W4mW4Wa4tp2ublp7e3CKgtlEMIV3LyF3aPy1WUKlJNWSe/e//tsfz+63vfRVBAUAFABQAUAFABQB8uf8KK8Qf8LL/wCEo/tqy/sT/hI/+Ej87zLn+18/b/7Q+w+T5Pk+Z5v+j/aftOzyf3/leZ/o9BpzrltZ3tbf/wC0/X59T6joMwoAKACgAoAKACgD51+L/wAINe8ea9p2taLqNhGsdhFpt1a6lLcQrbrDcXM63Ns0FvcB1cXLCaEqjh4w6NJ5jLEFxkkrNPfvb/22X5/ff3fcfDuknQtB0bRWuXvG0rTLLT2unG1pzaW8cBl2ksUVymUQs2xNqbmxuoJerb7v+u35fcbNAgoAKACgAoAKAPLfi34E1Dx/4Zh0vS72G0vbPUYdRhS7aRLS68uC5t2gmeJJXjYLcGSGTypFDpsZVWQyIFRdnf8A4H6S/L77+6fCTwJqHgDwzNpeqXsN3e3mozajMlo0j2lr5kFtbrBC8qRPIxW3Ek0nlRqXfYqssYkcCTu7/wDB/SP5fdb3vUqCQoAKACgAoAKAMbxFpJ13QdZ0Vbl7NtV0y909bpBuaA3dvJAJdoKl1Qvl0DLvTcm5c7qBrRp9n/Xf8vvPDvhB8INe8B69qOta1qNhIslhLptra6bLcTLcLNcW07XNy09vbhFQWyiGEK7l5C7tH5arKFSkmrJPfvf/ANtj+f3W976KoICgAoAKACgAoAKAPlz/AIUV4g/4WX/wlH9tWX9if8JH/wAJH53mXP8Aa+ft/wDaH2HyfJ8nzPN/0f7T9p2eT+/8rzP9HoNOdctrO9rb/wD2n6/PqfUdBmFABQAUAFABQAUAfOvxf+EGvePNe07WtF1GwjWOwi026tdSluIVt1huLmdbm2aC3uA6uLlhNCVRw8YdGk8xliC4ySVmnv3t/wC2y/P77+77j4d0k6FoOjaK1y942laZZae1042tObS3jgMu0liiuUyiFm2JtTc2N1BL1bfd/wBdvy+42aBBQAUAFABQAUAeW/FvwJqHj/wzDpel3sNpe2eow6jCl20iWl15cFzbtBM8SSvGwW4MkMnlSKHTYyqshkQKi7O//A/SX5fff3T4SeBNQ8AeGZtL1S9hu7281GbUZktGke0tfMgtrdYIXlSJ5GK24kmk8qNS77FVljEjgSd3f/g/pH8vut73qVBIUAFABQB//9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5uf8Ag5M+PTeDv2bvhH+z9pd6YdS+NHxBufFPiGCKTJm8FfC21tbn7FeRKfkhvvGPiTwtqNm8nEs3hu5EQYwylO3BQvOU/wCVWXrLqvRJrXvs94/yZ9Lbib6hwlkfDFGpy1uIM0njMVFP4svyWEJ+zmlsqmPxeCq03J+88JNRvyyPvP8A4IvfAJfgD/wT1+CdpeWX2PxL8WLO9+OPikmPypLi5+I32a88LvMh/eJNb/Duz8F2E6SHes9pLlY8+WmWKnz1pdo+4vlv1fW/b0P0v6P/AAwuGPC3h2nOn7PF53TqcR412s5zzbkqYNyT1UoZVTy+lJSu1KnLbY/VOuc/aAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+XL/g51kI+GX7JcXZ/HfxSkP1j8P+EFH6Snv+dd+B3qekf/bj+NvphN/2PwQujzPOX81hcDb82eufDv8A4K4fst/sMf8ABPn9k3wlqmqSfFf44Q/s7/DeW3+DvgS+tHv9LubrwzZ3Vu3xA8SMl1pfgW1lWaGY211DqXimS1ube+sfC1/YzG6il4epVrVH8MOeXvPrq/hVnf8ABd3rY9zKvHLgzw38L+B8DWrPO+Io8K5RKGQ5bUg6tGc8HTnH+1MW1OhlsJKSlyVI1sbKE4VaWCq0nzx/HjxZ+0B/wVQ/4LR+LtT8BfDbRNb0r4OC+W01Xwd4EkvPBHwR8M2cjLJGPid48v50k8Xaitr5V82j65qeq3F5LBLd+E/Bds5+yV0qFDDJOTXN3lZzf+FWVlfTRJLq5WPwbHcT+NH0gsdWyzKcPiKGQKryVsBlrnl3DuEg7NLOMyqtPHVfZ8tR0MTXrynKLqYHLoSfIf1o/wDBOX9lDxd+xZ+yl4F+Avjj4hr8SPEmg3/iDWdQ1Ox/tAeHNEk8RalJqTeFvCK6rs1D/hHNIkkkaCe6ttPkv9QutS1L+y9LW9Wwg86tUVWo5qPKnZebt1dm9X6u213a5/b/AIUcE47w+4Ky3hnMc1WbYvC1cVXq1qftfqmHeLrOs8HgVW5av1Sg23GU4UnUqzq1vY0lU9nH7nrI/RwoAKACgAoAhubm3s7e4vLy4htLS1hlubq6uZUgt7a3gRpZ7i4mlZYoYYY0aSWWRlSNFZ3YKCVCZzjTjKc5RhCEXOc5tRjCMVeUpSdlGMUm227JK7tqfyTftr/8F9vjB4x+JeofA7/gnl4ZintU1ifw1pfxYfwm3j7xz8QNYhlltjN8MPAs9pqWk2+i3MqO+k3Ot6H4i1jXLXyL1NK0As1s/o0sJFR5qz6XceayW3xPli7rZ2dvN2cj+H/EP6Tee4/N6vDnhXg4zgsRLCUc7eBeZ5jmleMpR5smy2dKtQjh5tN0J4nC4yviafLU9hhvhl8C+LP24/8Agsp+xj47+GXxP/aE8a/GHQ4fHU9/rOifD/4zwaU3hnxxo3h+50k+JdIv/AZiiufC0Xlazp9pPLbab4Y13T/t6S6Vc2tzAXg19lhqkXGCjppzQ3Tezv71/ndfmfmOO8RvH3w/zPJ844pzDPsPHMp1MRh8r4gjQ+p5jh8LOh9boVct5VPBR5cRSpylCjg8TS9qpUZQnC5/dJ8NfG+n/E34c+APiRpMMttpXxB8FeFfG+mW87Bp7fT/ABXoVhr1lDMwVQ0sVtfxxyMFUF1JCjIC+VJcrceqbX3Ox/pBlGY0s3yrLM2oRlChmmX4LMaMJO8o0sbhqWJpxk1ZOShVSbS37XO1pHoBQAUAFABQAUAFABQAUAFABQAUAFAH8E//AARu/wCMef8Aguz8SPgl/wAeMV94k/a3+BIt8+VG0PgjUvEfi21twMBWjZvhdbvbjhZGWExbiUFf3f4w/wDGQ+BeW51/EcMNwlnjlu08bSw+EnJ76r+1JKXa7vb7P8eeF/8AwieLuOyn4FOvxJk9tlbCTr4mK9L5dFrv7tj+9iv4QP7DCgAoAKACgAoAKACgAoAKACgAoAKACgCrfX1npllealqN1BZafp9rcX19e3UqQ21pZ2kTz3N1cTOQkUFvBG8s0rkJHGjMxABNVCE6k4U6cZTqVJRhCEU3Kc5vljGKWrlJtJJatuy3JnONOEqk5KEIRlOc5NKMYxV5Sk3olFJtt6JavY/gX/4JtWN5/wAFJP8Agulr/wC0brVrPqPg/wAMfET4h/tPTR3kTl9M8MeB7630H4G6W7y/Klz4f1vUPhhAkcg82W10O68uKMxs8H96eI84eHHgbh+HaMo08Zicuy7hlODSVXFY6nKvnlVJPWOIo08zk2rpSrxu1f3v454EhLjrxcrZ5Wi54XD43G8QNTTbp0MJNUsopu60lQrTy9JOz5aMrJ8vu/35V/BJ/ZAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+IT/AILE6rqf7YH/AAVx8B/sz6Bdzy2nhu5+C37Pdg1od9vaav471Sz8UeKtYUHciTaW3jxbHVriRQkKeGNs2YrTfXq4b93h3Nr+abXpsum6j367q/u/52ePNetx345ZZwhhZylTwk+H+FqbhrGFfMq1PGY3EL4kpUf7TVOvNq0Vg/evGm3H+2jRNG0zw7o2keH9Fs4dP0bQtMsNG0nT7ddsFjpmmWsVlYWcC87Yba1gihjXPCIBzivLbbbb1bd2+7/H8/vP9DcPQo4XD0MLh6caWHw1GnQoUo6Rp0aMI06VOK1tGEIqK12XU06RsFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfysf8ABz3rdtF4T/Y78OGKVrzUPEPxq1uOYKwhjttI034a2M0TOU2tLNLrcDoquWVLdzIgDxs3oYFfxX/gX/pX9bfdY/i76YmIhHA8B4Sz9pVxfEOIUvsqFCjlFOSelm5SxMWtdFF3WqZ49/wSj/4Id+BvjZ8OvAX7U37Vesza74J8aWo8RfD/AOCvhq+udOh1jREu5rey1f4jeJrJ4NQjtNT+zvd2nhXwzcWVyLN7G41XxFHJPf8Ah6KsRinCTp01qt5vWz7JN2001aa6W+1HwPBT6OeXcQ5VlnGfGuIlicuzCCxeV8PYSpOlGvh1OUadfNsZTlGqoVuRzhgsJKE/ZulKtioylVwsP63PA/gTwV8M/Cuj+B/h34T8O+B/Bvh61Wy0Pwv4U0ew0HQtKtVyfKstM02C3tIA7s0krJEHmmeSaZnld2rznJyd5Ntvq3dn9x5dluX5PgsPl2VYHC5dgMLBU8Ng8FQpYbDUIL7NOjRUYRu7uTSvKTcnduTl1lI7Twr9pf8AaG+Hv7KfwP8AiB8fPijc3kPg74faTHf3drpkUVxrGtajf31rpGg+HtFtppreGbVtf1u/0/SrH7RcW9nDLdfar+6tLCC5uoLpwlUmoR3ffZLdt6PZeWuytc+b4u4pyrgrhzNOJs5nUjgMroRq1IUYqdfEVatSFDDYXDwcoxlXxOIq0qNPmlGEZT56s4UoznH+Rjxl/wAF0f8AgpX+0n4y1XTP2SvhRB4S0eykaaw8NfDX4Uaj8c/HdvpskjC3l8Tanqmi+IdOubh9pXz9M8GeHrTgxrFI6tK3orC0IK9SV+7lLkj8vdVvvl6o/hrMPpIeLnF2YVqPA+RxwNCm3KlhMoyStxJmUaLk+R4ytWw+JpTm1pzUcBhIdFFv3o/qr/wRj/4Kv/Ef9tPX/HPwD/aJtfD7fF/wd4abxx4Y8YaBpUXh2Pxp4YsdTsNG8R2Gu6DAyaZZeJtB1DV9JuYJdDt7K01TSby736PYTaBcXuqc+Kw8aSU4X5W7OL1s9WrNq9mlbV6ed/d/afADxszbxBxOZcM8VQwv9vZfg3mODx+GoLCLMMHTrUsPi6eJw0bUaeMw1XEUJReGhSp1qE53w9OWGnOr/QPXGf1AFAHmfxp+Glr8Z/g98VPhBfa3qnhuy+KXw68afDy78Q6Iyrq+h23jLw7qPh6bVtN3Mkb3mnx6g11BFK6xTSRCKUiN3qoS5ZRlZPlknZ7OzvZ/16HkcQZRDiDIc6yKpiK2Ep5zlWYZVPFYe3t8PDMMJVwsq9K7SdSkqrnFN8snGzumz8z/APgmR/wSd8Cf8E708e+Mde8Z6V8Xfi14vZNOg8fyeEYvC8Hg3wPYiWRtB8P295rGv3dnLrly39o+KtSXUoEvUs9H00W6waS93qW9fEOtypJxivs3vd933t0Vu++h+Q+D/gllvhWszx+JzCjnueY9qlHNHgVgo4DLqd28NhYVMRi6lOWJn+9xtX2sVUUKFLl5KHPX/ml/4LHftbeDv26P23fCHgT4deMvD9r8H/hT9h+EWh/EbVtQitvB13r2veI43+IHxEbVHcQp4Qs7g6dpsWpRO9tqOk+Ev7dsJp7TVLXd3Yam6NJuSfPL3muui0j67/N7vaP8i+PfHGA8SPETAZZlWYYWGQ5J7PI8PmterGOAnisTi080zV1nyxWBpy9jRjVTcatHA/WKUpQrQP6wP2dP+Chf/BPbxXP4B/Z5+Df7THgHWtd0DQ/DngDwdoOoDXvDM2troWmWehaPpeh6j4p0TQtI17VbqG0ghtNP0a+vbu+mIjs4JnZErz50ayvOVNpNuT1TtfV3tZr1a+6x/bPCnil4W46WWcLZBxflmIxOGw2EyzAYar9ZwcsT9Wo08Nh6OHq43DYejiq9SMIxhSw85zqS0pxbfKfotWB+rBQAUAFABQAUAFABQAUAFABQAUAFAH8E/wAWP+Mc/wDg5l0u8X/QbTxB+118KLxrgfu4WtP2jvCvhKHVrkycL5Pm/EvUkvZCdqtHdCQja+3+78q/4yL6NNWD9+WH4SzWHLu1PhzFYt0o2t8VsspuCs94tXufx5mP/CH4805fBGtxLls+bpy55h8MqsuitfHzU3fpK7Vpcv8AexX8IH9hhQAUAFABQAUAFABQAUAFABQAUAFABQB+WP8AwWj/AGhv+Gb/APgm/wDtH+J7K++xeJ/H3hdPgr4P2SeTcy6x8WJv+EU1SaxlyGivtH8G3firxHbSx/vY30XfFiRUdP1HwZ4f/wBY/EbhzDThz4bAYp51jLq8VRypfWqUais04VsZDC4aSejVezum1L898U86/sPgbPK8Z8mIxmHWVYWztJ1cxf1eo4PpOlhZYivFq7Xsrqzsz8of+DWf9nkeGfgP8f8A9pnVrHZqPxU8faV8MfClxPH+9Xwn8M9OOq61e6fJj/jy1vxR4vbTrsbmMl54KjBVBAGl/VvpRcQfWc9yDhqlO9PK8BVzPFxi/d+t5lU9lRhUX/PyhhcH7SG1oY178z5fzn6PeSewyjOs/qQtPMMZSy/DSktfq2Ah7StOD/krYjFezlrrPCdLI/qsr+WD+iAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAEZlVSzEKqgszMQFVQMkknAAAySScAcnFAH8Pv8AwSxjP7XP/Bafxl8d7xW1TStI8T/tA/tChZR5kMOm6nf6j4W8FoCeUh0S+8f+GG04Z3I2m2aksqOG9Wv+7wqj5Qh8+vbdRfTXXRfZ/wA6vBhPjr6QeYcSzvWoUMZxRxTZ6xjRrVauCy9dLRw1TNMG6Xb2NNe9ZqX9wdeUf6KhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/N7/wcv8AhUX37KXwI8ZraxySeHP2gE8PNdeWrT21t4t+HnjG+lQS4MkVtcXHhG0E4BWOSeK0EmXWGu3Av95Nd4X+6SX/ALcfyb9LvBe04J4azDkTeE4ojheeycoQx2VZhUkk91CcsDT5rWTlGnfVQUv0L/4I2+JofFf/AATS/ZW1CKUSGw8JeJ/DMwDZaKbwl8RfGPhlopBwUITSUdFYcxPG67kdWbHEq1ep6p/fFP8Ar/gH6l4B4yON8IuC6sXf2WBxmDl3jLAZrj8G0+qdqCavb3Wmrppn6b1gfsAUAfLv7Zf7NXwu/a1/Z38e/BP4w63qXhfwTrkOm6zdeLNI1Sw0i/8ACt/4X1K217TteS91aC50gW1lcWQGow6pbyWc+my3cTNbStFeW+lOcqc1OKu1snre+lun9d7WPjePuEcm444VzPh7PsRWweXYmNKvPHUK1KhVwVXB1YYmjilUrwqUOSnOkvaxrQlTnRlUi3BuFSOP+xB+yn8Hf2Ov2fvDHwj+Ceq3Pinws9zf+Krzx1qF7pOp6n461nxBItxceIbvUNCtrXSZ7c2sdnpukR2EP2e10bT7C3Mt1Ok97dFWpKpNymrPay0tbp1e+93vf4bqMcPDrgrIeAuF8HkfD1aeMwTnUxtTMqtShWrZliMU+aeLnVw0KdCUeRQpUFTjyww9KlDmnJTnL+Tv/gkO1rrv/BaPx5rPw92yeBv7a/al1qF7EL9i/wCEFv77X7fw9IvlbYhZNe6l4aEGweXve3CAZSvQxGmFSlvamtektL/gn2/C0v4k8C3DE/SCzOvleuW/WOM8RF07ez/s2pVxMcK/dfKqbqVsJy25o3cLb3P7fq8s/wBFD+Rn/g4q/aI+Nfw0/aK/Zt8JfDf4p+PPAGlaF8M5viTbWng3xRq/huNvF93431nSbbXrsaRdWhv7/T7Pw3bwabJem4Gnxy3y2awjUb/7R6ODhGVOblGLvLlu0npyq67pa9N+vwo/hr6VfFfEOT8VcJYHKM6zPLKGGyiWbwhl+Nr4NPHzzHEUYYmfsJwdWrShhIxoupzqkpVVTUfa1Of+sjwtcX154Y8OXepyi41K60HR7jUJxGkImvp9Pt5buURRqscQknaRxHGqom7aqhQAvnvd+rP7cwc6lTB4WpWfNVnhqE6sklHmqSpRc3yqyV5NuyVlsrWR/Mt/wXr/AGtv2ttG8beD/wBir4G+DvGmk+Cvi94GtNV1vxP4K0LW9W8XfF641XVNZ0rUPhl4ZudHt7iaDSNPt9PtW8VaRpCvr+uJq1vYaj9m8M3T2uv92Ep07OrJq8XbV6Q7Sfn2ba8r2vH+QfpMccccYfMMB4e8OYDMKGXZ7lsK+IxuX4fE18fns61bEUKuT4OWHhOUaFOFKm8bQoXxWJVeFOryYObhivzw/ZT/AODez9rL40waf4m+O2saL+zN4Ou1inTTdctB4w+KV5bPiRSvgrS9RsdM0ESxhopE8T+KNL1uwmZDN4bmCujbVMZThpC9R+WkfvbX4KSflZn5XwV9FrjfiGFLGcSYjD8H4CfLJUcTD6/nNSD1usvo1qVHC3XutYzGUcRSk7ywkrOMeE/4K1/8Evvh5/wTl0P9nvxR8K/iX8QfGNx8QtT8a6b4jufGD6Daz6brfhODwrqWi6l4YHhzStJm0+CddV1L7TDeXWpXNtPaWMltfjfKtPD13W51KKXLa1r6p33u5fmvndcvm+OHg3lXhRhuFsbkmb5pj5ZpWzCji5494aEqOJwMMFWw9bB/VaNGVKMvbVueNSdWcJQpOFXWXN/Zz+xj8TNb+Mv7JH7NXxT8Tzvd+J/HfwP+GfiPxPeSY3X3iW/8JaU/iC/wOi32sC8u0XkqkygkkFm82rFRqTitlOSXpfTv/XbY/v7gDN8Rn/A/COdYyTqYzMuHMnxeMqPepjKuBoPFVPSpX9pNdlI+mKzPrwoAKACgAoAKACgAoAKACgAoAKAP4L/+Dh22n+CP/BV/4R/GiwhdJNR+GPwM+LMdzCCGk1j4f+PfFPh8xq3GbqC08DaO5wfljntjkbvl/u36Pco534U5vktRpqnmeeZU4Se1HMMBha92tbQlPHVltq4z3sj+PfGuLynxFy7NIJ3qZflGZJpaurg8ZiKNr6Xko4Sl10Uo7XR/eTa3Nve21veWsqT2t3BFc208Z3RzW88aywyxt3SSN1dT3Vge9fwpKMoSlCacZQk4yi9HGUXZpro01Zn9gxlGUYyi04ySlFrZxaumvJp3J6kYUAFABQAUAFABQAUAFABQAUAFABQB/G//AMHVP7QZkv8A9mD9lbS775La28RfHzxpp6ybg0t1Jd/D74bTtGrYR4I7b4oK3mqzMl3CY9i72l/sP6LOQWhxPxTVhrKWHyHB1GtlFQzDMo37Scss22cJXb0Uf5g+kPnV58P8PU56RjXznFQvu5OWCwMrdHFRzBarVTVrWP6SP+Ccf7PY/ZZ/Yd/Zn+CE9j/Z+ueFfhfomo+MrUx7Hi+IHjPzvG/j6OTIEj+R4w8Ra1bRPKBJ9nhhUqgQIv8AOHiLxB/rTxvxLncZ+0oYvM69PByvdPAYPlwWAa1aV8Hh6Enytrmk2m73P3TgbJf9XuEshylw9nWw+X0amKj1WNxV8XjU+/Liq9WKbt7sVorWPtiviz6sKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDwn9qTxHrPg/8AZm/aJ8WeHLS+v/EPhj4F/FvxDoNjpkEtzqV5rOjeAfEGo6Xa2FvAGmnvJ763gitoolaR5mRUBYqKumk6kE9E5xTfZNnzfGWLxGA4Q4qx2EhUq4rB8N55isNToxlOrUxGHyzFVaMKUY3lKpKpCMYRiruTSV7o/mM/4NjfhrPP4r/as+MFzp88drpfh74dfDXRdVeBxbXc+valr/ijxNp9rclfLefT4/DnhK4v4FYvEmp6dI6hZoy3djpaU493KTXokl+b6fdY/j36HuUSljeNc+nSkoUcLlOUYeu4vlnLE1cVjMZShO3K5UlhcBOrFO8VWotr3kz+umvOP7mCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8s/8Ags78D7746f8ABO/47aXotk9/4j+Hllo/xh0KCOMyyEfDrUotW8TmKJAZJJ28Bv4sito4gZJLmSJFV9xRujCz5K0O0vcf/b23Vdbd/Q/GfH/hypxJ4V8S0cPTdXF5VToZ9hopNv8A4Sayr4zlitZSeWfXowUdXNpK9+WX57/8G2/7RukeKfgB8UP2ZNU1OFfF/wAKvGt18QPDWmyyqk958O/HkVjFfPp9uzF7iLQPG1lqUusTxgJat4v0OKRVe5R5dsbC04zS0krN+a26dV59Nup+W/RK4soY3hfOeD61aKx+SZhPNMJRlJKVTKsyVONR0obyWFzGnWdeSsoPH4ZPWacv6VK4T+uD5m/al/a++AP7G/w8uPiP8efHVj4Y05kuI/D/AIetjHqHjTxtqVvGG/sbwb4ZjlS+1m+ZpIUuLj/R9I0lJ4rvXdT0vT992mlOnOo7QTfd9F5t6r8LvpfQ+Q4z464Y4ByqWbcTZlTwdJqawuFjarmGYVoK/wBXwGDU41MRVbcVKVo0KCkqmJq0aV5x/jp/aJ/bO/be/wCC0vxht/2ev2ffBOu+HPg99vjvLL4YaHfvDpUek2l3GI/H3x68aosOny21nKIrqCwuTF4c0m8Fjp/h/Tdc8Um31LVfShSpYaLnNpytrJ7+kFZNdure75V7p/BfFXiB4i/SCz2PC3C+XYnCZD7VVIZPhqjjQVCFRcuZ8TZilCk4U5cs4Up8uEoVPZ08NSxOM5Ktf9nfjTrS/wDBGD/gkpb/AAWm+Jx8a/HPxhaeMPBHw7vrZp7O3tvG3xHub7VPFer+DtPuZW1Cx8KfDDS9VvtXsb+5iRL/AMSf2PLqVppdx4ri0635Y/7ViObltCNm/SOye+snpo1ZXs9OY/oDiDEL6P8A4Hx4flnLzDiPHU8fl2VVIc1OMMxzadWtja+ApSbq0sDk9GtUr06s0vaYv2DqxoTxqpR/Bz/gl9+2h8Cv+Cdvgj42ftBeJNKufif+0V8QrK1+F3wk+FujTf2fFovhCwntfEfirxX4+8UyW11aaDoHiLxDD4asdM06wh1LxTdy+EL2Q6NbaRqVnraddelOs4wT5YL3pSfV6pJLW7Svvy25tG9Yn81eDfiDw34VZdxDxRi6M854rzWnDJsjyXDy9lHD4ClKGLxuNzPGOnOGGw2LxUcJTo0qSr4ybwFR/VoUK1PER/qv/wCCUX7d3xN/b8+Bvi/4nfE74VaX8OdR8MeP7rwlpmqeFxrS+DfGVkmmWWovc6Imv3F/fx3uhzXR0zW1TVNStGuDbywy200txp9p5+IpRozUYy5rq+trr1slvutPv1P7T8E/ErOPE7hvH5xnGSUcpq4PNJ4GjWwf1j6hj6ao06rnh1iZVKqqYaU/Y4hKtVpuXI4yjJzpw/n9/wCDmK1ZP2qPgDekHZcfs/8A2VT2LWnxG8ZSuB7gXqZ+orswP8Of+P8A9tX+R/MH0vYNcacMVOkuF+RetPNcfJ/+nEf2QeB7pL7wV4QvYzmO88L+H7pD6pcaTaSqfxDg15st36v8z++MumqmX4GondTweFmn3UqFNp/idRSOwKAP4mv+C737Sll+17+1x8Hv2WPgTcxeP1+Ed3d+CFfw7PHfW3iL43/FHW9D0vUvDOm3Fuz2uonw/FovhnQnuEnZbPxDeeJNMcRNZXDv6mEg6dOVSenN72vSEU9Xva929trPW6P88/pKcXU+OuOMh4L4anHNFkc6mXJ4SSqQxXEWc4nDUK2Doyg5Qq/VY4bB4dzU3yYqpjKL5XSlKX9hPwB+Flr8DvgZ8HPg1ZzpdwfCr4YeBPh6L2NSq6hJ4R8M6ZoVxqOGAbdqNxYy3sm4Bi87FgCcV5s5c85S/mk5el23brt6/ef3hwxk0OHOHMhyCnJTjkuT5blaqK9qrwODo4aVXWzvVlSdR3V7yd7XPXKk9wKACgAoAKACgAoAKACgAoAKACgD+MT/AIOuvAv2bxn+xl8S4odx1rwx8Y/At/cKv+q/4RjVfAOv6RDK/wD03/4S7W3gXJx9nuD8ufm/sn6KuO5sHxllrf8ABxOT46nHv9ZpY/D1ml/d+qUFL/FE/lv6RWD5cXwvj0v4uHzPBzlbb6vUwdakm/P6zWcV/dkf1P8A7FPjr/hZ37HX7KnxDabz5/Gf7OvwY8R3rlt7LqWqfDvw7dapDI3ea31GS6t5+uJonGTjNfy5xpgf7M4w4py9LljguIs5w0FsvZ0sxxEKTXlKmoyj5PzP6F4Vxf1/hjh3Gt3lisjyqvN7v2lTA0JVE/OM3KMvNH05XzJ74UAFABQAUAFABQAUAFABQAUAFABQB/AT8XP+Nln/AAcLW/g1P+J78PdC/aC0jwHJbc3GmN8K/wBmGze68fRwTnzIk03xbL4G8Y39pcsWgmvPFUXkK/nwRN/e+U/8a2+j7LGP9xmGIyCrjlLaos04mnyYByj7r9phI43BwnD4lDCtStyylL+Nsy/4zvxqjhV++wVLOqWDcfipvLuH4OWMUZbezxP1PFVIy2csTpfmjGX9+1fwQf2SFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDG0Lw54e8L2Tab4Z0HRvDunPdXN89hoWl2OkWT3t7IZry8a10+3toGuruUmW5uDGZZ5CXldm5Ztt7tv11/r+uxz4bCYXB03RweGw+FpOc6rpYajToU3UqPmqVHClGMXOcnzTnbmk9ZNs2aR0BQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBBc21te21xZ3lvBd2l3BLbXVrcxRz21zbTxtFPb3EEqtFNBNE7RyxSK0ckbMjqVYhgmcIVISp1IxnCcZQnCcVKE4SVpRlGV4yjJNqUWrNaO9z+KL9tH/gnV+1r/wAEzP2kpP2rv2G7Xxlqfwkh1jUPEHhvVvAumz+KNZ+FNpqrSPq/w/8AiH4XW21GbWfAAikmsbHWtQsdS0K80UWdl4kuLTXYre4vfUpVqdeHs6rSlomnpzf3o6vW/S977Jr4v89fEDwq448IOLXxt4cQx9bI416uKwlbLaMsZXySFZt18rzXBqNZ4jK+VunTxFWlVw1TD+zp4uVPExhOvjXP/Bw5/wAFD/GWmx+BvCXw2+Bth42vY/7Oi1rwn8M/Hmt+MDegeQJ9N8Par4+8Q6GdSMpDPBc+G9RszOdiafFGfKp/U6MXdudt7SkrfhTi1/4H92pzz+lP4qZhSWW4HKOHKWY1F7JYjA5PmeJx/tPh56OFrZnicP7W+8Z4WtT5nZUopqJpfs+/8Ej/ANvj/gol8SE+O37cPjDx78NPCWrSQTan4j+KCyS/F/xFpSSNOmh+Bvh1fRwReBdHRXkisn17TfD2h6NHdRXeg+FvEFsk1kqniKNGPLSSk1olH4V5tpq/yu31cTbhfwN8TPFXN1xJ4jY/M8owFdxlWxecJyz7FUU+ZYbLcpq8kctw6u403iaWGw2HjNVMNg8VBSpn9Puh+Ef2M/8AglL+zJrmrabp2ifCP4T+EbaC98Sa5MDqnjb4heJWiaCwGo6g6jWfG/jbXJ91ppGnKxhtVkNppdpo+g2ZisuBuriJpO8pPZdEvlZJLq/m7t2P7Fw2B4A8FOD8TWo0sNkWSYCEamLxMv32YZpjHHlp+1qu+IzHMcTK8KFJNxgm6dGFHCwUaX8N37Y37Uvx5/4Ki/tUprei+EfFGuy6hdSeEPgZ8F/Ctne+Ib3w34VW4knt7K3sNNimOoeItVCHW/GevLCsc90r/vLPw/o+lWmm+rThChTs2tNZTel33e2nRL822z/OXj7jPiXxl41WIw2AxmJdWbwHDnD+ChUxVTCYJTco040qUH7TF17fWMwxKTjKd7OnhcPShQ/dn/gn3/wb1aXo39ifFT9uy4t9b1Vfs+o6X+z34a1XzNEsJRsliT4m+LdKmH9t3Eb/AOv8L+Er1NGDwxC+8Ta7ZXN5pCctbGbxpfObX/pPvaeri32i7KR/SXhf9Fqjh/q2deJMo4msuStR4Wwle+HpNaxWcY6jL/aZJ/FgsDNYe8UquLxNOU6Ef6i/Dfhrw54N0DSPCvhHQdG8LeGNAsYNL0Pw74e0yy0bQ9G021Ty7aw0vStOht7Gws7dAEhtrWCKGNeFQVwNtttttvdvVvze/wCf3n9k4TCYXAYahgsDhsPg8HhqcaOGwuFo08PhsPSgrQpUaFKMadKnFaRhCMYxWiW3L/Il/wAHOmjNB8VP2T/EO3C6p8P/AImaMHx95tB8R+GL5lz32DxGpx235/ir0MC/dqLs4v70/wDLv91j+GPphYflzngjFW/jZZnGHv8A9g2LwVS3y+t/j5n9T37NmtjxL+zr8AvEav5i6/8ABX4Wa2rg5DjVfA2hXwcHvuFxnPfNcNRWnNdpyX4s/s7hLELF8KcM4tO6xXD2S4hPuq2W4apf58x7VUH0J/F9+0Jq3/Bfv9rD4n/Ej4QHwJ8cvA3gh/Fmv6FH4d8F6Fpvwe+Fi+HzfzwRWNt8YbmLwsPHvhibTjH5l7feO/ENrrNo7ZikWf7HXpwWEpxUuaEnZat80v8AwDXlflb77H+f/FNf6TvG2cZvkX9m8R5blzx2JwywmX4ajkOTLC+1lGNOGfTWE/tPBypW5qlTM8VCvBu6lzckf0+/4JXf8EUdK/Y/8S6b+0B+0NrOgeP/AI9WNrMPBnhzw+JrzwP8K5L+2e2u9Ui1C/tbS48UeNTZzzWMWpixstH8PrPejSY9VvGstdtcMRivaJwgmodW95eXxOyv5O+l+XWJ+w+C/wBHqhwHi6PE/FOIw2acTU4S/s/CYXmqZdkrqwcalaNWpGnPGZj7OUqSreyp0MKpVPYqvN08RD+gOuM/p8KACgAoAKACgAoAKACgAoAKACgAoA/mN/4OmPA39rfsZ/Ar4gRQ+bceC/2jbHQZnC5a30vxt8OvHE1zMzfwxNqfhPRbdhn5pZ4OuDX9M/Rdx3seMs8y9u0cbw7Oul/NVwWY4FRS81SxdaXpFn4H9ITCe04XyjGpXlhc8hRb/lp4vA4xyfo6mGoxeu7jvZn6G/8ABDbxz/wn3/BLL9k7UZJvNutC8NeM/A10hbc9v/wgvxN8aeFdPhflsbtG0rTLiJc8QTxcL91fz3xwwP1DxR4rppWjXxOCx0H0l9eyzBYqo1/3Gq1Yv+9Fn2vhJi/rnh7w5Nu8qNDFYSS6x+p4/FYemn/3Cp05L+61fY/WWvyg/RwoAKACgAoAKACgAoAKACgAoAKAPnn9rX432f7Nn7Mfx7+PN48Ct8KvhT418Y6ZDcbfLv8AxDpeh3j+F9Iw+EaTWvEjaVpECuQjTXsauVUsa+h4TySfEnE2Q5FBS/4Vc1wWDqOO9PD1a8Fiq2l3ajhva1ZW+zB7WueJxJm0ciyDOM4k1/wnZdisVTUtp16dKf1elrperXdOkr6Xmr6H8i//AAa4fBC78a/tB/tK/tR+I459QbwD4H0v4e6Nqmo7p3vPGHxY1yXxD4i1WC5k3PJqunaJ4KNpfzM+4W3jIhw5ut0X9a/SfzuGC4f4a4XwzjTWPx1XMK1KnooYPKqCw+HpSirJUqlbG89NWfvYPTl5WpfzZ9H3KZYrOs94grpz+pYSngqVSfvOeKzGs61eopPV1IUsI4zb+zivM/tur+KT+rgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgCMRRK7yrHGssgAeQIodwvADuAGYKOBknHbGKBWSbdld7u2rt3fW3mSUDPkn9tX9jT4W/t1fBO4+CHxYvvE+j6NH4k0rxloWv+D7+zsdd0DxTolpqdhYalbjUrDVNMvrd9P1rVdPvrC/sJ4rizv5jbyWV/HZ39rpSqypS5o2btZpq6a/8Ci1qt0/k9T4fxC4BybxI4enw7ndTGUMOsXQx+GxWAqwpYnC43DwrU6VaPtadajUi6WIr0qlKrSlGUKsnHkqqnUjhfsc/sA/sz/sN+FW0L4I+CkTxHqNrHbeKvif4oa21r4k+L9jJIU1fxCLOzSy0wSxxyxeHfD1lovhyGZBdppIvnuLqd1K1Sq/fei2itIr0V3r5tt9E3qzm4C8MeEPDnBPDcO5eli6sFDG5xjOTEZvj7NO1fFKEFTo8yUlhcLDD4SMkqioe0cpn2nWR+ghQB+P/wDwVt/4JmeJf+Ci3hv4KDwP8RPDnw/8XfB/W/GJRvFmnand6JrHhzx/D4VTXFNxo8V1f2+qaZP4O0q40yE2klperPe29zcWJMVxXTh66ouV4uSkltumr23lFW1d/wBPtfhPjj4QYvxWwnD39nZrhMrx2Q4nH2eNpVp4evhMzjgliVzUFOrCtRlgKE6MfZyp1OapGU6XuzP0u+B3wzi+CvwV+EHwcg1m48Rw/Cb4X+APhpD4gu7ZLO61yLwL4U0nwvHq9zaRyzpaz6kmlreS26TzrC8xjE0u3e2E5c85StbmlKVu13e3Tv2+4/XeHMojw/w/kWQxxE8XHJMmyzKI4qpBU54mOW4Khg1XnTi5KEqyoKpKClJRcmuaVuY9SqT2QoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8Uv+DhHwP/wmP/BLH47ahHD5934A8R/CPxxaIF3Ovk/E/wAL+GNQmT+79n0XxRqdxI3H7iKUDkgN+0fR/wAd9T8Ucipt8sMfh82wM3097LMViaa/7er4alFebXY/KvGnCfWvD3N5pXlg6+W4uK66Zhh8PN/9u0sRUk/JM8D/AODY3xwfE3/BPDxP4Ylm3T/Dn9o74heH4YGbLRaZrXhb4f8AjO3mUZO2GfUfEesIo4zLbznByDXv/SYwP1bxCw2KS93MeHcvxEpd6lHFZhg5J+ap4ei/SUTxvAPF+34JxFBvXBZ5jaKj2p1cNgsUmuyc69VesZeR/RTX88H7cFABQAUAFABQAUAFABQAUAFABQB/Ol/wcy/Hk/DX9gzQfg/p175Os/tEfFjw7oN9aLJ5ck/gf4eA+P8AX7hMfO6w+KtO+H9nNGMI8OpuJGIxHL/RH0ash/tLjuvm9SF6PD2VYjEQna6jjsw/2DDxfROWFqZhOL3TpKyd04/iHj1nH1Hg+jlkJWq53mVCjOOzeEwP+21pLvbE08FFrtPXpGXtH/BvP8BB8Ff+Ca/w68R3tn9k8RfH3xb4x+NGriSPFwNP1G9h8HeDlMp+Z7S68HeDdE120jU+VGdcuHVRLNOzeL9IPPv7a8SMxw0J8+HyHCYPJqNn7vtKcJYzGaLRThjMZXoTb95+winpGMY+r4KZP/ZXAmCrzhy185xOKzSrde9yTmsLhVffklhcLSrQV7L20mrOTP3Fr8RP1oKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA4v4g/EfwB8JvCWrePfif4z8MfD/wAFaFHFLrHirxhren+H9B05Z5o7a2W51LU7i2tUmu7qWK1s7fzfPvLuaG1to5Z5Y43cYyk7RTk30Su/1/rtuefmmbZZkmBr5nnGYYPLMvwyUsRjcfiKWFw1JSkowU61aUYKU5yjCnG/NUnKMIKUnGJzun/Hf4Jat4A0r4raf8Xvhnc/DHXIJLnSPiCvjnw0vg3UIYJHhuWtvEcmpR6TI1pPFNb3kYuhLZ3MU1tcxwzwyRK+SV3HllzLdWd16r+r/cctLiTh6vllDOqWe5RPJ8TFzoZosywf1CrGLcZuGLdVUG4Si41Ep3pzjKE+WUZRj8b/ABP/AOCuf/BOb4TfaI/EH7U/w91+8g3qtj8NP7a+K0k8y/8ALCO7+HWl+JdKjckFfMvNQtbdG4lmTGa1jh68tqbX+K0fzT/9JXmfA5z45eFGR86xXGmVYqpG9qeUfWM6cpL7KqZVRxlCLe16k4QW0pr4o+lfsb/t/fs3ft2ab45v/gF4h13ULj4c6hpVl4r0XxR4euvDes2Nvr66k2gavFbTvcQXek6ydH1aO0ngunuYZdPni1C1spGt1nmrRnStzpa7NarzXTVaf8G1z1+AvE7hLxJo5lV4YxeJqyymrRpY7D4zCzwmIpRxKqvC11CTlGdDEewrqnKMueMqU1Vp024KX2pWR+ghQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHwn/wU+8E/wDCwv8Agnf+2j4ZEP2iY/s4/FPxDZwBdzTaj4L8LX/jPTIo17zSahoFskPT96UJI619z4ZY3+z/ABC4MxN+WP8ArFleHnLa1PG4qng6rfkqeIk35XPkOP8ACfXeCeKaFuZ/2HmFeK7zwmHniqaXm50I28z8Af8Ag1E8bfavBH7Z3w5kmx/Yfir4NeNrOBm/1n/CU6R4/wBC1KaJc/8ALH/hDtKSdsD/AF9uMnOF/ffpVYLlx3BuYpfx8LnOCnLt9VrYCvST9frlZx1+zLax+NfR1xfNhOKcC3/BxGV4uCvv9Yp42jUaXl9VpJv+9E/rqr+ST+lAoAKACgAoAKACgAoAKACgAoAKAP4Vf+Dkz4ka58ef+CgPwJ/ZW8GMdUvPhx4F8LeHLDSBISR8U/j14ktbyWz2IJDGb7w1afDAq2wzN5p/dsgiLf3J9HDLqGRcAZ7xTjV7KGY47FYida2+VZDhpRU7u1/Z4meZrey5d1d8v8i+OuOq5xxnlHD2FftJ4HB4ehClfbMc4rxk4W1tz4eOXvu77WScv7ZfhB8NtD+DXwn+GPwh8MqF8O/C34feDfh3oYEYizpPgzw9p3h3T3aNchXktdOikkGWO9mJZiSzfxZm+ZV85zbM83xP+8ZpmGMzGvrf97jcRUxFRXe6UqjS206K1j+rMswFLK8ty/LKH8DL8FhcFS0t+7wtCFCDtrZuNNN6/fc9FrzjuCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/U/v4oA8h+Nf8AwmP/AAhw/wCEN/tH7T/aMH9p/wBked/af9meTcb/ALN9n/0nZ9p+zfafs377yc7v9H+0UFRtfX8f6t9/+QfBT/hMf+EOP/CZf2j9p/tGf+zP7X87+0/7M8m32faftH+k7PtP2n7N9p/feTjb/o/2egJWvp+H9W+7/M9eoJCgAoAKACgAoAxfEf8Aa3/CP61/YO3+2/7Lvv7K3bMfb/s0v2XHmfut/nbfL8391v2+Z8m6ga3V9r6nzt8C/wDhZn/CQa1/wlH/AAkf9ifYpPO/4SP7fn+1/tMHk/Yf7Q/e+Z5P2r7T9n/cbPL8/wCf7NQXPltpa9+lv0/rt1PqOgzCgAoAKACgAoAKAP8APO/4Ku/GT9vfXPj942+Ev7YWu+KNH0Ox8Zav4y+HPw0hNrYfDgeEv7X8QaB4N8U+DrLS0it/EGknTLbUtN0nxJqr6jrTyjWbfULqLVzrECexh4UVFSpatrllLXmvo2n0WtnZWXVd5f5c+OHEfifiuJMdw/x5icTh8HRx+IzHJ8npxw9HK/qLxGKwmAx2EjhoxeMpOlTr0qGLxcq2JT+sQnOFV16cfrP4S/8ABuT+2d45sdJ1L4k/EP4OfCTSru2guTpV1q/iTxp4u01LtEuJIptF0bQrbw4k8YfbPFH4xDC4Vo2yB5tZyxtJfDGUn8kvv51/6Sz7LJPon+IGY06FbN81yHI6M4Rl7CdfGY/HUedKTjLD0MNDCKSvaSWP0ndPY/Rv4Yf8GzfwA0b7PN8YP2i/iv4+mj2STWvgPw/4V+GenzOOTBJ/bKfEu/e3zlGaC8sriRPmjkt3bCYyx038NOK9by/9viv6vrsfrGT/AEQeF8PySz7ivO8zkrOUMswuCyilJ9Yv6x/a9Vw6PlqU5taqUX8P7T/sjfsMfs2/sP8AhzxH4d/Z88FXPh1vGd1pd54x8Qazrmq+JPEviefRIryHRxqWp6pcSrDaaYmo6gbLTdLttO0yCbUL65SzFzeXM0vLUq1KrTm722Sskr9lr97bfpof0FwN4ccJeHWExeE4Wy+eEeYTo1MfisRia+LxeMlh41I4dVq1eclGFFVavs6NGNKjGVWrNU1OpNy+vKzPugoAKACgD5c+On/CzP8AhINF/wCEX/4SP+xPsUfk/wDCOfb8/wBr/aZ/O+3f2f8AvfM8n7L9m+0fuNnmeR8/2mg0hy21te/W36/136H0T4c/tb/hH9F/t7b/AG3/AGXY/wBq7dmPt/2aL7Vny/3W/wA7d5nlfut+7y/k20EPd22vobVAgoAKACgAoAKAPIfjX/wmP/CHD/hDf7R+0/2jB/af9ked/af9meTcb/s32f8A0nZ9p+zfafs377yc7v8AR/tFBUbX1/H+rff/AJB8FP8AhMf+EOP/AAmX9o/af7Rn/sz+1/O/tP8AszybfZ9p+0f6Ts+0/afs32n995ONv+j/AGegJWvp+H9W+7/M9eoJCgAoAKACgAoAxfEf9rf8I/rX9g7f7b/su+/srdsx9v8As0v2XHmfut/nbfL8391v2+Z8m6ga3V9r6nzt8C/+Fmf8JBrX/CUf8JH/AGJ9ik87/hI/t+f7X+0weT9h/tD975nk/avtP2f9xs8vz/n+zUFz5baWvfpb9P67dT6joMwoAKACgAoAKACgD5C/4vF/wuH/AJmH+zv+Eh/6fP8AhGP+EZ+1/wDgs8j+zf8At8+2f9RCg093l6Xt87/nv/Vj69oMwoAKACgAoAKACgD5c+On/CzP+Eg0X/hF/wDhI/7E+xR+T/wjn2/P9r/aZ/O+3f2f+98zyfsv2b7R+42eZ5Hz/aaDSHLbW179bfr/AF36H0T4c/tb/hH9F/t7b/bf9l2P9q7dmPt/2aL7Vny/3W/zt3meV+637vL+TbQQ93ba+htUCCgAoAKACgAoA8h+Nf8AwmP/AAhw/wCEN/tH7T/aMH9p/wBked/af9meTcb/ALN9n/0nZ9p+zfafs377yc7v9H+0UFRtfX8f6t9/+QfBT/hMf+EOP/CZf2j9p/tGf+zP7X87+0/7M8m32faftH+k7PtP2n7N9p/feTjb/o/2egJWvp+H9W+7/M9eoJCgAoAKACgAoAxfEf8Aa3/CP61/YO3+2/7Lvv7K3bMfb/s0v2XHmfut/nbfL8391v2+Z8m6ga3V9r6nzt8C/wDhZn/CQa1/wlH/AAkf9ifYpPO/4SP7fn+1/tMHk/Yf7Q/e+Z5P2r7T9n/cbPL8/wCf7NQXPltpa9+lv0/rt1PqOgzCgAoAKACgAoA4r4k+EYPH/wAOvH3gO6CNbeNvBXirwjcLJ/qzB4k0K+0aUPnI2GO9YNkfdz1rty3FywGY4DHRvzYLG4XFxtvzYavCsred4HLj8MsbgcZg5W5cXhcRhpX2tXozpO++lp66fefwof8ABtF4n8XaL+2h8VPh9oUl7aTa/wDCaLW9dsd7x20lp4J+IPhfTdQj1OEsInFraeL78oJFaWKXcbYrclN39q/Siwka/CHDuZQtNYbiBYdTWq9nj8txdXm/wyeBp66K7iuqUv5S+j1ifZcTZ5gZ+79YyR1+V6P2mDx+FppWt8SWLm7aaJ6PXl/vkr+HT+twoAKACgAoAKACgD5c+On/AAsz/hINF/4Rf/hI/wCxPsUfk/8ACOfb8/2v9pn877d/Z/73zPJ+y/ZvtH7jZ5nkfP8AaaDSHLbW179bfr/XfofRPhz+1v8AhH9F/t7b/bf9l2P9q7dmPt/2aL7Vny/3W/zt3meV+637vL+TbQQ93ba+htUCCgAoA/gT/ZAB/wCCgX/Bwtq3xYm/4nPg7w98eviL8aba+P8ApAh8D/AmC50v4M3bdYyF1HQfhfYk7xFF5+YS/lxI/wDenF3/ABgP0fKOVR/c4zE5Dl2TShflvjc9kqucw/8ABdfM521cuXW12z+OOGV/rn401Mxf73C0M5x2axn8VsJlClDK5dU7To5fDe0ea8W7R5v77K/gs/scKAPIfjX/AMJj/wAIcP8AhDf7R+0/2jB/af8AZHnf2n/Znk3G/wCzfZ/9J2fafs32n7N++8nO7/R/tFBUbX1/H+rff/kHwU/4TH/hDj/wmX9o/af7Rn/sz+1/O/tP+zPJt9n2n7R/pOz7T9p+zfaf33k42/6P9noCVr6fh/Vvu/zPXqCQoAKACgAoAKAMXxH/AGt/wj+tf2Dt/tv+y77+yt2zH2/7NL9lx5n7rf523y/N/db9vmfJuoGt1fa+p87fAv8A4WZ/wkGtf8JR/wAJH/Yn2KTzv+Ej+35/tf7TB5P2H+0P3vmeT9q+0/Z/3Gzy/P8An+zUFz5baWvfpb9P67dT6joMwoAKACgAoAKACgD5C/4vF/wuH/mYf7O/4SH/AKfP+EY/4Rn7X/4LPI/s3/t8+2f9RCg093l6Xt87/nv/AFY+vaDMKACgAoAKACgAoA+XPjp/wsz/AISDRf8AhF/+Ej/sT7FH5P8Awjn2/P8Aa/2mfzvt39n/AL3zPJ+y/ZvtH7jZ5nkfP9poNIcttbXv1t+v9d+h9E+HP7W/4R/Rf7e2/wBt/wBl2P8Aau3Zj7f9mi+1Z8v91v8AO3eZ5X7rfu8v5NtBD3dtr6G1QIKACgAoAKACgDyH41/8Jj/whw/4Q3+0ftP9owf2n/ZHnf2n/Znk3G/7N9n/ANJ2fafs32n7N++8nO7/AEf7RQVG19fx/q33/wCQfBT/AITH/hDj/wAJl/aP2n+0Z/7M/tfzv7T/ALM8m32faftH+k7PtP2n7N9p/feTjb/o/wBnoCVr6fh/Vvu/zPXqCQoAKACgAoAKAMXxH/a3/CP61/YO3+2/7Lvv7K3bMfb/ALNL9lx5n7rf523y/N/db9vmfJuoGt1fa+p87fAv/hZn/CQa1/wlH/CR/wBifYpPO/4SP7fn+1/tMHk/Yf7Q/e+Z5P2r7T9n/cbPL8/5/s1Bc+W2lr36W/T+u3U+o6DMKACgAoAKACgAoA+Qv+Lxf8Lh/wCZh/s7/hIf+nz/AIRj/hGftf8A4LPI/s3/ALfPtn/UQoNPd5el7fO/57/1Y+vaDMKACgAoAKACgAoA+XPjp/wsz/hINF/4Rf8A4SP+xPsUfk/8I59vz/a/2mfzvt39n/vfM8n7L9m+0fuNnmeR8/2mg0hy21te/W36/wBd+h9E+HP7W/4R/Rf7e2/23/Zdj/au3Zj7f9mi+1Z8v91v87d5nlfut+7y/k20EPd22vobVAgoAKACgAoAKAPIfjX/AMJj/wAIcP8AhDf7R+0/2jB/af8AZHnf2n/Znk3G/wCzfZ/9J2fafs32n7N++8nO7/R/tFBUbX1/H+rff/kHwU/4TH/hDj/wmX9o/af7Rn/sz+1/O/tP+zPJt9n2n7R/pOz7T9p+zfaf33k42/6P9noCVr6fh/Vvu/zPXqCQoAKACgD/1f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/iG/4KjJ/wv3/guN4F+EE4+3WFl48/ZT+DbRN+8hXTfEr+D/FGsRkH5fIt5PiBqj3fRUZLnd91i3q0Pcwrlre1Sf3XStt0j3+4/wA7fGRf6z/SMy3IpfvaVPM+CsgcXrFUcW8BjMQuvuweZ1nU00ane9j+3mvKP9EgoA840H4xfCLxT41174beGPin8OfEfxF8LW5vPE/gHQfG/hnV/Gnhy0E0dubrXfC2n6pca5pFuLiaGAzahYW8YmlijLB5EV6cZJKTjJRe0mnZ+jsl+L+VjycNn2R43MMTlGDzrKcXmuCh7TGZZhsxwdfMMJDmUOfE4KlXniaEOaUY81WnFczS0clzej1J6wUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQA13WNWd2VEUFmdyFVQOpZmwAB3JOB7ZpSlGKcpNRileUpNJJLdtuySXe/wBw4xlJqMU5SbtGMU223skldtvtb7ynb6ppl3KYbXUbG5mGSYre7t5pQBySY45GcYHJ447gZFc9LG4OvN0qGLw1aor3p0q9KpNJbtwjKUlbrpp1vpy9NbA43DwVWvg8VQptpKpWw9anBt7WnOEY3fRX18rNSvV0nKFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8FX/BJDHwP/4L7/Ef4Sj/AEOG9+If7ZHweWH7kbweE7jxx4ntYR91TG5+HlvJb4+WQrD5e7ehb+7/ABa/4W/ATLc2+Nwy/g7OHLrzYuOBw0n1s1/aElLtre1rH8e+G3/CT4yY7LfhUsbxRliXRrDPF14r0/2JNbX0tulL+9Wv4QP7CCgAoAKACgAoAKACgAoAKACgD5M/bw+Nf/DOn7Gf7Tfxphu/sWqeA/gz461Dw1ceZ5WPGd9otzovgiLzesZufF+p6JbB13OvnZjVnCo31fAuS/6xcY8NZK4c9LH5zgaeJja/+xwrRrY121vy4SnXlZ6O2tldnzfGGa/2Jwtn+aqXJUweV4ueHle3+1TpOlhFfS3NialKN99dLtJH8vf/AAaofBT7T4t/au/aLvrPaNG8PeCfgv4YvimfObxHqN1448cWyOR8jWi+F/h/I6qSZFvlLbQi7/6d+lPnXLhOFeHYT/jYjG51iYX2+r044HAya6qbxOYJXWnI7XufgH0d8q5sTxFnk4/wqGEyrDztv7eo8Xi4p9OX6vgm115/I/s3r+Nz+owoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+ET4lfFz4c+Dv8Agvd4u+Lnxh8T2/hb4dfDn9p6/wBR8S+Jbyz1TU4dKtfhr4ebS9Of7BotjqerXcg1Lw/p1nbW1hYXVzJO8UccR+8vrRi3hFGKvKVOyWn2vXTqz/NjN89ynAfSZx2eZ9jIYLKsp4xq1cXi6lOtWjQhlGE9jRfssPSrV6klVwtKnCFKlObm4pRZ+uH7RH/ByT+zv4OjvtJ/Zv8AhX42+M+toJIrbxP4wZfhp4DV2yIry2t7iPV/G2rxxkCSXT77w94TeZSqR6jExd4uaGCm/jkorstX/wCkJL1u/wDCrH7lxV9LXhXARqUOEslzHiDEq8YYzH2yjLLvapCMlXzGuk9ZUqmFwLktFVjeTj+UepftL/8ABZj/AIKt3t3oHwu03x7pfwv1S4lsr3TPg/p1x8Ivg7Z27uY7ux8SfE7VtTtbnXoliG660DX/AB5rT3Igc2OhtMxifpVPDYfWTjzb+++aXlZWVvWMI+bV/e/FKvF/j/411J4bJaOZ0MmrSlTqUchpTyLIacW7TpYvOK9aE8SuX48NiczxDmov2eFbvA/Yr/glf/wRR8V/sZfFnR/2kvjX8WdK174laX4d1/R9F+Hvw8g1B/CmkSeKdNk0rULvxD4s1dNPvPE88Om3V1DFpNr4e07TrPVBFqKarqotrcJzYjEqpFwhF2um5Std27K8ra9dHbSyvaP7z4L/AEesb4f53Q4t4hzyjis3o4XFUMPleVRqvBYd42i6NWeKxtf2dTGSjSnOKoQwtKjTrctZV6/JDl/odriP6nCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPyz/aa+Cf7QXxI+MrQWEGpa74G1ibTYvDVymobPDPhmzFtaw3/9q2fmldNmtroXN5dXRtZZ9SjZGs3up9lhB/E3jL4ceKvF/iE6WFp4zMuGsfUwcMnrLF8uTZNQVCjTxX17D89sHUo1lWr1q7oVKuMg4vDOvV5cND+7vBHxN8IuC/DdVcXUwWV8U5dSxtTOqMsJzZ3neIdavUwiwGJdNPGUq9B0MPQoKvCjgpqSxKo0ufE1/F/ip+yR49+C3hCb4hXni3w9ewaPf6ZG6aLLq9rqVvNfXkdrbXNpNPaW43Q3UkJJWWKVFJljyUK1+d8b+BHFHh3kFTivEZ7lOIp4DFYOEo5dPH0cZSqYmvCjRrYedTD0k5U606d+WpTnFP2kbuLifpfAf0g+E/EviKlwfh+H84w1TMcLjpxlmcMvr4KtTwuGnXr0MRSpYms1GpQhUSThUhKSVOVlL3v0g/ZN+IWufEj4MaJq3iS5kv8AW9Kv9R8OXupTsXuNSGmNE9peXLnLS3TWF1aw3U7lpLm4hluZCZJn2/154F8V5lxf4eZbjs4rTxWY4HFYvKMRjKjvVxiwcoSw+IrSd3Ou8LXoU69WTlOtWpzrVG51Jcv8YeP/AAhlfBfiVmeX5LQhhMsx+EwWc4XBUko0sF9ejUjiMNRitIUFi8PXqUKUVGFGjUp0YLkgj6Ur9hPxUKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/gq8T/wDFif8Ag5vtsf6H/bn7YPhH/Y3/APDRfg3Rc/X7d/ws4/8AXT7Rz941/d+F/wCFz6M8vt+w4Qxfnb/V3GVvT+H/AGZ8uXrufx5iP+Ejx7j9n2vE+F+f9uYal6fH/aH/AJN1vY/vVr+ED+wwoAKACgAoAKACgAoAKACgAoA/ng/4OYvjN/wr7/gnvp3wztLvy9S+PPxl8E+FbuzV9kk/hXwWmofEnVbrHV4bXxF4Y8G20qDq2oxE/KGVv6E+jXk39oeIFTMpxvTyLJsbioTaulisY6eXUo9lKWHxOLkn/wBO3Y/E/HnNPqXBdPARlaecZphMPKF7OWHwnPjqkvNRr4fCprXWa7Xj6v8A8G73wZ/4VR/wTL+HHiC5tfsmrfHDxz8Q/i9qUbptnMFzrKeAPD0jsRlorzwt4A0TVLUBmQQairAK7yBvK+kLnP8AaviXmWHjPnpZJgcuyim07x5o0Xj8QkujhisfWpT3blT7JKPo+CeV/wBncBYGtKPLUzbGY7M5p72lVWCovrpLD4KlUjZ7T2TufuRX4gfrYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4Bof2b/C37Zf/Bbf41fs8fEDX/Efhrwt8Qf2pf2sINX1rwo+mx+IrS28DJ8V/GFjHpkusWGq6bFJeT+ErOwklutOvFjtbiZ44TMse313N08LCaSbjTp6PbXkXRrv3+8/zFjwlg+P/pEcQ8K5picXg8FmnGfG0a+IwTorFwhlqzvH01RdelWop1JYGFJynSmlCbai5JH9VHwB/wCCMH/BPb9n6ez1TT/gpb/FPxNZNG8Xib436ifiNcGSH5op/wDhGLy1svh7Bcxy4mju7PwbbXUcqo8cy+XGkXBPE1p397lXaHu/jzSl/wCTffsf2lwx9H/wt4XlTrUuHoZzjKdmsZxFV/taTcdVL6nUVPKoTT95Tp4CE1LVS0jGP6j2NjZaZZ2unabZ2un6fYwRWtlY2NvDaWdnawII4La1tYEjgt4IY1WOKGJFjjRQqKFAFc7d9Xq/M/ZadOnRpwpUacKVKnGMKdOnCMKdOEVaMIQjaMIxSSjGKskrK2haoLMjXfEGg+F9Ku9d8Ta3pHh3RLBY3vtZ13UrPSNKsllljgia71DUJre0t1knkihjM0yB5ZI41JdlVmk3ok2+y/4BhicVhsHQqYnGYihhMNSSdXEYmtToUKaclFOpVqyjTgnJxiuaSvJpK7aR+Hv/AAUM/wCCxGtfsZ/tW/Bj9n7wV8KfD3xM0LxV4f8ABvi/4g65c65fQau+k+OPE2qaHpmjeBhp7/2dDq8Gn6SdbGo6vHqlhqK6rp9lFaWixzXz9VHDKrTlNycXdpLS2iWr0fV23Wx/Ovin484jgDjbh/hbL8kwub4fG4XAY7NMRPE1I13QzHGVsNRw+XKl+6jXjSoPEe1rqvTqqvSpxhBKVSX7s1yH9IhQAUAfI37Wv7cn7Nf7E3hO18T/AB88fQaFd6vHcN4W8E6NbPrvj7xjJa8Tp4e8NWsiztawuUhudb1SbS/DljcSwW+oazZzXFukulOlUqv3Ftu3ol6tp/clf0PhuOPEfhHw8wMMZxNmccNOupvBZdQg8TmePcPiWFwcPecIu0Z4ivKhhKcpRjVxFOU4KX83Xx0/4OV/ifr+oT6F+y5+z14c8N2txP8AYtL8R/Fq+1Lxn4m1Hz3CQTW3gzwfeaDpWj6kSypDZyeIvGNu0uCfODGGu2GBivjm35R0X3um2/uj6vQ/kziT6XOcYqrLDcGcK4TCQnL2dHF55UrZhjKvM7QlDL8BUwlChWd0o03jMdDm35r8svkn4gf8FGf+C5eneE7r45eK9T+MPwz+FulXmmFfEt7+zh4N8HfD2CTVr6Cy0u2h1HxL8M1TXob6+uYLWFbvUNZMjSiNnZAQukaOFvypRlLt7RuX3LVfd0vofD5p4r/SOpYGfEeNrZ9k+S0KlF/W6nCWAwGVxdarCnRhGri8otiY1Ks4wip16/M5Wcmro/qV/wCCVP7Yni/9t79kHwx8XviHpum2HxC0jxP4j+HnjW50W1aw0fXdZ8MjT7qHxDp2ns0i2A1XRdZ0mbUbOCRrODWV1JbFLayNvZ2vBiKapVHFO6aUlfdJ9Hts7/Le+5/Zngrx5jvEXgTB57mtGjSzShjMXlWYTw8HTw+JxGD9lOOKpUtVS9vh69CVWnFunHEe19koUnCnD9H6xP1gKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPzb/AOCgHxPtYNJ8O/CfTp1e/vrqDxV4jEbZNrp9qtzb6NYy4yoe+u3uL94ztliTTrOU5ivELfyB9KfjOhTwGU8C4SopYrE16ed5tyO/scJQVajl+GqWbXNia8quKlBqM6ccJh56wrxP7S+iRwPXq5hnHH+MpOGEwtCrkOTOat7fF13RrZliaez5cJh4UsLGavCpLGYiCtOhM+jP2d9J0X4QfBnwV4d8V61ouga7f2k3iLVbTV9UsNNuYrzX531CO2khu7iFxPZWMtnYTqA2JrWT/gP634TYHLeAPD3h3Kc8zLLsrzPFUKmbY6hj8dhcHWhiM0qyxUKM6VerTkqmGw08PhaqV/3tCVr6o/GvGLMMy8RPEniXOMhyzMs2yrCYink+AxGX4HFYyjPDZTSjhJ14VMPSqxdLE4qniMXSd1+6rwbXQ+j7S8s9QgS6sLu2vbWXmO5tJ4rmCQDuk0LvG2P9lj71+vUMRh8VSjXwtejiaM9YVqFSFalP/DUpylCXyk/lZo/GMRhsRhKsqGKoVsNXh8dHEUp0asP8VOoozj80izWxiFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/BT/wAFvf8AixP/AAW4+F/xlP8AoYux+yt8bftf3MjwL4jtfC32vf8ALnyT8MDHvz8v2fGRtr+7/BL/AIXPBTNMn+Pk/wBacl5d/wDfsNLFcnW1/wC072t9q+tz+PfFj/hH8V8vzT4Ob/V3Nubb/c68cPz38v7Ptf8Aun961fwgf2EFABQAUAFABQAUAFABQAUAFAH8RP8AwdO/Fm48UftFfsvfs/aXJLeN4D+F/iH4g3NhZ7pWl1z4teLI/DlhZywxZMt/DY/DGCW1hZWmjg1oNEoW+Jf+2PouZVHC8PcT5/VSgsdmeHy+NSelqGU4R4mpNN6Km6mZtSkrpyotP4Eo/wAn/SFzF4jO+H8mpty+p5fXxsoR1vVzLEqhGLS1c1DL4uKbuo1bq3Oz+wf9mf4TW/wG/Z1+BXwUto4o1+FHwi+Hfw+mMO0rPe+E/CmlaLqF4zpxLNf39nc3txPkmee4lmZmZ2Zv5C4lzaWfcRZ7nUm281zfMMwV/swxWLq1qcFe1lTpzjCKtpGKWlj+mshy1ZPkeUZVFJf2dlmBwTtbWeGw1KlUm7XTc5xlOUr+9KTet2e314h6wUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4h/DUy/A/wD4OMrl9WP2Ia1+1h4shi8393vP7QnhTWYNFA3Yz9vb4l2Ah/56faY9udw3eq/fwfpSX/klr/8ApJ/nbhJf6ufSum6/7v6xxtjoxvpf/WnA4iOH7fxf7Xpcv83Ot73P7eK8o/0SCgDyH46fHj4T/s2fDTxD8XfjT4z0vwP4F8NQb7zVNSkLT3t5IkjWei6Hp0Ie/wBc1/U3jaHTNF0uC51C9lDCGEoksiVCEpyUYptv+rvsvN39HseFxJxLknCWUYrPeIMfRy7LcJG9StWfvVKkk/Z4fD0oqVXE4qs040cPRjOrUd+WLUW4/wAU37S37UX7WH/Bb79pXw/8BPgN4X1fQfg5pGrSah4R8BXF09touhaRbSiyvvjF8b9ZsRd2K31ta3WIIU+3Wnh6O9j8LeD7fW/EerXN74m9SnTp4WDnJ3lb3pdXf7EVaOl16vdtJWP89+LuMuNvpFcXYXhnhrBV8LkFCu6uByyU3HD4ahCXs6mf8RYinzUlUhCdoRXtaeFjUWCwEcRi686mL4L4/wDwIHwj/wCCrX7LX7J1z4q1Hx5D8KfFH7D/AMHZPEmsIYn1caqPhzrV8bayae5OnaKl54wu7bRdIa5uTpejR2WntdXJtzcS1GfNh51LcvMqsrdtZL5uy18/keZxPw0sj8bOC+CJ42tmUclxvhzkDxddNOv7b+ycRV5KbnUdHDqpj5ww9Dnn7HDqnSc58vPL+/SvHP8ATgKACgD+Vb42f8Ebf2rP2xv+ClvxN+Jn7SvieO1/Zd1HxPd6poPjvw/4s0K58Q3Hwx0/P/CEfCjwd4Vle81Pwvq+m2Ultpev6tq3h+20KO8XxB4os5vEGq6gkOpehHE06dCMaa/eWSas0ubrJvmSeuv4e6kfxbxD4B8ace+LucZxxdjFDg2rjKlbDZlhcbhp4ueT0r/2dkmAwUnOrgq9Km4UcVXr4ZYZT+tYym8TWqxhV/oE/Z+/Yw/ZV/ZP0eG0+B/wW8B+AZrK0Md34uGmRan43voI4v38uteP9ebUPFd9EV8yV4rvWWsbffKLe3t4WKVxzq1KnxSb8unyitPz9XtH+n+F/D/gvgnDxp8OcPZZlkqcLTxyoxrZjUio+88RmmJdbHVY2u3GpiVThzS5IRi7S/lX/wCC1f8AwUHj/bU+Jvgb9i39liW7+IPgbw146so9V1bwpv1GL4v/ABhu5JPDvh/QfCQtR/xOfDfhd9RvLSx1GJ30/wATeIdUlv7GObTNE0PWdQ9DDUfZRdSp7smtn9mK1bb6N21Wtra7tR/i76QniivEHOMt8PeC3UzXLsJmVNV6+BvVjnufTbwuFw2B5FL6xhMG6s4U6sW6WLxVZ1KUZUcNh8RX/p8/4J8fsrw/safsk/CT4EzyW114o0PR59d+IWo2jiW31D4heK7uXXfFX2a4AUXVhpV9d/8ACPaPdFInuNF0bTpZYklZ1rgrVPa1JT6N2XotF1er3eu76H9ieF3BceAOB8j4ak4TxmGw8sTmlWDvGrmmNnLE43kn9ulRq1PquHnaLnh8PScoqTko/aNZH6AFABQBxXxG8c6X8NvBHiTxvrPzWXh/TZbv7OHEcl9duyW+nadC7ZCzajfzW1lE7Aqjzq7YRWK/OcXcS4Hg/hvN+JMw1w2VYSdf2SkoSxOIk40sJg6cndRqYvFVKOGhJq0ZVVKV4xZ9Nwbwtj+NOJ8l4Xy3TFZvjYYf2ri5wwuHipVsZjKkU05UsHhKdbFVIppyhScYtSaZ87fsp/Hzxx8co/G8/ivw/pGn2eg3emLpepaJBfW1rI2oi+ebSp1vry9NzdWUNvbzmeCSPbFcoLmFTLA7/k3gd4o8S+JUOJKmeZVgMJh8rr4NYLGZbTxNGhN4tYmVTA1FicRiXWrYanSo1fa0pxtCtH21KPPSlL9i8e/CbhfwtnwxSyDN8xxmJzbD414/BZnUw1avBYN4WNPMKTwuGwqo0MVUrVqSpVYTvUoS9jVkoVYw+vq/fD+dwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPxl+Nv7P37QHin41eNtXtfB+sa/HrXiS9vtC1yzubJNOOieds0CH+0Lm7gg0+TTdLjs7J4Lua3kt3tTjemyd/8APPxH8KvFTO/EbiTH0MgzDNIZjnGJxOWZnQrYaOEeW+15crpvF1a1KlhZYPAww+GdKvOnOlKhZc0VCpP/AEm8MfF3wiyHwy4Yy+vxFl2Uzy3JcNhc1yrEUMVPGLM/Zc2bVPqdHDVquLhjcdPE4pVcPTrQqxrr4Z88I9Ron7AnxS12GTU/F3jHw5omo3ZM8lsz6j4j1Ayvy39oXafY7Xzy+d7293qCMPm81iSK9rLfot8bZlTljM94gyjLsXXbqzouWLzbFe0lrL63XjGjQ9o5fFKlicUne/tG3JS8LNPpacCZXUjguHuHM5zPBYdKlCso4PJsIqcdI/U8PN1q/slH4Y1sNg5J6ciS5pfQ/wCzT+y/8RPgp481bXdb8Z6NeeGbnSLiwTSNDuNWb+17qaa3e3u9Usb2ytbO0awWF2hkhmvrjfIYY5UgkuC/6x4O+C3FnhzxPj80zLiHLsRk9bAVsLHAZZVx8vr9apUoypV8bhsThcPh6DwypylTnSqYqrzTdONSFKVVT/H/ABr8c+D/ABN4Uy/Kss4bzLDZ3RzGji5ZhmlLAR/s+hTp1o1sPgcVhcViMRiFi5VIKpCpTwtHlgqkqcqsafJ911/TR/KwUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8RP/AAdX+BG0/wDaA/ZS+JvkFU8XfB3xn4EFzt4lb4d+NYvEDQbu5tx8UVk254+0543V/bH0WMcqmQcVZZza4TOMFjuTsswwTw/N/wBvf2Y1t9nqfyh9IjBuGc8O4+2mJyzFYPm7vA4tVmvl/aCf/b3mf2K/s8ePE+KnwA+BvxOjn+0p8Rvg98M/HiXO7d9oXxf4L0TxAs27ncZRqG/Oec55zX8f8Q4B5Vn+eZY48ry7N8ywDi9OX6pjK2Ht8vZ2P6cyTGf2jk2UZgnzLHZZgMYpfzfWsLSr3+fPc9hrxz0woAKACgAoAKACgAoAKACgD+Bz9oYf8Nsf8HHum+CR/wATbw14d/ac+HHgG503/XxJ4V/Zu0jR734laYM7tsV1d+AvHVzc5yIJb65JXbHsr+8uHv8AjC/o51cb/CxOJ4ZzLHxqbN4riOtVp5bV9Ywx+BjHbmUI6q9z+Os7/wCMr8cYYX+LQoZ/gcHKG6WHyKnSlj6fpKWDxjl/K5y7I/vjr+DT+xQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9H+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP46P+Dgv9nbx98G/2nvhV+3f8OLa8tdJ8TDwZp+ueJ7GAzf8ACJ/Gb4XzRT+DtR1KTZ5cCa74X0rQotC83eJLzwZq8c0ieZZQy+lg5qVN0pbq9l3hLfrrq3f4bX63vH+C/pQ8K5nkHGOSeJWUwqQoYv8As+licZTjzfUuIMmkpYCrVktILE4Ohh1hubeeX4hNq8In7Xfshf8ABZP9jD9pL4caDq/jf4wfD/4C/FKHSrVfHXw/+K/ijTPAllp2uxQIuoy+FvFHim60/wAPeJtAu7lZ7jSHs9Wk1qOwMSazpmn3geGuaphasJNRjKpG/uuKu2ul0tU/lbs1Zs/oXgXx98P+Lcpw1fMM9yvhnOY0Yf2lled42jltOliYxSqvBYzGypYXGYWc+aVB067xCpcqxFKnUvA86/a0/wCC7X7Fn7Pej6jp/wAL/FEP7S/xLEMqaX4d+Gd4JPA9vdlT5Fx4h+J728/h1dMLK27/AIRIeL9U3CNJNPtoZlu0dPCVZ2clyR7y+L5Rs3fXqoX7qzieVxx9JLw+4Ww9Wlk2Mjxfm/K1RwmT1L5dGf2Z4rOOSphFR3v9RePrXSTpRjJTj/PN4a8Bf8FDf+C7Xxvh8VeKb6Tw78HPDWqTWjeJriw1LSfgb8IdMneJ7/SPBGiPcvL4z8cTWvkfaLeK/wBR8Tak50z/AISnxDomgJZXWn9jdHCQstZPp9uT83pZfcl0i27n8s4TLPFP6SfEUcbjarwmQYOtKH1uVKtQ4cyKlJp1aGXYd1ObMMxlDl5oqpVxdV+y+u4qhhVCdL+wn9jH9iP4GfsM/Cy3+Gvwb0Ii7vvst5448fawlvceNPiFrtvC0Y1TxDqUUUQS1tvMnTRdAsUt9G0OCedbG1F1d6je3vm1as6suaT0+zHpFeWr+b3fVuyP7w4A8O+G/DjJY5RkGGtOpyVMyzOuozzDNMTCLXtsXWSSUIc0lh8LSUMPhoykqcHOdWpL+Uz9ukjRP+Dh7wHq19+6s5P2l/2FtW82UfILG10X4FWdxMvT5Y5NPueR0kjY84xXoUv9zdv+fdZffz/5/qfxT4kf7P8ASoyyvU92m+L/AA3rc0tvZww/DdOc15RdKfzif2415Z/ogfhz+01/wWc0P9mD/goDof7Ifjn4Qy2nwy834f6b4v8AjPf+IprC40uf4i6VpmqWfinR9BOkyWep+DPDB1i0sPEdw+qR3zT2HiN7NTNo8NlqXXTw3tKLqKXva2gl2urPzdtNV0va6Z/OfF/j/huDvE/DcC5jkUoZRzZXRx/EFXFSpzoyzahRrU8ZQwzoOnWwGDdeFLFy9vGo5UsU6dpYdU6v7jVyH9GBQB/ER/wWI/4Kz/HD4tfE/wCL37I3w1/tT4R/Bj4d+M/FXw08b/Y5p7Lxr8WdR8Latd6DrbeINQQQ3Gk+Bby7srhdN8J2Bi/trTHW78U3Wox3sGiaN6mGw8YxjUl702lJdo31VtFr/eu7bJfaP87vHrxv4izvOM94Fyj22R5BlWYY3KMx9nKdPMM7rYKvPDYh4qquSVDLZ1Kc1SwVNx+s0Wp4ydWNWOHoflX+xh+1X8SP2P8A4iXvxX+EXwm+GHxB+IcGnPp2ieJPiL4Q8W+MrrwNBeRzW+p3PhW00HxZ4e07S9S1i1m+wXms3llfarFp/n6fpd7YWepavb6h0VKaqx5ZOSj1UdL9r6Sej/4N9HH8W8P+Nc24EzWpneRZHk+aZpGk6WHxma4DHY+eWwmpRrSwUMLjsNSo1a8JezqYidKpWVLmpUatKnVrxq/vF+zX/wAHI/xFi8faV4Y/bA+DXgiz8F6hqFvpuq+NfhJY+K9A1/wbHcSKh1nVvB3ifX/Fo8S2dnvEl/Z6Vf6FqUVkJbnT7XVryGHTL3kqYKNm6cnftLVPy+BNX9fuv7v9KcI/S0zVZnQwfHnD+XU8vq1YUq2Y5HTxuFxOAUml9Yr4DGYjHfW6cL81WnQq4WrGneVKnWnGNGf9auia3pHiXRdI8R+H9Ss9Z0HX9L0/W9E1fTriO70/VdI1W0ivtN1KwuomaK5s76ynhurW4iZo5oJUkRirKW89pptPRp2a7P8AD8vuP7gw+IoYvD0MXhatPEYbFUaWIw9elJTpVqFaCqUqtOcfdnTqU5RnCS0lGSa3NSkbBQB+bX/BQjx81tpfgv4aWc5V9Tnn8W63GrFWNnYmXTtEikA+/BcXj6rOyNhRPpts43MoKfx/9K3il0cFw7wdh6lpYypUz3MoJ2bw+Gc8JlsJWd5U6uIljqri1ZVMHSkuZr3P7S+iFwkq+O4l42xFK8cDSp8P5ZOSulicUqeMzOcLr3atHDRwFJSTv7PG1ouyl731f+zX8PE+Gnwc8H6HLbiDVtQsV8SeIMrtmOs66kd5NDccDM2nWps9IJHVNOTk9W/cvB7hOPB3h9kGWzpeyx+Lw0c4zW8eWo8wzOEMRUp1baOphKDw+Aur+7hI6v4pfgXjVxhLjXxH4izSFV1cvwmKlk2UWlzU1luVSnh6dSlvanjK6xOYWv8AFjJ/DpGPu1fpx+VBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUARyyxQRSTzyxwwwo8s00rrHFFGi7nkkkchURFBZ3YhVUZJAGamdSFKE6lScadOnGU6lSclCEIRTcpznK0Yxik3KUnZJNuyRdOnUq1IUqUJ1atSUYU6dOMp1Kk5O0YQhFOUpSbSjGKbb0Sd0j5z8Z/tZ/AnwU8ttc+M4PEGoQlg1h4Sgk8QMWThk/tC1C6Ikit8jRy6rG6tkFflcr+R8ReOvhlw5KpRrcRUs1xVNtPC5FSnmsm1vH61Rtl0Zp+64VMdCSlo0uWSj+ycNfR+8VeJo061HhqrlOEqJNYviCtDKIqMvhl9TrqWZyg17ynTwFSLjqparm+cdf/AOCiXh2FnXwv8Nta1FeRHPr+uWOisPRntNPsteDf9cxeLnP+sGBu/Is0+lnlNNyjknB+Y4tbQq5pmWGy5rtKVDCUM05v8CxEf8bP2bKfod5zVUZZ7xplmCe86WU5XisyT7qNfGV8pt/ieHlb+V3aPLrr/goH8VL66ih0PwN4KiEsyKlrPB4h1e7mBYfuYnttW00GRx8gZbYnnIjJwK+KrfSp43xNeFPLeGuHIc9RKNGrTzbHV6l2vcg6GPwl5y2TVF76Re0vu6H0ReA8LQqVM04p4mqclOTlXpVcny/D02l/EnGvl+MahHdp4iP+KzZ+qfhjU77WvDXh7WdU0ubRNS1bQ9J1PUNFuCxuNIvr+wgurvTJyyRsZrCeWS1kLIjb4juRSStf29k2MxOY5PlWYY3BVMtxmOy3A4zF5dWbdXAYnE4WlWr4Ko2ot1MLVqToTcoxfNB3jFtxP4LzzBYXLM6zfLsDjqeaYLL80x+CweZ0UlSzHC4XF1aGHx1JJySp4ulThXgoyklGorSkrSNyvSPLCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5bf+DqT4ef2t+y1+zb8Ukg8yXwN8d9U8FSSqu57ey+JPgPWNXmdiASkEl58NdPidjhDM9shJZkFf1B9FrMPZcUcR5W5WWOyKljUukp5dj6NJJdHJQzKo0t+Xma2Z/Pv0hsF7Th7IswSu8JnFTCN9Yxx2Dq1W9n7rlgIJu615VrdH6lf8EVviJ/ws3/gl7+yFrjT+dPonw91H4d3ClsyW/wDwq7xj4l+HdpBIMkpjTvDNlLCpxm1lgkUBHQt+X+M+X/2b4ncXUOXljWzCnmEe0v7TweGzCUl3/eYmaf8AeUk9Uz9B8K8d9f8AD/hms3eVHBTwL7x/s/FV8FFPe37vDwav9lxeiaR+pFfl5+ghQAUAFABQAUAFABQAUAYnibxDpfhHw54g8V65cC00Xwxomq+IdYumxi20vRbCfUtQuDkqMQ2ltNIcsowvJHJrfDYeri8Th8LQjzVsTXpYejFfaq1qkadOPXecktuvUyr1qeGoVsRWly0sPSqVqsv5adKDnOXyjFs/hT/4N3vDuqftD/8ABUn4v/tJeKIDLfeFvAfxf+LN5et+/wDJ8efGDxbY+HvJ81gpEt3o3i/xxL5/DOlrKm0iVyv9yfSFxFLh7wvyfhvCytDFY/KMphBaXwGT4SeIvbtCthMCuX+8n9lH8i+CdCpnfiDmee4hXnh8HmeZSlvbGZniYULX7ypYnFu99eVrW5/ePX8KH9fhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//S/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDiviL8OPAnxc8E+I/hv8TfCmieOPAvi3T5NL8ReGPEVjFf6Vqdm7JIqywyDdHcW1xHDeWN7bNFe6df29tf2FxbXltBcROMnFqUW01s1o/wCradfR3sefmuU5bnmXYvKc4wWHzHLcdSdHF4PFU1VoVqbadpReqlCUY1KVSHLUpVYwq05RqRhOP87Hxo/4NpPgJ4t8RXWr/BD4/wDjz4NaRe3Mlw3hTxP4Rsfi7pelrI2RY6Hfv4m8A6/DYQj5YBr2reI9QxzPqVwSCvbHHSStOCk+6fL9/vSX3fj9n+VeIPoicM47FTr8O8T5nkFCpNy+pYzA089o0U3/AA8NVeNyzFKnFaR+tV8VV/mqy2PVf2df+Ddb9kP4VatY+IvjN4u8cftGapYSxzQ6Fq8UHgD4eTTRNvjlv/DXh6+vfEOo7JVRvsd543l0i4jD2+oaZfQSOjTPGVJaRSh5/FL73K3/AJL819r2uFPoqcC5JXp4viDHZjxXXpSUo4auo5XlUpJ3UqmDwtWri6tpJP2dXMZUJxvCrQqQlJH70eFvCnhfwN4d0jwj4K8OaF4R8KeH7KLTdC8NeGdKsND0HRtPg4hstL0nTLe1sLC1jydkFtbxRqSxC5JNcjbbbbbb3b1b9b3/AD+8/pfBYLB5dhaGBy/CYbA4LC01Sw2EwdCnhsNh6Ufhp0aFGMaVKCvpGEYx1ulq+XfpHSfxO/8ABf8A0LV/gx/wUX+D3x40a3cf2/8ADn4aeOdPvGBSKXxh8LfGesafc2aPhgWtNM0rwhcSMMlRqEYKjClvUwbUqMovpKSfpJJ/jd/d5s/z0+k9hq/D/itkPEuHg/8AacqyjMqU3pGWPybMMRSnTT/uUaGAk7Wt7Vd7y/tE8K+JdH8aeF/DfjHw9dLfaB4s0HR/Euh3qY23ej67p9tqmmXS4LDbcWV1BKMMww/BPBrzGmm0902n6o/0CwWLoZhg8Jj8LNVMLjcNQxeGqLapQxNKFajNWurTpzjLR9ep/Jz/AMHOPwv0q08R/sqfGeztYo9a1zR/iP8ADTxDeBFWW50/w1eeG/E/hGFnAy4tZ/FPjNvnJ2C5UJwW2+hgZaVI9E4yXzun+S6/efxJ9MHJqMMVwVxBTgliMRQzbKMVUtrOlhJ4TGYGLdlfkljMwerdubS12f0i/sTfEC/+Kn7Hv7L3xD1a4e71rxb8BPhVq+vXUjF3ufEEvgvR016dnJZmM2sR3sm5yXIbL/PuriqrlqVF0U5W9L6fgf1n4eZpVzrgPg3Na8nPEY7hnJa+JnJ3c8VLL8OsTJt3b5q6qO7d+92z6frM+xPIdX/Z8+AniDxdd/EDXvgh8Idb8e3wtxfeN9X+GvgzUvF14LSKOC1F34kvNFm1m4FtBFFDb+deuIYo4449iIBVKc0rKckuyk7fcv8AL7zwq/C/DOKx080xPDuRYjM6vKqmY18owFbHVFCKjBTxdTDyry5IxUY81SXLFJKyVpep2NhYaZbR2Wm2Vpp9nCNsNpY20NpbRKABtjggSOKMYAGEQDAA4wKm7e/+f9f12Pap0qdGCp0qcKVOOkYU4RhCK7KMUktui++x/OX/AMHInwZ+Guq/sv8Aw6+ON1ZaLpfxV8IfFfRPBmka4IrW21rxN4T8U6H4juNW8KzTKsd1qsWnXmj6f4i0+Od7hdIhstaNpHAuq3ry9uCnLnlDVxcb+jT3+d7Pvp2P5R+lnkGUV+Dcq4jnTw9HOsBneGy+hieWEMRjMFjcNi518FKWlSsqVShSxdJSc1QjTxDhyKtU5/tX/gh7488Q+PP+Ca/wFm8SS3N1deE5vHngPTr663l7rw94V8da/ZeHYo2bg22jaMbPw7a7MIkGjxx/fRy2WKio15262l82te+71/yvY/Qfo6Znisz8I+GZYuU5zwMsyyylUne88LgsyxVPCRTe8MPh/Z4SFrJQw6W6k5frVXOfuAUAfjr8fo/+Fg/tnad4UvMTacniT4c+EjG5yo0yeHR77VE28jaJtV1Ntg+8Tzgt8v8An94pQXFf0h8HkeI/e4OOccI5E4S1X1KrTy/E46FtdPaY7GPl+1e7tf3f9G/CWb4R+jXjc/w16WNnkvGfECnHSX12lUzHC4Gd7bungMEuazskrX5T9iq/0BP85AoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPjL4p/ts/C/wAERappvhRp/HPiqxu7nTfsdpFc2Gh213bHy5Z7vWrm2EV3axShlT+x47/7W8TIs1tC6Xlfzzxt9I7gvhunjcJkUqvE2d4bEVsH9XoQrYXLaNei+SdWvmNakoV6EKnNGP8AZ8MUq8oNKrSpyhiD+k+A/oycc8UVMDjc/VLhbIcVh6ON+s4idDF5pXw9Zc9Olh8so1efD1503GUv7QlhfYQnGTpVakJ4eXxOD+09+13fsVa8j8IG5wRum8OfDvTNj/dIHmSa5c2jHnI17WYA/Jjhbav85L/iM/j3im068cg9tZ61Mo4SwbjL4d6s8yrUJb6ZrmFLm15ab93+m3/xA76PGFSaw8+IvY3TtSznjHG88N9VShldDER21ynLqvLpzVFaf1B4G/4J++BtMihuPH/ijWvFF8Ary2GiiPQNFViMvC8jC81a7RT8qTxXels4+YwLkKn7Twz9FbhnBwp1eKc6zHOsTpKeFy5QyvLk/tU5SccRjq6T0jVp18FJq7dKN7H4ZxT9LninG1KtHhLIstyPC3caeLzJzzbMml8NSMFLDYDDylvKjOhjlHZVZWbl9NeHv2cvgb4YWMaX8MfCkjxY2T6xYf8ACR3KsvR1ufEL6nOsmed6vuz0KY+b9kyrwi8NMmUVguDMjnKFuWpmGF/tesmtpKtm0sbVUtL80ZJ32tufiGceMvilnkpvHccZ/CM781LLsW8moNP7LoZRHA0nDpyyg494nrWn6PpOkRCHStL07TIQMCLT7G2sogB2EdtFGoHtj6Zwdv3eEwGAwEPZ4HBYTBU0rKGEw1HDwt25aMIRt8n5W1Pz/GZjmGYT9pj8djMdUvf2mMxVfEzv35q86jv8/v8As6NdZxhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB+N//AAXx+F//AAs3/glz+0K8Fv8AadV+HU3gD4oaSNm/yf8AhF/HegweILjIyyeT4M1XxM28Djo+2Muy/sPgNmf9meJ/D3NLlpZisfllXW1/rWBxDw8eid8ZSw2j9VdpI/MPGPL/AK/4fZ01HmqYF4LMKXl9XxlGNeXXbC1MQ/ztufIP/Br98UP+Er/YX+JXw2urjzL/AOFHx/8AEIs7fdn7N4Y8deFfCuv6b8pJK+d4kg8ZvwAhxkZcvX1/0nMr+q8cZbmUY2p5rkGH55W+LE4HFYrD1NdnbDSwa7rruj5nwAzD6zwjj8BKV55dnNbljf4cPjMPh61PS7tevHFPZJ+bTP6Tq/m8/dQoAKACgAoAKACgAoAKAPzl/wCCufxX/wCFMf8ABNj9sLxmlz9kur34Paz8PNPnV9k8eo/Fy8sPhVZSWpBDi5gn8ZpcwvH88LQeeCoiZ1/RfCXKv7Z8SOEMG488IZxRzCpF/C6eUQqZrNS/uyjg+Vp6S5uXqfD+JOY/2XwLxPilLllPLKuCg+qnmUoZdBxtqpReK5k1e3LfpeP4pf8ABqh8KP7N+Df7V3xwntst4y+JXgf4W6bdyL80cfw48MXvivV4rZiMiO5k+KGjm62nbI9jbA5aA7f2j6U+a+1znhXJIy/3LLcdmlSC6vMsTDC0nLW14rK6vLpdKctuZc35V9HfLvZ5XxHmzjrisfhMvhJrVLA4eWJqqL7SeYUua27hG+x/WPX8pH9GhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP56v+Diz9mvVPit+yt4E+OHhjR7zVtf/AGefGl5NrqafaS3U9v8ADX4hWtlpvibUpI7aKWd4NH8R6H4Ku7iRlNvp+lyavqFxJBBDPJXZgp8tSUG7Ka0/xLZfNN9NdNrH8t/Ss4RrZ3wVlvEWDw9SviuFswqSxKpQlOUMozSEKOMrOME5ONDF4bLpzbvClRlXqycYxmz7S/4I0ePvHPxC/wCCcv7Ol94/0bVdL1Tw1oOreA9Fu9Vt5rX/AISHwT4L12/0HwPrWnxzhZX0weFrXS9Gt7kjy72TR57y2LWs8DNniYqNadurUvRtXd/O938z9B8AszzLNPCjhSpmmHr0a2EwtbLcPOvGUPrWX5fiauGy7EUlK0nR+pQo0IzelR0JVIXhKDPkP/gv9+yv+0B+0x8HPgK/wG+G+t/E+68BfETxHP4o0HwvHHe+IrSz8TaHYWOmarbaUZI577TYLvT5rbU5bTzZbA3dnczQixF3dWmmDqQpynztR5krN7aXur9N/nb0PhPpO8F8T8X5Bwy+GspxGcVMszXFyxmGwaVTF06eMw1OnRrQo3UqlGNSk4VnT5pU+enOSVNVJw/Vb9hz4W+LPgl+x9+zb8J/HllHpvjXwJ8H/BOgeK9Miu7e+TS/EFvo9u+q6X9ttJJrO6fTb2Waxlns557OWSBntbie3Mczc9WSnUnJbOTa31XR666/gftXhzkuN4d4E4SyTMqao5hluQ5dhsbRjUjVVHFRw8XXo+0g5U5ujUcqTlTlKm3C8Jyhyzl9U1mfaHxD/wAFEf2qPGH7GX7Kvjz4+eBfhx/ws3xD4ZvPD+n22j3TX8eg6RFrurW+mzeKPFUmlqdQXw9oyzA3KWsto9zeXFjaSahp0E819b60aaq1FBy5U7u/V26K99X6dOp+d+KnGmP4A4KzPibLcp/tjFYOeFpQw83VWGoRxNeFGWMxro/vVhcOpe+oODlUlSg6lKMpVI/y2Xv/AAcKf8FFfiY7aD8M/hR8FNN1O4HlW7eB/hh8Q/GHiRJZPlQwW2q+PfEenSvuI8tH8PyBn4ZZAQleh9TorVudvOSt96pw/r5o/jOp9KXxWzhvC5PknD1KtPSLy3Js1x+LUnouWFfM8VRk+yeFlrve65ef8L/sGf8ABWb/AIKnfEfw74x/aqv/AIgeBvAdnOSfGfxu0oeCdM8MaPeyRS6gvw3+CdpaeHrqXUNRtYo3gm07wzoGi6u9tZDWvFMCrbzqOrh8PFqnyt/ywd7vzlfp5yb7JaqXNg/DTxv8Z82wmP41q5pluWU5f7/xFQ/s6jg6FRxlVWU8OwhhJurWhFOEqWDw+HruNP6xjI2jM/ss/Z6+BXgP9mb4LfDv4E/DOzntPBfw38PQ6HpRvHjl1DUZ3nn1DWdd1WWGOGCbWPEWuXuo69q8sEFvbyalqN01vbW0JjgXzJzc5SnLeTu/0S30S0Wrsustz++uFuG8t4Q4fyrhvKKcqeX5RhY4ah7Rp1asnKVWvia8oqMZYjF4ipWxNeUYxg61WbjCMWoR9lqT3woA/MHxT8JPiM/7bOm+KrLwlrN14XufFvhjxKPEkdjO+hRaVYaXpi6q1xqiobK2uraa0u7ZLK4lju5plg8mJ0urd3/i/O+BOLpfSOwed4bIswrZLWz3Jc5/tiOGnLLIYHC4LBLHOrjVF4ejWo1KFejHD1asMRUqRpezpSVam5/3JkXiDwbH6MeNyHFcQZbQz2jw/nmSf2LPE0o5rPH4rH454BUcC5LE16FaniMPXliqNKWHpU3V9pVUqFWEf0+r+0D+GwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPjjRf2Hfgzpfi258S3g17XrFryS9svC2q3ts2hWskspmEM/wBltbe/1G1t3IW3tru7aJoR5WoDUAzs38+5d9Gvw8wWe1s4xCzTM8NLETxOHyPHYii8soTnN1FTqexw9HFYuhSlaNGjXruEqa5MX9bvKUv6PzP6UXiVjuH6OSYZ5TlWKjhoYXE59l+FrLNa8IQVP2lJ18TWwmDr1oputWw+FjONR+0wbwbjBR+vrOztNPtbexsLW2sbK0hjt7Wzs4Ira1toIl2RQW9vCkcMMMagLHHGioijCqAAK/faGHoYWhSw2Fo0sNh6FONKhh6FOFGhRpQSjCnSpU4xp06cIpRjCEYxirJKy93+dsRiMRi69bFYuvWxWJxFSdaviMRVnXr16tR806tatUlKpUqTk3Kc5ylKTd5O797A13xv4L8L3FvZ+JvF/hfw7d3cfnWtrruv6TpFxcwhzGZbeC/u7eWaMSApvjVl3gruBGK8rM+JOHclrUsPnOf5LlNevB1KFDM80wOArVqfNy89Kniq9KdSCknFyhGS5la6aPWyrhjiXPKNbEZJw9nmcYfDz9nXr5VlOPzCjQqOKn7OtVwmHrQpz5Wpck5Rk4tPazLmm+JvDesgHSPEGh6qG+6dN1awvg30NrPKD27/AJ5rowedZPmNnl+bZbjk9vqeOwuKv6OhVqX+X43vHnxuSZ1lt1mOUZpgHHdY3L8Vhbevt6VO3zX36lrUtZ0fRoWudX1XTdKt1G5p9SvraxhVf7zS3UsUYHuTj64G3bF5hgMvputj8dg8FSiryq4vE0cNTS7udaUIped/yRhgstzHMaqo5fgMbj60naNLBYWtiqrfZU6EKkm9dkvv+zPY39jqlpb6hpt5aahYXcYltb2xuIbu0uYjwJbe5t3khmjJBAeN2U46nHy64bFYbG0KWKweIoYvDV489HE4arTr0K0Hop0q1KUqdSLd1zQlJef82WKwuKwOIq4TG4bEYPFUJunXw2Ko1MPiKNRbwq0asY1Kc1fWM4xa7arlt1uc4UAFABQAUAFABQAUAFABQAUAFABQAUAFABQB4Z+098K1+OX7N/x9+DJjSWT4q/Br4l/D61Em3Ed94t8Haxoen3CM2BHNa317b3MEuQYZoY5VKsgNe5wzmryPiPIc5u0sqzjLcwlbrDCYyjXqRdk7qcISjJWd4tqzvY8jP8u/tfIs5yuybzHK8fgo36TxOFq0YSV9nGc4yT6NJ9D+QP8A4NWvis+gfHz9qj4EX0j27+Ofhd4T+I9pZ3W6No9Q+FXiu58M6hBDFJgx3ctt8VI3uoQqzSQ6YHdSlmxT+uvpS5Uq+Q8LZ7BcywOaYvLpzjZp081wkcTTk2r3ipZU1B/CnV0d52l/NH0ecy9jnPEOTzbTxmX4bHRjLS08uxMqE4pPaTjmKckndqnd3UD+2+v4pP6uCgAoAKACgAoAKACgAoA/m8/4Oe/in/wiH7B3gL4b2tz5d/8AF34+eF7S8tt+37R4X8EeHPE/irUpNo5k+z+JYfBnykbB528sHVFb+jfoy5X9c47x2ZSjenlGQ4qcJfy4rG4jC4Wmv+3sNLGdfs9T8M8fsw+rcH4PAxlaeZZzh4yjf4sPhKGJxFR+fLXWF++/Y+p/+CAXws/4Vj/wS7+A1zcW32XVfidqfxE+KerJs2mT/hIPG+s6V4euSSAZPtPgzw/4ZnDkDAcIpZER2+W8fM0/tPxPz2MZc1LLKeX5XSfb6vgqNXER8uXG4jFR+V3ufQ+DWX/UPD/J5OPLUx9THZhV8/bYurToS8+bC0cO+lttdz9nK/Gz9SCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//9T+/igDy74t+O9Q8AeGYdU0uyhu7281KHToXu1leztfMgubhp5kheJ5GK25jhjEsYLvvZmWNo3Coq7t/wAH9Y/n91vePhJ471Dx/wCGZtU1SyhtL2z1KbTpntFlSzuvLgtrhZ4UmeV42C3AjmjMsgDpvVlWRY0AkrO3/A/WX5/ff3fUaCQoAKACgAoAKAMbxFqx0LQdZ1pbZ7xtK0y91BbVDtac2lvJOItwDFFcph3CtsTc+1sbaBrVpd3/AF2/P7jw74QfF/XvHmvajoutadp8ax6fLqVrdaZFcwrbrDcW8DW1ys9xcB1cXKmKYMjB4yjrJ5itEFSikrpvftb/ANul+X33936KoICgAoAKACgAoAKAPlz/AIXrr/8Awsv/AIRf+xbL+xf+Ej/4RzyfLuf7X/4/v7P+3ed53keZ5v8ApH2b7Ns8n9x5vmf6RQaci5b3d7X2/wDt/wBPl0PqOgzCgAoAKAAjPB5B4IPegBAAAAAAAAAAMAAcAADgADoB/SgBaAPnX4v/ABf17wHr2naLounafIsmnxaldXWpxXMy3CzXFxAttbLBcW4RUFsxlmLOxeQIix+WzShcYpq7b37X/wDbo/l91ve9x8O6sdd0HRtaa2ezbVdMstQa1c7mgN3bxzmLcQpdUL4Ryq702vtXO2gl6Nrs/wCu/wCf3mu6JKjxyIskciskkbqHR0cbWR1bKsrKSrKwwQcHINBLSaaaTTVmnqmnumuqaI4Le3tY1htYIbaFfuxQRJDGv+7HGqqOAOg/LGKBRjGCUYRjCK2jFKKXolZfh9xNQUFABQAUAeXfFvx3qHgDwzDqml2UN3e3mpQ6dC92sr2dr5kFzcNPMkLxPIxW3McMYljBd97MyxtG4VFXdv8Ag/rH8/ut7x8JPHeoeP8AwzNqmqWUNpe2epTadM9osqWd15cFtcLPCkzyvGwW4Ec0ZlkAdN6sqyLGgElZ2/4H6y/P77+76HNqmmW97babcajYwajeq72dhNd28V7dpGCZHtrV5FnnWMKxdokcKFJbAFc1TG4OliKODq4vDU8XiFKWHwtSvShiK8YJucqNCUlUqqCTcnCMlFJt2s2dFPA42thq2NpYPFVcHhpRjiMXTw9WeGw8pu0I1q8YulSlNtKKqSi5N2jfYvV0nKFABQAUAFAGN4i1Y6FoOs60ts942laZe6gtqh2tObS3knEW4BiiuUw7hW2Jufa2NtA1q0u7/rt+f3Hh3wg+L+vePNe1HRda07T41j0+XUrW60yK5hW3WG4t4GtrlZ7i4Dq4uVMUwZGDxlHWTzFaIKlFJXTe/a3/ALdL8vvv7v0VQQFABQAUAFABQAUAfLn/AAvXX/8AhZf/AAi/9i2X9i/8JH/wjnk+Xc/2v/x/f2f9u87zvI8zzf8ASPs32bZ5P7jzfM/0ig05Fy3u72vt/wDb/p8uh9R0GYUAFABQAUAFABQB86/F/wCL+veA9e07RdF07T5Fk0+LUrq61OK5mW4Wa4uIFtrZYLi3CKgtmMsxZ2LyBEWPy2aULjFNXbe/a/8A7dH8vut73uPh3Vjrug6NrTWz2barpllqDWrnc0Bu7eOcxbiFLqhfCOVXem19q520EvRtdn/Xf8/vNmgQUAfIP7b/APwk0fwNubvw5fX9jFY+J9Dn8Rtp881u8+gSx39iYJ3hZZDanWbzRpZU3BCYkMgKA7fwP6SX9sw8Na2IyjE4rDU8NnWW1c3lhKlSlKplVSGKwzpVZU3GTovMcRl1Scb8rdOLleKal/RP0X/7En4pUcPnOFwmKqYrI80pZMsXSp1Y0s2pywuKVWlGreKr/wBm4fMqdOVnNKpJQtJo+OPhh8CbH9qPwrpviN/irfab448K2KeF/FGm6zpbeJJ5bWyubp/DWo20za3pd1a2D6JLbad+8jvVlvtNvXEquXRf584L8MsN415JhM3lxxicJxLkmGjkudYPMME84qToYetXeTYujUlmODr0cLLLp0cH78cRGpicHiZqcZucZf0fxz4q4rwKz7G5NHgLC43hfPsVPPMjxuXY9ZLSp18TRw8c7wdelHLMdQr4uOZwrY33Z4eUMLjcNF05QUZR3dS/4J5eP4mI0jx74PvlH3TqVrrWlMfqttbayF/B3/DPzenjPon8Uwb+ocUcP4ldPrlDMcC36qjQzC3ycjycF9MHhKol/aHCfEWFf2lgsRlmPS9HXr5a5fOMfUqWH/BPX4myTKuqeNfAlnAWw0lg/iDUZlXuVguNH0tGb/ZNwgP98Vjhfoo8ZTqJY3iPhnD0r+9PCyzXGVFHuqdXLsDFvydVeulzoxf0v+CIU28DwzxViattIYtZRgqbl0TqUcyx8kv7ypS/wu1z7G0zRLr9lv4M6R4b0e+bxXqDa5cq+q6lay22nwXWqfab6d4dOhvJ3t7ZFtvKt7X7c3mXMk15LKS7wN/W3hvwPT8PeFcJw3DMq2ayoV8Viq2Lq0vq8JVsXU9pOGGw3ta/1fDw05aftqjlUdStJqVWUY/xx4m8d1PEri/G8UVMso5RGvh8LhaODpVfrM40MHSVKnPE4r2eG+s4id3zVfY0lGmqdCMHClGcvXPhJ471Dx/4Zm1TVLKG0vbPUptOme0WVLO68uC2uFnhSZ5XjYLcCOaMyyAOm9WVZFjT7w/PpKzt/wAD9Zfn99/d9RoJCgAoAKACgAoAxvEWrHQtB1nWltnvG0rTL3UFtUO1pzaW8k4i3AMUVymHcK2xNz7WxtoGtWl3f9dvz+48O+EHxf17x5r2o6LrWnafGseny6la3WmRXMK26w3FvA1tcrPcXAdXFypimDIweMo6yeYrRBUopK6b37W/9ul+X33936KoICgAoAKACgAoAKAPlz/heuv/APCy/wDhF/7Fsv7F/wCEj/4RzyfLuf7X/wCP7+z/ALd53neR5nm/6R9m+zbPJ/ceb5n+kUGnIuW93e19v/t/0+XQ/i9/ZQYfsR/8HFus/Du5/wCJP4W8RftHfFr4W21if3Al8J/Hmx1vUPhJY/wqQ2oeJ/hzcJhdlw0CCFE82Mp/efFa/wBdvo70cwj++xWG4dynNJVF71sXkU6NPNp9dVTw2Yxevu3d27e9/GvDj/1U8bquCkvZYevnmZZfGG18NnEKs8th0Xx4jAyWlpWVkrrl/vlr+DD+xgoAKACgAoAKAPnX4v8Axf17wHr2naLounafIsmnxaldXWpxXMy3CzXFxAttbLBcW4RUFsxlmLOxeQIix+WzShcYpq7b37X/APbo/l91ve9x8O6sdd0HRtaa2ezbVdMstQa1c7mgN3bxzmLcQpdUL4Ryq702vtXO2gl6Nrs/67/n95s0CPx2/wCCvH/BK/Uv+CnPhf4H6doPxlh+Eet/BrxH4vvFbVPDNx4p0DXtE8e2/hi21prixs9Y0a6i1zRf+EUsJ9Cl+0NazR3mrWF19m+2RX1r+weEfilT8M8VndSvkzzehnGGwkGqWJjhcRQr4CWKlQ5ak6VaLoVvrU411yqUXGlUjzcjhL8x8SvDyfH2HymFHNFltbK6+JkvaUJYijWpYxYeNVyhGrRarUvq0JUW24tSq03y8ynH9MfgP8ItA+AHwT+EnwN8K3FxeeHfhD8OPBnw40i/vI4or3U7Lwd4fsNBj1W/jhxCNR1X7CdR1Ax/I15dTsuQQa/NM9zfEZ/nWbZ5ioxhiM3zHG5jWpwblClPGYipXdKm5a+zpc/s6d9oRiux97k+WUcmynLcow7lKhlmBwuBpTkkp1I4WjCiqk1HT2lTk9pO2jnJvqesV5R6IUAFAHl3xb8d6h4A8Mw6ppdlDd3t5qUOnQvdrK9na+ZBc3DTzJC8TyMVtzHDGJYwXfezMsbRuFRV3b/g/rH8/ut7x8JPHeoeP/DM2qapZQ2l7Z6lNp0z2iypZ3XlwW1ws8KTPK8bBbgRzRmWQB03qyrIsaASVnb/AIH6y/P77+76jQSFABQAUAFABQBjeItWOhaDrOtLbPeNpWmXuoLaodrTm0t5JxFuAYorlMO4Vtibn2tjbQNatLu/67fn9x4d8IPi/r3jzXtR0XWtO0+NY9Pl1K1utMiuYVt1huLeBra5We4uA6uLlTFMGRg8ZR1k8xWiCpRSV03v2t/7dL8vvv7v0VQQFABQAUAFABQAUAfLn/C9df8A+Fl/8Iv/AGLZf2L/AMJH/wAI55Pl3P8Aa/8Ax/f2f9u87zvI8zzf9I+zfZtnk/uPN8z/AEig05Fy3u72vt/9v+ny6H1HQZhQAUAFABQAUAFAHzr8X/i/r3gPXtO0XRdO0+RZNPi1K6utTiuZluFmuLiBba2WC4twioLZjLMWdi8gRFj8tmlC4xTV23v2v/7dH8vut73uPh3Vjrug6NrTWz2barpllqDWrnc0Bu7eOcxbiFLqhfCOVXem19q520EvRtdn/Xf8/vNmgQUAFABQAUAFAHl3xb8d6h4A8Mw6ppdlDd3t5qUOnQvdrK9na+ZBc3DTzJC8TyMVtzHDGJYwXfezMsbRuFRV3b/g/rH8/ut7x8JPHeoeP/DM2qapZQ2l7Z6lNp0z2iypZ3XlwW1ws8KTPK8bBbgRzRmWQB03qyrIsaASVnb/AIH6y/P77+76jQSFABQAUAFABQBjeItWOhaDrOtLbPeNpWmXuoLaodrTm0t5JxFuAYorlMO4Vtibn2tjbQNatLu/67fn9x4d8IPi/r3jzXtR0XWtO0+NY9Pl1K1utMiuYVt1huLeBra5We4uA6uLlTFMGRg8ZR1k8xWiCpRSV03v2t/7dL8vvv7v0VQQFABQAUAFABQAUAfLn/C9df8A+Fl/8Iv/AGLZf2L/AMJH/wAI55Pl3P8Aa/8Ax/f2f9u87zvI8zzf9I+zfZtnk/uPN8z/AEig05Fy3u72vt/9v+ny6H1HQZhQAUAFABQAUAFAHzr8X/i/r3gPXtO0XRdO0+RZNPi1K6utTiuZluFmuLiBba2WC4twioLZjLMWdi8gRFj8tmlC4xTV23v2v/7dH8vut73uPh3Vjrug6NrTWz2barpllqDWrnc0Bu7eOcxbiFLqhfCOVXem19q520EvRtdn/Xf8/vNmgQUAFABQAUAFAHl3xb8d6h4A8Mw6ppdlDd3t5qUOnQvdrK9na+ZBc3DTzJC8TyMVtzHDGJYwXfezMsbRuFRV3b/g/rH8/ut7x8JPHeoeP/DM2qapZQ2l7Z6lNp0z2iypZ3XlwW1ws8KTPK8bBbgRzRmWQB03qyrIsaASVnb/AIH6y/P77+76jQSFABQAUAf/1f7+KAKWoabp+rWkthqlla6hZTgCa0vII7m3k2sGUtFKroSjAMjYDI4DKQwBoANP03T9JtIrDS7K10+ygBENpZwR21vHuYsxWKJUQF2JZ2wWdyWYliTQBdoAKACgAoAKACgBCAwKsAysCGUjIIPBBByCCOCCOfegDH0nw7oOhG5bRdG0zSmvHD3TafY29oZ2XJXzTBGhZULMUQnYm5tirubcDu3vf77/ANf12NmgQUAFABQAUAFABQBi/wDCOeH/AO1v7e/sXS/7b27f7V+w232/Gzy8/avK87f5X7rzN2/yv3e/y/loHd7a29f0NqgQUAFABQAUAFABQBjat4d0HXTbNrWjaZqrWbl7VtQsbe7MDNgt5RnjcqrlVLoDsfau9W2rtB3a2v8Afb+v67mwAFAVQFVQAqgYAA4AAGAABwABx7UCFoAKACgAoA5/xD4t8K+EbeG78V+JvD/hm1uZTDb3PiHWdO0W3uJlXe0ME2pXNtHLKE+YxxszhecAHcvlZtnuR5DSp188znKsloVpunRrZtmGEy6lVqJczp06mMrUYTmo6uMXKSWtusfXyfh/PuIa1TD5Bkmb55iKMFUrUMoy3GZlWo02+VVKtPBUK86cHL3VOcVFvRXaseVa5+018BfD8by3vxP8M3QQE7NDuZvEcjnsqJoEGpkkkYBwFGcsVB3V8PmXjL4YZVCU8Txpk1bl+zltaebzk10jHKqWMbbel/dit27an3uV+CHixm84ww3A2eUHJ25s0o08mhFdXKWbVcEkktf5tLKMm7HzD8Q/29PhtLZ3ek+GvAep+NopR5bt4m+x6NokpB3RzLbtFq9/crGwEipNZ6dLvUbZI2CyL+Q8Q/Sr4ZwinS4ayDM85qq8Y4jMKlLKcFfpOCj9dxlWK3cKmHwcnqlJX5j9o4a+iJxVjHTrcUcRZVkdF2lLDZbTrZxjrdac5S+o4KjJ7KdLEYyEd3GfwHztB8cv2n/i5H/wj/wu0O78O6EjNAun/DHw7JpdlZh2JBu/E0v2i406VixaacavpsUsrmRlDFQv5LW8VvHLxKqzwnC+Fx2Dws5OnKnwpl1bDwpX0i8Rnld16+Emk9aizHB03J39nD3Ix/YqHhD4BeF1KnjOLcZgMbjIRVSNTi/M6OIqVmvi+rZBh1h6GLhdXjTeXY2pGKs6krSlL1P4T/sX/FOXxn4f8ffE3xVBo9xpWt6Zr89rBqdx4h8VXtzpt3FepBdaokv2C0aaSFI3vIdT1WRELkRAhC313Av0d+NqnEOVcU8Z53Sy+rgsywea1KFPGVc1zzEVsHXp4iNOtjYzeFoSqTpxi8TTxmNnGPM1SbUeb43j/wCkrwHDhvN+EuCMhq5jRx+V47KaVergaOT5DhqONoVMNKrh8BKH1uuqcKkqkcPUwWChKXInUV5I/Umv7XP4TCgAoAKACgBCAwKsAysCGUjIIPBBByCCOCCOfegDH0nw7oOhG5bRdG0zSmvHD3TafY29oZ2XJXzTBGhZULMUQnYm5tirubcDu3vf77/1/XY2aBBQAUAFABQAUAFAGL/wjnh/+1v7e/sXS/7b27f7V+w232/Gzy8/avK87f5X7rzN2/yv3e/y/loHd7a29f0NqgQUAFABQAUAFABQBjat4d0HXTbNrWjaZqrWbl7VtQsbe7MDNgt5RnjcqrlVLoDsfau9W2rtB3a2v99v6/rubAAUBVAVVACqBgADgAAYAAHAAHHtQIWgAoAy9b0XS/Emj6noGt2UOo6RrFjc6dqVlOCYrmzu4mhnibBVlLIx2SRsskbhZInWRVdeLMsuwWb5fjcrzLD08XgMww1bCYzDVU+Sth68JU6kHb3k3GT5ZwanCVpwlGaUo92WZnjsmzHA5tlmJqYPMcuxVHGYLFUmlUoYnD1I1KVSN04ytKK5oTUoTjeE4yhJxPyY+IX7MPxl+BHiaXxx8FtQ1zWdFtnlltLzw+xfxTpVo7+Y2n61o0SsNcsgqqs0tpZ3tneRxGXUNOsV2o38KcV+DHiF4Y5xPiXw7xeZ5jl1GU50MRlTcs7wNCT5pYXMcuhH/hSwyUVGpOhRxGHrwg6mLwuGjyxl/oFwh44+G3irklPhbxLwmV5bmdeNOniMPm8VHIcfiIx5I4vLcznKLyvFNtyp069fC4jDTqKnhMbiXecfT/g3+3a899a+GfjRpsGnytMtkPGWlW8ltDbzhvLJ8R6KQxth5m4XF9pe2OBsB9JhiEtxF9p4ffSblVxVHJvETB0sJOVRYf8A1gwNGdGnRq83J/wr5bduiua/tcTguWFJ2UsBGCnUh8N4kfRVjSwlfO/DTG1cZCNN4l8N4+vCvUrUnHnX9jZnyxVZ8lnRwuN5p1k245hOo4UZ/pPBPBdQQ3NtNFcW1xFHPb3EEiSwzwTIJIpoZULJJFLGyvHIjMjowZSQQa/sGlVp1qdOtRqQq0qsIVaVWlONSnVp1IqUKlOcW4zhOLUoTi3GUWmm00z+LKtKrQq1KFanOjWo1J0q1KrCVOpSq05OFSnUhJKUJwknGcJJSjJNNJpor6hpun6taS2GqWVrqFlOAJrS8gjubeTawZS0UquhKMAyNgMjgMpDAGrMw0/TdP0m0isNLsrXT7KAEQ2lnBHbW8e5izFYolRAXYlnbBZ3JZiWJNAF2gAoAKACgAoAKAEIDAqwDKwIZSMgg8EEHIII4II596AMfSfDug6EbltF0bTNKa8cPdNp9jb2hnZclfNMEaFlQsxRCdibm2Ku5twO7e9/vv8A1/XY2aBBQAUAFABQAUAFAGL/AMI54f8A7W/t7+xdL/tvbt/tX7Dbfb8bPLz9q8rzt/lfuvM3b/K/d7/L+Wgd3trb1/Q/hd/4OL/Bmtfs8f8ABS74MftReDofsl/448D/AA1+I9hqe1ohJ8TPgh4n/sRv3icubHw9ovw3kMgbzUE4TaqpE7f3T9HfG0eIfDbOeF8Y+aGBxuZZdOnvbLc7w3tlo/58RWzFWtZ8t9bs/kHxvwtXJOPMr4gwq5Z4vCYDHQqd8flOI9l2XwUaWBd+ZvW3upI/uP8AAPjTRfiR4E8FfEPw3N9p8O+PfCXhzxpoFxlW8/RfFGj2euaXNuUlT5tjfQPlSVO7IJBBr+Icfg62XY7G5fiY8uIwGLxODrx25a2FrToVY2eqtOnJan9aYPFUsdg8JjaD5qGMw1DFUZfzUsRShVpv5wmmdbXIdIUAFABQAUAY2reHdB102za1o2maq1m5e1bULG3uzAzYLeUZ43Kq5VS6A7H2rvVtq7Qd2tr/AH2/r+u5sABQFUBVUAKoGAAOAABgAAcAAce1AhaACgAoAKACgAoApahpun6taS2GqWVrqFlOAJrS8gjubeTawZS0UquhKMAyNgMjgMpDAGgA0/TdP0m0isNLsrXT7KAEQ2lnBHbW8e5izFYolRAXYlnbBZ3JZiWJNAF2gAoAKACgAoAKAEIDAqwDKwIZSMgg8EEHIII4II596AMfSfDug6EbltF0bTNKa8cPdNp9jb2hnZclfNMEaFlQsxRCdibm2Ku5twO7e9/vv/X9djZoEFABQAUAFABQAUAYv/COeH/7W/t7+xdL/tvbt/tX7Dbfb8bPLz9q8rzt/lfuvM3b/K/d7/L+Wgd3trb1/Q2qBBQAUAFABQAUAFAGNq3h3QddNs2taNpmqtZuXtW1Cxt7swM2C3lGeNyquVUugOx9q71bau0Hdra/32/r+u5sABQFUBVUAKoGAAOAABgAAcAAce1AhaACgAoAKACgAoApahpun6taS2GqWVrqFlOAJrS8gjubeTawZS0UquhKMAyNgMjgMpDAGgA0/TdP0m0isNLsrXT7KAEQ2lnBHbW8e5izFYolRAXYlnbBZ3JZiWJNAF2gAoAKACgAoAKAEIDAqwDKwIZSMgg8EEHIII4II596AMfSfDug6EbltF0bTNKa8cPdNp9jb2hnZclfNMEaFlQsxRCdibm2Ku5twO7e9/vv/X9djZoEFABQAUAFABQAUAYv/COeH/7W/t7+xdL/ALb27f7V+w232/Gzy8/avK87f5X7rzN2/wAr93v8v5aB3e2tvX9DaoEFABQAUAFABQAUAY2reHdB102za1o2maq1m5e1bULG3uzAzYLeUZ43Kq5VS6A7H2rvVtq7Qd2tr/fb+v67mwAFAVQFVQAqgYAA4AAGAABwABx7UCFoAKACgAoAKACgClqGm6fq1pLYapZWuoWU4AmtLyCO5t5NrBlLRSq6EowDI2AyOAykMAaADT9N0/SbSKw0uytdPsoARDaWcEdtbx7mLMViiVEBdiWdsFnclmJYk0AXaACgAoAKAP/W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPmH9of9mmx+Pkvhq8fxdeeFb/w5Hf2yOulLrdldWmoPbyyKbJtT0pre6SW3QrdR3LCSM+XNBJsgeL8Y8WfB3DeKM8nxEs+xGSYrKIYqjGSwMcyw1ehipUpzTwzxmBdKvGdGNq0KzUoPlqUp8sJQ/cfB7xrxXhNTzvDw4fw2fYXOZ4StKMsdLLMTh8RhI1qcJLExweOVahKFeV6E6CcZ+/Tqw5qsJ+GaN/wTv8GwSI3iD4ieJtUiBG+PSNK0vQ2YdwJLyXxAFz/1zYjtzX5nl/0TuHqUovNeLc5xsF8UcBgcFlkpeSniJZty3/wP5aH6nmX0w+JKsJLKeDskwNRpqM8wzDHZpGPZuGHhlLlb/FFN/JH0N4O/ZR+BHgwxTWvgay1y+iIP2/xXLL4ikZlwVf7FfmTSInU/Mr2+mQMGwcggFf1jh/wN8MeHXCpQ4aw+ZYmFv9qzypPNpNx1jL6tir4CEk1dSpYSnK+ulkfj/Efj74q8SqdLEcU4nK8LO6+q5BTp5PBRl8UfrOEUcxqQa0ca2OqRa06tH0JbW1tZwRWtnbwWltAgjgtraJIIIYx0SKGJVjjQdlRVUdhz8v6vRo0cPShQoUqdCjSioU6NGEadKnBbRhTglGEV0UUkuy2PyCtWrYmrUr4irVr16snOrWrVJ1atSb3lUqTcpzk+spNt9SetDIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPzW/by8P/AAp/sHT/ABHa3OhWfxR/tu1s5bbTLmzGr6xpElvdfbJNb0+2fznWxaG2MGq3cQkiJTTxMyXEcafx79J7KuB/7MwmbUKuWYfjX+0qGHqUcHWw6x+YYCdGu688ywlGXtJLDShR9ljsRDnh7uFVWUasIQ/tX6KWb8ff2ti8mr0c1xHAv9mYjEQrY6jiHl+XZhCtQ+rwyzF14+zhLFKpWVbAYebhUXNi3TUqM5y+iv2OdR1fUv2ffBMmrtLKbV9c07TZ5yzSS6Rp+t31rYqC3JitFjfT7cDCpbWcMa5VQa/Wvo+4zH4zwq4cnj5VJuhLMsHg6lRtyngMLmWKo4aKb+xh1GWEopaRo4enFaI/HPpHYLLsD4vcTQy6NOCxEcrxuNpUrKMMxxmWYWvipNLRVMRKccXW3cq2InJ6ytH6fr9oPw0KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Zn/g6E+BH/Cc/sd/Cj47WFn5+q/Af4tppeqXIjz9i8D/ABb01NE1Wd5QCQH8aeHfh3aIjbY2N2x3B1RJf6W+jFnv1HjDNciqT5aWe5S6tKN/jx2U1PbUopf9gWIzCba19xKzTvH8F+kBk/1vhnLc3hG9TJ8y9nUl/JhMyp+yqO/niqGBjZ2XvXWqtL7c/wCCDfx2/wCF6f8ABMz4D/a7z7Z4g+Do8QfAnxB+83/Zf+Fe34Hg+z5JZPI+Gmr+BvkbG3efLHlFK+J8dsi/sLxLz3khyYfOPYZ7h9Lc39owvjJ9nfMqWO11v1966j9Z4P5v/a/AWT80+etlnt8or635fqU/9lh5WwFXCafcfsVX4+fpwUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAQ3Nzb2dvNd3c8Nra20Uk9xc3MqQW9vBEpeWaaaQrHFFGgLySOyoigsxABNZ1q1LD0qlevVp0KFGEqtatWnGnSpU4Rcp1KlSbUKcIRTlKcmoxim20k2aUaNbEVaWHw9KpXr1qkKVGjRpyq1atWpLlhTpU4JzqVJyajCEU5Sk7JN2R8P/ABU/bp+HvhCa50nwHYyfEHWIWaJ9QhuP7O8LW8g+UlNSaCe61Yxtz/xL7UWNwn+p1TndX828b/SY4UyGdbA8L4afFWYU24SxVOr9VySlNaPlxjjOtjuV6/7LQjhqsf4eNV2z+oeA/oscYcRU6OYcV4qHCOXVEpxwlSisZntaD1XNglOnQwCmtP8AbMR9apS/iYBWipfJOsfto/tG6jH/AMJDYppWgaAt4lqJNN8IrcaM07iV47KbU9aXVnNxJHDKTHFewTOIpXjRArBPwfMPpE+LmLh/auGjgcryqOIjRUsHkMa2XSqvnlDDVMbmP16TrThSqNwp4mFSShUlCMeV8n9BZd9Gnwawc/7HxU8fm+byw8q/JjeIXRzKNKPJGeJp4HLfqEVRhOrBKU8LWpxc4RnOTknL9OPgF8S7/wCLfws8N+N9VsINO1S//tCz1GCz8wWT3ml6hc6fLdWSys8sdvdfZxOIZJJWt3eS386cRLM/9meFvGOK474IyjiTHYWlhMdivreHxlLD8yw0sRgsVWws62HU5TnClXVJVVTnOboynKj7Sqqcak/4g8WuCcJ4fceZzwxgMXVxuAwn1PEYOriOX61HD4/B0cXToYlwjCnOtQ9s6TqQhCNaEIVvZ0nN04eyV+hH5uFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAQkKCzEKqglmJwABySScAADkknj2pNpJttJJXbeiSW7b6JIaTbSSbbaSSV229Eklq23sl+p+df7RX7alpoJvvBfwfurbUtaXzLXVPGyiK60vSnGUkg8Po6vBqt+hBDanIsumW2B9mj1CR/Ntf5L8WvpFYfK3iuHeAK1HGZiuejjeJFyV8FgZK8Z0sqi1KljcUnvjJqeCo2tRji5yc8P/AGN4OfRnxOarC8S+ItCtgsslyV8DwxJzw+Ox8XaUKubyi41cBhZK1sFBwx1a96zwcIqGI0f2EdL+IN/pHjH4heKPE2saloPiS+Fhpmn6vfahqE19qmnS+ZqXiJZb5nRELztpYmt3eS8uYL1LsR/2fa7+v6MeC4qxWA4g4rzrOcwxmWZvifqmDwuPxOLxVTE43CT58ZmyniZzjGPNVeBVSlKU8RWpYiNfl+q0Obi+lXjuEMJmPDnCGRZJl2CzXJcL9bx2My/C4TCU8LgcZD2eCydww0YTlNRorHOnWhGGHo1cLLDuX1quo/oJX9VH8ihQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAIwJUhTtJBAbGdpI4ODwcHnB60ndppOzadna9n0dtL2etr6+Q1ZNNq6TV1e111V9bXWl7aeZ+SevfsiftQ+ItZ1RtW8babrEV1fXUjapqfjLWfs9+kkrMLk2C2d1LapIpB+yC2C24/cxqY0Ut/COaeAvjTm2Y42WP4jweYQrYmtJ47G8Q5j7LFRnNtVfqyw9edCM07+w9go0v4cIOEY8/+guU/SG8C8ny3Axy/hjG5dUoYWhBYDA8N5b7bCyhBJ0frbxNCnXlTkmvbus3Vf72b55OJ1vgj/gnpei8t7n4i+OrI2UTq1xpPg+1uZZrtQQTGut6vDaC0B5VmGi3LlT8pjYBl97hv6KGIWIpVeLeJsN9WhJSq4HIKNapUrrRuCzHH0sP7BO1nJZdWk1t7OXvHz/E/0wMM8PWo8HcK4n6zOMo0cw4ixFGnToNqym8sy6riHiGrpqLzOhG/xKcVyn6UeH9A0jwtoml+HNAsYtN0bRbKDT9NsYdxjt7W2QJGm+RpJZZDgvLPNJJNPK0k00jyu7t/YWVZXgMky3BZRleGhg8uy7DUsJg8NTvy0qFGPLCPNJynOTtzVKlSUqlWcpVKkpTlKR/FWb5tmOe5nj85zbFVMbmWZYqrjMbiqtuetXrS5py5YqMKcVflp0qcY0qVOMKVKMacIxNiu884KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD5A/b++AR/ah/Yu/aV+BNvaC+1jx58KPEsPhO2ZA6yePNAgXxV8P2ZeTti8baFoErFfnAQmPDhDX13AOff6scZ8N57KfJRwGa4aWLkt1ga8nhcwttq8FXxCXTXW6bR8zxlk3+sHCufZQo89XGZdXWGi1e+Mox+sYLTR6YujRejvppY/mI/wCDVr9oD7B4t/ae/ZY1e7KDW9H8O/HLwdYSsYhFfeHruHwL8QgqPxJd3trrXw9cRIFmS30S7kKyRo7W/wDTX0pcg9phOGOKaUb+wrYjI8ZNK94YiDx2X6raEJUMwV22nKtFLlb978C+jznPJis/4eqSt7alQzfCwelp0JLB423eU41sE7bqNGT1Sbj/AGbV/G5/UYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfkh+0z8TPHvxp+L7/AbwK9wmi6drY8OjSoJzap4g8QWWZNVv8AW5htB0zRpYbgRQStJbW8OnTaq6NO8aQfwf4ycY8UeIvH0vDDhmVWOXYTMv7J+o0qvsI5rmuHvLHYrMql0vqeXVKdZU6U+ejShhJ45xlVlCFL/QfwR4J4T8NPDuPivxVGjLMsZljzj6/VpKvLKMoxFoYDCZZTs39ezKnUoupVhyV6tTGU8BCapRm6/wBO/CX9jX4Y/DWxj17x99h8b+IrS3N5e3etIkfhHR/Jj82drXSrphb3MNsqsX1DXDOGSMXMdnpxLov7PwJ9Hvgzg/DQzTij6txJm1Ck8RiK+YxjHIcv9nD2lWVHA17Uq1OilJyxeZuonGHtoYfCO8D8P8QfpI8cca4qeU8J/WuGMnxFX6thsPlk5z4hzH2k1TpRr4+h++oVKzceXCZX7NqU3QqYjGJxnL4//aN+LF3+0L488M/Cn4V2TX3hfR9T/s/QILKEQReIdckRrWTV0iCxx2mi6ZZieKwlkREt9PbUNTuTHbziK3/AfFzjqv4r8UZPwPwRhpYnJcBjfquV0sNT9nTzXM5xdCeYRpqKjQy7BYf2sMLUnGEaWFeLxlblpVVCh/RPg1wBh/B/hTO+PuPcVHC57mOB+t5tVxNT2tTKMrjJV4ZdKpzSniMyx2J9lUxdOE6kquLWDwVGM61JzxH6p/CzwJafDL4e+FPAtnIs6eH9Kjtrm5RSqXmpXEkt7q16iH5kS81S5vLmNGy0aSqhJKlm/t7gnhihwbwpkfDOHmqscqwUKNatFWjiMZVnPE4/Exi0nGOIxtevWhCXvQhNRbbV5fwbx5xXiON+L8/4pxEHSlm+PnWo0JPmlh8FRhDC5fhpSWkp4fA0MNRnONlOcHJJXSO/r6k+RCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/Q/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAI5poreKWeeWOGCCN5pppnWOKGKNS8kssjkJHHGil3diFVVLMQBmoqVIUoTq1Zwp06cJVKlSpJQhThBOU5znJqMYRinKUpNKKTbaSuXTp1KtSFKlCdWrVnGnTp04ynUqVJyUYQhCKcpznJqMYxTlKTSSbaR+Q/7TX7WGp/ES+vPh38Nb9tN8Emc6dqWuLcpp9x4tdn8mRDeTtAmneGGYlcSzW51CDdPqMsVjIbRP4J8ZfHPGcW4nEcJ8H4qWD4bdX6pjMyVWOFrZ9Jy9nOLxFSdOOEyZy0tUqUvrVK9XGThh5vDx/wBDvBHwBwPB2Fw/GPGuEWO4nVJYzBZW6M8XR4eioe0hJYalTqSxudxjr7kKqwlW1LB054mMcRL5H8b+GPD/AIVXQLHSvF2meLtWudMe+8SS6EZJtF0W+luHjt9DtNQeKNNVuLa3h+0XuoWjPYvJdJb2hkS2N1cfg/EmTZVkiyvDYHPsHn2PrYKWJzieW89TLsuxU60oUstoYqUIRx1WjRpqricXQcsNKddUqHNGj7av/QnC+eZxnzzbFZhw9juHsvoY6OFyWnmqhSzPMsLTownWzTEYSFScsBRr1qnscNhK6WJjDDyrV+SdZ4eh+nPgz9sf4AeAfBfhbwhp0fi64g8O6DpmlZsfDsCJNPaWkUd1cn7XqdmXlu7oT3U0jBWlmmkkblju/s3h36QXhZwvw7kmQ4SGf1aWUZXg8D/s2U0oxqVaFCEa9X9/jsO5Tr1/aVqk5JOdSpKcrNvm/h7iX6OPi3xZxLn3EOMlw9Rq5xmuOx9sVnFWUqdLEYic6FBfV8DiFGGHoOnQpwV1CnThGLajFS+ovhH8aPBXxq0XUNa8GyakkelXwsNRsNYs0stQs5pIvOt3kjhuLu3eC5i3NBLDdSgmOVJAkiOi/tXAfiJw54i5disx4enjFHA4lYXGYXH4eOGxdCpOHtKUpQp1sRRlTrQUnTnSrzu4TjNQnCUZfhfiF4a8TeGeZYTLOJIYKUsfhXi8FisuxMsTg8RThP2daMJ1KOGrRq0J8satOrQg0pwnFzhOLPWa+6Pz8KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/gEsHX/AIJhf8HCMkc+dA+GWsfH+5gOcW+jQ/B39qGxZ7NywCrNo3gA+O7WWRly0N/4HdGEs9q8cv8AfFRf8RN+j8nH/aMyo5BGX81Z5vwxP31b3mq2PWAlFX3p45P3YyTj/GsH/qB40tS/c4CpnUo/y0o5XxBC8X0vSwSxkW7XtPB2+KLR/f3X8Dn9lBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB87QfszfD22+MrfGqCXWotea6uNUOjpdWw0I63dWslpc6qYvsgvvMmE0t09v9tMDX8jXG3yj9nr8mpeDfCdHxCl4i055jDNJV6uNeXxrUVln9pVqEqFXHcn1f6zz1FOdeVL606TxU3VtyfuI/sVXxu4wreG68M6tPLJ5TGhSwCzGVCs81/suhXhiKOA5/rH1RQpunChGt9VdZYSCpX9p+/j+bv7S37UviL4qalqfhDw1PPofw6srya1+zwu0d94qNrMUW+1mVdrLYSPGJrLR0PkoPLnvvtN0kH2X+QfGLxszfjfGYzIcnq1ct4Sw9epQ9lSk4YnPPY1HFYnMJxs1hZyh7TD5emqcVyVMT7etGmqX9oeCfgRk/AeCwPEWd0qWacY4nD06/tqsYzwuQqvTUnhctg7xeLjGbpYnMnzVJWnSwioUJ1XiPI/hH8UvGHw4ub1fhv4b0q88ZayjWqeIJdFuvEXiG0sjsJsNCsfMksLWKZ1El5I+mXtzdOsSNKIIlt6+D4D424g4QrYhcIZPgcRxDmEXQjms8ur5tm1DDPlvhcsw3NPC0IVJJSxEpYLEVqzUIurGlH2Z+h+IXAnDnGdHDPjTOsfh+G8unGvLKKeZUMmyfEYpc1sXmuK5I4uvUpwbhhoRxuGo0IupONN1ZyqH09+zl+0z8cfE/xk8N+EfE+uSeKtL8R3t5Zarpt5o+kWUunpb2N3dzajZyaZp1jLZvpwtmlnt2/0WS3SaJrdZjDNB+z+EfjJ4lZ14g5PkOc5nLO8Fm+JxGHx2Dr5fgMNUwkaWGr16mLw88HhcNUw8sGqDqVaT5qE6UatOVJVPZ1IfhvjL4I+F2R+G+dcQ5Hlcchx+TYbDYnA43D5jmGKp4yVbFYfD08HiIY3GYmniI4x1406VWPLXhWlSqRqypqrTq/rTX92H+fgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9H+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA5bxx4Xi8beDvFHhCe9uNOh8TaDqmhyX9qA09oupWctqZ0Qsqy+X5u54GdFnTdCzqrsy+JxJksOI+H86yCriKuEp5zlmNy2eKoa1aEcZh6lB1YxcoKpyc95UpTjGrHmpyajJnu8L55U4Z4jyLiKlhqOMqZJmuBzSGFr6UsRLBYmnX9lKSTdPn5LRqxUpUptVIxlKKifmlZ/8ABO3xQ92yX/xL0G2sRIQtxZ6DqF7dtFk4ZrOa/sIUkIxmMX7qDkCQ4+b+OsP9EzOpV3HFcY5XSwvO7VcPleLxFdwvpJ4epicNTjNreP1mST05pJJn9s4j6YuRxw6lhOCc2rYrlXNRxGbYPDYdTtqliaeFxdSUU9pPCxcl9mN/d+d/2lPgTZfAjxD4Y0XT9av9ft9b8PvqU+oX1rBZ51CDUbm1uIba3geYRwJbizkCSXFxIHlcmTaUVfybxh8MsN4ZZrk2XYTMcVmlLMsqljKmKxNClh/9qp4utRq06NKk5qFKNJYefLOpUmpTbc2nFR/YfBTxUxPirlGeZljMswuU1cszeGCpYTC16uJ/2Srg6NejUrVqqhz1ZVXiYOUKVKDhCKVNSU5S/RvQf2M/2d77S9N1NfDmsXsOo2FnfxNP4p1xQ8V3bx3EbZs7u1BBSQHIC9eAP4v66yv6PXhNicFg8Ysnx+Jp4vC4fEwlVzvM1zQxFKFWL/2evQ3jNbNadj+NM2+kl4xYXH47AvOsuwtTB4vE4SpGjkWVy5Z4etOjJf7TQru6lB7uVtnfRn0N8Pfhh4G+FekT6H4E0CHQtPu7tr67Vbm+v7m7uiixCW5vtSury9m8uNAkMbz+TAu4QxJvev1fhTgzhrgjAVct4YyunlmEr13ia6VbE4mtXruKh7SticZWxGJqcsIqNOEqvs6auqdOHNLm/H+L+OOKePMwpZpxXm1TNcXh8OsLh26GFwtHD0FJz9nQwuCo4fDUuecnOpONP2lWVnUnLljy97X1B8mFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfxtf8HUP7N7Wurfs2ftc6JYlFvrfVvgH471CFDGEvbB9R8e/DN3eMAPc3NtP8SYZLiUiVYdM02BHdI0SD+xPot8RqdLiThKvO7hKln2Bpt3vCoqeAzNJPaMZRy1qK0cqtWTtduX8v/SGyLlqZFxJShpONXJsZNK1pQ58ZgLtbylGWPTclflp00rpI/pL/AOCcX7Rp/ax/Yf8A2bvjrdXZvfEHiv4caZpnja4ZsyS/ELwVNc+B/H07ocSRJeeLvDusX9qkm5zZXVrJvlR0kf8AnDxG4c/1U424jyKMOTD4TMalXBRWyy/GxjjcBFPRNwwmIowlZaTjJaNM/deBs8fEfCWRZvKXPXxOBp08XJ7vG4SUsJjJNbrnxNCrOKd/clF3aaZ9tV8UfVhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB83+JP2d/2bNMutW8eeKPBXhrTEEkuo6tqOp6tqlhoMTySGSWaXTJNWg0GHzZWP7qOwRZJG2hHdwj/AJDm/hN4P4KtjuJ864dyfBxU54vHYvG4/G4XK4SnPmnUng5Y6nldL2k38EcMoznLljDmklL9nybxh8acdQy/hXIuJ87x0nGng8vwWBwGBxWa1IwhyU6VPGwy+tm1X2cI/HPEycIR5m4xjc+HPjH+03ot1aXHwq/Zu8M2vh3RdVcaTf694d0GLSNT8Q/aG+zjTfDmmWFtDeQQXpfynvp4f7WvjIYbe3s1Ly3X81eIPjNl1ehW4I8IMlo5Rl2OksDic0yjLIYDG5t7V+yWDyjBYWhSxFKliXJQeJqwjj8S5unSo0Fedf8AqLw48EMyoYilx74053XzjMsBF5hhcqznNZ5jgsn9ivavG5zjsXiKuHq1MMo+0jhaVR5fhuSNStVxDSp0Ppj9kb9mq5+FNjN458aQIvjvXbH7La6aSko8LaPO0c0ttI6lo21m/aOL7e8bMtnBGtjFJmW9839k8BvB6twPhqnEvEVOK4nzPDewoYL3ZrJcvqONSdGc1zReYYpwg8VKDksPShHDQneeJ5/xP6QnjVR49xVPhbhmrN8K5Xivb18b70P7dzGkp06deEGlKOXYRSn9UjNRlias3iqkLQwyh9t1/R5/MQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPzk/4KIeHGn8NfDnxYicaXreseH7iQDr/AG5Y2+o2iufSM6Bd+Xk4BmfqWr+RvpZZQ6uT8I57GOmCzLMMqrTS3/tLDUsXQUna9ovK6/Jra9SW11zf2X9DzOVSzvjLh+U9cdleXZvRg3s8rxVXB4hxXeazbD82uqpx2sz6s/Zu8SL4q+Bnwz1TzPMkh8MWmiXDE5c3Php5fD07Sd/Mkk0wysWwW3hxlWBr9x8IM4WeeGnBuO5uedPJqGW1ZXvJ1snlPKarn155ywTm725ubmWkk5fgfjRkryDxT43wHI4QqZ5iMzoxt7qoZ1GGcUlDZOEIY5U42Xu8jg7OMj2+v0g/MAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8K/aP/Zq+Cn7Wvwp1v4K/H/wRaePfh3r1zp9/daRPfarpF3aarpNx9q0rWNH1vQr7TNa0bVbCbcIr3Tb+3kktprrT7rz9Ovb20uPd4c4kzrhPNaGdZBjZ4DMaEalONaNOlWhOlWjy1aNahXhUo1qU1a8KkJJSjCpHlqRhOPkZ5kOVcSZdVyrOcJHGYKtKE5UnOpSlGpTfNTq0qtGdOrSqQe0oTjeMpQlzQnOEt34G/A74V/s2/Crwd8E/gp4RsvAvwy8B2Fxp/hnw1Y3F/ex2cd7qF3q2o3NzqGq3V9qup6lqmr6hf6rqmp6ne3d/qOo3t1d3dxJNM7Nz55nmacSZrjM6zrFzx2Z4+pGpicTUjTg5uFOFKnGNOlCnSp06VKnClSp0oRp06cIwjFJJG2UZRl2RZdhcpyrDRwmAwcJQw9CEpyUFOcqtSUp1J1KlSpUqznUqVKk5TnOUpyk3Js9Yryj0QoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD59/aQ+Nl18DPA9r4i0/QBr2p6tq8eiaclzJLDpVjcSWd3efa9TkgUzSxhLRkhsopbaW7YttuoVid1/KfF7xHr+GnDVDNsJlazPG4/Hxy3CRrTnTwOGqzw9fEe3xkqS9pUio0GqeGpzozrtytWpKEpS/XvBjwyoeKXFFfJsZmzyrA5fl88zxkqEKdTH4qjDE4fDfV8DCq/Zwm5YhSqYmpCtDDxjG9Gq6kIx/N7T/B37Sn7XWq2+r65c3dt4TWcy2+qauk2i+C9NiJKt/YGkQoG1a5WMtELm0gvbiRkSHU9VhBE1fyHhOH/GHx5x1LH5lWxFLIlV56WNx8Z5dw7g4NtS/svAQXNjqyg5UlWw9LE1pOMaeNx0b+0j/Z2M4j8Ffo9YCtl2V0MPW4gdJQrYHL5U8y4lxs0rr+1swqT5cvoudqroYirh6UFKVTA4GdnTl+i3wT/Zk+HvwXiiv7KBvEXjFovLufFmrQx/aYi6FZYtFsh5sGi20gZ1byZJr+aN2iu9QuYgiL/W3hz4NcKeHcIYrDUnm3EDp8tbPcfTh7aHNG1SGXYdc1PLqMk5Rfs51MVOEnTr4qtTtCP8ceJvjfxf4l1J4TFVVk/Diqc1Dh/L6s/YVOWXNTqZniWoVczrwai17SFLCU5xVShg6M+acvo2v1w/GgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPnr9qbwLe/EH4I+MNH0qxm1HW7COx8QaNaW0TT3U93o15Fc3ENrAn7ye5udK/tG1t4YgZZZp0jjSR2VG/KPGzhnE8V+HGf5fgcNUxeZYWOGzXL6FGDqVqtfL8RCtVp0acU51a1bBfW6NKnTTnOpVjGEZyahL9f8COKsNwj4n8O5jj8VSweWYueKyjMsRXmqVClh8yw1SjRqV6smoUqFHHfU69arUap06dKUpyhFOcfMf2FbTxXpvwj1TTPEujanpNtbeMNSl0E6paT2M1xY3NjprXYgtrmOKU20OppdkXAUxyXE1zEp328gr4z6M1DPMHwHjcHnGXY3AUaOf4ueVvHUKuGnWw1bDYOVdUqVaEJujTxka7VZJwnVqVacZOVGcYfc/SoxGQY3xCwONyXMsFmFetw7goZqsDiKOKp0cVRxWNjh/a1qEp01XqYKWHvR5ueFGnRqSSjWg5fadf0UfzOFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAZms63ovhzS7zW/EOr6ZoOi6dC1xqGr6zf2ul6XYW6/envL++lgtLWFcjdLPNGi55bmtaNCtiasKGHo1a9apLlp0aNOdWrUk9owpwUpyl5RTZnVq0qFOVWvVp0aUFzTq1Zxp04LvKc3GMV5tpfgfln+0D/AMFt/wDgmv8As8C+s9a/aL8P/EzxLZiQL4U+BtvcfFa/uZociW1HiHw4H8AafdxuPKkt9b8ZaXIku6NlVo5Qn6hw/wCCviRxDyTocO4jLcNO3+153KOVU4xltP2GJ/2+pFrVSoYKordrxcvz3OvFfgTJOeNXPKOPrwv/ALNlEXmM5Nbx9vQ/2KEk9HGriqTT06SPwt/aG/4OpPE1815o/wCyh+zLpukK7NFp/jT4765ca3fyrKdkbf8ACuPAV7ptpY3kY+eJm+I+t27zMqSWckcRW4/cuHvot4aHJW4r4mqVmrOeDyKhGjTVtX/wo4+lUnODej/4T6MlFXU03eP5Hnf0hq8+alw5kNOknpDFZxWlVm76L/YcHKnGElum8dVjfeDStP8Aow/4Ji/tG/H79qz9j74ffGj9pX4XQ/Cn4m+IL/xFaS6Va6Lrfhmw8S+H9L1OS20Hxtp3hnxHc3utaHZeILQExW93eXMF+1pJrmkyLourabDB/O3iZw7kHCvF+YZNw3mjzXLMPDDzVWdajiamGxFSmpYjA1MTh4U6NeeHnvKEISpqaoVk69GrKX7fwDnmc8RcM4LNM+y9Zdj6068XTjSq4eGIo06jjRxdPD13KrRhWjspSkpuLrU+WjVpwj+gNfAn2YUAFABQAUAFABQAUAFABQAUAFAFO/07T9VtZLLVLCz1KylKGW0v7WC8tZDGwdDJb3EcsTlHUOhZCVYBhyBXPisJhcdRlhsbhsPjMPNxc6GKo08RRm4yUouVKrGVOTjJKUbxdpJNWaudOExmMwFeGKwOLxOCxNNSUMRhK9XD14KcXGahVozhUipRbjLlkrxbT0ZwvjX4r/DP4Z24/wCEx8X6F4eMUKtDpklys2qvCqjZ9k0OxSfVJ4goVVNvZPGoKDIyq18zxHxzwdwbSX+sGf5ZlLhTTp4KVVVMdKmo+77DLMKquNqQSSSdLDSgrxXVKX1PDPAPG3G1b/jHOHc1zdVKjVTHQoyp4CNRy976xmmKlRwNKbd21WxKnL3nZ2Z8deMf+ChHgvTpJbfwR4L1vxKyEot/rN5b+HLFjziaCGKDWL+eLvsuIdNlbkFUxur+fuIPpWcO4SU6XDfDuZZw4txWKzHEUcpw0u1SlThDH4qrD+7Wp4Ob68llzf0bw59ELibGQp1uJ+JcrySMrSlhMtw1bOcWl1p1as55dhKVTpzUamNpx0d57HkQ/wCChvj/AO0hj4C8Hmz3ZMAutaFyUz90XRuTEGxxvNmRnnyzjFfBf8TYcVe2Uv8AVfh/6vfWl7bMfbct9lX+scidtOZ4eSvry68p+if8SfcJewcVxZxH9ZtpV9hlnsObu8P9WU7X+z9Zv05lufpR8K/HY+Jvw+8L+OxpNzof/CRWD3baVdSedJayQ3dzZyCOcw25ubWaS2a4sbowQ/abKW3n8pPM2L/YXBHEy4y4UyXiZYGtln9rYWVd4KtP2kqEqdeth58tXkp+2oVJUXVw1b2dP22HqUqvJHm5Y/xVx5wq+COL894VeYUc0/sbFxw6x9CHs4V41MPRxMOal7St7GvThXVHFUPa1PY4mnVpc8uTmPQK+qPkQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1P7+KAOZ8WeLtE8FaS2s67cSQ2vnx2sMcMRmubq5lWR0t7eIFQ0hjilkJdkjRI3Z5FAAYGk3t/l/W/8AVw8JeLtE8a6Sus6FPJNa+dJbTRzRGG5tbmNY3e3uIiWCyCOWKQFGeN0kRkkYEhQGmt/8/wCtv6sdNQIKACgAoAKACgCte3lrp1ndahezJbWdlbzXd1cSZ2QW9vG0s0r4BO2ONGY7QxwOFYkLQBwvg34oeE/HV5e6fodzdfbLKM3DW97am2e4tFkSJrq2+eQPCkksSOrlJkMse6IBiyg3Frdfjf8Arb+rHodAgoAKACgAoAKACgDzL/hbngn/AISz/hDft8/9qfbf7M+0fZW/s7+0/M8n+z/tW7d9o+0f6Pu8r7P5/wC68/d81BXK7Xtpvuem0EhQAUAFABQAUAFAHnnjL4oeE/At5ZWGuXN19svYxcLb2Vqbl4LRpHhW6ufnjCQtJHKqKheZ/Kk2xEKGYGot7L8bf1v/AFc7qyvLXUbO11CymS5s723hu7W4jzsnt7iNZYZUyAdskbqw3BTg8qpBWgRZoAKACgAoAKACgDmfFni7RPBWktrOu3EkNr58drDHDEZrm6uZVkdLe3iBUNIY4pZCXZI0SN2eRQAGBpN7f5f1v/Vw8JeLtE8a6Sus6FPJNa+dJbTRzRGG5tbmNY3e3uIiWCyCOWKQFGeN0kRkkYEhQGmt/wDP+tv6sdNQIKACgAoAKACgCte3lrp1ndahezJbWdlbzXd1cSZ2QW9vG0s0r4BO2ONGY7QxwOFYkLQBwvg34oeE/HV5e6fodzdfbLKM3DW97am2e4tFkSJrq2+eQPCkksSOrlJkMse6IBiyg3Frdfjf+tv6seh0CCgAoAKACgAoAKAPMv8Ahbngn/hLP+EN+3z/ANqfbf7M+0fZW/s7+0/M8n+z/tW7d9o+0f6Pu8r7P5/7rz93zUFcrte2m+56bQSFABQAUAFABQAUAeeeMvih4T8C3llYa5c3X2y9jFwtvZWpuXgtGkeFbq5+eMJC0kcqoqF5n8qTbEQoZgai3svxt/W/9XO6sry11GztdQspkubO9t4bu1uI87J7e4jWWGVMgHbJG6sNwU4PKqQVoEWaACgAoAKACgAoA5nxZ4u0TwVpLazrtxJDa+fHawxwxGa5urmVZHS3t4gVDSGOKWQl2SNEjdnkUABgaTe3+X9b/wBXDwl4u0TxrpK6zoU8k1r50ltNHNEYbm1uY1jd7e4iJYLII5YpAUZ43SRGSRgSFAaa3/z/AK2/qx01AgoAKACgAoAKAK17eWunWd1qF7MltZ2VvNd3VxJnZBb28bSzSvgE7Y40ZjtDHA4ViQtAHC+Dfih4T8dXl7p+h3N19ssozcNb3tqbZ7i0WRImurb55A8KSSxI6uUmQyx7ogGLKDcWt1+N/wCtv6seh0CCgAoAKACgAoAKAPMv+FueCf8AhLP+EN+3z/2p9t/sz7R9lb+zv7T8zyf7P+1bt32j7R/o+7yvs/n/ALrz93zUFcrte2m+56bQSFABQAUAFAH8ov8AwcnePf8AgoD8NrLwNr/wi8deKPA37FuteCLPwV8R7zwF4l0/w5q+ofFrXvEniR7rRfGEtlc2XjK68Oaz4Ps/Dlto1tp8s2gTSQeKLXWEQ3kcd1/VX0cMBwBmU8dh83wOFx3GdHHTxuXQx+HqYilTynD4bDclbCRnCeCjiKOLniJVpVOXERUsLOi3ytw/nTx1xnGeBjhK2W4vEYThWthIYTHSweIhQqTzKtXxDlSxLi44qVCrhoYeNKMJOi3HERqpcyU/xS/Y5/4JN/8ABQX/AIKY/Cjwn8S7X4u6JY/ArT9U1Xwx4X1f40/FTxpryWKeGrxtO1W28IeCNOsPFlxZw2N21xbW0Fz/AMI5YzyJOIrpIiJG/aOMPFfw/wDDXNcXlksorVM9nSpYnFUcmyrBYfneJgqlKWLx1Srg4zdSHLOTh9ZnFON037h+VcMeHPGnHuXYbHxzKlDKIVKmHw9XNcwxVZQ9hLkqRw2FgsRKChK8YqSowlZ2kkrn7G/DL/g26/ZD+DN7osn7VH7QPxT+MWu3EcV/L4V+Guhab8MfCiQPKY2j1e4uLjxj4q1DTw8c0UdzpWueGNRuTC0yWsCgwV+HZ/8ASh4kxfPS4dyLLcnpu6jiMdUq5ri0uk4Rj9TwlKb0fJUoYqK1XvfEfr2S/R6yShy1M7zjH5pNNN0MHTp5bhm+sJuU8ViakUtOanVw8pb+7ex/QP8As2/sBfsP/sz2Wkat+z3+zn8LfCV8trbXWmeOToX/AAlPj2S3liSWCZfiH4yl17xvslVlm8o64se87vKVgAn4fxB4gcacU88c94kzTG0Z/Fg1X+q4B3/6l+DVDBX6X+rp23P1rJeCuFeHeX+yMiy/CVaekcU6P1jGq3/UbiZV8X529u1fVX+z9p18cfUBQAUAFABQAUAcz4s8XaJ4K0ltZ124khtfPjtYY4YjNc3VzKsjpb28QKhpDHFLIS7JGiRuzyKAAwNJvb/L+t/6uHhLxdonjXSV1nQp5JrXzpLaaOaIw3NrcxrG729xESwWQRyxSAozxukiMkjAkKA01v8A5/1t/VjpqBBQAUAFAHyn8dv2sfBnwW1B/DEem3nivxotrDdS6PaTx2Gn6XHdRCa0/tjVZIrloJriF47mG0tLK8nNsySz/Zo57d5fw/xN8dOHfDvFyyaGExGecRRo061TL6FWOGwuCjXgqlD6/jpwqulUq05RrU6FDD4mq6MoTq+whVpSl+9+FXgBxL4l4SOeTxuHyDhp16lCnmOIpTxWLx06E3TxH9nYGEqSq06NSM6NTEYjE4akq0ZQpe3nSrQh8M33x1/aq/aDu59K8BWOsaZpTyGGW08BWU+l2turcKuqeL7qYXFq7IwEvmazp1pNuJ+yqpVa/mjE+Jvjf4q16uB4Xw2PweClJ050OF8NUwVCipfDHG5/Xqe1oScXafPmODw9S7fsEuWB/UuG8K/AXwhw9LH8WYrLsdj4QVWFfizFUsfiKzjrKWA4dw9JUsRFTV4cmW43EU7Je3k1KU+z8J/sHeI7iC48SfF/xzaeHrOKKbU9UtNG367q/kRI09299rF2Y7C1uEVXkeW3g11HxxvZiK+n4a+i1nuY1FjuNuIaWX+2n7Wtg8svmeZVXN3qLEZhiFDCUK7ldupThmcJb8zcmofKcUfS1yDLqbwHAnDVbMfYx9jQxua2yrLKShpTeHy7Dc+Mr0ErKMKk8rnHZU0l7/0p8GPhN+zAbiex8L+EIte1rTYvtEl547tf7avryCORIv7Qtra+8zR4RHLJECbPTLGeN5Y3MC5DL/Q/Dngh4acNRg8Pw3hc0xMEr43PrZvXnJbT9jiU8DRmt08NgqNnqrNJx/mzifx48U+KJVPrPE+LynCTbSwPD3/CNQhGW9P22EmswrQa0ccVjMTeOjbTaPq//hGPDX2T7B/wj2hmxKhfsX9k2H2TaOi/Zvs5hKjAwPLAGOBwa/R/7Gyd0PqryrLfq1rfV/qOF9hbt7H2Sp20WltPM/Mf7czr6x9b/tfNPrV+b6z/AGhivrHN39t7VVL+d7+psxxxwxxwwxpFFEixxRRqqRxxooVI40UBURFAVVUBVUAAAACvQhCFOEadOMYQhGMIQhFRhCEVaMYxjaMYxSSjFKyWitY82c51JzqVJyqVKkpTnOcnKc5zfNKc5SvKUpSbcpN3bd3e4+qJCgAoAKACgDzL/hbngn/hLP8AhDft8/8Aan23+zPtH2Vv7O/tPzPJ/s/7Vu3faPtH+j7vK+z+f+68/d81BXK7Xtpvuem0EhQAUAFABQAUAFAHnnjL4oeE/At5ZWGuXN19svYxcLb2Vqbl4LRpHhW6ufnjCQtJHKqKheZ/Kk2xEKGYGot7L8bf1v8A1c7qyvLXUbO11CymS5s723hu7W4jzsnt7iNZYZUyAdskbqw3BTg8qpBWgRZoAKACgAoAKACgDmfFni7RPBWktrOu3EkNr58drDHDEZrm6uZVkdLe3iBUNIY4pZCXZI0SN2eRQAGBpN7f5f1v/Vw8JeLtE8a6Sus6FPJNa+dJbTRzRGG5tbmNY3e3uIiWCyCOWKQFGeN0kRkkYEhQGmt/8/62/qx01AgoAKACgAoAKAK17eWunWd1qF7MltZ2VvNd3VxJnZBb28bSzSvgE7Y40ZjtDHA4ViQtAHC+Dfih4T8dXl7p+h3N19ssozcNb3tqbZ7i0WRImurb55A8KSSxI6uUmQyx7ogGLKDcWt1+N/62/qx6HQIKACgAoAKACgAoA8y/4W54J/4Sz/hDft8/9qfbf7M+0fZW/s7+0/M8n+z/ALVu3faPtH+j7vK+z+f+68/d81BXK7Xtpvuem0EhQAUAFABQAUAFAHnnjL4oeE/At5ZWGuXN19svYxcLb2Vqbl4LRpHhW6ufnjCQtJHKqKheZ/Kk2xEKGYGot7L8bf1v/VzurK8tdRs7XULKZLmzvbeG7tbiPOye3uI1lhlTIB2yRurDcFODyqkFaBFmgAoAKACgAoAKAOZ8WeLtE8FaS2s67cSQ2vnx2sMcMRmubq5lWR0t7eIFQ0hjilkJdkjRI3Z5FAAYGk3t/l/W/wDVw8JeLtE8a6Sus6FPJNa+dJbTRzRGG5tbmNY3e3uIiWCyCOWKQFGeN0kRkkYEhQGmt/8AP+tv6sdNQIKACgAoA//V/v4oA4b4geBNO+IOiLo9/cz2T293HfWV7bqkj29ykcsPzxOVWaGSKeVZIt8ZJ2OsisgNA1Jx2/O36S/L77+6fD/wJp3w+0RtHsLme9e4u5L69vbhUje4uXjih+SJCywwxxQRLHFvkIO92kZnJoByct/zv+kfy+63vdzQIKACgAoAKACgDO1fS7TW9L1HR79Waz1OyubG6EbbJPJuomhkMb4OyRVfdG+DtcBsHGKBp2d+39ef5feeX/Dv4OaR8PtUvdYh1S81W8ubaSytzcQxW8dpaSyxTSrsjeTzrh2ghUz5iUIHVIV8xjQNybVvyf8A9rH8/u+17DQSFABQAUAFABQAUAeG/wDCiPDv/Cb/APCYf2lfeT/a39uf2L5cPk/2l9p+2f8AH3u3/Y/tf737L5O7Z+58/wAv5aC+eVrfK99f/SN/n8+p7lQQFABQAUAFABQAUAePfET4OaR8QdUstYm1S80q8traOyuDbwxXEd3aRSyzRLskePybhGnmUT5lUoUV4W8tTQUpNK35v/7WX5/f9n1DSNLtNE0vTtHsFZbPTLK2sbUSNvk8m1iWGMyPgb5GVN0j4G5yWwM4oE3d37/15fl9xo0CCgAoAKACgAoA4b4geBNO+IOiLo9/cz2T293HfWV7bqkj29ykcsPzxOVWaGSKeVZIt8ZJ2OsisgNA1Jx2/O36S/L77+6fD/wJp3w+0RtHsLme9e4u5L69vbhUje4uXjih+SJCywwxxQRLHFvkIO92kZnJoByct/zv+kfy+63vdzQIKACgAoAKACgDO1fS7TW9L1HR79Waz1OyubG6EbbJPJuomhkMb4OyRVfdG+DtcBsHGKBp2d+39ef5feeX/Dv4OaR8PtUvdYh1S81W8ubaSytzcQxW8dpaSyxTSrsjeTzrh2ghUz5iUIHVIV8xjQNybVvyf/2sfz+77XsNBIUAFABQAUAFABQB4b/wojw7/wAJv/wmH9pX3k/2t/bn9i+XD5P9pfaftn/H3u3/AGP7X+9+y+Tu2fufP8v5aC+eVrfK99f/AEjf5/Pqe5UEBQAUAFABQAUAFAHj3xE+DmkfEHVLLWJtUvNKvLa2jsrg28MVxHd2kUss0S7JHj8m4Rp5lE+ZVKFFeFvLU0FKTSt+b/8AtZfn9/2fUNI0u00TS9O0ewVls9MsraxtRI2+TybWJYYzI+BvkZU3SPgbnJbAzigTd3fv/Xl+X3GjQIKACgAoAKACgDhviB4E074g6Iuj39zPZPb3cd9ZXtuqSPb3KRyw/PE5VZoZIp5Vki3xknY6yKyA0DUnHb87fpL8vvv7p8P/AAJp3w+0RtHsLme9e4u5L69vbhUje4uXjih+SJCywwxxQRLHFvkIO92kZnJoByct/wA7/pH8vut73c0CCgAoAKACgAoAztX0u01vS9R0e/Vms9TsrmxuhG2yTybqJoZDG+DskVX3Rvg7XAbBxigadnft/Xn+X3nl/wAO/g5pHw+1S91iHVLzVby5tpLK3NxDFbx2lpLLFNKuyN5POuHaCFTPmJQgdUhXzGNA3JtW/J//AGsfz+77XsNBIUAFABQAUAFABQB4b/wojw7/AMJv/wAJh/aV95P9rf25/Yvlw+T/AGl9p+2f8fe7f9j+1/vfsvk7tn7nz/L+Wgvnla3yvfX/ANI3+fz6nuVBAUAFABQAUAfzX/8AB0X4oGlfsGfCnw1FJtuPFf7UXg8yx5x5ml6F8Nfitf3PHU7NSl0Y9MDOTg7a/pD6MOF9rx3muJa93CcMYyz7Va+ZZVTj0e9NVuq+ep+FfSBxHs+D8uoJ2lieIMLdd6dHAZlOX3VHR/pI+zf+CCfhc+F/+CU37Lccsfl3evQfFbxRdHGPMGufGn4iXGnSY686MumLk53bdwwpUV8b474r614qcUNO8aEsqwsfL2GTZfGouv8Ay+9q/nrbY+o8HcP9X8O+H7q0qyzHES8/a5rjnB/+ClT/AKSP0i+Inwc0j4g6pZaxNql5pV5bW0dlcG3hiuI7u0illmiXZI8fk3CNPMonzKpQorwt5amvyE/T1JpW/N//AGsvz+/7PqGkaXaaJpenaPYKy2emWVtY2okbfJ5NrEsMZkfA3yMqbpHwNzktgZxQJu7v3/ry/L7jRoEFABQAUAFABQBw3xA8Cad8QdEXR7+5nsnt7uO+sr23VJHt7lI5Yfnicqs0MkU8qyRb4yTsdZFZAaBqTjt+dv0l+X3390+H/gTTvh9ojaPYXM969xdyX17e3CpG9xcvHFD8kSFlhhjigiWOLfIQd7tIzOTQDk5b/nf9I/l91ve7mgQUAFABQB83+MP2Wvhh45+KEPxT8RQane6iRYtqfh+Sazk8N63c6XaRWNhPqdpNZyXMiR2lvbQ3FpHdJaXi2tuJ4mRrtLr8hz/wT4L4m41p8bZtTxmIxdsLLGZVKpQnlGZVsFQp4bC1Mbh6mFqVpxjQo0adWhDEQw+IVCkqtNxdeOI/Z+HfHbjnhbgWpwJk9XBYbBp4qOBzeFPEQzrK6OOxFTFYqlgcRTxVOhCU8RWr1KOInh54jDOvVdKopRw8sP8AQVpZ6bo1hHaWFrY6VpljCRDa2kEFjYWdvGCxEcMKw29vDGuWIVURRk/KMlv1Whh8Hl2FhQwtDDYHBYananRoU6WGwuHpQV2oU6ahSpU4pN2SjGK10Vz8ixGJxuZYqeIxVfFY/HYqonUr4irVxWKxFabsnOrUlUq1qknZJuUpSemt7R8g8afGj4GWuk6npPiX4meDxa6jZXVleW2na7aarqCwXMTwyFLXR21C8jlCsTExt2IdQQpK4r4vNPFHw7yeLeP4z4ejJb0sNmNDMMQrd8Nl7xWIV+nua9ObVH3OU+E/iXnUo/2fwPxJOLa5auKyzEZdhpXtticxhhMO1rr++0Wrsnc+QPDf7RP7Onwn1TUNW0XWvGvj6/ntpLGzfT/DSaXa29rLLFLIG/t670mWSWRoIVa5EK7Yw6x2uXNfm+afSa8M8BzLB1M7zuS0i8vyp4enJ9Lyzavls4x7v2MnZ3UG1yy/Ucq+ix4q5lyvHUshyGLs5LMc2WIqRXZQyejmkJS7RdWMb2vNWkypr3/BRMZePwx8MSRn5LvXvEmCR6Pp2n6UwBI7jVOOmG6r+c5n9LRXlHJeDG19mvmeb2b/AMWEwuCdtO2Mdttdz9Lyr6HL92eeccJP7WHyrJb6/wB3GYvHR66a4HXfS7R97fCrxxL8Sfh54V8cT6PPoE3iPTftsmlXDtK1uy3E9sXhmaKBprO78j7ZYTtDGZrG4t5So3mv6h4H4kqcX8J5HxLVy+rldTN8H9ZngasnN0WqtWjzU6jhTdTD1/ZfWMLVcIuphqtKo4rmaP5P494Xp8F8YZ9wvSzGlm1PJsb9Vhj6UVTVZSo0q3LUpxqVY0sTQ9r9XxdJVJqliqVampPlPQa+qPkAoAKACgAoA8N/4UR4d/4Tf/hMP7SvvJ/tb+3P7F8uHyf7S+0/bP8Aj73b/sf2v979l8nds/c+f5fy0F88rW+V76/+kb/P59T3KggKACgAoAKACgAoA8e+Inwc0j4g6pZaxNql5pV5bW0dlcG3hiuI7u0illmiXZI8fk3CNPMonzKpQorwt5amgpSaVvzf/wBrL8/v+z6hpGl2miaXp2j2CstnpllbWNqJG3yeTaxLDGZHwN8jKm6R8Dc5LYGcUCbu79/68vy+40aBBQAUAFABQAUAcN8QPAmnfEHRF0e/uZ7J7e7jvrK9t1SR7e5SOWH54nKrNDJFPKskW+Mk7HWRWQGgak47fnb9Jfl99/dPh/4E074faI2j2FzPevcXcl9e3twqRvcXLxxQ/JEhZYYY4oIlji3yEHe7SMzk0A5OW/53/SP5fdb3u5oEFABQAUAFABQBnavpdprel6jo9+rNZ6nZXNjdCNtknk3UTQyGN8HZIqvujfB2uA2DjFA07O/b+vP8vvPL/h38HNI+H2qXusQ6peareXNtJZW5uIYreO0tJZYppV2RvJ51w7QQqZ8xKEDqkK+YxoG5Nq35P/7WP5/d9r2GgkKACgAoAKACgAoA8N/4UR4d/wCE3/4TD+0r7yf7W/tz+xfLh8n+0vtP2z/j73b/ALH9r/e/ZfJ3bP3Pn+X8tBfPK1vle+v/AKRv8/n1PcqCAoAKACgAoAKACgDx74ifBzSPiDqllrE2qXmlXltbR2VwbeGK4ju7SKWWaJdkjx+TcI08yifMqlCivC3lqaClJpW/N/8A2svz+/7PqGkaXaaJpenaPYKy2emWVtY2okbfJ5NrEsMZkfA3yMqbpHwNzktgZxQJu7v3/ry/L7jRoEFABQAUAFABQBw3xA8Cad8QdEXR7+5nsnt7uO+sr23VJHt7lI5Yfnicqs0MkU8qyRb4yTsdZFZAaBqTjt+dv0l+X3390+H/AIE074faI2j2FzPevcXcl9e3twqRvcXLxxQ/JEhZYYY4oIlji3yEHe7SMzk0A5OW/wCd/wBI/l91ve7mgQUAFABQB//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Rv/g688WfZfAP7F3gVZP8AkO+MPjT4slhB6f8ACKaL8O9Ht5JF7bv+EzuViJHzbZgudr1/Wn0VcJzZhxnjrfwMHk2ET/7Cq2YVpJf+EcW9O21z+bPpF4nlwfCuEv8AxsTmuJa/7BqWBpRb9frUradHa9mfvL/wTT0nSvhZ/wAE1/2ORr19p/h/SdN/Zg+GHjLXNS1a7ttM03SIPEvg2x8b6reapfXkkFrY29mdZuJr64upYorcJK80iqjtX4T4k1aua+JHGH1enUxFWrxPmeDoU6UZValaWGxlTBUoUoQi5VJTVGKpxjG8rpK90z9h4DpU8u4E4Y9tOFGnT4fy/FVqlSUadOlGvhY4urOpKbUYKHtZOcpNKNm21ufkn+37/wAHI/wL+B8mrfDv9jXSNG/aM+JdpJLZ3XxG1aTUIPgV4duo2KsbC50260zXvifNG6FD/wAI5faD4XlimivNP8aan5ctk36zwD9HHPM7VHMeMa1bh3LZpThl1JU5Z5iItXXtI1KdShliaaf+0wr4pNOFTB0rqcvzbjLx0yjKXVwPC9KlnmPi3GWOquccnoyX8kqbhWzBq1n7CdDDtSjOniqlnA/Xv/gmp+078Wv2wv2OvhZ8f/jZ8MbX4VePPGq68bvQ9Ms9Z0zQdb0zTNbvdP0fxl4a0rxFdX+u6b4f8T2FvFqGmQajqWqGaEm+sdTv9LurG6l/IvEjhnKeEOMM0yDJcznmuAwToclerOjUr0atWhTqVsHiauHjChUxGGqSdOpKlTpJP3J0oVYVIH6XwJn+ZcT8MZfnOa4COXYzF+25qVONWnRrU6dWUKWKoU68p1oUcRBKdNVJzuvfjUnTnCc/u8kAEkgAAkknAAHJJJ4AA6k/0r4U+wP43v8Agon/AMHB3xn8YfFrUf2Zv+CaWlvcGDxBN4MX4zaX4Tj+IXjr4keJo7l9Pl074M+D59P1nTF0OW5Wa203X7vRNf1zxLui1Dw/a6FbRW17qn9h+Hn0f8mwmU0+JfEqqoqWHWM/sari3l+By7DOPtFUznGRnQquuouMqmHhiMPRw2tPETryc4Q/mDjbxozXE5lPIeA6blas8L/alPDrG4zHYjmcHTyvCypVqfsXJONOtKjWrYjSdGFGKhKfw38Pv+Cl/wDwVm/4J7ftVfCjT/22/GfxX1Dwx46i8K+MvG/wi+NVzo+uS6r8JPFPiPUvD154g0CON7q/8Da5YTaJ4hk0e3sp9FmttX0QWevaNdaTLPZXX3GYeGvhP4g8LZrU4KweVU8VgXi8Hgs3yWNagqWbYXDUsRDD4i8YU8dQqKth1WlONaMqNfnw9eNVKcPksFx54j8FcRZdDivFZjOhi1hsVi8tzWVOq6mWYivUoyrUUuaWDrQdKu6SjKk41aXLWpSpuUJf6A1fwIf2YFABQBxnxH8Z23w4+Hnjz4h3mmanrdp4C8GeKPGd1o2iQG61nV7bwvod9rk+maRbDJuNTv4rFrWwgAzNdSxRjO6uzLsHLMcwwGXwqUqM8fjMLg4Vq0uSjSliq9OhGpVl9mlTdRSqS6QTfQ5cdio4HBYzGyp1KscHhcRipUqUearVjh6M6rp0o6c1SahywjfWTS0ufwO2X7T/APwWs/4LF/Evx/J+zj4k+Jnh3wH4ZvLeW+8FfB74iWvwR+GXw80XWZb5tA0TxF4wk8QeEL3xrq1zDYXUxXXtY1/W9Sltby+sNJ0/TIIbOw/vKfDHgv4P5bgFxHhstxOPxMJKGNzfL553meYVqKh9YrYfBrDYungqMHUjG9Cjh6NNShTqVKtWUp1f46hn/ir4nY/GPI6+PoYOhJOeFyzHRyrAYKlVc/Y0q+J9thZYqpJQk/31WtWm4ynTpRpxUI4mrfG3/gr5/wAEX/jt8KdS/aD8f/EbXvC3jHz9bX4eeNvjDc/F/wCFvxP8LaJqVnZ+MdFtHudd8R2/hjxLZxX9iP7X06HSPEejSalo1832zS7o2l1vSyTwi8ZcizWnw/l+XYfFYPlo/wBo4LJ45RmmWYqvTqTwdaajh6EsVhpunP8Ac1ZVcNVVOtTXLVjzwxqZt4l+Fub5dUzrGY6th8VzVVgsXmcszy7MMPSnCOKpRbr144fEQU4fvIRpV6TnSn71OXLP+/n4Z/EHw58Wvhv8P/ip4OuXvPCPxL8E+FfH/he7lVUlufDvjHQrDxDos8savIscsunajbPIiu4R2Kh2wGr+B8yy/E5TmOPyvGRUMXluNxWAxUFqo4jB16mHrRTaTaVSnJJtK61stj+ysBjaGZYHBZjhZOWGx+Ew+Nw8nvKhiqMK9Ju10m6c02k9NtTt64jrCgAoA/Mv9vP4w+IdMvdL+EWhzz6bpmp6HDr/AIouoGaKbV7e8vLyzsdGEi4YafGdPnudQjUlb55ba3kIitp4p/42+k/4gZrg8RguAstq1cHgsZltPNM6r024VMfSxGIxNDDZeppprCQ+qVK2KitMTKdGlJqFGpCr/bv0UfDnJ8dhsd4h5pSpY3HYHNKmU5FQqxjUp5fWw+GwuIxWZuD5k8ZJYylRwkpJSwsadatBc9ajVpcb8Kf2MfAnjnStL1G9+N2jaxfXVlDc6loHgc6LqE2lTyL5klk+qSatevLLbqVSdpNDtgkwkCiaNUll+e4H+jxwxxLgsFi8T4kZfmGJr4anWxmVcNf2diqmBqyXPPDyxs8diJTnSi1GpKeW0lCopJKcFCc/pOPvpKcVcLY/HYLC+GGZZdhaGJqUcFm3FCzLB08fSg+SGJjgIYDDxpwqyTnSjDNK7lTlBtwm5wh9U+H/ANh74CaLsN/pPiDxQ6YO/XvEV5EGYfxNF4eXQ4WGf4HjZCOGVxmv27Kvo2eF2XcrxOAzXOpR+1mmb14Jvu4ZVDK4PX7Li46Wakm0fg2b/Sh8WMy51hcwyjIoSuuXKcnw83GLvpGpm8s1qp2duaM1PqnBpc3tugfBP4Q+GNjaH8NvBlnNHjZdtoGn3d+uOmNRvoLq+6883HJ5Oa/SMr8OOAsm5XlvB/D2HqQ+Gu8qwmIxS/7m8TSqYn76vno0ub8wzbxN8Q885lmnGnEmJpzvzYdZtjMPhHff/Y8LVoYXy0oqy08j09VCgKoCqoCqqgAKAMAADgADgAcAcCvs0kkkkkkkkkrJJaJJLRJLZL9D4dtyblJtttttu7berbbu229W2/vuLTEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+IP/g6u8VG7/aI/ZW8E+ZkeHvgv4t8VCLP3D4x8cNpJkx280eBgucc+TjnbX9s/RYwvJw9xTjbf7xnOEwt+/wBTwPtbfL69+Pmfyd9IjEc2d8PYS/8AByrE4i3b61i3Tv8AP6p26dT4d8Jah/wVb/4LM2fgn4E/Dmy1m1/Zx+FuheEPANno2lNffDz9nDwPpfg3R9M0bRrz4geIm+1SeOvFlpp9jaag9ndSeL/FCSyXV14T8LabpzvZwfb4qn4VeDk8bnmY1KM+I80r4vHzrVVTzDiPHVcbWq1q0Mvw94rA4SVSpKmpwWDwrSjHFYqrUXtJfJYafiL4owwmUYGNVZHl1HDYONKnz4HIsJTwtKnTpSxta0ni8TGEIz5ZPFYiL5pYbDxg3CP9NP8AwT9/4N+/2Vf2SjonxA+NUVl+058c7L7PfRap4u0eNPhZ4N1OPbMreD/h9ePd22qXtjPgW/iXxo+s3hntrXVdF0jwpd74l/mnj/x+4q4s9vl+SufDORz5qbpYSs3mmMpO6axmYQ5ZUoTj8WGwaoQ5ZSpVq2KhZy/e+DPBnh3hv2ONzVQz/N4cs1UxNJLLsLUVmvq2Cl7SNScJfDiMU6srxjUpUsNM/fRVVVCqAqqAqqoAVVAwAAMAADAAAwBwMV+Cn7Gc1418Nr4y8HeLfCD391pSeKvDOveG31SxOL7TV1zSrrTGv7MllAurMXRuLcll/fRp8wxlenBYl4PGYTFqnGq8LiaGJVKfwVHQqxq+znv7s+Xllps3uYYqh9awuJwznKmsRQrUHUh8dP21OVPnht70ebmjrulsfyo/8Efv+COf7af7C/7eut/FP4sW3ws/4U54e8CeO/CUHjXTNY0PxNfePk182kWiSeDNLnt28W+B7tLiztNU1rUNVtfD840mHUPDaXGq22rXKV/U/i94wcGcccCUMqyqWaf2xiMfgcXLB1aNfDU8A8PzuusZUjN4THQcZzpUadKdePtXTxLjSlSgz+d/DPww4q4R4wq5jmMcu/suhg8ZhliqdWjiJ4xVuVUnhacovE4OXNGNSrOpGhL2SnQvUjVmj8wP2zvGC/8ABXb/AILaeD/ht8LCPEXw207xl4L+A2ga/YEXVrc/Cf4WavrHif4r+PIZot0Fxov2i9+JXiTQrhXCaloh0cLILi8VV/TuDcJ/xCTwVxmZZp/s+ZVcHjc9r0KnuyjmuaUaOGynAtNXjW5YZbh68bN0q3tm7xifn/FOJ/4iV4rYbA5f+/wEMVhcno1oe9GWW5fUq4jMcWmrp0uaePr0ZJ2nSdLeUve/0E6/gE/s8KACgAoA5Pwh4B8C/D2yvtN8A+C/CfgfTdT1S71zUtP8IeHNH8NWWoa1f7DfaxfWujWdlBd6pemNDd6hPG93c7EM0rbV3deLx+OzCcKuPxmLxtSlShQp1MXiK2JnTo07+zownWnOUKULvkpxfJG7slduXNhsHhMFCdPB4XDYSnUqSrThhqFKhCdWfx1ZxpRgpVJ2XNNrml12P5Lf+Drrxf4WOh/saeARNaz+NY9W+MHi9rdGRr3S/C01n4F0VJrhP9ZBa69q0EkdmxGy6l8OXwGGszX9X/RVweK9vxjj+WUcE6OUYPmd1CrilPHVnGPSUqFJpz1vBYmnvzn84fSKxOH9lwvg7xeKVTM8S4qznTw7jg6ScuqjWqRah0k6E/5D+hv/AIJmaBrXhj/gnr+xboviGOaHV7b9mr4RT3FtchkuLSLUfBmk6lZWU8bfNFNZWF3bWkkD7XgeEwsqsjIv8+eJeIoYrxB4zrYdqVGXEmbqMo/DN08ZVpznFrRqdSEpKS+JSv1P2vgKjVw/BXCtKunGpHIstlKMviiqmFp1IRa3TjCUYuL1i1Z7H3HXxB9aFABQB4P8a/2efAfxxtrJ/Ea32ma9pUMlvpfiPR5IY7+C2kdpTY3cVxFNbX+n+eWmWCaNZoJHmNndWpubgy/mPiN4T8MeJVHDSzdYrB5ngac6WCzfL504YqlRnJ1Hhq9OrTq0cVhfat1FSqQjUpylUeHr0PbV+f8AVvDPxh4r8Lq2KjkzwuOyrH1IVsdk2YwqTwlWvCKprFYepRqUq+ExfskqUqtOUqdWEaSxNCuqNBQ+FvE3/BPvx3pTm88C+PND1p4H86CLVba+8MaipX5kW3uLSTW7Z7hTgLLJPYISN+YvuV/M2c/RV4nwMniOGuJ8tzGVKXtKcMdRxWTYuLWsVRq0JZjRlVi7WnOphovWV4aRl/U+R/S64Vx8VhuKeFM0yyNWPs61TAV8LneDkpaSdajiIZdWjSkm+aEKWKkl7qU7tnGaZ8X/ANpr9mPX7DSPiJDrer6BK+F0fxXeHWdP1KzhZVm/4RzxXHLfvbTQROpSG2vp7a0MsRv9JbKRL89g+PvGXwZzTC4DiynmOOyuctMvz3Ef2jhMZh6bip/2RnsJ4qVGpShJctOhiKlHDucPrWBl7kD6XG+Hfgj44ZRi8w4OqZZl2bU4pvMcgw39m4vBYmopOn/bOQTp4SFenVqRfPUrYWjWxCp1PqmPjacj9Yfh9470H4l+D9E8a+Gpnl0rW7YzRxzBUurO4ike3vdPvI1Z1ju7G7imtpwjNEzR+ZBJLA8cr/3PwrxNlfGOQZbxHk9SU8DmVH2kI1Eo1sPVhOVLEYXEQUpKNfDV4VKNRRlKEpQ56c50pQnL+AeL+Fc24J4izPhnOqcYY/LK/s5zpNyoYijUhGthsXhpyjCU8PisPUp1qTlGE1GfJVp06sJ04dnX0J82FABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//Q/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+C//g40J+Iv/BVL4PeAcmRIfgn8EfAfkg8b/EvxP+ImquNoP35E8UxAnhiojGSFXb/d30df+E7wtzjMNnLOs7x1/LDZZl1JfJPDS/HzP498cP8AbvELLMHvbKcqwdl3r5hjqnzb+sL8ux/eNZ2Nlp1utrp9na2NqjSOltZ28Vrbq80jzTOsMCRxq0s0jyyMFy8ju7FnZmb+E5znUk5VJynJpJynJyk1FKMU223ZRSSV9EklZWP7AjCMFywjGEbt8sYqKu3duy0u222+rd3qy1UlBQAUAfz7f8HBv/BQnVf2R/2adO+Bvwx1ObTfjP8AtPWfiLw9HrdlK0N74H+FOnRWtl458QWc8bebZ674hOrWvhLw5Oohlt4bzxJrWn3ltqnh+zZv3/6P/h9S4t4kqZ5mdJVcm4Znh8Q6E43hjs1qOU8Dh5p+7Ohh/ZSxeIje0nDDUakZUsRM/GPGjjWpw1kNPKcvm4Zpn8a9FVoO08Jl1NRji60GtY1q/tY4ahLRxUq9WElUowPyH/4IC/FT/gnN+x3o3iT44ftF/tLfDvwx+0r8WhP4J8KeFtW03xbOnwu+GlrqcTXX9seJbTw1deFdH17x/rFjaanqTXWtKmleGdI8PxSXdncan4hsIP1vx7yvxE4wrYbJOHeGsxxPDeU2xuKxVKphE80zKdJqLo4aWKjiq9DAUZzpU+SinVxNbENRnGnh6kvzTwbzHgfhilXzbPM+wWHz7Mr4TDYepTxMll+AjU972teOHlh6VbG1YRqVOaranh6dFOUJVcRCP9tHh7xF4f8AF2haR4o8Ka5o/ibwz4h0601jQfEXh/U7LWdD1vSb+FLmx1TSNW06a4sNS0+9t5EntL2zuJra4hdZIZXRg1fxXiMPiMJXrYXFUK2GxOHqTo18PiKc6NejVpycalKrSqRjUp1ISTjOE4xlFqzV17v9W0K9HE0aWIw1aliMPXhGrRr0akKtGrTmuaFSlUg5QnCcbSjKMpRad03e5p3DTrbztaxxy3KwyNbxTSNDDJOEYxRyzLHM0UbyBVeRYpWRSWEbkBKyjy8y5m1G65mldqN9Wk2k2lsm1fa63NJXs+VJys+VN2TdtE2k2k3u0nbez2P5Hv8Agnf/AMFtf2rB+3r4n/ZB/wCCjEeiaLP47+IGo/DjwskPhHQvBcvwW+KyapLZeH/Assmj20MviHwV4ru3h8OaPrWu3fiLWTql74a1VfEd5oV/f3af1n4heCvCv+oeF4u8O3XrxwOX08xxTli6+MWc5U6SniMclWc1h8bhYJ4itRoLD0VShiaTw8a9OED+bOCfFbiP/XCvw1xwqVKWMxs8Dh0sLRwjyrMfaONHCP2UU62ExEmqFKrWnXq+0nh6qrSozqSP656/ks/pQ8E/ac/aS+Fn7I/wP8efH/4ya02jeBvAWl/bbpLZI59Y13VbqVLPQ/C3hyxklhGoeIfEeqzWul6VatNBbief7Vf3VlptteXtv73DPDmacW53gMgyej7bHY+ryRcm40aFKCc6+KxE0n7PD4elGVWrK0pcseWnGdSUKc/Hz/Pcu4bynGZzmlX2WEwdPnko2dWtUk+Wjh6EG1z169Rxp043Uby5pyhTjOcf4WP2dvhp8bf+C+X/AAUu1z4w/FrTr7Sfgd4X1LRta+Jf2O5uZNB+HPwa0K8un8E/BXw3qci26N4h8YGG8sZLq3Szubm8v/HHxEOnq9rdWT/3JxFmeS+A3htQyjKalOrnmJpVqOW88YKvmOcV4QWNzrE0ld/V8HeE1CXPGMIYHL/ae9GZ/IuR4DNvGPjytmmZQlTynD1KNXH8kpOjgcroyl9UyqhUfL+/xVpwcoqMpTnjMd7NuM4S/u+8S/HL9n34U2ENn4x+MPwc+HGmaTaw2kFt4n+IXgrwhZadZ2cSwwW0cWraxYQ2lvbQRpFHEAkcUaKiqiqob+FcNkef5rUlPB5RnGY1KsnOUsNl+Nxc6k5tuUm6VKpKUpSbbd223fW5/X1fN8ly6Cjis0yvA06cVBRxGNwuGjCMVZRSqVaaiopWSsklp7qtzfH/AMQP+CwP/BMv4aLO3iL9sz4Naj9nDb18AavqPxXdtvUQr8LtM8YtcHjCiAOWPTPRvr8v8IfEvMuVYfg3OafNazx9GnlS16t5nWwij/28l+B8zjfE3gLAX9vxTlc+Xf6lUqZjt2/s+niub5PXstDV/ZE/4KnfsVftyeP/ABX8MP2dvidqPibxp4S0B/Fdxo+u+C/Fng6XV/DFvf2Ol3uu6CfEuk6adQtNO1DVNMtb+3kW11O3N/bTmwNqXnTLi7wu404Iy/C5nxDllPDYLF4j6pGtQxmExipYmUJ1YUa/1arU9nKpTpVZ05Lmpy5JR9oppRlpw14hcK8W43E5fkmPnXxWGovESpVsLicK6uHU4U51qPt6UOeMJ1KcZxfJUjzxbg43kfofX56fbBQB5/4z+Kvw4+HkkMHjXxnoPh26uYDdW9jf3qDUJrYO0f2iLT4TLevAZEeNZltzG8iOiszo618rxDxvwjwpOnS4i4hyvKa9ak69LDYrExWKq0VJw9tDCQ5sTKk5xlCNRU+WU4TjFtxmo/XcN8A8Z8YQq1uGeG82zihRq+wrYrCYWTwlKvyxn7Gpi6jp4aFVQnCcqcqvNGE4ykoxlCUvgz9qj9pf4K/EL4a6v4F8M3F/4r1y6vNKu9J1aLRrmy0zRryw1K2nubr7VrMdjeGSbTlv9OU2NlcJKl7IrTJCzPX8weN3jH4dcWcH4/hnJquKzvMq2IwNfAY6GXVsNg8ur4XGUalav7bMI4bEOdTBrFYNPDYaopxxMouapy54/wBXeA3gl4mcIca5dxVndLCZDldDD4/D5hl9TMqOKx2ZYfF4OtSo4f2GWyxWH5KeMeFxjWKxNF054aElTlUioS9Z/YItdVt/glfyahDPFZ3njrW7rRGmVlWfThpeg2s01tu4a2/ta21KLcvBuYrodVr7r6LtHHUvDjFSxVOrDD4jifMq2XSqJpVcIsFldCpUo3STo/XqOMhdXXtoVlfRn5/9LGvgK3idhIYOpSnicNwrldDNFTknKljHjs1r06de13Gt/Z9fBVOWWvsZ0HomkfbVf0efzGFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/gv/4LYkWH/BcP4U3uq/u9N+0/sn32+XiP+zLfxJYx3T5PHlrNbXoY8AMj56Zb+7vBb954I5rClrU5eK4WW/tJYao4rrq4yh07b3R/Hvit7nizl86jtT5uHJ3eypxrwUn6XjLv181H+82SSOKN5ZXSKKJGkkkkZUjjjRSzu7sQqIigszMQqqCSQATX8JJNtJJttpJJXbb0SSWrbeyX6n9hNpJtuyWrb2S7vbb1+4/lb/4Kh/8ABw7pnwg8UH4FfsDS+Efif4/0zVVs/HPxl1CxfxX8PtJuYZvLPhL4dWVnd29r431ue5Ah1PxMJrrwxYRA6fosev6jeS3vh3+pPDD6PdXOML/bnHqxmV4CpS58Dk9OawuYVoyV/reYTnCU8FQjHWlhrQxVR/vKzw1KEYVf548QPGunlmI/sjg54bH42nU5cXmk4fWcFTknb6tgYRaji6zlpUr808PBe5SVWpNzof0Qfsl+Pfi58Uv2aPgh8Rfj14Fj+Gnxi8ZfDrw7r/xC8DxWt5p66B4iv7NJbmH+ydRmudT0N7uMw6hJ4e1S4n1Tw9JdtompTS31hcO3898WYDKcr4lzvLshxzzLJ8HmOIw+X45yhUdfD052i/a04wp11B3prEUoRpYhQ9tSSpziftnDeMzPMMhynG5xhFgM0xWBoVsbhFGUFRrzinJeym5VKLkrTdCpKVSg5exqNzhJn0PXzx7Z+Rn/AAU6/wCCQvwl/wCCmF78NPE3ib4keLfhN4++GVjqugWHiTw7pOm+JNP1rwrrF5BqU2j6zoGp3WnE3Gn6jDLdaPqVhq1k1t/aOpxaha6qktkNP/W/DPxczbw1hmWFwuW4TNsBmdSlXqYbEVamGqUcVRhKmq1GvSjU92pTajWpzpz5vZUnTlSan7X824+8NMt48ngMRiMdicuxmAhUowr0KcK8KuHqzU3Sq0akqfvQmnKlUhUjy89RTjUTjyfhf+29/wAG7X7O37KX7GPx2/aB0H4+/GPxR4/+FHhCLxTpNrr1r4H07wXqrwaxpdpd6df6RZaBJravfWt3PBp8tt4niNtfvaySxXsSvby/uHBP0heIuKuMsiyCvkGT4XL81xjwtaVCWNqY2kpUas4VKdaeJVC1OUIyqKWFlzU1NRcHacfyLizwTyTh3hbN86o5zmeIxuXYZYinGtHCU8LUtVpxlCdONJ1bzjNxpuNdWnytqaTgfcX/AAa8/FTxd4w/Yy+Lfw48Q6healoXwl+N1xb+CDeSySpo2ieNPDOla/qPh3T95KQ6fb+I4tY19bdANl94lv5TxMgr4j6TuV4TB8ZZTmOHpwpV82ySMsdyJL21fB4mrQp4ipbWVSWHdGg5N6ww1Nacp9b9H/MMTieF8ywNec6lHLc2lHCczbVKlisPSrVKEOigq6q1uVW9+vUb3Tl/TDX81n7yfw2f8HQXwc0v4ZftWfs7ftF+D4z4e8S/GDwDrNjrupaUfsV3d+MPgnrHh2PS/FLXMOyca1D4e8Y+FtHS7Dh4rPwzpKxkPAWr+3/ox5xVzPhXiLh3GP6xhsox9GpQp1ffhDB51RxDq4RRlePsXiMHiqzg1ZzxNVu6kj+SvH/K6eA4iyTPMMvYV8zwdWFapS9ycsVlNWgqeIco+97VUMVh6SnuoYekl8J/Zr+z78Qp/i58Bfgj8V7pY1ufid8Ifhr8QrhYlCRLP408GaL4kmWNFyqRiTUmCKDhVwBnFfxvxBl8cpz7O8qhflyzN8yy+N9Xy4LGVsMrvq7U9T+oslxssyyfKcxkkpZhlmAxsktEpYrC0q7SXRXqOx8g/wDBUr9gYf8ABRr9l6T4E2nxCk+GniPQ/HugfE7wf4im0+bVtCm8R+HdI8S6FFo/inTLa6s7u50HUtK8V6rG01nM1zpeqJpmsx2upDTn0u9+v8LuPf8AiHXE6z2eXrM8NXwFfLMZh1UjRrxw2IrYau62FqyjOEa9OrhaL5ZpQq0nVoudLnVSHzXiDwd/rxw+8ojjngK9HGUcww1d03Voyr0KWIoqliKcZQlKjUp4iorwlzU6ip1eWr7P2cv5TX/4Ncv2/wCOea0tvjT+ySdMkkz5z+O/jNA00an5HmsI/gXNGJsf8s/tEqKeBMQNzf1OvpP8AuKlLJeLPapfCsDk0kn2VR56pW63tHzi7pH87P6PvGSbjHNOGnBvd4vNFdJ6NxWUNKVtbXdtlN7nqvg//g1Q/aEvXiHj79qv4NeGYyV85/B/g/xv44eMfxGKPWj8PFlIGdoeSHOMErmvKxn0p+H4J/UOFc4xL6LGYzBYFPtd0HmFvkpfO1z0cN9HfO52+ucRZXh11+rYXF4u3p7V4JP527aXufYvgD/g1P8AgFpxgPxS/av+L/jELt+0r4B8E+C/hv5v94Qt4hufir5GeQC4uMdTnGF+QzD6U+f1Ob+y+Fcowb+y8fjcbmNv8Sw/9l3+VvnsfT4P6O+TU7f2hxHmeK/m+p4TC4C/p7eeZcvzUvxP2E/Yc/4JLfsd/wDBPzxNrvjv4GeHvGWpfEPxF4bfwhf+PPiL4rbxNr8Xhqe/sdUvtK062sNO0Lw5pkWp6hpWmXWoXFloUF7ObC2gF0tqJLeX8g438WOMOP8ADUMDnmIwdPL8PiVi6eBy7CLDUHiY06lKnVqSnVxGIqOnTq1YU4zryhHnlLlc2pQ/TeEvDfhjgzEVsZlFHFVMbXoPDTxmOxP1isqDnCpOnCMKdGhTVSdOnKcoUYzlyRV1G8ZfphX5qfeBQB8l/Gr9kjwr8Z/GUHjS/wDFGu6DenTbXTNQtbG3s7y3u47EyfZpoGuiGsphFKYpgFuIJdkUiwxSmd5/wnxF8B8k8Q+IaXEWKzrM8rxH1Ohg8VQw1LD4ilXhhnL2NSk6/vYaooTcKiSq058sJqnTnzzq/wBA+Gf0g8/8NeG6vDWEyLKs1wyxtfG4SviquIw1XDzxSh7elVVBtYqm5wU6bfsatPmnB1KkFTjCp4R/Yg+BvhmeG71Cw13xjcwssir4m1UNYiVecnT9GttJtp4s/wDLvfLewsOJVfg1hkP0bvDTJqtOvisLmfEFam1NLOccnhuddXhMvoYCjUhf/l1ifrEGtJxnc6OIfpQeKWd0qlDB4vKuHKNRODeSYBrFezelljMyr5jWpVP+nuFWHqJ6wlT2l9a2VlZ6baW2n6daW1hYWUEdtZ2VlBFa2lrbQpsht7a2gSOGCGJFCRxRIqIoCqoAxX7vh8Nh8HQo4XCUKOFwuHpwo4fDYelChQoUacVGnSo0acY06VOEUowhCMYxikoqy93+fcTisTjcRXxeMxFfF4vE1Z1sRicTVqV8RiK1SXNUq1q1WUqlWrUk3Kc5ylKUndybd5Wq2MAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/lK/4OJv8Agml8c/jz4o+Gv7Y/7Nfg3X/iL4l8D+C4fh58T/BHgm0udQ8cxaNoOu6v4l8G+OfC2haeG1XxLPYXfiHWtJ1+00SG616yt4vDd7ZWF5p9tq91pX9UfR58ScjyHC5lwfxJjMPl2Gx2NeYZZjsbONPAutXoUsNjMDiq9T91ho1IYejVw863LQnJ4mE6sKkqMKv87eNvAeb5xiMDxRkWFrY6vhMKsFmGEwkZTxapUa1WvhcZh6UL1K7hKvVpVo0oyrQUaE4QnBVZ0Pyc8VfHH/gvT/wUv0fT/wBnaTwj8b5PCE9pb6B4xtdC+Fx+BXg/xAERba6n+LfxCvtK8L6ZLBeLG8+oeHNT8Q2mgahNHI9r4Ynuoo41/V8LkngR4a1qnEKxeSLFxnLEYOdfNP7dxmHu+aMcpy+FTFVVKDajTxNLDTxFNNKeJjFykfnGIzfxh48pQyR4bN3hpRjRxUaOX/2Rha1lyyeZY2VKhTamk5ToVK0KNR3ccM5KPL/QJ/wSx/4IM/Cv9i680L43ftCXegfGz9pay8jUNBit7WW6+GHwh1BMPFc+DrTVbW3uvE/i+1k/eReN9b0+y/suVYT4Z0TSL21fXNS/AfFHx2zTjOFfJOH4YjJeGp81Ou5SUczzem9HHGTpVJRw2EktHgqE6ntVf61WrQkqMP2fw88H8v4WlRzbOpUc1z6PLOioxcsBlk1qpYWNRKWIxMXti6sIezdvq9KlOMqtX+hSv5+P2kKAPy9/4K5/t8Tf8E9/2Rdd+KPhaPSr74v+NNdsPhz8HNL1mA3umjxZq0F3qGoeJNUsI5YpLrS/CPhvTdW1kxNmzvNaTQtGvmjg1ffX6d4S8BrxA4toZXinVhlGDoVMxzirRlyVPqlKUadPD0qjUlGri8TVo0bpc8KLr1oXdGx+f+JXGL4K4arZhh1TnmeLrQwOV06q5ofWakZTnXqQVnKnhqFOpVtfklW9jSnaNU/jZ/aW/wCC237Wn7av7HmifsdeN9G07V/HfjT4kRn4geO/Bugxabq/xR8JWWoeHtV+G/gGx8H6Dbi0ttZfxulzPrcuh2dqdcttG8G6bZWKzXHiT+1f7F4a8FOE+C+L6/GGCrVKWBwWXP8As/A4yu6lHK8XOniKWZY+pjK/LOVFYJxjQVec/YSrYypUnaOGdL+YM+8V+JOK+GaPDGLpQqYzFY5fXcXhaKhVzDDRnRqYHBww1GMYxq/W1J1XSjH20aWFpwhd4h1/7Af+CLv7DviD9hL9ifwz4F+INsll8Xfib4h1D4v/ABT0wPHM3hrXvEemaPpWkeDGuYnkjmm8L+F9C0W01dYZJbOPxPN4hNjNc2kkV1P/ACH4y8b4fjrjTE47L5OeUZbh6eUZXUd19ZoYerWq1cZytJxWKxVetOlzJTeGWHVSMJpwj/THhZwlW4Q4Uw+ExseTM8fWnmeY09G6FavTpU6WFck5JvD4ejSjUSbgsQ67g5RakfrPX5Qfo5/L5/wcefsV/tWftaXH7IGo/s6/CLXfi3pfgS5+LmgeJLTwrJYSatoGsfEGf4Yto17qlpfXdmIPD95D4Qu45teMh0zRpbNzrdzpsV1ZSXX9O/R0404V4TjxfT4izahlNXHRyivh54pVFSxFHL45n7aFKVOnPmxEHi4uNDSrWU0qEZyjPk/APHHhXiLiSXDNTI8trZlTwcsyo144fkdSjVxrwHspVIznC1Gaw0k62tOm4P20oJwcv6GP2avhzqfwf/Zz+APwk1poG1j4W/BT4V/DnVmtZRPbNqfgjwLoXhm/a3nUKs0ButMlMMoVRJHtcAbsV/PnEmY0834iz/NqPN7HNM6zTMaXMuWXs8bjq+Jp80deWXLVV1fR6an7VkOBqZZkeTZbVs6uX5Vl2BqOLvF1MJg6NCfK1o1zU3ZrdantdeKeqFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPyA/4LB/8Ew9Z/4KX/Cj4ZeHfBvxM0v4bePfhJ4s1rX9An8TafqGo+Ede03xRptlpuu6XrA0ktqWnXsTaXpd9pOr21pqghFvf6dLpzJqovrD9d8IfE2j4a5rmeIxmW1cywGbYSjh8RHDVKdPF0KmFqTqUKtH2vLTqQaq1YVaMp0ubmp1FUXslCr+Z+JvANXjzLsvoYXH08DjMtxNWtReIhOeGrU8RThTrU6nsv3kJp06U6dSMaluWpTcP3vPDxf/AIJj/wDBCP4I/sI+IbD4zfEzxHbfH39oewQt4c8Q3WhDSfAfwyllQpLc+BvDt5cahd3viYo7wDxrrdwt7b22BoWj+HJpb6W/9rxM8dM746w9TJstw0sg4eqP/aMPCv7XH5mlqo47EQ5IQw10pfUqMeSUv49bEKMIx8vgHwhyrhCtDNMfXjnOdwX7ivKj7PB4BtaywlCUpylXt7v1utLnUf4NKg3Nz/eevwg/YAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1P7+KAEZlVSzEKqglmYgKAOSSTwABySePXpQAKysoZSGVgCrKQVIPIII4II5BHHp1oAWgAoAKACgAoAKACgBqyI+7Y6vsYo21g21h1VsdGHdTyO9ADqACgAoAKACgAoAKAG+Ym/y96+Zt37Nw37c43bPvbc8bumeOtADqACgAoAKACgAoAKAGtIibd7qm9gi7mC7mPRVz1Y9lHJ7UAOoAKACgAoAKACgAoARmVVLMQqqCWZiAoA5JJPAAHJJ49elAArKyhlIZWAKspBUg8ggjggjkEcenWgBaACgAoAKACgAoAKAGrIj7tjq+xijbWDbWHVWx0Yd1PI70AOoAKACgAoAKACgAoAb5ib/AC96+Zt37Nw37c43bPvbc8bumeOtADqACgAoAKACgAoAKAGtIibd7qm9gi7mC7mPRVz1Y9lHJ7UAOoAKACgAoAKACgAoARmVVLMQqqCWZiAoA5JJPAAHJJ49elAArKyhlIZWAKspBUg8ggjggjkEcenWgBaACgAoAKACgAoAKAGrIj7tjq+xijbWDbWHVWx0Yd1PI70AOoAKACgAoAKACgAoAb5ib/L3r5m3fs3Dftzjds+9tzxu6Z460AOoAKACgAoAKACgAoAa0iJt3uqb2CLuYLuY9FXPVj2UcntQA6gAoAKACgAoAKACgBGZVUsxCqoJZmICgDkkk8AAcknj16UACsrKGUhlYAqykFSDyCCOCCOQRx6daAFoAKACgAoAKACgAoAasiPu2Or7GKNtYNtYdVbHRh3U8jvQA6gAoAKACgAoAKACgBvmJv8AL3r5m3fs3Dftzjds+9tzxu6Z460AOoAKACgAoAKACgAoAa0iJt3uqb2CLuYLuY9FXPVj2UcntQA6gAoAKACgAoAKACgBGZVUsxCqoJZmICgDkkk8AAcknj16UACsrKGUhlYAqykFSDyCCOCCOQRx6daAFoAKACgAoAKACgAoAasiPu2Or7GKNtYNtYdVbHRh3U8jvQA6gAoAKACgAoAKACgBvmJv8vevmbd+zcN+3ON2z723PG7pnjrQA6gAoAKACgAoAKACgBrSIm3e6pvYIu5gu5j0Vc9WPZRye1ADqACgAoAKACgAoAKAEZlVSzEKqglmYgKAOSSTwABySePXpQAKysoZSGVgCrKQVIPIII4II5BHHp1oAWgAoAKACgD/1f7+KAPIvjT4Y8SeK/CC6d4ZJluItSt7q809bhLZtRs44p1MAkleOFzFPJBciCaSNJPJ3KWmiiRwqLSd3/X9f11D4LeGPEnhTwg2neJiYriXUri6s9Pa4S5bTrOSKBRAZInkhQyzxz3JghkkSPztzFZpZUQCTTd1/X9f10PXaCQoAKACgAoAKAMXxHZ6hqPh/WrDSrr7Fqd5pd9bWF3vaP7Pdz20scEnmIGeLbIy/vUVni/1iAuoFA1uvU+efgb8PfHPhPxBrF/4ggfS9MmsHtGtHvba5/tG9+0wyQ3Kx2s9wm22jS4xcysjn7R5cW9JJigXOSa079rf1/wPM+oKDMKACgAoAKACgAoA+Rf+FY/En/hb3/CQ7n/s7/hI/wC1f+Eg/tCDZ/Y/2rzfsX2fzfte77D/AMS37D9m8jH7rd9j/wBIoNOZctvLa3X19dT66oMwoAKACgAoAKACgD5f+OXw98c+LPEGj3/h+B9U0yGwS0W0S9trb+zr37TNJNctHdT26bbmN7fNzEzuPs/ly7EjhLhpCSS179r/ANf8HyPobw5Z6hp3h/RbDVbr7bqdnpdjbX93vaT7RdwW0Uc8nmOFeXdIrfvXVXl/1jgOxFBD3fqbVAgoAKACgAoAKAPIvjT4Y8SeK/CC6d4ZJluItSt7q809bhLZtRs44p1MAkleOFzFPJBciCaSNJPJ3KWmiiRwqLSd3/X9f11D4LeGPEnhTwg2neJiYriXUri6s9Pa4S5bTrOSKBRAZInkhQyzxz3JghkkSPztzFZpZUQCTTd1/X9f10PXaCQoAKACgAoAKAMXxHZ6hqPh/WrDSrr7Fqd5pd9bWF3vaP7Pdz20scEnmIGeLbIy/vUVni/1iAuoFA1uvU+efgb8PfHPhPxBrF/4ggfS9MmsHtGtHvba5/tG9+0wyQ3Kx2s9wm22jS4xcysjn7R5cW9JJigXOSa079rf1/wPM+oKDMKACgAoAKACgAoA+Rf+FY/En/hb3/CQ7n/s7/hI/wC1f+Eg/tCDZ/Y/2rzfsX2fzfte77D/AMS37D9m8jH7rd9j/wBIoNOZctvLa3X19dT66oMwoAKACgAoAKACgD5f+OXw98c+LPEGj3/h+B9U0yGwS0W0S9trb+zr37TNJNctHdT26bbmN7fNzEzuPs/ly7EjhLhpCSS179r/ANf8HyPobw5Z6hp3h/RbDVbr7bqdnpdjbX93vaT7RdwW0Uc8nmOFeXdIrfvXVXl/1jgOxFBD3fqbVAgoAKACgAoAKAPIvjT4Y8SeK/CC6d4ZJluItSt7q809bhLZtRs44p1MAkleOFzFPJBciCaSNJPJ3KWmiiRwqLSd3/X9f11D4LeGPEnhTwg2neJiYriXUri6s9Pa4S5bTrOSKBRAZInkhQyzxz3JghkkSPztzFZpZUQCTTd1/X9f10PXaCQoAKACgAoAKAMXxHZ6hqPh/WrDSrr7Fqd5pd9bWF3vaP7Pdz20scEnmIGeLbIy/vUVni/1iAuoFA1uvU+efgb8PfHPhPxBrF/4ggfS9MmsHtGtHvba5/tG9+0wyQ3Kx2s9wm22jS4xcysjn7R5cW9JJigXOSa079rf1/wPM+oKDMKACgAoAKACgAoA+Rf+FY/En/hb3/CQ7n/s7/hI/wC1f+Eg/tCDZ/Y/2rzfsX2fzfte77D/AMS37D9m8jH7rd9j/wBIoNOZctvLa3X19dT66oMwoAKACgAoAKACgD5f+OXw98c+LPEGj3/h+B9U0yGwS0W0S9trb+zr37TNJNctHdT26bbmN7fNzEzuPs/ly7EjhLhpCSS179r/ANf8HyPobw5Z6hp3h/RbDVbr7bqdnpdjbX93vaT7RdwW0Uc8nmOFeXdIrfvXVXl/1jgOxFBD3fqbVAgoAKACgAoAKAPIvjT4Y8SeK/CC6d4ZJluItSt7q809bhLZtRs44p1MAkleOFzFPJBciCaSNJPJ3KWmiiRwqLSd3/X9f11D4LeGPEnhTwg2neJiYriXUri6s9Pa4S5bTrOSKBRAZInkhQyzxz3JghkkSPztzFZpZUQCTTd1/X9f10PXaCQoAKACgAoAKAMXxHZ6hqPh/WrDSrr7Fqd5pd9bWF3vaP7Pdz20scEnmIGeLbIy/vUVni/1iAuoFA1uvU+efgb8PfHPhPxBrF/4ggfS9MmsHtGtHvba5/tG9+0wyQ3Kx2s9wm22jS4xcysjn7R5cW9JJigXOSa079rf1/wPM+oKDMKACgAoAKACgAoA+Rf+FY/En/hb3/CQ7n/s7/hI/wC1f+Eg/tCDZ/Y/2rzfsX2fzfte77D/AMS37D9m8jH7rd9j/wBIoNOZctvLa3X19dT66oMwoAKACgAoAKACgD5f+OXw98c+LPEGj3/h+B9U0yGwS0W0S9trb+zr37TNJNctHdT26bbmN7fNzEzuPs/ly7EjhLhpCSS179r/ANf8HyPobw5Z6hp3h/RbDVbr7bqdnpdjbX93vaT7RdwW0Uc8nmOFeXdIrfvXVXl/1jgOxFBD3fqbVAgoAKACgAoAKAPIvjT4Y8SeK/CC6d4ZJluItSt7q809bhLZtRs44p1MAkleOFzFPJBciCaSNJPJ3KWmiiRwqLSd3/X9f11D4LeGPEnhTwg2neJiYriXUri6s9Pa4S5bTrOSKBRAZInkhQyzxz3JghkkSPztzFZpZUQCTTd1/X9f10PXaCQoAKACgAoAKAMXxHZ6hqPh/WrDSrr7Fqd5pd9bWF3vaP7Pdz20scEnmIGeLbIy/vUVni/1iAuoFA1uvU+efgb8PfHPhPxBrF/4ggfS9MmsHtGtHvba5/tG9+0wyQ3Kx2s9wm22jS4xcysjn7R5cW9JJigXOSa079rf1/wPM+oKDMKACgAoAKACgAoA+Rf+FY/En/hb3/CQ7n/s7/hI/wC1f+Eg/tCDZ/Y/2rzfsX2fzfte77D/AMS37D9m8jH7rd9j/wBIoNOZctvLa3X19dT66oMwoAKACgAoAKACgD5f+OXw98c+LPEGj3/h+B9U0yGwS0W0S9trb+zr37TNJNctHdT26bbmN7fNzEzuPs/ly7EjhLhpCSS179r/ANf8HyPobw5Z6hp3h/RbDVbr7bqdnpdjbX93vaT7RdwW0Uc8nmOFeXdIrfvXVXl/1jgOxFBD3fqbVAgoAKACgAoAKAPIvjT4Y8SeK/CC6d4ZJluItSt7q809bhLZtRs44p1MAkleOFzFPJBciCaSNJPJ3KWmiiRwqLSd3/X9f11D4LeGPEnhTwg2neJiYriXUri6s9Pa4S5bTrOSKBRAZInkhQyzxz3JghkkSPztzFZpZUQCTTd1/X9f10PXaCQoAKACgD//1v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/S/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/9P+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/2Q==" }, "c11f610f-259d-43ee-9b2c-54cb304de6c9.jpeg": { "image/jpeg": "/9j/4AAQSkZJRgABAQAASABIAAD/4QBYRXhpZgAATU0AKgAAAAgAAgESAAMAAAABAAEAAIdpAAQAAAABAAAAJgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAFA6ADAAQAAAABAAAD6AAAAAD/7QA4UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAA4QklNBCUAAAAAABDUHYzZjwCyBOmACZjs+EJ+/8AAEQgD6AUDAwERAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/dAAQAof/aAAwDAQACEQMRAD8A/v4oA8p+J3xU0/4dW9pF9jbVNZ1FZJLSwE3kRR28ZCPd3c2yVki8w7IY44y87pKoaNUeRAqMb+n3/wDt0f67W97jPh18e7fxbrUHh/W9Ki0i9v2Mem3VrcPNaT3G1mW0mSVRJBLIFKwSB5EllKxFYmdN4OULap6dbq3/ALe/y+659E0EBQAUAFABQAUAFABQAUAFABQAUAFAHMeMPFemeC9Bu9f1XzGgttkcNvDtM93dTHbBawhiF3yNlmZjtiiSSVsqhoGk27L+vxX5/fY+c9L/AGnDLqiJrHhmO10eWUI01leyXF7aRM2POdJIY47vYMF441tmIBMe5gI6C3T00evmtP8A04fV0E8N1BDc28izW9xFHPBKhyksMyCSKRD3V0YMp7gg96DMloAKACgAoAKACgAoAKACgAoAKACgBGZUVmdgqqCzMxAVVAyWYnAAAGSScAcnGKAPlPxB+0wlrqs1t4e8Pw6hpdvM0X26+u5YJb9UbaZraGKAi2hfBMLTGaR0KvJDE5MShooaa/l/9uvPp99j3vwL420vx7oUet6akluVle1vrGZlaaxvI1R3hZ1CrLG0ciSwTqqiWJ1LLHKJYYghprf+vz/PTzOyoEFABQAUAFABQAUAFABQAUAFABQAUAeIfE/4z2fgG8i0Ww04avrbwR3Nwks5t7OwhlyYROyJJLNcTKvmLAnlBIWjleX50RguML6vb0u//So/l932k+F/xns/H15Lot/p66RraQPc26RTGezv4YsecIWdUlhuIlbzDbv5oeFXlSU7HRAJQtqtvSz/APSpfl9/2fcKCAoAKACgAoAKACgAoAKACgAoAKACgDgviH8QNM+HujJqd7DJe3V1MbbTdOidYnu51QySF5WWQQW0KAGefy5SpeNFjZ5EVgpRcvl/XeP5/d9rxrwj+0fFqus22meItEg0u1v7iO2g1GzupJktJZnEcP2yKZATAXYCW5jdfJHztCyB2QKdPs/vX/27/L7z6ioMwoAKACgAoAKACgAoAKACgAoAKACgDM1rWLDw/pV/rWpymGw022kurlwNz7IxwkacF5pXKxQxg5kldEGM0DSu7f1+n5/cfLX/AA09L/af/IqR/wBj+btx/aDf2n5OcebnyRa+bty/2faUz+7+04/fUF+z0319NP8A04fUui6xYeINKsNa0yUzWGpW0d1bORtfZIOUkTkpNE4aKaMnMcqOhzighqzt/X6/n95p0CCgAoAKACgAoAKACgAoAKACgAoAKAPmnx1+0ND4e1u70Tw/o8OrHTZ3tb7ULu5eG3a6hYpcW9pFDGXkWCQNE1y8qq0quI4pIgksoWoX30+X/wBtHy6fd9r0z4a/ErTfiNptzPBbPp2p6c0SalpryicRicOYLm2nEcRmtpjFKoLRpJFJG8cibTHJKClFp+XR/wBN6/Pz0uelUEhQAUAFABQAUAFABQAUAFABQAUAFAHlPxO+Kmn/AA6t7SL7G2qazqKySWlgJvIijt4yEe7u5tkrJF5h2Qxxxl53SVQ0ao8iBUY39Pv/APbo/wBdre9xnw6+Pdv4t1qDw/relRaRe37GPTbq1uHmtJ7jazLaTJKokglkClYJA8iSylYisTOm8HKFtU9Ot1b/ANvf5fdc+iaCAoAKACgAoAKACgAoAKACgAoAKACgDmPGHivTPBeg3ev6r5jQW2yOG3h2me7upjtgtYQxC75GyzMx2xRJJK2VQ0DSbdl/X4r8/vsfOel/tOGXVETWPDMdro8soRprK9kuL20iZsec6SQxx3ewYLxxrbMQCY9zAR0Funpo9fNaf+nD6ugnhuoIbm3kWa3uIo54JUOUlhmQSRSIe6ujBlPcEHvQZktABQAUAFABQAUAFABQAUAFABQAUARTzw2sE1zcSLDb28Uk88rnCRQwoZJZHPZURSzHsAT2oA+UdV/acMeqOmj+GY7rSIpSiz3t7Jb3t5ErY81I44Xjs945RJBcsBgyYYlEDRU9NXr5LT/04fRng/xXpnjTQbTX9K8xYLnfHNbzbRPaXUJ2z2swUld8bYZWU7ZYnjlXCuKCGmnZ/wBfi/z+6509AgoAKACgAoAKACgAoAKACgAoAKACgDwL4l/HK18E6q3h/SdMTWNWt0ie/knnaCysWmRZY7fEUbS3NwYnSWQK8UcKui+Y8peOILjC++i9P/to9P6X2tr4X/F6x+Ib3Om3Fj/ZOuWcH2prVZ/tFteWodI5J7SVo4pFeF5I1mt5QWVZEkjkmXzfIBSi16en56y6+evnb3fY6CQoAKACgAoA/9D+/igD5V/aH8Ca7q95pfirR7O51OC100aVqFraRvcXNqsN1c3cF2tvGGlkhk+2TRzvGreR5UbyYRmag0g1t1v/AF6bd/uPKvhF8PfEeseMNE1OXTb6w0nQ9StNVu7+7t5rWJm0+ZLmG0tzMiG4mnnjjjdIg3kxM8kuAEoKk0k/Nf137/8ADbn3/QYhQAUAFABQAUAFABQAUAFABQAUAFAHk3xo8Ial4y8FSWOkL52o6dqFtrFvaBghvfs0F1bTWyM2F80wXkssKsf3ksSRjBcUFRaT17f1/Wn4Wl8O6V4E8X6xqkej2fh7VVvHlEUoubG6tIbT5trSXs08SR2sUfJd5WH91cuVVg2btqfpNoOmf2LoejaN5pn/ALJ0rTtM845Bl+wWkNr5uDyPM8rdjtnFBg9W33f9dvy+41aBBQAUAFABQAUAFABQAUAFABQAUAVb61W+sryyd2jS8tbi1Z0+8i3ELxM69PmUPkc9R2oA/NXxB8PvF3h3VZtJvND1KaRJmjtrizsrm6tb+PdiOazmhikWVZVw3lg+dGT5U0UcquihupJr+v8AJX37dlqfY3wK8F6t4Q8L3cmtwvaX+t3q3v2CTiWztYoFht1uUyfLupSZZZIvvxRtFHKEmWSNAyk7v9f6/wCD+No+3UEhQAUAFABQAUAFABQAUAFABQAUAFAHxV8fPAPiD/hK7nxZYWF3qWlavBZefJZwy3LafdWVnDYtFcRRK8kUMsVtDLFcMvktJJJESHVQwawatbqv6/Xz/G0T4B+AfEH/AAldt4sv7C703StIgvfIkvIZbZtQur2zmsVit4pVSSWGKK5mlluFXyVkjjiBLswUCbVrdX/X6eX4Wl9q0GQUAFABQAUAFABQAUAFABQAUAFABQB8/wD7QHgnWPFWi6RqWiW8t/c+H5r5p9Pt1L3M9pqCWvmzW0K5a4mt5LKH9xEDK8csjIGKYoLg0rrvb+v6f3nyt4Q+HPijxVrdrpsOk6jaW32iMajqF1aXFrbWFsrjz5HmmjjQziMN5NspaaWQBVGAxUNG0tX/AF+f5fefpTQYBQAUAFABQAUAFABQAUAFABQAUAFAHFfEXw3c+LfBeveH7N1jvL61ia0LtsR7myu7e/ghdzwiTy2qQO7fKiybzwtA4uzT/r9f67bn56f8IT4v/tL+x/8AhGtb/tLzfJ+zf2ddbt27bu8zyvK8n+L7Tv8As/l/vd/l/NQb30v03P0L+HXhu58JeC9B8P3jrJeWNrK12UbeiXN7d3F/PCjjh0glungR1+V1j3jhqDCTu2/6/T+u+52tAgoAKACgAoAKACgAoAKACgAoAKACgD86viL8OvE3hzxNqgOl397pt7f3V1pupWtrPdQXEFzO80cckkKSCK8iEnlTwSlJPMUyRq8Lxu4bRkmu1v67LovO3c9+/Z68C634fh1fxBrdpPpp1aG2tNPsbpGhumt4pHmmu7i3fEkCyOYo7ZZVSVlWWQoInhdwibvp2/q39P7j6XoICgAoAKACgAoAKACgAoAKACgAoAKAPlX9ofwJrur3ml+KtHs7nU4LXTRpWoWtpG9xc2qw3VzdwXa28YaWSGT7ZNHO8at5HlRvJhGZqDSDW3W/9em3f7jyr4RfD3xHrHjDRNTl02+sNJ0PUrTVbu/u7ea1iZtPmS5htLczIhuJp54443SIN5MTPJLgBKCpNJPzX9d+/wDw259/0GIUAFABQAUAFABQAUAFABQAUAFABQB5N8aPCGpeMvBUljpC+dqOnahbaxb2gYIb37NBdW01sjNhfNMF5LLCrH95LEkYwXFBUWk9e39f1p+FpfDuleBPF+sapHo9n4e1Vbx5RFKLmxurSG0+ba0l7NPEkdrFHyXeVh/dXLlVYNm7an6TaDpn9i6Ho2jeaZ/7J0rTtM845Bl+wWkNr5uDyPM8rdjtnFBg9W33f9dvy+41aBBQAUAFABQAUAFABQAUAFABQAUAZWvaZ/bWh6zo3mmD+1tK1HTPOGSYvt9pNa+bgcny/N3Y74xQNaNPs/67/l95+bOq+BPF+j6pJo954e1VrxJTFELaxuruG7+basllNBE8d1FJwUeJj/dbDhlUN076n3F8F/CGpeDfBUdjq6+TqOo6hc6xcWhYObL7TBa20Ns7LlfNEFnFLMqn93LK8ZyUNBjJpvTt/X9a/jaPrNBIUAFABQAUAFABQAUAFABQAUAFABQB8KfGz4feIrHxfqmv2unXmo6Nrcy3kd3ZwS3Qtbhoo0uLS8WFXa3ZZUZ4HcLFLA8YjkMiSogawkrW2t/XZW1fd38rHVfs++Adftdem8W6rY3Wl6fb2FxaWKXkMltPf3F2Y1Z44JQkhtIIVctO6BJJniWEybJigKclt/S2++/r992fYNBmFABQAUAFAH//0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9L+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+Zvjh+2f+yX+zX5kXx6/aP+DXwq1COITLoHi/4geHNN8V3MRQSB7Dwib6TxPqIKEPiw0i5O1lP8S1LnGPxSS9X+l15bP7ylCT2TfyPzH+IX/Bxv8A8Ep/A0k9vpXxp8Z/E25tiySQ/D34QfEKSNpE6pBqPjPRvBmkXYP8M9pqM1q2fluDg7cniKS6t+ib/Pk/r7i/ZTfRL7n+X9fcz5J8Uf8AB1z+wxp7SR+E/gV+1P4leMkLNqmgfCvwzZTEdGhkj+Keu3ojPrPp0MgPWI4BqXiodFL7kvwbf5/cV7CX8yX3v84x/rtpzeIax/wdt/COBn/4R/8AYu+I2pqM7DrHxe8M6Gzem9bLwX4iCZ77WfH+1gVP1uP8jf8A28l+UZf13u1E9g/519x55ff8HdcYLLpn7ALsv8M19+1CqH23W1v+z5IPfi646HOQVX1v+5/5P/8Acx+w/v8A4H7S/wDBKL/gsl8K/wDgqDD4+8L2fw41b4K/GX4babY+Itc+H2oeJ7bxtpOseD7+9XSl8T+FvFcGh+GLi9i07VZLOw1/TtS8OaXNpc2r6L9ludWhvJprXalWVW+lmt1vp5PS/novnoZ1KfJbW6e3R/Nf8H7rn7KVsZhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDiviR8RPBnwi+H/jX4pfEXXrPwv4D+HnhfXPGXjDxDf8AmfZdH8O+HdOuNU1a/kSFJJ5zBZ20rRWttFNd3c3l21pDNcyxxMm0k29Eldvsl9/5feNK7S7ux/ngf8FG/wDg4K/az/a38UeJPBvwC8V+Jv2Z/wBnNLq70/RNE8E6m+h/FLxrpCO8MWrfEHx5pMy6xp8uq25eSfwd4Q1LTfD1naXR0fVp/FstqNauOCpiJSuo+7Hy3fq9H8la3Vy0R1QpRjvq+/TTsrL8b+p+Ad3dXeoXVxe31zcX19eTy3V3d3c0tzdXdzO5lnuLi4meSaeeaRmklmldpJHYu7FiTXP+Zqdh8Nfht44+MHjrwx8Mvhr4eu/Fvj3xpqtvofhTwxp8tnFqOvazdkrZ6Vpovrm1huNQvJMRWdoswnup2SC3SWZ0jZpOTstW9l3/AC/P7tRNpavY/Vfwt/wQC/4K1eK1img/ZNv9EtZACbnxT8Vfgj4caLPTzdN1L4kxayDjqF01iuMNgmtVh6r+zb1cf/k3+X3EOrT/AJvkk/8Ahj3TRv8Ag2d/4KkaoEN94R+DXhwtjK6z8YdFnMeez/8ACPWOvqSO/ls/sT0Wvq1X+7/4El+UZfn993yr20PM9FsP+DWb/gpFeBTceMv2VdLJ6rf/ABN+IEhX2Y6Z8ItQU4/2SR6Y5p/VaneC+bf5KP5fdd8x7aHn/XzX9btH9Ef/AARP/wCCLXiX/gmnq/xL+L3xn+I3hHx58bfiL4Xt/h9aad8N/wC3J/A/g7wQus2HiPVYYtb8S6R4d1nxDrPiHWdH0CWeSTw5o1po9voawWx1JtRmng6KNH2d22nJ6aLRL1bd7+it53MalTnskmknfXdv0Tdvv+4/oNrcyCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPzV/4LCfBn4k/tAf8ABNX9rL4V/CKzv9T+IGteA9H1vRNG0pZZdV8Q2/gPx14T+IGv+GdLtoMz32p+JvDfhfV9B0/TYlaXU7vUYdPjR2uQjZ1YuVOaW9tLdbO9uu9rbffcum0pxb2v189L9dv6tuf5XC21w1ytotvM9204tltBFIbhrgyeULcQqBKZmkPlCIL5hf5AA3FeX+Z2n97v/BTj9mj9mT9h3/giZ8Spvgr+zh4A+B3xG+J/hP4EeCdc1K20can8SYdW8ZeMfA2qeO/D2u/ETxCdT8d6zt0Sx8WaPPaahr8ltGktykdrFbtJbt31YxhRfLFJtRT762vd6vvo2/lqo80JOVTV3S5n5f1+XzP42P8Agn54T1Hxz+3Z+xr4T0qe4tL3Wv2ofgTbLfWjvHc6dBH8TfDVze6nBIhDxyaZZQXF+roQ6m33KQQDXHTV6kP8UfzN5u0ZejP9buvVOEKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1P7+KACgAoAKACgAoAKACgAoAKACgAoA/Pr9rn/gqX+wv+w14q0HwJ+0j8cbDwf458Q2EGs2ng7RvC/jLx34js9BuZ5beDXtc03wPoHiCXw/plxLbzixk1j7HcasLe5bR7a/FtcGLOdWEHaUrN9NX89E/wBP+3tUXGEpbLTv/W/yPrv4QfGH4YfH74b+Ffi98GvG2hfET4a+N9POp+GPF3h25a503U7aO4ms7mPEqQ3dlf6ffW11p2q6VqNtZ6ppGp2t3pup2Vnf2txbpaakk07p7P8Aq35etiWmnZpp+Z6VTEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfF7f8E6f2GH+OP/AA0k37LHwab42/22PE//AAnZ8H2P2s+KxcfbB4uOk8eHj4vF/jUv+ErOk/8ACQ/2r/xNP7SOof6RUezhzc3Kube/n37X+V+vN9krnlblu7Wt8ux+Mn/B1V4sbR/+Cf3wo8LwSlJ/GP7VPgxLmPOBNpOgfDP4s6ncAjIzs1U6G4yCOM8ELWOKdqaXeS/BX/rbv0tLSiveb7J/p/XX8bx/lk/4IQ+EV8af8FY/2PdMki82HTfFnjrxdISuUibwP8JPiB4vtZXPIXF9otqsbH/ls8SjDMprmoa1Yer/AAi35f132N6mkJen5u3n/Xbc/wBQavSOIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/V/v4oAKACgAoAKACgAoAKACgAoAKACgD/AC4P+C4Hiubxh/wVW/bK1Oa+e/Gn/EbSPCkMjymVbeHwX4D8JeElsY8kiNLJtGe28pcCORHBBcua8yt/Fn6/kkdtP4I+h/XL/wAGuUGsw/8ABNXXpNTuZp7K6/ac+KM/h2KWR3Sz0ZfCXwxtp7a2V/lihbxBb67dtHF8huLqeU/vZZK68Nf2ev8AM7emn63/AKsc9b4/kr/16en6y/o6roMgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/kX/wCDtfW2t/gl+xz4b3kLq3xU+J2tmPPDN4f8JeHrBXI7lB4mZQcceYema5cV8MF/ef4L/g9/vN6G8vRH4yf8G1GhLq//AAVP+HuoFAx8L/Cj4y66rEZ8trjwk/hnePQlfETR59HI7mscN/F9Iv8Ar+v0NK3wP1X9f1+h/pB16ByBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9b+/igDH1zxBovhqxbUtd1K20yyVgnnXLkeZIQSsUMSK81xMVVmEMEckhVWYIVVyoNJvYyfDXj3wh4veaLw7rltqM8C75bbZc2l2seQplFpfQW1y8KsVVpkiaNWdQz5ZBQDTW6/X8fl/VjrqBBQAUAFABQAUAFABQBWvby006zu9Qv7iGzsbG2nvL27uJFit7W0tYnnuLieViFjhghR5ZZGIVEVmJABNAH+P3+0n8V5/jv+0P8AHb42XJlMnxc+MHxJ+JIWYMJIYfGvjDWPEVvbbG5iS1t9RitooQAsEUSQoqogVfJk+aUpd5N/ezvirJLayR/pLf8ABCP4SS/B7/gld+ynpl5bG31bxx4Y8Q/FvUnZdjXUXxR8Y6/4v8N3O0gHB8F6j4ZhRst5kcCyghXVV9GguWlDzV/v1/J/1c5KrvN+Wn9aL9fU/XetTMKAIbi4gtIJrq6mitra3jeae4nkSGGGKNS0kssshCRxooLO7kKoGSQBmgDhNM+Kvw+1jUk0jT/E9lNfySeTDFJHeWsU8pO1Yre7u7WG0uJJGwsSQzu0rELGHJFA+VrW39enT9Pmeg0CCgAoAKACgAoAKACgAoAKACgAoAKAP4zf+Duu/KWX7AemKTtnuv2n7+Rc8A2kX7P1vCSO5IvbgA9sN61yYvaC85fhb/Pv950UPt/9u/qfm5/wbHaxoPh//goz4j1nxDerp9nY/sz/ABLMNy8F1Oou7vxn8LrCNSLWGd4w0V1PmWRVhUDDupZTWeF/iP8Awv8ANf1/SLqpuFl3Xl/X4fjaX+iXZX1nqVpBf6fdQXtldRiW3uraVJoJo26PHKhZWGcg4PDAqcEEL3nI1bQdd3dpYW0t5fXVvZWluhknurueO3toIx1eWeZ44o0HdndVGeSONwB88eL/ANsb9kX4fGVfHv7U/wCzl4JeAkTJ4t+N3wz8OPEy9Vkj1fxPZMrAgjaRuzxweGlyit5RXq1+v9fgVyyf2ZP5P9P6/E+ddV/4K7f8EydG1C30y8/bf/Z6muLm4S1jl0rx7p+u6eskjbFa41bQxqGl2tuD9+7ur2C1jX55ZkQF6n2tP+eP33/FTX5feP2c/wCVn6BaB4g0HxXoekeJ/C+t6T4k8N+INNstZ0HxDoOpWesaJrej6lbx3enarpGq6fNcWGpabf2ssVzZ31nPNbXVvJHNDK8bK7aEGvQAUAFABQAUAFABQAUAFAHOeI/F3hvwjbxXXiLV7bTIp2ZYFl82W4nKY3+RaW0U11MI8r5jRQuse5d5Xcu4Gk3t/Xz6B4c8XeG/F1vLdeHdXttTigZVnWLzYriAvnZ59pcxQ3UIkw3ltLCiybW2FtrbQGmt/wCvn1OjoEFABQAUAFABQAUAFABQAUAFABQAUAUdS1PT9Hsp9R1S8t7CxtV3z3V1KsMMak7VBdurOxCRouXkdgiAuyqwBynh/wCJXgfxRenTtD8Q2t5fYYpavFeWU0wQFn+zJf2tt9qKqC7C28whFLnCKzKDcWun6/8ADf12O5oEFABQAUAFABQAUAFABQAUAFABQAUAISACSQAASSTgADkkk8AAdSf6UAed/wDC2/hx/aX9k/8ACWad9s83yd227+w+Znbj+1Ps39l43cb/ALXs/wBrtQVyy3s/68v67nogIIBBBBAIIOQQeQQRwQR0I/rQSLQAUAFABQAUAFABQAUAFABQAUAFABQBxXiP4i+C/CVyln4g161sbyRVcWixXd7coj/ceaDT7e6lt0cco86Rq68oSBQNRb1t+NjotH1rSfEFhFqei39tqVhMSEubWQSJvXG+Nxw8UyZHmQyqksZ4dBmgGmtH/X9f1sadAgoAKACgAoAKACgAoAKACgAoAKACgDH1zxBovhqxbUtd1K20yyVgnnXLkeZIQSsUMSK81xMVVmEMEckhVWYIVVyoNJvYyfDXj3wh4veaLw7rltqM8C75bbZc2l2seQplFpfQW1y8KsVVpkiaNWdQz5ZBQDTW6/X8fl/VjrqBBQAUAFABQAUAFABQAUAFABQAUAFAENxcQWkE11dTRW1tbxvNPcTyJDDDFGpaSWWWQhI40UFndyFUDJIAzQBwmmfFX4faxqSaRp/ieymv5JPJhikjvLWKeUnasVvd3drDaXEkjYWJIZ3aViFjDkigfK1rb+vTp+nzPQaBBQAUAFABQAUAFABQAUAFABQAUAFABQB59qfxV+H2j6k+kah4nsob+OTyZoo47y6iglB2tFcXdpazWlvJG2VlSadGiYFZAhBoHyt62/r06/r8ju7e4gu4Ibq1miuba4jSaC4gkSaGaKRQ0csUsZKSRupDI6EqwOQSDmgRNQAUAFABQAUAFABQAUAFABQAUAFABQByviXxv4V8HpC3iPWbbTWuAWggZZ7m6mRTtMkdnZxXF00Qb5TKIfKDfKXByFBqLey/T+v67lzw94o8P+K7Nr7w9qltqdsjiOVoC6ywORuVLi2mSK5tnZRuRZ4Yi6jcoIBoBprc3qBBQAUAFABQB//X/v4oA+Mv2m/7S/4SDw55nm/2P/Y8v2Tr5P8AaX22b+0Mfw+b9m/szd32bMdWoNYbPvf/AIb9TyX4Vf2l/wALE8I/2V5v2j+2bXz/ACt2f7N3f8Tbft/5Zf2b9q8zPG3r2oKl8Lv/AF2/E/SegwCgAoAKACgAoAKACgD84/8Agrp8cx+zt/wTc/a7+I8N59h1eb4R6z8PvDVwkmy6g8TfFue0+F2hXliAQz3elX/i6LWECq4jj06S4lQwQyms6suWnJ9bWXq9PL/gb62sXTXNNLzv939f1Y/y0PAPgvXPiR468FfDvwxb/a/Evj3xb4c8F+HrXDH7TrninWLLQ9Jt8IGc+df39vHhVZvm+UEnFeYldpdW7fedr017f15/l95/sKfDPwFonwq+G/w++F/hqPyvDnw38EeFPAXh+LYsflaJ4P0Gw8PaVHsT5E2WOnW67F+VcYXgV6yVkl0St9x57117/wBeX5fcdvTAKAPDP2hv7S/4V3J9g837P/bOnf2v5Wcf2btudvm4/wCWX9pf2dnPG7ZniguHxfl/Xpf+rHwYu7cuzdu3Dbtzu3Z42453ZxjHOenag1P1L8Nf2h/wjmgf2vv/ALV/sXSv7T8zPmf2h9hg+2eZnnzPtHmb8/xZ96DB7u219DboEFADWZUVndlREUs7sQqqqjLMzHAVVAJJJwBycc0Afw5f8FEv+Dm/42XPxO8XfDL9ge18IeCvht4U1bUNBtvjn4l8O6f438YePrvTLmS0m8R+EdC8QRXfg3w94QvJUlbRY9c8PeJdY1ewWz1i5l0J7yXQ7fjqYl3ap2sn8T1v6J6Jed5X6Wv7vTCirXlq+y6eT0vf02/vbx/FzxB/wWr/AOCp/ia5lutR/bT+LFtLKxZ18Pp4U8JWwLHP7qz8K+G9HtIVz0SGCNFHAAACrh7eq/tv/wAl/wDkF+votGaezh/Kv69TDtf+CxX/AAVAs3EkX7bfx0dgc4uvEsF8n4x3tjcRkexXHqB0Y9tV/nl+H6835P8AxL4Q9nD+VHo+hf8ABd3/AIKzeHSjWH7Y/i242YwNd8BfBzxODj++PEvw51gSZ77wc+/NNV6q+3f1UX/7Yvz+6wezh/L+LX5f197P1r/4Jaf8HC37aXxD/a7+CvwE/ao1Xwp8YfAHxz8deHPhXDrlj4D8M+CfGnhDxT4y1CDQfCmuWE3gfTtA0LUdJPiG+0+38R2Gp6HNKulzz32nX1lNZG3u9aWIm5xjKzUnbZJ+um/paPe+jiZzpR5W46NK9t1p01P7nK7TmCgAoA8Y+PP7RXwN/Zg8AXnxQ/aB+KPhD4T+BLO4jsjr/i7VEsUvtSmilng0fRLCNZ9V8Q65cwW9zPbaHoNjqGr3MFtczQWcscEzopSjFXk0l3f9flf0drDSctEmz+A3/g4F/wCCmX7Nn/BQ/wAc/s76b+zXc+N9c8PfAqx+LVrrXi/xP4WfwnoniW5+IN38O30+XwpYanejxQ9taweCblr9/Efh7w5cK11Zpb21xi4aDgxFWNRx5btRvra29tr69O0fJHVSg4p33dvw/Dr0/wAj8aP2af2pfjJ+yP431z4jfA3XdO8N+Mtd8G6l4FuNY1HQNH8SfZdE1XWNB1u7ay0/XrW+0tb43vhvTfLuLmzuVSH7RF5R87cmUJyptuOjattfTR9fTtL0NGk9+9/61X6+h7p4s/4Kof8ABRfxlYzaXqX7ZXx60jS55ZpZtL8B+OdQ+GOmSNcEGdG0/wCG58KWfkSkfvLYQ/ZnycxfM603Wqvecvk7filH8pfL7S5I/wAqfrZ/n/X3I+N/GPxJ+InxDujfeP8Ax9408c3pcym88Y+Kdc8TXRkOcyG41q+vpS5ycvv3HJ5OTUNt7tv1bf5+v9WQ7JbJfdb+v67nF0hnb+E/hn8R/Htxb2ngX4f+N/Gl3dzJb2tt4T8Ka94juLm4kfy44LeHR7C7kmmeQhEijV3Z/lCsxFNRb2Tfon+n9fiF0t/zt/X9dz/TU/4Ie/AT46/s3f8ABOD4J/DT9oax1fw/47S98a+J7LwPr7Sf258PvCXizxTqOueHfCmr28rNJpmpLBdza7eaJKVutAn12TRb+Cz1DT7qzg9KjGUacVLfXTtd3t0/L7rM46jTm3HbT5v8P62vufrbWpmFABQAUAFABQAUAFABQB8C/tBf2l/wse++2+b9k/s7S/7H358v7D9kTzvJzxj+0/7Q34/5abs9FoNofD89f69Lf1cP2ff7S/4WPY/YfN+yf2fqn9sbN3l/YPsknk+djjH9qf2fs3f8tNuKAn8Pz0/r0v8A1Y++qDEKACgAoAKACgAoAKACgAoAKACgAoA+X/2nf7S/sbwv5Pm/2T/aOofb9ufK+3fZ7f8AszzccbvJ/tPys/7fcCg0hu+/9X/Q+S9E/tL+2dK/sbzf7W/tGz/s3yd3m/bvtEf2Xy9vO7ztnT8eKDR7O+3U/VSg5woAKACgAoAKACgAoAKACgAoAKACgDzn4t/2l/wrjxX/AGT5v2v+zk3eTnzPsP2u3/tTG3nH9mfbPMx/yz3YoKj8Sv3/AOG/E/N2g2P0i+Ef9pf8K48Kf2t5v2v+z32edu8z7B9ruf7Kzu5x/Zf2PZ/0z2UGMvidu/8Aw/4no1BIUAFABQAUAFABQAUAFABQAUAFABQB+X/jb+0/+Ev8S/2x5v8AaX9taj9p87duz9pk8vbn/lh5Pl/Ztv7v7P5Xlfu9lB0K3Tby/wCAfQ/7MP8AafneK/8AW/2P5Wn53bvI/tPfPt8rPy+b9l3faNnzbPs3m8eTQRO1vO/zt+Z9c0GQUAFABQAUAFABQAUAFABQAUAFABQB8ZftN/2l/wAJB4c8zzf7H/seX7J18n+0vts39oY/h837N/Zm7vs2Y6tQaw2fe/8Aw36nkvwq/tL/AIWJ4R/srzftH9s2vn+Vuz/Zu7/ibb9v/LL+zftXmZ429e1BUvhd/wCu34n6T0GAUAFABQAUAFABQAUAFABQAUAFABQB4Z+0N/aX/Cu5PsHm/Z/7Z07+1/Kzj+zdtzt83H/LL+0v7OznjdszxQXD4vy/r0v/AFY+DF3bl2bt24bdud27PG3HO7OMY5z07UGp+pfhr+0P+Ec0D+19/wDav9i6V/afmZ8z+0PsMH2zzM8+Z9o8zfn+LPvQYPd22vobdAgoAKACgAoAKACgAoAKACgAoAKAMTxL/aH/AAjmv/2Tv/tX+xdU/szy/wDWf2h9hn+x+Xj/AJafaPL2f7WKBrdX2vqflo27c2/dv3Hduzu3Z+bdnndnrnnPXvQbn3n+zx/aX/Cu4/t/m/Z/7Z1H+yPM3Y/s3bbbvK3f8sv7S/tHGON2/FBlP4vz/r0t/Vz3OggKACgAoAKACgAoAKACgAoAKACgAoA/Oz41/wBp/wDCyfEX9p+bnzbb7B5m7y/7M+yxfY/s+fl8rbu3+X8v2n7Ru/emSg3jayt+Hf8AzOt/Zw/tP/hOLv7L5v8AZ39i3X9q43eRjzYPsXmfwef9o/1Gf3nl/adnyedQKdrefT/gf8A+5qDEKACgAoAKAP/Q/v4oAxtc8PaL4lsW03XtNttTsmYSeTcKcxyKCBLBKhWa3mCsyiaB0lCsyhgrMGBptbGT4Z8A+EPB7zSeHdEttPnnXy5boyXN5dtGSGMQur6e5uUhZlVmhjlETMiMykqpUBtvd/p+Hz/q519AgoAKACgAoAKACgAoA/lP/wCDrr45f8Ip+yz+z18ALG88jUPjD8YNV8c6tBFJ+8ufCvwh8OG2ls7qME7bW58T/ETwzqELOFMlzoQ8pmEM6ry4qVoRj/NK/wAl/wAFo3oLVvsrfefzgf8ABBX4GD46/wDBUf8AZstLuz+16D8K9V1345a+/l+aLP8A4Vhot1rHhK7KkFQB8R5PBVvvYr5ZuA6kyKiNz0I81WP933vu26rq139DWq7Qfnp23+/pf/gXbP8ATvr0jjCgAoAhuLeC7gmtbqCK5triN4Z7eeNJoZ4ZFKyRSxSApJG6kq6OCrKcEEHFAHB6Z8Kfh7o+ppq+n+GbKK/jkE0Mkk17dRW8yncstvaXdzNZ28kbYaJ4YI2iYBoipVTQPmb0v/Xr1/X5HoVAgoAKAOT8e+G5vGXgbxp4Qt7+TSp/FXhPxH4bg1SHcJdNm1zR7zTIr+IoQ4ks3uluE2ENujG0g4ND1TXf+vL8/uGtGn2f9d/y+8/yPvGX7JP7SPgX4/X37L2vfBrx/wD8L3tPE0nhW1+HWn+GtW1HXtd1AXj2dreeG7a2sy2vaDquFvtI8QaaJ9H1LSpYdUtbx7B1nrynCalyuL5u3fzWm3mk166ncmrXurep/b78Ef8Ag17/AGFLD4Y/D6b41ah8etd+K1z4K8LXPxKgs/if4ds/Ddj49n0Oxl8YWPhqPQvAtjKPD1n4gfULbRRdX+pXf9mxW32nUr6bfdS9kcNTsubmbtr72l+uij3/AL36o5nWld2tb+vN/p6Hqt3/AMGxX/BMS5QrDY/H2wYjHmWnxajdx7gX3ha+jz9YyPY5FV9Wpdn/AOBP/JL8PvF7afl/X3fn9x5trv8Awaq/8E89RV20f4p/taeHZzny1g8ffCvUrJSf+ekGo/Baa7kA7BdRhPXJOQaX1Wn3mvmn+cY/1205n7afaP3P/wCSX9drpR95/Yf/AODen9jr9in456F+0JZeMPip8ZfHfgmea9+HVr8R7rwtD4Z8H6xNbTWieJV0fw34e0p9a8SafDcTf2NealeNpuk3Mg1S20ga1Z6XqVg6dCMJc122tr20+7/PTzuxSqykrWST31/r8tfI/eutzIKACgD+Rr/g6Q/ZV/ae+M2mfs1fF34TeDfGvxP+FHww074gaD448M+B9J1TxJf+CfEPiW88O3th401Hw7o8F3fy6PrenaU2jXevxWctnoU2i2ttqVxZjW7L7Ry4mMpcrSbSvdK/XZ2X/At13tLootLmTdm+/X/hv+G6n8YXxF+BXxo+EGkeDtd+K/wq+IHw00r4hQavd+Brnx54T1vwk3iyy0GSwh1fUdBttes7G61HTLOfU7GBtSt4XsJJ5WgguJZYLhIuJxatdNX2umtvX+vwN009ne3b+v6+4/Qv/gj7/wAE4fDX/BTT9o3xp8GvF/xP134WaB4F+Eup/FK81Xw34e0/xBq+s/2f4z8FeE10G2/tPUbKz0nzl8WyX51WW21fy209bb+zXFybiDWjTVSTTbVlfTd626+vn+sZqT5Ena93bt/X3fdc/r4+GH/BsV/wTM8DJbt4ytPjn8Z7hNrXQ8d/FJ9BsbiTq6xW/wAKtD+Hd5b2xORHGdSnuEQ4e7lceZXUsNTW/NL1f/yPL+L+77WDrT7Jf16v9PQ+8/AX/BHP/gl/8N1hXw9+xL8DdQEG3yz488PXXxUY7ennP8T7/wAXvcH+8bhpCx5YDOG0VKmtoR+ev583/pS9NCHUn/M/lp+R9g+Dv2av2c/h2sS/D/4A/BTwKsAAhXwd8K/AvhlYQv3RENF0KxEYXtsxjtjjbajFbJL0S/T+vxJ5pd3957SiLGqoiqiIoREQBVRVGFVVGAqqAAABgAYGOKYh1ABQAUAFABQAUAFABQAUAFAHN+JPCHhrxdbx2viLSLbU44GZoHkMsNxbl8b/ACLu2khu4RJtXzEimRZNiF921doNNrb+vl1Dw34Q8NeEbeS18O6RbaZHOytO8ZlmuLgpnZ593cyTXcwj3N5aSzOse9ym3c24Btvf+vl0OkoEFABQAUAFABQAUAFABQAUAFABQAUAUdS0zT9Zsp9N1Wzt7+wul2T2t1EssMgBDKSrdHRgrxyLh43VZEIdVZQDk/D/AMNPA3ha9OpaH4etbS/+bZdST3l9NAHBV/szahc3P2UspZGNt5RKM0Z+RmVgbk31/T/h/wCu53VAgoAKACgAoAKACgAoAKACgAoAKACgBCAQQQCCCCCMgg8EEHggjqD/AFoA86/4VH8OP7S/tb/hFNP+1+b52zfd/YPM3bs/2V9o/svGf+Wf2Ty/agrmltd/15/12PRQAAAAAAAAAMAAcAADgADoB/SgkWgAoAKACgAoAKACgAoAKACgAoAKACgDivEfw68F+LblLzxBoNrfXkaqgu1lu7K5dE+4k0+n3FrLcIg4RJ3kVF4QAGgak1pf8LnRaPouk+H7CLTNFsLbTbCEkpbWsYjTe2N8jnl5ZnwPMmlZ5ZDy7nFANt6v+v6/rc06BBQAUAFABQAUAFABQAUAFABQAUAFAGNrnh7RfEti2m69pttqdkzCTybhTmORQQJYJUKzW8wVmUTQOkoVmUMFZgwNNrYyfDPgHwh4PeaTw7oltp886+XLdGS5vLtoyQxiF1fT3NykLMqs0McoiZkRmUlVKgNt7v8AT8Pn/Vzr6BBQAUAFABQAUAFABQAUAFABQAUAFAENxbwXcE1rdQRXNtcRvDPbzxpNDPDIpWSKWKQFJI3UlXRwVZTggg4oA4PTPhT8PdH1NNX0/wAM2UV/HIJoZJJr26it5lO5Zbe0u7mazt5I2w0TwwRtEwDRFSqmgfM3pf8Ar16/r8j0KgQUAFABQAUAFABQAUAFABQAUAFABQAUAee6n8Kfh7rGpvq+oeGbKW/kkM00kc17axXEzHc0txaWlzDZ3EkjZaV5oJGlYlpSxZjQPma0v/Xr0/T5neW9vBaQQ2trBFbW1vGkMFvBGkMMEMahY4ooowEjjRQFREAVVGAABigRNQAUAFABQAUAFABQAUAFABQAUAFABQByviXwR4V8YJCviPRrbUmtwVgnZp7a6hRjuMcd5Zy290sRb5jEJvKLfMUJyWBqTWz/AF/r+uxc8PeF/D/hSzax8PaXbaZbO4klWAO0s7gbVe4uZnlubl1U7UaeaUop2qQCaAbb3N6gQUAFABQAUAf/0f7+KACgAoAKACgAoAKACgAoAKACgD/PD/4OgPjh/wALI/4KJab8K7K88zSv2e/gz4K8KXdksm+ODxf45N78TNZu+pCT3XhrxP4ItJkAGBpkZb5iRXBipXqJfyxX3vX8rd/xtHroq0L92/w0/r/hj7b/AODS34HfavF/7W/7SV/Z7f7E8OeBvgj4Wv2j3CZvEupXXjrx3axykYjazXwr8O5HVSTIt+pbYEXzbwsfjl6RX5v9On3EV38K+f6bW9evy6n9sNdhzhQAUAFABQAUAFABQAUAJgZDYGQCAccgHBIB64JAJHfAz0FAC0AFABQAUAFABQAUAFAH8U//AAdyaFcx+JP2FfEwhY2d5of7QehNOOVS502/+D2oJDIf4Gki1aR4dx/eCKfbnynrjxa+B/4l+X9bffc6aG0l5r8f+G7/AHHyF/war+I7TSf+ChnxR0S6lEb+Kv2TvHtlpykgGfUtM+KHwb1ryQDySNLstVn+XJAgPG0syxhX+8a7xf5r+tvuuOsvdT7Nfr/X6PeP+grXecoUAFABQAUAfgr/AMHEf7XHx+/ZG/Yb0DWv2e/EOr+AvEnxV+MmgfCvX/iX4fla18ReD/DV94Q8a+KruPw1qcWLjQNf1+fwrBptt4htGS+0zT/7U/syez1efT7+0wxE5Qh7ujbtddOv42t09Ve5rSipSd+ivbv/AMMfz5f8G/v/AAVA/aatP24/A37N3xt+OfxE+K3wk/aBg8T+HYLL4r+Mte8dz+EviFYeHdU8T+E9Z8M6x4ov9T1jR5Ne1HRZfCd9pFjeJpGq3HiWHUL6xl1Gxs721ww9WXOottqW17uz30vqr69LdddDWrBcrkkrrtpp/Xpt6KX9+9dxyhQAUAFABQAUAFABQAUAfzrf8FQv+DhH4H/sT634g+CXwC0TSf2hv2jdFkudN8RKdUmg+Evws1iHMcum+Mdb0qRdR8VeJ7CcCLUfBXha5sjp8qXdjr3ivw9rNm+lS89WvGD5V70uuui9dHd+S+bT0NoUnLWTsvxf52+777H8fvx9/wCC1P8AwUz/AGh9UvbzxJ+1b8R/AOkXMshtvCXwQ1SX4M+H9OtJCf8AiXRyeAX0fxFq1moYqW8T+INfvZUby7i8mQKi8kq1WX22vKPu/lr+MvlrzbqnBdNur1/r+ux438Lv+CnH/BQr4OeIbXxL4E/bK/aIt721uEuf7P8AEvxQ8T+PfC95KjiQHVfBnj2/8S+EdXBIIZdU0S8BR5EI2u60lVqLVTl31d/zv/6TK/la43CL3ivut8tNfuP7e/8Agir/AMFsrL/goZDqHwI+OulaD4J/an8I6DLrtrPoCvYeEfjJ4W04wxanr3h3TbmeeXQvF+h+dDP4o8Kx3NzaXVlK/iXw35Wlw6xo3hnto1vaaNWklfyfml06aXl3T1ZzVKfJqndN9tj+hStzIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAIlmheWSBJYmmhEbTQrIjSxLLuMTSRgl0EgVjGWAD7WxnFAEtABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/9L+/igAoAKACgAoAKACgAoAKACgAoA/yPv29vjcf2j/ANtP9qL42xXf23TPiD8bfiBqvhq43+Z/xRlrr95pPgeASZYSC08H6dodoHXajiDdGkaFUXyqj5pzfeTt6dPwO6CtGK8l/XX8/vP75/8Ag3I+CP8Awp//AIJefC/X7q0+x618dvG3xD+M2qxvHtnMF/rKeA/DMrueXivfB/gHw/qtqAdiw6iCMO7134eNqS/vNy+/T8kv0Oaq7zflZf18z92q2MgoAKACgAoAKACgAoAKACgD4h/aU/4KSfsL/sh3lzpH7Qf7THw18C+JrONZrrwPb6heeMviFbRyRiWCS6+H3gWx8S+M7OK6RgbWe70OGC5GTDIwV3WJVIQ+KSXl1/C7/wDJZfK7ZShKWqTf4L73p/Xmj8lPiP8A8HSX/BOnwjJcWvgrwr+0b8V50LLbX3h74f8Ahrw3oM5Xo0t1468c+Gtdgjf+EjwzNIP44lxisniaa2Un6K3/AKV+i++5oqM+6X3/AOTv96/E+NPF/wDwdw+C7ZpY/AP7D/ijWlJIguvF/wAddK8MMo/hkl0/Rfhh4tDn1hTUkznicY+aHi10g/nK34KD/P7ilQ7z+5Hzd4k/4O0v2iboyHwh+yV8FtDU58oeJPGvjnxUU/u+Y2mJ4NEmO+1I89tufll4uX8i+cr/AIKC/P7x+wj/ADv7jw7Xf+Dqn/godqRdNI+F37Jfh2I58t7bwB8U9RvFB6b5tT+NNxaSEcYK6eg9VOcrLxVToo/c3+Da/P7ylRh3b/r0X9a6XSj5Tf8A/BzT/wAFQ7y5jnt/EXwR0qJJVkazsPhBYSW0yKwJgkfVNY1O7ETj5GaK6inC5Kyq4DqvrNX+7/4B/wDdA9jDzP7NP+CR/wC31qf/AAUb/Y80P48eKPCmm+DfiBofjLxD8LviTpOgfbP+EXn8Y+F7HQtXk1jwsmo3F3qNtoutaD4n0LUl0++vb+40m/uL7STqWpR2KahcdlKp7SHM1Z3adtVdfd36/ja5z1I8krLbdfM/TitCD+a3/g6I/Z81H4ofsFeE/jJoWnve6l+zj8XdF1/XpY1aR7T4e/EOzm8Da9MkaAu2zxhdfDuadwCkFhBeXE22KJpE58TG9O/8rT+T0NqLtJruv6/q/wB+p/GH/wAE1/2wB+wl+2j8Ff2lb7TdV1zwt4N1jVdL8faDogtX1XWfAXjDQdT8K+KYNMgvrqxsrrVtP0/Vjrmh2l5f2Fpca5pOmx3V9awF5046c/ZzUrXS3Xk9HbfVb+e2l7nROPNFxva+z3s/6/rQ/wBHr9n/AP4Kzf8ABOz9pbTNOvPht+1f8JbPVtQiiI8F/EXxJZ/Czx1BdSBfNsB4W+IMnh3U9SuLWQmGafQodW02Rl8yzv7m2eK4l9CNWnP4ZL0ej/Gz+5fN3ORwmt0+2mp+gelavpOuWMOp6JqmnaxptyN1vqGlXttqFjOvXdDd2ks8EowQcpIw5+laEWa3/wAv6/ruaNABQAUAfjp/wXw+EMXxf/4JXftN28dqLjWPhzpvhP4vaHKY/MNlL8P/ABjomp+IrpRjIZvA0niuzMilfLS7aRiyK6PlXV6UvLX7n+qujSk7Tj56f1v/AF23P84v9lj4rS/Av9pj9nz4zxXLWo+FXxp+GPxAuJgxVTY+FPGeja1qEM2M77a5sLO5trqJgUmtpZYpAyORXnQdpRfaSf4nXJXTW90z/X+BDAMpBBAIIOQQeQQRkEEcgg/nmvWOAWgAoAKACgAoAKACgD8FP+Dgn/gob4o/Yd/ZL0nwb8Jdbm8P/HT9pfU9d8D+EPEVjM1vqvgrwPoVhYz/ABJ8a6LPGRLbeILWDXPD3hnQryIw3Ol33ir/AISCwuYr/QrcPhXqOENHaUtF5Lq+nfv16GtKPNK72jZ/5f8ADde6taX+eL8Hfg78U/2jPip4R+D/AMIPCWs/EP4ofETWhpXhzw5pYSW/1O/mSW7u7u7u7uWK0sNPsLSG71XXNb1S6tdM0jS7W+1bVby1sLW4uE8+MXJqMVdvb+tdt/8ALc6m0ld7I/to/Yt/4Na/2ffBnhrR/E37bnjfxH8ZPiFd29vdap8N/h1r2oeCPhV4fklRHn0ebxFp8Vl8QPGFzbOpQ65Yar4Hs2EksMeiT+VDqLdsMLFfG+Z+V0vTe79bx9OseeVZvSKt5vf7tV+P3nm3/BaL/ghZ+xd8Ev2LviH+0x+yh4F1b4N+Nvginh3Xdd8OQeOfHHjLwv478I6l4l0fw1rcF7B8QfEPivUtI13RbfWIte03UtH1SytLqLS77TNR0y8uNTttS01VqEFByirNa21aa69ZW73vptZ3bi6dSTlyyd77O2z+Wn4fdZn8qn/BPP4v658Bv25f2UPir4fvJrK68M/Hf4cxak0EjRveeFfEXiOy8L+NdHZ1KkQ674P1rXNFuMnBgv5QQwJVuWnLlqQfaS+56Pv08vvNpq8Wn2/rt+f3H+tjXqnCFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfgt/wAFD/8Ag4F/ZH/Yk1HXPhn8P0f9pr4+aRJcWOpeDPAmuWlj4E8F6pCzQy2Xj34krb6xY2uq2U6yR3nhnwvpviXW7K6t5tO1+Pw3O8cyYVK8IaL3pdk9F6vX8m31ta5rClKW/uru1q/Rf15dT+UP4+/8HFn/AAU7+NWp3reGPit4c+AHheeST7P4W+DXgrQrJ4YMssBm8X+Mbbxd44e8WJv9ImsPEWmWc8+6aPTbZRDDByyxFV7NRXZW/Nxd/uj6OxsqUF0u+7/pL/Lz3PkS1/4K6/8ABTazuvtkX7b/AO0M8u/fsuvHuo31rkY4+w3v2iy28f6vyNh5+UAndPtqu/O/w/ya/wDJF6vUr2cP5UfX3wT/AODjT/gqL8JNTspPEvxZ8J/HXw9bSxmfwx8XPh14VlS4gyBMg8TeA7HwP4zE7xg+TPdeIr+KGbbI1rMhkieo4iqt2pLzS/NKL/B9uonSg+lvT+mvw9b2P62P+CZ3/Bdv9mX/AIKB6jpPwq8RWMvwB/aTvINtn8NPFGrwal4a8e3FvA0t2fhh41+z6dFrV6scb3T+E9a07RvEyQecdKtvEdnp1/qkXXTrxqaP3Zdnrf0el/ml873MJ0nHVax79vX+vyP3KrYyCgAoAKACgAoAKACgAoAKACgAoAKACgAoA/nh/wCDiL/goV+0L+wx8Bfg3oP7OGpN4K8X/HvxX4y0XV/ipDplnqmoeDfDvgrSNDurrSvDw1K2u9M03xL4qn8TW/2LWp7a5u9O0vQ9bbSYrfU5bbVdLwxFSUIrl0bdr9vvvq/R/K9460oqTd+i273/AMj+J+0/4Kpf8FJLLxDJ4oh/bl/ahfVJbe5tWhu/jH411DQhDdRtHL5Xha+1a48MQyqHLW9xFo63FnMEuLSWCaNHri9rU/nl9/6czXzvf0+KPR7OG3Kvw/4f+vJHzz8M/wBpz9oX4OfF5fj58NfjL8Q/CvxmOoXWqXvxGtfEuo3nibW7vUHL6l/wk17qc16PFVtqzMf7XsPEiarYaspKajbXSMRUqUk+ZSal36/P/g39HZIpxTVmlbt/X9fefoPaf8F6f+Ctdljyf2xPEb4/5+/hn8D9Q/P7f8MrjP4k+hz1XT29Xfn/AAj/APK/6+ZPs4fy/i/+HOltP+DhP/grza4B/azW6QfwXfwJ/Ztkz9ZE+D0c56d5foFOWY+sVf5/wj/8rF7On/L+Mv6/ryR01p/wcZf8FaLbHnftBeF9Qx1+1/A34LJu+v2DwLZfoV/DHzP6xV7r7o/5L8vvD2UOz9LvTz8/memeBP8Ag5o/4Kb+GfEujar4s8Q/CL4kaBZXsEuseFdc+Fuh6Db63p4kH2uzGr+DzoWq6Zcywb1tb62nkS1uDFPNZX0KPaStYmonrZrtZL8Vt90vzF7GHmf6Av7PXxk0T9on4D/Br49eHNPvdI0L4y/DDwP8TdL0fUmSTUNHtPGvhzTvEMekX0saRxTXml/bzYXNxAv2e4mt3mty0Lxs3fF8yUujSf3q5ytWbXZtfcew0xBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/9P+/igAoAKACgAoAKACgAoAKACgD5B/4KAfGdv2ef2I/wBqr4ywXX2LVPAvwL+IuoeGrjf5e3xlfeHb3RvBUfmZBTz/ABbqWiwb1y6+ZmNWcKrTOXLCUuyb/r5lQV5RXmv63X5/ef5KFhYXmqX1lpmnW015qGo3dtYWNnboZJ7q8u5kt7W2gjHLzTzyJFGg5Z2AHUV5J3H+wH+zd8JLP4B/s9/A34IWCwi1+EXwk+Hfw4V4MbLiXwb4T0rQLm8LADzZb65sJryedsvPNPJNIzO7M3rxXLFR7JL7vu/LXyOCTu297tntVMQUAFABQAUAFABQAUAFAH8nX/ByH/wU6/aa/ZU8QfC39lv9nXxHqXwni+KHwzvfiH48+LHh9fs/jO80y88S614U07wZ4L8QlfO8IzWbeH7/AFXxDreiND4lZNT8Pw6Xquj26aimq8uIqyhaMdLptvrbst7eq19NzejBSu2r2dkv63+at6n8Ouk6N42+Jni2LS9C0rxT8QPHXizU55INO0mx1bxX4t8S6zevLd3TxWdnFfaxrOp3chnuZ2SOe6ncyzSF23tXFq31bfzZ06L0+4/SD4af8EUv+CpvxXhtrnw1+xl8U9It7kI6yfEiTwr8IXjifB8yaz+KviLwbfxhVO8xm1M5HypE7lUrRUKr+w162X5yT/8AJfv3lDqQWjkvlr+R9oeD/wDg2L/4KeeJlibWrD4CfDwyY3p4w+Lb3rQZ6+b/AMID4Y8cIdvfyGmHdd/Aq1hqv91esv0Ufyl/kT7aHn/X3f132PpPw1/wacfteXQj/wCEw/aX/Zv0JjjzR4ag+J3isJ0z5Z1TwZ4N83HONwhzx05C0sLLrKK9E3+bj+f3XXMvbx/lk/uX5Sl/XfXl910H/g0Z8STBG8T/ALd2iacRgyRaD+ztf60D6qlxqHxm0ErntI1s+OpiPRqWEfWf3Q/+6EuuukPvZ7HoX/BpJ8IbeSE+J/2z/iRq8SuhuE0L4SeGPDsksYYeYsMuoeMfFKwO65CPJFcCNiGZJQCjP6pH+dv/ALdS/OUv673Tivbv+Rfef0sfsf8A7I3wa/Ye+A3hL9nj4F6VqNh4K8LNfX0+o67exan4n8VeI9Yn+0654r8VapDa2MF/rmrThBK1rY2On2Nnb2Ok6TYafpOn2Njb9MIKEVGOy77/AD/r0MpScnd7+X9P8/vsfTlUScP8TPhv4J+MXw88a/Cr4k+H7LxV4B+InhjWfB/i/wAO6gH+y6v4f1+wm07UrN5IXiuLaR7edzbXtpNBe2NysN5ZXEF1BDMiaTTTV09Gv6t+f3DTaaa0a2P8+r/goN/wboftd/s0+KPEXi39mLw5rf7UfwFlu7u+0RPCVvFf/GjwjpskjS2+i+K/h/aJDqPiy7so2FpFr/w9s9ZTVlt31K/8P+FTOmmpwVMPOLvFc0f/ACb5rX71e/VRumdUKsZaPR/g/Te2r7/fY/n08T+E/FPgnWr3w14z8NeIPCPiPTZPK1HQPE+jajoGtWEgJHl3ularbWl9ayZBGye3jbIIxwd2DTWjTXk9Pz/r7zW6e3+f9f12IdE8SeIvDVwbvw5r+taBdHaTc6Jql9pVwdvK5msZ4JDtOduWOOoHWhNrZtejt/X9dwPV7D9p39pTS0EemftC/HHTo1GFjsPiz49tEUegW38QIoHsBj/d6s+eX80vvkK0ey+46bRv20P2wfD2rafruiftVftGaZrGlXUN5p+oWvxr+JCXFrcwOHjkjb/hIyCNwAeNw0Uqbo5Y5I2dGOef88vvl/wPz+4OWPZfcf6eX/BMX43/ABV/aQ/YG/Ze+NvxttWt/ih4++GtvqPim6awj0tvEL2Gsatomk+MzYQRQWlt/wAJ3oOmaX4z8uwt7fTf+J9u022t7BreFPTpycoRk92tf8/nv+RxzSU5JbX/AK7/ANdtj3P9qzwCnxV/Ze/aP+GMkP2lfiJ8B/i74H8jbvMjeKvh/wCINDjCDBPmb75TGV+ZZArKQwBWpK8ZLumvvRMXaSfmj/IDryDvP9fX9krx2/xR/ZV/Zn+Jkk5uZfiH+z/8G/G81wTuaabxX8O/DmuzSOeTvaW+Yvn5g+Q2CCK9aLvGL7xT+9HBJWlJdm1+Pz/P7z6DqhBQAUAfywf8FBv+DlXSv2Tf2pPGX7Onwd/Z5sPjDZ/CDxC/hX4n+M/E/jy88IQ6h4s04xp4l8L+DbDTvDeuSW6+G7vztFvfEestcJc65a6hBa+HX06ytdT1XmqYnkk4qPNbd81vu92W3rv3suXeFHmjdytfVK39b7n9Af7G37VXw+/bY/Zr+Fv7TPwxt9S07wt8TNHvLr+w9a8kaz4b17Q9Y1Hw34p8NambdmgmudD8R6Pqmnpew7bfU7WG21S0UWl7BW8JKcVJbPv9z/Ff5GUouLcX0PpyqJCgD+Gn/g7Ws9cT46/sfahcCb/hG7r4S/Eez0ktu+z/ANuWPjHRpvEIi/h84WGo+GfPx82w227jZXFi94ej/Q6aG0vU8U/4NVdQ+H1t+3b8XLLxEmnr481L9m/xAnw4nvzGJj9l8deBrnxfZ6MJeDrFxoywXR+z4vf7C07XSn+gjUAywtueXfl0+9X/AK/4I69+Vdr6/p/V/v0P9AGu45T8Gv8Ag47+P+hfBz/gmV8SPA1xewx+Lf2h/FPgj4U+ErHzAbqWC08Sab498Yah9mH7xrC08K+EdQ0y5u8LBa6hrujxSv5t3bxT4YiXLTa6ytFfm+/Rfppe5rRV537a/wCX9dPmz+Cv/gn58L9S+M/7cf7JXwz0u3kuZPFH7Qnwph1ARhi1v4e03xjpWs+KdRIUM3l6V4a03VtTmwM+VaOeMZXhpq9SC/vL8NX26ef3HTN2jJ+T/rZ/l9x/rc16pwhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBHNNDbQy3FxLHBbwRyTTzzSJFDDDEheWWWVyqRxxopeSR2VERSzEAE0Afww/8ABan/AIL8+I/ifq/i79lD9hnxjd+HfhRp8t94c+KHx98M3slpr3xPuYna11Pwz8M9Zs5VuNF+HKMstrqPizT5Y9U8efvIdIubHwYZJvGHFWrt3hDRdZdX5Lay7u7fZaHTTpW1lv0Xb18/v/FqP8xHwM+Afxl/aZ+JOhfCL4D/AA78S/E/4jeJJGGneG/DNn9pnS2jaNbvVdVvZ3g0zQdC08SpJqviDXL3TtE0uFvP1G/tofnbmjGUnaKbfl/Wnzt6rc2bUVduy/r7z+uz9kT/AINStHfRtM8Tftu/HbW01u7hhup/hT8ATplpa6O7BZVstb+J3izRtaGrzgN9m1Oy8P8Ag7T7a3milGl+KdSheG8XrhhVb35O/aO33u9/VRVuzujCVfpFfN/5X/rdrdH6Q3f/AAbLf8EvLmyFpD4d+N1hOI9n9p2nxev3vS2MeaY77R73ThITzgaf5WekWDitPq1Ls/vl/wAH8vvI9tPyPzZ/a/8A+DU3RrLwrqvif9h/44eKNU8U6bBPeW/wp+Pk3h64i8S7EaZtO0H4leFtC8L2mh6i2z7NpVr4j8K3Wm3lxNCmq+KNFt459QbKeF0bhJ37Str5X0/Fa9bfZuNe7tJWXdfnbV/j95/HPdW3jX4VePLmzn/tzwN8Rvhv4umtpvJnudH8S+D/ABr4P1hopRFc20kV3peueH9c05tk9vLHc2V/ZiSKRJYlZeTWL7NP7mvu2fl9x0aNeT/Jn+tf+xX8R/Hfxh/ZB/Zg+KvxQsJdN+I3xF+Avwp8Z+N7ea1Fi8nifxD4J0XU9Yvv7PCR/wBnJql7cTanFpzIj6fFdpZyAPA9erBuUYtqzcU2vVfP+u2xwySUmlsm7f1p/Xfc+m6okKACgAoAKACgAoAKACgAoAKACgAoAKAPnD9qj9kv4BftpfCbUPgr+0b4CtPHvgS81Gz1u0tmvtR0fWPD/iLTY7mLTfEfhrX9GurHV9E1qyiu7u2FzZ3SR3lheX2k6nBfaTqF9Y3UyhGa5ZK6/rtb+u+w4ycXdbn8637bv/Bu9/wT1+CP7If7T3xt+HNr8a7Hxt8I/gP8VfiX4UTUfiZFqui/254J8F6z4k05NTsLnw4ZrzTzcaci3Vul3bySwb1FwjNvXnnh6ahKS5rqLa97qk/7n6q/kbRqycop2s2l+Py/rvax/B/XCdJ/oEP/AMGqf/BO+/ghurL4wftjWa3EMc0QX4g/BieIJKgdDtm+ADSnhh/y29jnhl7/AKrT7z+9P8Wl+X3nL7eXaP3S/wDk/wDL81Lnrv8A4NQP2H3z9h/aB/art/T7XrXwivcfXyfhNYbvwK/hxR9Vh/NO3/bo/by/lXrr+V2/x+65zN3/AMGmv7KL5+w/tP8A7Qtt/d+16X8N73H18nw5p+fwIz7Uvqsf5pf+Sh7eX8i+8m8Jf8Gnv7KeleKtH1Txd+0n8cvF3hWxvoLrVfClro/gvw1c65bwSLIdNl8R29pqM9haXe3yLyWx09L/AOzPILG8sbkxXUTWFhfVya7aL8rv+ul7h7eX8q+8/qO8HeEPDPw+8I+FvAXgvRbLw54O8E+HdE8I+E/D2mxmLTtC8NeHNNtdH0PR7CJmZo7PTNMs7WytkZ3ZYYYwzsRubpSSSS0S0S7L8Py+4wbvr1ep0dABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//U/v4oAKACgAoAKACgAoAKACgAoA/no/4ObPi63w6/4Jmap4It7ryrv47fGj4Y/DmSCN9s8uk6Fcap8Wb+YAYb7Kl18ONLtLpgdhOoQwSbluNrc+Jlanb+Zpfr+n9amtFXn6Jv+vM/ig/4JU/B8fHf/go1+xx8N5bYXthefHPwh4r1uyZN6Xnhr4Z3EvxN8UWkq4P7i68PeD9TgnbqkLu4IIBXjpLmqQX95P7tf0OmbtCT8j/V2r1DhCgAoAKACgAoAKACgAoAKAPg/wDbr/4Jvfssf8FE/CXhnwx+0Z4T1e61DwRd3154I8d+DdZ/4Rrx34T/ALWW1TWbLTNXa01CxutJ1hbKyOo6PrelavpclxZ2d9FZw6haW15BE6caiSkttnezX4Pf9NmVGco3t1Jf2L/+Cbf7H37A2hXGnfs6/CnT9F8R6nb/AGXxF8TvEsx8U/FHxLAXVza6n4x1GIXVnpbPHFIfD3h6DQ/DQniW7XRlvGkuHIU4U/hVu73b9X/wy8lvJynKW707dP8Ag/M+66sgKACgAoAKACgAoAKACgDhfHfwu+GfxR05dI+Jvw68C/EXSVDqumeO/CPh/wAXacok4kC2XiDT9QtgJAAHAjAb+LNJpPdJ+qv+f9fcNNrZtejt/X9dz4y8Vf8ABJ7/AIJqeMpJZtY/Ye/Zst5JmLSN4a+F3hzwWWY/efHg600EBmOWZl2lmyxJYktDpU39iPyVvyX6r1VyvaT/AJn/AF/X+Z5Fe/8ABDH/AIJQX7l5/wBjXwLGSc4svFnxT01Mn0j0/wAe20ajnoFwO2MAqvY0v5F/5N/8mvyXotg9pP8Amf4f1/XkibQv+CHH/BKPw7q1hrWn/sZ/D+4vNNuoru3h13xJ8S/FGkySwuHRL/QfE3jfV9D1W1YqBLZapp15ZTpmOe3lRmRj2NL+Rfj+spf+kv5bh7Sf8z/r+vn12R+qen6fYaTYWWlaVZWmmaZplpbafp2nafbQ2dhp9hZwpb2dlZWdskdva2lpbxxwW1tBHHDBCiRRIqKqrqQWmVXVldQysCrKwBVlIwVYHIIIOCCMEcHOaAP8b74l+GR4L+I/xA8HBSg8J+NvFXhkI2coNB12/wBL2nPOV+y4OecjnvXkSVm12bX4/P8AP7zvWqT7r+u35fcf6i//AARz8TN4t/4Jf/sS6q8nmm0+BnhzwyGznC+Crm/8GpHn/pimgrFj+HZgdBXp0v4cP8K/A46nxy9T9K60ICgDM1vWtK8N6Nq/iLXb+30rQ9B0y/1rWdUvH8q003StLtJb7Ub+6kORHb2dpBNcTuR8kUbNzigD/H9/aJ+Kcnxy/aB+Ofxrlikt5Pi/8YfiZ8T3t5sCW3Pj3xprXir7O4X5VaAar5RVPkXZtT5QK8mT5pSl3k397ud6Vkl2SX3H+lb/AMEMPhdf/CX/AIJVfsh6Fqtu9vqXiXwV4g+KE/mLseax+LHjzxV8RPDs+3A+WTwr4k0IRn+OJUfJ3Zb0aCtSh5q/3u/5M5KrvOXlp933dfu21tc/WitTMKAPwo/4OA/2BPEP7bf7GP8AwkPww0WfXvjd+zZq+pfE3wPoljbtc6t4u8J3mmx2fxM8D6PCgeafVdU0mw0nxNpFjaxy3uta34M0vQLSJrjVkKYV6bnDT4o6pd+6v0012le1rGtKfLLylo/0fnqf53HwM+NvxO/Zr+L3gP44fB/xJd+D/iV8NPEFv4g8M61bqH8i7gWW3vNP1Gzl/c6jo2safPeaLr+j3iyWWr6Nf3+mX0UtrdTI3BGTjJSW6d1/V1vtv951NKSaezP9Fz9hf/gu/wDsbftSfs/a78Rfiz4/8Kfs9/Fb4VeDbvxL8aPhr4s1R4vLs9FtlbU/FXwt8wS6l8QPDeoy4Fhoeiwaj400u/urXQdR0i5nudI1LXvQhXhKN21Fr4k3+Wmq80r94rTm5JUpJ2SclfRr9e3n+O5/Fl/wWI/4KV6t/wAFJf2nJfF2gJqujfAP4W2uoeDvgV4V1Rfs97/Y1zdQzeIPHmuWSs8dr4m8f3tlY3l5aI7/ANlaDpfhrQZXubrSLnUL3irVPaS0+FaRX5vvr57aLo5S6acOSNur1f8AXl+PyP2I/wCDW79g7VPEfxK8a/t9+O9Gmt/Cnw+sda+GHwMkvbfYut+OvEFkbD4heLtNMgWRrPwp4UupfB0V5EHs7/UfGGu2ccv23w3exJthaerqPZaR03fV+VlptrqtLMzrSsuVbvV+n9dLa+Vkf3D12nMFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8in/AAclf8FVL/4a6Lc/8E+fgJ4key8aeNNCtr/9pTxVo135d74a8D67ai40j4S2tzBIJrTVvHOmTQ6z4yKtC8Pgi60rRiLy18Y6nHYcuIq29yLs38Xp2vfr+C/mu1HejC/vP5dU+l/l/Wx/Iv8AsbfsgfGP9uX4++D/ANnv4JaOt94m8Syveazrl8s6eG/AvhCwkgGv+N/F19BHKbDQNEinhDbUe71TUrrTdB0mC81rVdNsrjkhBzkox3/JdW/69Dok1FXZ/puf8E+/+CdP7Pv/AATp+D1p8Nvg7okWo+K9VtrKf4n/ABd1ixtl8cfE3xBbxndeardJ5zaX4esZpbhfDPg6wuW0jw/aSuw+36ze6xrmq+lTpxpq0Vr1fV/10XTzs5S45zc3rt0X/A11+f3n3vVkBQAUAfBvxK/4Jgf8E/8A4wfGdf2g/iX+yp8KvF/xbe/ttV1DxPqWl3y2viDVbTy/J1Txd4VtNQt/B3jLUsRRLNf+K9A1m6uUhijuZZUjjVIdOm5czgnLvb89bP5xfqtylOSVlJpf1t1Xy+fQ+8ERIkSONFjjjVUjjRQiIiDaqIq4VVVQFVVGABgYAqyR1ABQAUAeYfGL41fCX9nzwBrfxT+NvxD8K/DD4feHYvM1XxV4w1a20nTYpGV2t7G1M7ifU9XvjG0Ol6LpkN5q+q3O2002xurp0iZNpK7aS7v+l+f3DScnZK7/AK/r/hz+Vz9rn/g6x+G3ha/1Twv+xd8Dbv4ozWzSQWvxX+M1xqXhDwZcTRk7brR/hzo7W/jXXNKuFKNHNr3iH4eapEyyJLo5BWReWeKS0hG/nLRfda/4r0WxtGg/tS+SX66/l95+GPxY/wCDhz/gqp8Ubm6Nh8etG+E+kXTOw8P/AAn+GvgbRLa2DcBbXXvEejeK/HESxgkJu8Wux+9IWdUdcXiKr6qPokvzU2//ACX0NVSgul/U+JfFP/BS7/god4zkkfxB+3B+1XcRzEmSzsPjv8SdD0t8886RoXiPTdL46Li0G0HAGDiodWo95y++35P/ANtXy2KUIr7MfWy/4c8hvv2sf2p9UdpNT/aW/aA1GRjuZ774y/EW7dm9WefxHIxPuef1Wp55fzy++Q+WPZfcU7b9qD9pezmjuLP9oj46Wk8UiyxT23xb8fQTRyodySRyReIUdJFYBldW3KRkHIo55fzy++QWj2X3H+iH/wAG+n7TP7QH7Uv/AAT403xj+0VrGu+LvFHgz4seNfhl4V+IfiZprrxD8Q/AnhzR/CGpaZr+tavP++8QalpWt694i8FXOvTma91I+FBJq15fa0upXs/oYeUpU7yu2m0m92lb081+d9zlqxUZaaXV2l0f5L5P7tD9wa2MgoAKACgAoA+N/wDgota/bv8Agn1+3TZ4ybn9jr9pqJfZ3+C3jURnvyr7WHHUd6ip/Dn/AIJfkVD4o/4l+Z/kn15R3H+yh4Iujf8AgvwhfE5N54X0C6J9TcaVaTE/jvr11svT+u35fccD3fqzqKYjyv4kfHT4JfBu1N98XvjF8LPhXZLF57XfxH+IPhLwPbCHBPmmfxNq+mRCPAJ37ivB5OMKnJLdperS/P8Ar8BpN7Jv0V/y/r7j84Pip/wXY/4JWfCX7TBqn7WXhTxjqUG8Rab8K/Dvjb4nfbHTOUttc8HeHNU8KLnHyS3fiC1t3yNk7ZArN16S+2n5K7/JNf8Ak33fCWqU30t6n5ufE7/g64/Y08PSyWvwq+An7QfxLlhk2G+8Qp4G+G+iXK5/1tjcjxJ4y1t0K84vvDmnSbvlMQHz1m8VBbRk/uS/9uf4a+X2aVCT3aX4/orfJv5WP2b/AOCdv/BRX4If8FJPgvffFv4PWviDw3qHhjXv+EU+IXw98XR2SeJvBfiI2cWoWySzadc3Wn6voWsWUv2zQNfspVh1CKK7tbm107V9O1TTLLanUjUjzK+js097/l936MicHB2evmv6X9d9z77qyAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//V/v4oAKACgAoAKACgAoAKACgAoA/iy/4O2vim0mr/ALGXwTtLnatnp3xZ+Kev2e7PmtqNz4R8JeEbkoCNvkDSvG8QZlbf9oYIU8tw/Hi38EfV/ov16/dY6KC+J+i/r/hvvufCn/Brt8KV8cf8FGdb+IF1b7rT4LfAH4geKLK7Kblg8ReLNU8MfDmxt1P/ACzluvD/AIr8VyK3GYrSdP4wGjCq9RvtF/joXWdoW7tf5/Pby/SX+hxXecgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH+Rv+3l4YvPBf7b/7YXhW+sp9Pn0L9p7472C21xE8Li1i+J/ic2E0aOFLW13Ytb3dnMu6K4tJ4biF5IZUdvKqK05rtKX5v1/P7zvj8K9Ftqf6If8AwQKOqf8ADo/9j/8AtizubK6Gj/FkQxXUbxSS6X/wvz4qnRLxEkAc219oxsLy0kwEmtZ4Z4S0Msbt6FC/soX7P7ru33qzOSr/ABJfL8l/X/DH7C1qZhQB+D3/AAcP/tkwfsuf8E//ABd8P9C1VbP4oftUTXnwW8K20M2y+t/BN5aJcfF7xAIg0cklhB4On/4Q6aaKVZLTVfHmiXASVFkRcMRPlptLeWi/X8NPn6mtKPNLyWv9fmf59f7KH7Pnib9qz9pL4Kfs6+EVuBrPxc+IXh/wi17bRee2iaJd3a3HinxPNFht1n4U8L22seJdQ+VytjpVywRyAjcEI80oxXV2/wA38lqdUnypvsv67fn9x/rp+EPCug+BPCfhfwR4WsItK8MeDfDui+FfDmlwcQ6boPh7TbXSNIsIR2is9Ps7e3j/ANiMV6yVtOi0OFu7b7u50VAgoAKAP5Gv+C0X/Bvzd/GTXvFf7WP7Cug6dbfErWJrzxB8Wv2fraSz0jT/AB9qkzG41Lxr8MZLh7XTNL8Z38hlvPEfhG6ms9N8WXTz6tot1Z+J5bjTfE/JWw/NeVPfrHu+6vy2fls+jT1lvTq292Xyf6M/iM8VeE/FPgTxHrPg/wAbeG9e8H+LfDl/PpfiDwv4o0jUNA8Q6Hqds2240/V9G1W3tNR069gbiW1vLaGaMkboxkVxtNNpqzW6f9L8vuOlO+q1XkfSf7C37Lms/tn/ALWnwM/Zs0l9XtLb4meOdN07xXrWiWcd7qHhjwFp+/WPHvimCKcfZBLoHhKw1fUbY3xW0kvILW3l3eekctU4884x11etu3Xt/XfYmUuWLfbbpd9F/X6n+rt8F/g38Of2e/hT4D+Cvwk8NWfhH4c/Dbw7Y+GPCmg2Iylrp9kpMlxdXDfv9Q1bU7uS51XW9WvGlv8AWNYvb7VdQnnvby4nf1ElFJJWS0RxNttt7s9PpiCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPlb9tv8Aan8JfsV/ss/GX9pXxisF3afDXwnc3uhaJNN5J8VeNtUmh0XwN4TiZWEy/wDCQ+K9R0nTbq4gWR9P0+e81N4zBZTGpnJQi5Povx6L7/60KjFykkuv5fjb7vvP8nD4ofErx18bvib43+K3xD1m88U/EL4m+LdZ8X+KdYnBe41TxD4j1Ga/vWhgTKwQfaLgwafp9sFtrG0S3sbOKK2giiTym3Jtvdu79WdqVkktkf6R/wDwQ8/4Js6b+wF+ynpGr+NdChg/aV+Oun6P41+MeoXVuo1XwrZzWxu/CnwlhkILWtv4Ksr138QxRMwvfG2oa/Kbi606z0RbT0aNP2cdfilrLy/u7yWnlvvrdKPJUnzS0ei2/wAz9qa2MwoAKACgAoAKACgAoAKAP4a/+DsHw38fpPjn+zn4rvbbxJdfsxW3wpm0bw1dWqXs3g/R/jVL4u8UXPjVNXMQexsPEuteDv8AhAv7Klv2gl1XStIvodJSb+yNbdOLFKV4vXltby5uvzatb0dup00GrNdb3+X/AAHfr11tofjL+wl/wR4/bb/4KALbeI/hX4BtvBXwje5MFx8bPitPe+FPAE3luy3EfhkR6fqPiPxzcRGOeCRvCGh6tpllfRrZ61qmkvIjrjTozqapWj/M9E/Tq/l87WtLSVSMfN9lv89rf1a+x/S98FP+DTj9njRbKzuf2hP2nPi78QdX2RTXenfCjQvCfwv0KOcqGlsjdeJ7H4n6tqVpG5MYvIjoFzcovmiCxd/LTpjhYr4pN+lor/29/wBerMXXfSKXrr+q/X0Pvrwl/wAG4P8AwSg8NxRJq/wT8cePZIwu648W/Gz4qWkspX+KVPA/ifwZbEseWWOCJOMBAvytp9Xpfyt/OX/yUf67fan2s31t8k/z/r7key2H/BCL/gkzpqKlv+xx4SkVRgG/8ffGPVXP+9JqfxEu5HPu5z9eafsKX8i/8m/+WE+0n/M/w/r7v1ZrL/wQ7/4JSrJFKP2Mvh7uhdZEDeIPiQ8ZZWDASxP41MUyZA3RzJLG65V0ZGYUexpfyL/yb/5N/k/R7B7Sf8z/AA/r/Lofpb4D8A+CPhb4O8PfD34beEvDvgTwL4S02HSPDPhDwnpFjoPh3QtMgLNHZ6XpOnQ29naQ+ZJJNIIolM08stxMzzSySPokkkkrJbJf0vy+4ltt3e7OupiCgAoAKACgD83/APgrZ+0P8Kf2cf8Agn1+03r/AMWNck0m0+JHwm+InwR8EafaWzXuqeKPiN8VPAPinw74X8PaZah4leRjJe6xqdxLLHBp3h/R9Y1SZmSyMb51ZRjTlzbNOPq2tlqv67bxumm5q3Rp/JNH+VPXlnafvb4z/wCDkf8A4Kc69oGmeGvBHi/4TfBrTdI0fT9Ds5fh98KdG1bUjY6bZQ2EElxe/FS5+JSm+lt4Fa4urW3sx57PLaQ2fyInQ8TUtZWj6K7+93/CPzRl7KGrabv3f+X5Nvfdn53/ABU/4KU/t/8Axr+0x/En9sT9oXXdPvN4utBs/ib4m8MeF59/DCTwn4TvtE8NMMEqudKwiMyIFVmrN1aj3nL8vy5fP7PzV0pWoRW0V91/+D0/qx8V3l7eajdT32oXdzfXt1K011eXk8t1dXMznLyz3EzPLNK55aSR2djySeazKPX/AIYfs3/tDfG2WKH4N/An4x/Fd5pPLT/hXHwz8Z+NU3BtrbpPDmjalHGqHPmySOkcQVmkZFUstKMpbRk/RN/l/X4ibS3aXq/8z9JPhX/wQM/4KrfFb7NcW/7MGpeAtJuNm/Vvip408BeA/su/GPtPh7VPEjeNBgZZxD4XnMe0rIFcor6LD1X9m3q0v1b/APJV6dCHVgut/Jf1Y/tK/wCCKH/BLzxL/wAEzfgV4+0b4meMdA8X/GP40eJ9F8S+OR4Nk1Gfwb4Z0zwvpt7p/hbwxo1/q1jpd/rV5aHWNd1HWdcl0vS4bi61SLTLOyktdHi1XVeyjS9lFpu7bu7bfK/z7frLnqTU2rJpLv5+Svbbu7+R+0VbGYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//W/v4oAKACgAoAKACgAoAKACgAoA/zn/8Ag5w+JDeNv+CnWqeFBcGSL4PfA34T+ATAHylvcazDrnxVlJjHyrNNB8R7Vncje8K24YlEjC+fiXepbtFL9f18vwvLror3L92/8v6/4c/UL/g0k+GiweGP20fjFc2+5tU174Q/DTRrorgwroWn+NPFPia3R/4vtR8R+E5JFz8v2SInO8VrhFpN+aX5v9URXfwr1f8AX49fusf2PV1nOFABQAUAFABQAUAFAHLeIvHPgnwhcaTaeLPGHhbwvda/diw0K28ReINJ0S41q+JRfsekw6leW0mpXZaSNRb2azTZdBsyyhi6Vrvfbz9P6/Udm9r/AHX/AK/rsdTQIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD84/2kf+CSf/AAT3/a1+K1t8bfjx+znoPi34mIunpqviXTvE/jvwW/iuPSYYbbTV8aWHgjxR4e0zxbLZ2tta2Md7rtle6g2mWlrpE15LpMEViucqVOb5pRu++qv62kr/ANK7tYtVJRVk7L8vT1Pv/wAL+F/Dfgnw3oPg7wdoOkeF/CfhbR9O8P8Ahrw3oGn2uk6HoOhaRaRWGlaRpGmWUUNnp+nadZQQ2tnZ20UcFvBFHFEiooFaEN31N2gAoA/za/8Ag42+PvxE+Ln/AAUu+JXw78WRXml+EP2eND8I/Dr4ceH5/NjhTTNc8K6F481zxU0LBYpL7xfrHiRrhb+NA8/h3TvDNjK8o0yN287ESbqNdI2S+avf5nZSSUF56v8ArX+u2x+on/BrD+w1Lc6r8TP2+vHWjlbPTYtS+DXwIN7Af32pXSW03xS8baf5iIyrY2Lad4E0rUrdpYbhtU8faZIUmsWWtcLT3qP0j+r/AEM60to/N/ov69D+1Cuw5woAKACgAoA+Lf2rf+Cd/wCxh+23Bp//AA0x8BPCPxE1bSfLXS/F8U2teD/HtjbxZ8vT4vHvgfVPDXi+XRgzFzoN1rVxojy4mk09pUR6iVOE/iin57P700/x+Tu2Upyjs2vx/B/19xT/AGSf+CcP7Fv7DUut3/7MnwL8P/D7xB4ktBp2u+MLrVfE3jPxrqGmefFdNpA8W+ONb8R69p+iS3Nva3NxoelX1ho91dWdnd3FjLdWsMyEKcIfDFLz3f4tv8fkrJhKcpfE72/r+v8AgI+3qskKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4qP+Drf9rae7174CfsT+GtTIsdJsZPj78U7a2nJS41TUW1bwj8MdIvPKZRHLpmnweNtdu9PufNEseu+GdREURhtpZePFT+GC/wAT/Jeff+kdFCO8vkv1Pyn/AODfb9i23/a5/b88JeIvFmkrqXwp/ZpsoPjZ40iuoPO03VfEmk6jBa/C/wALXO4PBI2oeMWg8SXFhdQy2uq+H/B3iHT5lKzissPDnqJvaPver6L79et7W63jpVlyx85aL/P+v0P9K+vROMKACgAoAKACgAoAKACgAoAo6lpmm6zZXGmavp9jqum3ahLrT9StLe+srlA4cJcWl1HNBModFcLJGwDqGGCoKgFmCCG2hhtraGK3t7eKOC3ggjSKGCGJBHFDDEgVI4o41VI40VURFCqAABQB8v8AxV/bi/Yz+ButX/hj4w/tWfs8/DXxVpez+0fCPjD4weAtE8X2W+NZU+0eFLzXY/EUe+NkdN2mfMroV3B13S5wWjnFPs5K/wB2j/H7ilCT2i38n/w3X+rHyH4s/wCC5f8AwSi8Geb/AGt+2V4DvTFnI8J+GPib473Edom8E+B/ECS5PAZCVPXJU5WHWpL7a+V/0jL/ANKfy2H7Of8AK/wX5/196PmTxZ/wcu/8EtPDnm/2P44+L3j3y92z/hE/g74jsvOx08r/AITmXwXjd/D53ldfm24IqXiaXdv0i/15f0/Qr2M/Jf15X/rtufMviz/g6/8A2KrDzV8Ffs+ftPeJpEyEfxDYfC3wjazMOjJLY/EfxdcrE3UNJZxyY+9CpG2peKh0Uv8AyX/g/n95XsJfzJfe/wA4x/rtpzfMniz/AIO5LFPMh8C/sLXdxnd5WoeLP2gYbTZ/d8zR9H+EV95merBNcix90E53VLxa6Qd/OX/2j/P7xqh3n9yOY+EP/B2R4v1D4q+GrL43fst+DNB+Dmp6rZ6f4m1fwD4w8R6j438K6bd3CQ3PiK1t9Xsm0vxOukwububQI7TQ7nUY4nittVgmMaMlitVzQSXW0rtefwa+it6u65R0FZ2k79Lo/tQs7u11C0tb+yniurK9t4Lu0uoHEkNza3MSzW88Mi5V4ponWSN1OGRgRkGuw5yxQAUAFAH41/8ABdb9ieb9tX9grxrp+j+Jrbwv4v8A2fr3Uf2jfDEuox3Emka+fh94H8YQ+IvCepm2Sea1GteGNY1ZtJv4raZrbxBZaQlx5WmT6i9ZVoc8GusfeWl9lt03v0/G1jSnPkltdPR/59fy+8/zG68w7D+zv9nD/g1Q8A+MfBHgT4gfGP8Aa/8AF19a+NPCvhvxY3hf4Y/DHRvDc2mW/iDSLLV1sU8W+KfEvi+O/lhjuxEbs+DrFC67hasuN3bHCqybm3fskvxcn+S/JHPKvq0o+V2/+G/T5H6pfCv/AINs/wDglp8Ofs0niL4c/Ez40XdrsZbv4p/FnxLEJJUxiW4074Yf8K00e5BYbmtrjTZrR+UkgZOK0WHpLo36t/o4r+uu5DrTfZfjb7z9KPhX/wAE9/2GPgl9mk+Fv7I/7PfhHULTZ5GvWnwq8H33ilfL/wBWX8Wavpmo+JpihG5fO1aTa5LglmYtqoQW0Ir5L87Jv7vvIc5Pdv77f1/Xc+v4oooIo4II44YYUSKGGJFjiiijULHHHGoCoiKAqIoCqoAAAAFUSSUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/9f+/igAoAKACgAoAKACgAoAKACgD/K7/wCCy3jlviH/AMFRf22NfeYznT/jVq3gYOW3bV+GGl6T8NUhzzj7OnhJYAv8Ii2jGAK8ys71Z+tvuVv0O2mrQj6X+/X9T+xH/g168CL4U/4Jq6j4maHbN8Tv2ivid4tE7L88tppGi+CPh/DGrYBMENz4MviiZZVmmuWGGd668MrU/WTf6fp/WhhW+P0S/V/r5/jaP9GddBiFABQAUAFAGfquraVoOm32s65qen6No+l2s17qWrareW2nabp1lboZJ7u+vruWG1tLWCMF5ri4ljijQFndVBNAH4k/tZf8HCX/AATm/Zi/tPRPD3xGvf2k/iBY+bCvhX4CQWnibQortcpF/afxNvbzT/h6tl5ytHdv4e13xPqtmEZm0aVjFHLjOvTj15n2j/ne3+f8sd5axpTf91d3/lv9/wDmfzI/tY/8HN/7c3xu/tPQPgFpPg79lTwVd+bDDdeGoYfiB8U5bSXKPFd+PPFemx6JYu0e0w3XhbwN4c1eylaRoNYZhFInNPEzfw2ivvf3tW+6P3WubRoxW/vP7kv613f3H8+vxG+KHxK+MPiq/wDHPxY+IHjT4meM9UOdR8V+PfE+teLvEN4AzOqXGsa9e39/JFG0j+VCZ/KiDFY0RSFrnbbd2233f9P8/vNEktFsf6c//BEuT4+S/wDBMv8AZik/aOPiM+PG8O+IP7Gbxl9sPi1/hkPF2uj4Wvrpv/8ATCW8C/2IdDa5JuH8LHQXuSblpa9Kjzezjzb26726X+Vv11uclS3O+Xb9etv6Xl3l+q9amYUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHwD+1l/wS6/YV/be8WaD49/aT+A2k+OPG/h6yt9JtPF2meJfGvgTxDfaHazST2+h69qngLxF4bufEOl20k8/2GDWnvpdLWe5XSprEXNwJYnShN3lG776p/g4/m/lrzVGco6J2Xyf5/1+B9h/DH4YfD34L+APCvws+FPg/QvAPw88E6VFovhXwj4asY9P0fRtOieSYxW1vGMvNc3M097f3tw0t7qWoXV1qGoXFzfXVxcS0kkkkrJbJf0vy+4Tbbu3ds7umIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/ACiP+CqH7QE/7Tf/AAUJ/av+LQvmv9Gvvi34g8IeD5w5ML+Bvhq8Xw68GTW8eSkEd/4d8L6fqksUfym7vrmZy80ssj+XVlz1JPzsvRadN7ndBWil5dNP8/z++5/Zx/wbD/s22/wl/YB1L4339gsPin9p74la94kW9ePyrp/h/wDDa7vvh94P06ZWUSGGHxFY/EHXbORjtmtfEsUsS+UySS9mGjanzW1k7/JaL9fzu72jz1neVuy79Xv6fj+kf6P66DEKACgAoAKACgAoAKACgAoAKAOM+I9t4vvfh548s/h7d22n+PrvwZ4otvA9/eeX9ksvF8+h30Xhq7uvNSSL7Nba09lNP5iPH5SPvRlytD2dt+g1ur7X1P8AIA+K/hD4p+Dfif428J/GbQ/GGifFzT/FOrQ+PdJ8cW+pL4y/4Sy4v5p9Wm1z+09+oXup6hfTS3kt/LJcNqb3H26O5uUuUnl8mSkpNST5r633v+uv/A3O5NNJrbpY6Pwn+zb+0V498r/hBvgH8afGnn48n/hE/hZ458R+bu+75X9j6FeeZntszntnrQoSe0ZP0T/T+vxC8e6+8+m/Cf8AwSi/4KVeNPK/sX9h39pe2WbBjfxP8KfFHgiJg33WMvjWx8PxqhGCsjMqFTkFgQapUqr2hL5q358v/pXyVm5T7SC+0vwf5f19zPpvwn/wb5/8FavFflSf8Mt/8I1Zy4/0zxZ8Xfgno/l5x/rdN/4WHca4mByf+JX2IyGGxaWHqv7NvVx/+Sl+X3/ZTqw/m+6/9f8AD+TPprwn/wAGun/BSnxD5R1rW/2aPAivtMg8TfFDxRfSxA/eG3wX8OfFsTyAZwFn2M3BkVTvWvqtTvFf9vN/lGP5/dd8y9tDz/r5r+u124/cX7PH/Bp/44sviD4U1r9p79pPwDqHw70nVbLUvFPgr4Q6H4qvda8WWNpOk0/hy38WeJ7bwvH4cttTVTb3WtRaFql7BbNKtnZRXMsV7a6RwuqcpadUl+vNf/yX06Mh19Pdi792/wAba/n95/ata2ttY2ttZWcEVraWcENra20CLFBb21vGsUEEMagLHFDEixxooCoihQAABXYc5PQAUAFAHif7S2jy+Iv2cvj/AOH4EMk2u/BP4q6PDGOry6n4F16yjQYycs84UYHfvSl8L9H+Q1uvVH+PnXkHef6+H7IWtxeJv2Tf2X/EkDiWDxB+zv8ABTW4ZFIKyRar8NvDN/G6kcEOlwGBHBByOtetF3jF94p/h8vy+44JfE/V/mfRFUIKACgAoAKACgAoAKAOR8e+PvBPwt8GeJPiJ8R/Feg+B/Avg/SrrXPFHi3xPqdpo+g6FpNmoa4vtS1K9lhtraFcrGm+TfNM8UEKyTypGybSTbdkt2/6X5/cNJt2W7P5O/2sf+DrL4d+EfE+p+E/2PfgJN8WdL025mtV+K/xX1nUvBfhvWHgcp9p8OeANMsH8VXuj3QxLa6h4j1vwdqoVSlx4bh3q6c08VFO0I83m3ZfL3W380vLc2jQurylZ9kr2Nn9h/8A4OkPA3xX+JGgfDP9sX4P6H8ELLxVqVrpOl/GXwN4j1HVfAWh6lfSpb2aeO/DviC3fWPDegNOypdeLbPxBrttprTxzatpOnaRBfa1akMUm7TXLd7p3Xz0i/ufnoglQaV4yv5Nb+h/WtFLFPFHNDIk0MyJLFLE6yRSxSKHjkjkUlXR1IZHUlWUggkEGuowH0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//0P7+KACgAoAKACgAoAKACgAoAKAP8hn9svxE/i/9r/8Aas8WSOZJPFH7SXxz8RSSE5Mj638T/FGpM5Pcs1yWz3zXkzd5zfeUn+J3x+Fei/I/0X/+CBXhpPDH/BJX9ke2EYWbVdJ+KPiW5fGGmfxH8bviTq9vI/TJSwurO3Q94oI85wTXo0P4UPR/i2clX+JL5fgkfsPWpmFABQB8NftV/wDBSf8AYk/Yttrtf2g/2gfBHhbxNbQedF8OdHu5fGPxPuy6B7ZY/h/4Ui1fxLZQ3jFYrfVNYsNL0QO2+51WCFJZIonUhD4pJeW7+5Xf4fNWZUYSlsn67L+v66n8xv7Wn/B1zrl7/afhv9in4AW2i25823tfil8fp01HVGRsxG60v4X+ENVTTbC4jx9osLzWvHmuW774xqHhtRHJby808V/JH5y/+RX6y8n3No0P5n8l/wAN/WytZSP5mv2nf29v2wf2yNSlv/2j/j/8QPiRYtdfbLXwjdaouifDzSrhX3xy6P8ADrw3DpHgjTLiPCILy00KO+kWOI3F1M6K680qk5/FJvy6L7rL8Pm7M2jCMdkvXr/X9dTgPgF+yv8AtHftTeJB4T/Z4+CvxE+LuspNFDejwZ4bv9R0nRfOx5c3iTxEYo/Dvhezbco+3+ItU0uxUuga4BdAyjCUvhi36L83t99vVbjclHVtL1/r+vvP6Rv2Tv8Ag1X+P/jf+zPEf7YHxj8L/BDRJPJuLr4efDRLb4k/EeSI487TtS8SNLa/D7wxeDJMd/pFz8SLX5AHtRvynTDCyfxu3ktX83dJfJP5WMZVkvhXN5vRf5/etPO7P6bv2Tv+CNH/AATy/Y6Omar8OfgJofjLx9phhli+KXxkMPxO8dLfQY8rVNMl1y1HhnwlqS7cfafA3hnwuSGcMp3vu6YUqcNo693q/wBV93L89zGVScutl2Wn+b+9/fc/UetCAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8Z/aO+I7fB39nr48fFxJFif4WfBn4ofEZJG2hY28EeCNc8TK7bvlwraYCd3HHPelJ2i32Tf3IaV2l3aR/j4yyyzyyTTSSTTTSPLLLK7SSyyyMXkkkkYlnkdiWd2JZmJJJJJryDvP9cv8AYZ+FMHwO/Yz/AGWPhJFbC1m8B/AL4V6DqqBQhl8Qw+DdIl8TXsijAWbUPEM2p384Ax51zJjAr1oK0ILtFfkcMneUn5v+un5fcfVNUSFABQAUAFABQAUAFABQAUAFABQBSbTdOe+TU3sLJtSjh+zx6g1rA19HBlm8hLoxmdYdzM3lrIEyzHaSTQBdoAKACgAoAKACgAoAKACgCC6tre9trizu4kntbuCa2uYJBmOa3njaKaJx3SSN2Rh3ViKAP8ev4/8Awo1f4EfHP4x/BXXoZ4NY+E/xP8c/Du+W4QpJJL4Q8S6loQuRniSG8jsUu7adN0VzbzxXELNFIjt5MlyylHs2jvTuk+6uf6QH/BBP9qbwv+0t/wAE3fgbo9hqcMvjf9njQLD4A/EHQmlQ3ujyeArSPTvAt4YSRM+ma78PY/Dd5ZXxjW2e/i1nSoZJZ9GvNvoUJqVNd4+616bferf0mclWNpvs9V89/wAT9m62MwoAKACgAoAKACgAoA/zo/8AgvZ/wVg179tD4263+zn8H/Etxb/sp/BTxJdaTF/ZN2y2Xxm+Iuh3Etjq3j3VZLdxDqXhbRb5LnTPh1Zlrizls4rnxj5j3Ov2Vtovn16rnJxT91Pp1a6+aXTZddbrl66VPlV38T/Dy/zPz7/4J6/8Evf2nv8AgpH4z1bRPgno+laD4F8JTWsXj74weOJb7TfAPhSW6UTQ6QlzY2V/qPiHxXd2mbiz8NaHZXdykTQXes3GiaXcJqSxTpSqPTRLeT2Xl5vy082tFKpzUFrq+y3/AE/rvsfJ37RXwP8AFn7NPx3+LvwA8cvbT+Kvg/8AEHxP4B1e+sVmXTtWl8O6pcWFvrmli4WO4/srXrOK31nSjcRxztp99bGaNJS6LEouMnF9G16+fXfff7yk7pPuf6Q3/BBn9o3VP2kv+CZXwF1bxJqUureL/hQuu/AnxPfTzGe4mb4a3iWfhA3Mzlpprs/Da/8ABDXs9w8k91eNPdSyMZtzejQlzU4t7r3fu0/KxyVY8s3bZ6/f/wAG/bt0vL9i61MwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//0f7+KACgAoAKACgAoAKACgAoAKAP8h79s/wJq/ww/a8/ah+Huu28trqng/8AaB+L2hXCSoYzKlj4916O0vIgeHtdQsxb39nMhaOe0uIZ4neN1dvJmmpyT35n+fz39fS53xd4p+SP72f+CA/7cH7OPjz/AIJ6fA/4MXXxY8BeF/jB8EdO8ReB/Gfw88TeKdF8PeIxbxeLvEGreHvEej6Zq95Z3et6Bq/hzVNLmk1bTILiztNZXU9IuZlu7Fy/fQnF04q6vFWab/H0+Vl5nLVhJSbs2ns0vw6/12vY/U74sft+fsR/A2yuL34rftX/AAB8HtbI0h0q8+KPhK98S3CopZhYeE9J1PUfE+puoHMenaRdSZZV8slkrVzhHeUV89fkt38r+j2IUJPZN/L+vxPxA/af/wCDpP8AYz+GUOoaR+zV4A+In7SviaISR2Wu3tpP8I/hizkFFnOq+KdOuvH92YZP3rWY+HVhBdxL5cWsW5kEyYSxUF8Kcn9y/GN//Jf8zSNGT3aj+L/BW/H5dT+Z79rb/gvb/wAFGf2rv7T0X/hbP/Cg/h5qHnQ/8IH+z/FfeA/OspN0fkav47/tG/8AiPqv2i2Pk6laf8JXZ6DqG+b/AIkNtDL5C808RUlpflXaP+er/GPpKxtGlCPS77v/AC0X6+trn4/aZpfiXxr4httL0fTtd8W+K/EeomO007TLS/17xDrurXsrSGO2tLWK71LVNRu5ndysUU9zPKzNhnYmstW+rb+bNNF6fcfuL+yX/wAG6/8AwUR/aV/szXfG/gzSv2X/AIf3vlTSa98b5brTfGM1m+DL/Zfwq0qK98Zx6jGrK0dn4zt/BFpOu4JqgZNrbQw9SW65V/e3+SVr/Pl+fxGUqsV/e9Nvv/yv+sf6dv2TP+Daj9gf4Bf2Zr/xmj8U/tXeO7LyZ5J/iHMfDHwzhvosfvtO+GPhm82Xdq/zCXTfHPijxzp8oYE2ysqbemGGpx3vJ+ei+5fq5ejt72Mq0ntovLf+vu/BuX77eCvAngj4a+GtN8GfDrwd4W8A+ENGi+z6P4V8F+H9J8LeG9Kg/wCeOnaHodpZaZYxcf6u2to14zj+70JJKyVktktEZtt7tv11/r+ux1VAgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD4K/4Kmfbf+Hbn7dP2AEz/wDDK3xt34JH+hf8IDrf9pHgHgad9qJHQjgkDJXOr/Dn/hf5fL+u+xdP44+p/lDWQtje2gvSwszdW4uyn3xbeavnlMc7vK37cd8V5aO0/wBma0a2a1tmsjCbNreFrQ2xQ25tjGpgNuY/3ZhMWwxGP5Nm3b8pFeweeWKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Hz/AIOcf+Cb2reGfHdp/wAFDPhRoEtz4N8bJofhL9oyz0y2LDwx42soLXQvBvxGuooARFo3jHTINO8Ka5eNHBb2XinStFnup7nUPGeE4sTT19pHZ6S8uz63vs/ht53sdNGenK9+np2/4CWnnc/Bb/gm5/wUe+Mv/BNX44TfFf4Z2lr4v8KeJ9Mj8PfFL4T61qV1pnh34haBbyS3GneZf21veyaH4l8PXs0154Y8Tw6dfz6U91qVjNZ6ho2s6xpd/hTqOnK61T3XdfjZ/L1vc0nBTVnp2fb5de39I/sT+Cn/AAdJfsB+PLWzg+L3g343/AfXHWM6jJfeGLD4keDbaRgN62WveCtRn8VX6RNuDPP8PtMdl2NHEzM6J1rFU3upL8fxVn9618rWMHRktmn/AF/XX7j9FvAv/Baj/gll8Q0hk0H9tP4SacJwpVfHT+Jvhi6bscTJ8SfDnhRoCM4bzQgHOSOTWvtqT+3H8f1cPy+b0UY9nP8Alf8AXofUfhr9t79i/wAZrG3hH9rr9mLxQJceWPD/AMevhXrDMW6Ls0/xXO4fJAKMFdWyrANxVKcHtKL9JJ/l/X3CcZLo18j2zRfiT8O/Enl/8I74+8F6/wCaQIv7F8U6FqnmlsbRH9hvp95YkABQ2eOvAp3XdfeKz7P7jtKYgoAKAPzW/wCCwP7QWs/sx/8ABNz9qv4q+GL6bTfFq/D+HwF4T1G0kaG/0zxB8WPEOjfDGz1rTZVKmLUfDyeLJ/ENnNn9zNpSy4fYEbOrLlpzfW1vv0/UumrzivO/3a+f9dtWf5dPww+HniP4ufEr4efCjwdBHdeLvid448J/D3wtbSs6RXHiLxnr1h4c0SCV0SR0jl1LUrZJHRHZUYsEYgLXmJXaXdpffodrdk321P8AWn/Y/wD2Vfhh+xb+zx8N/wBnX4TabDaeG/AmiwQajq5tooNV8Z+LLqOObxR448RSR5NzrvifVvP1C6LO0VjA1ro+nrb6TpthaQerCKhFRWy/F9W99W9fytaxwyk5Nt9fw8vl/wAHqf59X/Bxl4Ag8Ef8FWvjhqVrAttbfEfwl8IfH8cSLtjM8/w40DwnqU6Du15q/hLULydud11cXDd8LwYhWqvzSf4W/T+tDqpO8F5XX9f0/wBI/vD/AMGmHjiXUP2bv2r/AIbNMWg8J/G/wl43ity2RFJ8QfAcWhTShcnHnr8M4VJwu7yO+01vhX7s12kn96/4Hf7rGVfePp/X5n9ZldRgFABQB/H1/wAFXP8Ag4k+P37Ln7XXjX9mr9lz4ffCqTRvgvqGmaL488YfFLRPEfia98X+LpdK0/WNV0rRNP0XxV4Uh0Lw3o39pDQ7qWU3usapqVjd3tjf6ZY/Z0uOSriJQnyxS0tdvr5La3rdvy2OinSTjeTeu1unz139NPM/oI/4Jl/txWH/AAUL/ZE8BftHR+F4/BPiPUb/AF7wh4+8JW13Lf6ZovjfwneLaasNFvp1W4uNE1W1n07X9KS633ljZ6tFpl5Pd3VlNdz9FOftIKVrX3V76r5R/L7vtZTjySte/nt/X4fjeX37VkBQB8/ftV/tD+Fv2Tf2c/jF+0d400++1jw78IfA+reLrrRNMkjh1DXry1VLbRvD9lczJJBZ3Gva3dado8V9cI9tYtei7uEaGGRamUlGLk9krjiuZpd3Y/kF/Z5/4Otfi3e/HbTrb9p34F/CrSv2d9f1lbC8vfhPaeNv+FkfDrSrufyrbXrm513xXreleP4tJjZJdb0yw8O+Fr/UolubrRWtp47fRLrkjinze9FKLfS90vu1+XL3XY6HQVtJO/naz/BW+9n9qXgjxv4R+JXg7wx8QfAPiPSfF3gnxpoemeJvCnijQbyK/wBH17QdYtIr7TNU068hLRz2t5azRyxsMMA211R1ZF7E00mndPZr+n+f3nO007PdHU0xBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/9L+/igAoAKACgAoAKACgAoAKACgD+P7/g4F/wCCLnxO+NfjzUv24/2SPCF3468W6to+n2vx7+EHh23WbxXrlx4c02HTNK+JXgTSIlWbxJqkmhWNjovirwtpqy69fS6bpmtaHp2sXt9rgi5K9FyfPBXf2klr6rXX03005r2j0Uqllyy0XR/5+h/E1rGj6v4e1TUND1/StS0PW9Ju5rDVNH1ixudM1TTb62cx3FlqGn3sUN3Z3dvIrRzW9xFHNE6lXRWBFcTVtHo/M6Cnb29xdzw2trBNc3NxKkFvb28bzTzzSsEihhhjVpJZZHYIkaKzuxCqMkbgD9Jf2cv+CQH/AAUa/aimsZfhv+y58RdH8N33lSL45+KOnD4TeDBYyY/4mVlq3j9tBl8RWaZG4eE7TX7tiGEVrIyOtaxo1JbRaXd6L8dfuUvRW96HUjHdr0Tu/wCvX9D+jr9k3/g1G8KaW2m+JP20/j/eeKbpPKnuvhd8BLeXRdBEybXNtqfxO8W6add1axmyYbq20fwP4TvUCM1prwaRJE6IYVfblfyjovv1b+5dvMylX/lj83/kn+r+dj+mX9mb9hr9kj9jvR10j9m/4C/D74YSNaizvfEmmaT/AGn471i2AX9zr/xC1+XVvG+uxbl3iDVdfu4InZzDFEHK10xhCGkYpfn97u/xfla9o4uUpbtv8vu2+79EfV1USFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAecfGL4b6V8ZPhH8U/hDrsnlaJ8VPhz43+HGsSmITiPS/HHhnU/DOoSeQxVZtlpqkzeUzKJMbSQDmk1dNd019+g07NPs0/uP8AID+JHw+8VfCb4heOfhd450yXRvGfw58XeI/A/ivSZ1dZdO8Q+FtXu9E1i0YOkbEQX9lOiOUXzECuAAw3eS002nunZncndJrZn+mf/wAEVf27vCn7cP7Efw0um122n+M/wU8N+HPhR8bvDstyh1q317w3pSaVoPjae2Z/tEulfEbRNMi8Q22ppEli2u/8JLoVs73Hh+9SL0qM+eC11WkvVdfmvl22ZyVIuMn2bbX9abf1fc/XStTMKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOX8beCvCXxI8IeJvAHj3w7pHi7wV4z0PUvDXirwxr1lDqOja9oOsWktjqel6lZTq0VxaXlrNLDLGwzhtyMjhXpNJppq6e6f8AT/L7xptO63R/G1+2p/wasa5Jr2ueNP2E/i9oKaBe3Fzf2/wU+Nl1qlnd6EkjNMdK8KfE/SrDWhrVorP9m0mx8Y6Fpt3Z2sEQ1fxnrFy8t63JPC9ab+Uv0l/nF+rsbxrdJL5r/h1+vpqfgj8XP+CMf/BT/wCC091H4p/Y3+LniC1tWkI1L4VabYfGWxnt0Jxdxn4V6h4uuoYGQeaVvrWzuIY+bu3gZXRMHRqx3g35qz/Jt/gvV2saqpB6cy/L8z4G8afCH4sfDeWS3+Inww+IngKeFik0PjTwV4k8LSxODtKSR65pli8bBvlKsMg8c5+XNxkt4teqa/P+vwKTT2afozzukMKAP9Ef/g2U+I/7QfxC/YH8Rr8ZdT8T+IfBXhL4w614W+BfiLxdcX17qNx4IsvD3h6XWNB0jUdReS61Lwj4Z8VTanp+iXHmXFvp94+teGrO4S08PwadpvoYZydP3tk7Rfl/wH/w7vaPLWSUlbdrU/oxroMQoA/Dz/g4v0a41X/gkv8AtC3cCuy+HvEvwQ1m5Cc/6O/xp8C6IWYDkokuswu3XaF3nCqxrHEK9KXlZ/iv66/rHWl8a87/AJX/AE8vwtL+Bf8A4Jy65Z+Gv+Cgf7D+u6gY0sNN/a1/Z4nvpZcBLe0PxZ8Jx3N0S2APssMj3KkkANEDlcZrgpO1SH+KP4v5/wBdtzpmrxkvJ/kf61deqcJ/n1/8HVWhJp3/AAUN+FmrxRhU8Rfsk+ALmd8Y8y+074q/GrTJM+uyxttNGSc4O3gKK4MUv3ifeK/NnVR+B+Un+S/r/hj67/4NGtbaHxN+3b4cLnZqGhfs7a2kZPAbR9Q+M1jI6jsWGuxLIR97bHn7q1eEfxr/AAv8/wCt/S92KvtH1f8AX4H9rNdhzBQAUAf5cH/BcLRZdA/4Ks/tm2MyFHn+Iuha0Ay7SYvEnw68F+Ird8ccSQarHIrfxKwbnOa8yv8AxZ+q/FI7afwR9PyP60v+DWXXYdV/4JxeNtMRwZ/DP7VHxJ0uaPPzot58P/hHr0TlTzskGruEYZVnjlUHcjqvXhf4b8pP8l/X/DGFb415xX5tfp5fheX9JtdBiFAHlvxu+DfgL9oX4RfEb4H/ABR0p9a+H3xT8I6z4L8V6fDcNZ3b6VrVpJay3GnXqK0lhqthI0eoaTqMStLp+pWtreRDzIV3KSUk4vZqz/r+vIabTTW6P8vX/gp3/wAE5viX/wAE2f2ib74T+LLi48UfDrxRBd+Jfgt8TxZ/ZLTx34NjuUhlivI4y9vYeMPC889vpfjDRY5D9kupbHVbRW0PXdEubrzKtN05Wez+F91/mr66+lk0dkJqavs+q3t/wH/Wx+9H/BsL/wAFF9Y0bxrqv/BPL4o69Ld+FvFdrr/jn9nK41G5aRvD/ivTILnXvHvw4smmc+XpPiXR4dT8c6PZx+Ta6frmi+KDGk974rUJ0Yao7+zfXWPlbddemq+G2u97mdaH2lv1/wA/w7/fof26V2HMFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/9P+/igAoAKACgAoAKACgAoAKACgAoA8i+IX7P3wG+Ld1He/Fb4JfCL4m3sUaxRXfxC+G3g3xndRRJjy447jxHo+pSpGmBtRWVVwMYwNqaT3Sfqk/wA/X+rIabWza9Hb8v6+8seA/gR8D/hXL5/ww+DXwq+HE+1087wH8PPCPhCXZJkSL5nh/SNPfa44dd2G5yDkihJLZJei/wAgcpPq36v/ADPVaYgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/jC/4OPP8Agkp4m1jxBrX/AAUM/Z08L3OuQXWmWg/ae8D+H7Ga51Oxk0SySzs/jXpenWqu91pg0a1tNM+JEdpEsmlDTbLxrPBc2l54x1bS+TEUr/vIr/El187eXXbTXpJy6KVS3uy+Tb/D/L7j+Vj9lL9rn4+fsVfF3R/jX+zx46vfBfjHTUNlqNuUF/4b8XeH5popr7wr4z8PzsLHxD4d1BoYmls7kJcWV3Da6to95pmtWGn6la8kJyg+aLs/wfk11/Dyatc3lFSVmr/p6f1+p/cT+xB/wcy/sh/HPTNH8LftV2l1+y18VWjt7S91q4t9U8T/AAU1+/YCM3WleKNOt73XfByXMiPcy2HjbS4tI0aGSK3bxvrMivcN3QxMJWUvdf3x+/8ARqP+PQ5pUZL4feX3P+vnf0sf0J/DP4yfCP40aHH4m+D/AMUfh58VPDsscUqa58OvGfh3xppRjmGYib/w7qOo2yFxnCvIjggqyhgRW6aeqafmnf8AL+vuMmmt016q35/1956RTEFADXdI0eSR1jjjVnd3YKiIg3M7s2FVVUEsxOABk4xQB8u/FH9uD9jb4JrOPiz+1P8As/8AgC6tw2/SvEnxb8D2GvSMgJaO18PNrT67ezKASYLPTribAJ2YFS5wjvKK9Wvyun+P36lKMnsm/l/X4n5ZfGv/AIOS/wDgmD8KFvbfwn47+I/x61i0EkY0/wCEvw21mGya7HCRnxD8S5Ph3odxalipkvtIvNWhWLc0H2mVRA2UsRSjs3J+S/V2X/pXa7vctUZu2y9en5/123Pxb/aC/wCDsT406/Hf6V+zJ+zN4D+G8D+ZBa+Lvi54k1X4ka6YWyFvrXwx4ch8D6Ho+oICPLt7/VfF9ijrumS6RjEmMsU/sxS827/glH/0q3TS7ctFQXWTfpp+j/T1Pxx8Rf8ABbn/AIKmeJviFYfEi7/bE+JOnatpd9HeWPh/w7B4Z8N/D1VilEkVjf8Aw50TQrLwVr1iihYZI/EWh6vLdRZ+2T3MrySvi69Vu/O/RWt+nbtP5mns4W+Ffr/nr5H+kJ+xT8bfE37SX7I/7OHx78Z6DF4Z8WfFz4OeA/HfiPR7WGe30+DWdf0Czvb+50iC5kluIdD1O4kfVNDjnnuJk0e9sVkuLhwZn9GD5oxk92k/vOSSSk0tk2j6fqiQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgBrKrqyOqujqVZGAZWVhhlZTkFSDggjBHBzk0AeVeI/gL8DfGDSP4u+DHwo8UtKSZW8R/DrwhrjSE9TI2p6PdFye+7OffpSaT3Sfqv8x3fd/eeOap/wT9/YN1yTzta/Yl/ZH1abeH87Uv2b/g5fTbwchvNufBsr5z1O45HB4LClyQ/kj/4DEfPL+eX3yPqLw/4d8P8AhLRNK8M+FdD0fwz4b0Kyg03RPD/h/TLLRdE0fTrVBHbafpWk6dBbWGn2VvGAkFpaW8UEKALGgUCqJNigAoA+M/8Agoh+z9qH7U37D/7T/wABdEt1u/EvxB+Efie18G2jlVju/HWhwR+KPAtrLI/yxRXPjDRNEhlm5MMbtKASiipnHnhKPdWXr0/EqL5ZJ9mvu/Hp/S3P8nHTNR8Q+B/FGn6tYPfeH/FfhDXrTUbOSSF7XUtE8Q+H9Qjubd5Le5jElvfabqVojNDcRB4riAxyxhlZa8rVPzT/ABR3b+jP9S//AIJjf8FK/g5/wUd+BGh+NfCusaPovxm8O6Pp1p8bfhA17Gmv+CvFKQxW99qun6fNKb3UvAGv3oe88J+JIVntZbacaRqM9r4j07V9MtfTp1FUjdaNbrs/wuvO33anFODg/J7P9PVfj8j+WH/g7I014v2uP2ZtXMTrHffs5XWmpOVIjkfSviZ4vuZIlfG1nhXWIndQxKLcRkhQ6luXFfFH/D+v/BNqHwy9f0/4B2X/AAaVTTr8d/2wIFjkNrJ8JPh1NNKEYxJPB4x1dLaN3+6skkdxdNEhO51imK5CPTwm8/RfqFfaPqf3L12nMFABQB/nH/8ABzN8OD4I/wCCovifxP5WwfGL4LfCD4jB+0x0vStS+Ehf6r/wq4RHn+AdOK8/Eq1S/eKf5r9Drov3PRtfr+v9XP1m/wCDSP4iy3nw+/bS+Es0rCHw54y+EHxF06Et8skvjXRPG3hrWpY1zw0K+AdASZiBkTwAE7SF1wj0mvNP7/8AhiK6+F9Nv61/T59D+wqus5woAKAPxS/4L8/sm6L+09/wTk+L+uppUVx8Qv2cNPuPj74B1VIVa9srTwXbSXHxJ0zzlX7S+m6x8OP+Eiln0+OVYLjWtK8O6hPHNJpNslY14c1OXePvL5b/AHq/9JGlJ2muz0f6fjY/znf2cPjNrv7Ovx++DHx38NyTrrPwi+Jvgv4g2sVvJ5bX0fhjX7HVb3SZfmVZLTWbC3udJvreQ+Tc2V5cW0waKV1rz4y5ZRl2af8AwPnt+Z1tXTXdWP8AX90bWNN8Q6PpWv6Pdx3+ka5ptjrGlX0JzDeabqVrFe2N3ETgmO4tZ4poyRyjjpXrHAaVABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/1P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAa6JIjxyIskcisjo6hkdHG1kdWyrKykhlIwQcHOaAP5df+Ck//Btb8H/2htU1/wCMH7F+s+Hv2fPitqstxqetfC7VbS4h+Bni/UpN8ks+jRaLZ3ep/CzU7yVi866JpmteEZ3SKO18LaBJNe6pPzVMPGWsPdl2+z+Frd9Lrp/eNoVmrKSutr31X+f9dz+Ob9qH/gnb+2l+xtqN7a/tCfs9/EDwXo1pM8cfjy10o+J/hnqCCTbFLYfEXwu+seEHedDHMthPq8GrW8c0S32n2c5aGuOVOcPii157r702vy9DojOMtnfy6/d/Xl1PkHRtd1vw5qEGr+HtY1XQdVtTuttT0bULvS9Qt2yDmC9sZYLmI5AOY5F5APapTa2bXpp/X9dyj6Q0T9uX9tfw1DHbeHP2wv2pdAt4RiG30T9oH4s6VDEPSOKx8WwRoBgfcVfwxmq9pNbTn/4FJf1/XcXLHsvuNS//AOCgP7eWqxvFqn7bX7XOpRSqVkjv/wBpH4yXkcinqrpceM3V1PcMCD3FHtJ/zz/8CkLlj/LFfJfp/X4nhfjD4wfFv4hI0fj74pfEXxxG7b3Txh438S+JkZ853Mus6nehmyAdzAnIzxjNS5Se8m/Vv9f6/Adktkvut/X9dzz2ON5XSKJHkkkdY4441LvI7kKiIigszsxCqqgliQACTikM+z/gz/wTl/bv/aDNrJ8Iv2S/jr4r029KC28SP8P9c8OeDZC/3R/wm3iu10Pwihwdx8zWk2p87BUO9rVOpLaEn8rL8bL/AMmj87pEucVu199/6/rsfsd8A/8Ag1t/bw+Iv2K/+Nvjf4O/s66NMY/tunXet3HxT8e2avguYtC8Dj/hCboxLu3KfiZblpNqJ8jPKm0cLN/E4x/F/hyr8fPS7Us3Witk3+C++9/w+etj94P2Z/8Ag2P/AGBPgzdaRr/xj1P4j/tPeKNNmtruW08Z6nD4K+Gs15aOssUieBfBpt9WubVpl3XOleJPHHifSr2IC1u7Oe2e4iuN44amtXeT89F9yv8Ai3btK5nKtJ7JR/F/18vvP6K9O07T9H0+w0jSLCy0rSdKsrXTtM0zTrWCx0/TdPsYI7aysLCytY4razsrO2iit7W1t4o4LeCOOKGNI0VV6DEu0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8XP/BeL/ghp4y1nxj4x/be/Yw8GXXilPFE934l+PvwP8L2LXPiK38Qyh7nWPil8OtFs0Nxr1tr0oe/8b+E9Ohuddg12a68S6Na6nY6rq1r4e469BtucNb6yj+q2+a36q9+U6KVXaMvk7/g/wDM/ju0LxD4q8Da5Hq/hrXPEPg/xLpcs0MWp6FqepeH9c0+YForiKO90+a1v7SUFWimRZUYFWRxwwrku092mvk/wOgteLfHfjjx/fR6p478ZeK/GupQxtFDqPi3xFq/iO+iichmiju9YvLy4jjYqpZEkVWKglRgChtvdt+rv+f9fcFktv8AL+v67n93P/Bqh8LvEPhT9j745/EjXvANt4fs/if8bYE8I+OLrSmste8d+GvB/hPTdNmhivplSTVPB3hrxLfa/baDPCGs4vEV/wCNreOWS4iukg7sKmoNtby0fdL/ACd/y6I5q795K+y27f8ABf8AW6P6lK6TAKACgD+DT/g7H0yGL9rv9mjWFQCe/wD2cJ9MkfaAzQ6T8TvGV1AhbqQj61cEKeFLsR981w4r4o/4f1/4J00Phl6/p/wDrf8Ag0s1GWL9oD9rrSQxEF78HfAeoyJnhpdL8a3ttCxHQlU1ecA443nGMmnhPin6L8/6/phX2j6n9z1dpzBQAUAcp488H6T8QvA/jPwDr0Ym0Pxx4U8ReD9ZiKhxLpPibSLzRdRjKNhXD2d7MpVjhs4OAaGrprvoNOzT7O5/jl+I9B1Dwt4h17wxq8Xk6r4c1nVNB1OEZ/dahpF9Pp97F8wVv3dzbypyqnjkDpXjvTTt/Xn+f3nef6tP/BLX4jyfFj/gnP8AsWeNbi4N3fXP7O3w00DVLtm3yXes+B/D1r4H1q6mbvPc6t4cvZp+gEzyAAABV9Wk704P+6vwVvL+tNbXOKatOS8/TfXz7/8ADXsfe1WQFABQAUAFABQAUAFABQAUAFABQAUAFABQB//V/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAD/P+f8AP8qACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAjmhhuIZbe4ijngnjeGeCZFlhmhlUpJFLG4ZJI5EYo6OrK6sVYEEigD4h+Kn/AATQ/wCCfnxqubq/+JH7HX7PmuatfMXvfEFl8NPDnhjxNeuxJL3fifwpZ6F4guXyWIafUmKkkqRuJqHTg94RfyS/G0n+H3392lOS2k/vv/wOn9WPknWP+Dfb/gkXrEstxJ+yXDYTykkvo/xo/aE0yJCf+eVja/FhdNiHosdmq+gGDUfV6X8n4y/+WFKrP+b5NL89zNsv+DeT/gkTZsjyfssXl+yMGH2346/tEspI5G+O2+LFrG4z1V02N0ZSCRR9XpfyfjL/AOWB7Wo/tW+Sf5/19yPbfCP/AARf/wCCWvgmaGfRv2Kvg9evBjYvi618QfECFtvTzrfx5rviS3uM9/Pjl3dGzk7qVGkvsL53/VzX4L1QvaT/AJn+C/L+vvZ9q/Db9m/9nj4NFD8IPgN8GfhU0ahUb4cfC/wR4HZFC7cB/DOh6W33fl9x1zyKtRitkl6JL8v6/Eltvdt+r/zPaKYgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD4h+O3/BNj9g39pfXrrxX8bf2VPg9418XX7mXU/GH/AAjMfhvxhq8jHPmaz4s8JS6F4h1iRcny31PUbt4wWEZQMwqJU6ctZQTfe2v4NN/N/J3uUpyWibX4/wBf12OE+Hn/AASK/wCCZ3wvv4dU8J/sV/AmS/tpFltrnxf4UHxHa2mQho57dfiLc+Ko4LiJgHhniVZoXUPFIrjcyVKmtoR+av8Anzf+lfJ6uLdSb+0/6/r+rI/QzTdN07RtPsdI0fT7LStK0y1gsNN0zTbSCx0/T7G1iSG1s7GytY4ra0tbaFEigt4IkhhiRI40VFAXQgu0AFABQB+NP/BXT/gkB4L/AOCofhv4d6pa/Eab4QfGX4TrrVj4V8ZSeH/+Ep8Pa34Z8Qy2V1qfhbxVokWp6LemKLUNPgv9D1rT9S87RprnVlm0zVYtREdvjVoqqlrZrZ7rXo1dfff5O9zSnU5Ol091t/X9dx3/AASM/wCCQXgv/gl54Z+ImpXPxGm+L/xk+LA0Sy8V+M4/D/8Awi3h/RfDXh6S+utL8LeFdDl1PWr1YpL/AFG4vtc1m/1Iza3Pb6SI9M0mHTViuHSpKknrdvd2tt0Wsvz1v1t7pUqc9tLJdL+h+ylamYUAFABQB/mmf8FKP+CSH7cPw/8A25Pjha/Dz9mj4v8AxX+HnxZ+MHjjx98KPGfwq+H/AIk8c+F7zwz4/wDFOoeJdL0bWNW8N6ff2XhbWvDMerHQ9ds/Ez6MY5NJutZtll8PTWepS+dVpTU5WjJpttNK619L2ttr626y7I1IuK1Sstdf+Gvt2+67P7q/+CU/7N/xG/ZH/wCCfX7NH7P3xbe2HxI8DeE/EF34usrW7t9Qh0PVPHHj3xZ8Qv8AhFjf2ck9jez+ErfxXB4YurvT7i5065udJlm0+6urN7e4ftpRcKcYvdLXyu72+V7dfV7nNNqUm1tfT5aX+f8AwOh+hFaEBQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/W/v4oA+Sf2kPF2tWd/pXhSxuriy0640sarftbyPC1+893dWkVtM6FWa3t1s2kMG7y5HnVpVcxQlA0glq/P+v6tp53PJfg/wCL9a8P+M9BsLS6uH03WtVs9Kv9NMjvaypqE6WouRCSUjuLR5VuEnRVk2xvEzGGSVGCpJNPuv68v6112P0QoMQoAKACgAoAKACgAoAKACgAoAKACgDx/wCOHinVPCngeS50eWS2vdT1K20gXsRKzWUNxBd3M08LjmOZo7M28co+eIz+ZEySqjqFQV36a/1/T7dbx+EdL8Ra5oupx6zpuqXtrqSSiY3SzyNJM27cy3O5mF1HJ0liuBLHKpKyKVLBg1snp0/r7v67H6beHtSk1nQND1iWLyJdV0jTdSkgGcQyX1nDcvEN2WxG0pUZOcAZzQYvRtdn/Xf8/vNigQUAFABQAUAFABQAUAFABQAUAFAFTULo2Vhe3ojMptLS5uhEv3pTbwvL5Y68vs2jjqe9A1q0u7/rt+f3H5ha/wCKNc8TarNrOr6hc3N5LM0sZ82RYrMFiyQ2UW4rawRDCxRxbcAZO5yz0G6Vlbt/Xn+f3n2j8APFer+JfCt7b6zPNez6JfpZ299OzSTz2k0CzRRTzMWeaa2bevmuzOYXhVySpdgymknfv/wPN/kvme70EBQAUAFABQAUAFABQAUAFABQAUAFAHw5+0F4u1q78X3fhZbq4ttG0i3scWcUjxw31xeWUF9Jd3KqQJyguVt4Vk3JCIWaNVeWZnDWCVr9X/X9bfheR+z94u1q08YWnhc3Vxc6Nq8F8DZyyPLDZXFnZT38d3bKxIty4tmtplj2xzCdDIrPFCyATStfqv6/rf8AG8fuOgyCgAoAKACgAoAKACgAoAKACgAoAKAPnX9onxbrHh/RNF0rSLiexGvz6gL28tneKcW2npZ/6GkyEPEt096GlKMrvHAYt3lSTI4XBJt36fr/AF2+6x8m+EPGGueENbtNV0q7uVK3MbXlmJXMGpQFx51rdQ7ik3nJuVXZTJFIVmhdJVR1DRpNf1/wPz18j9PKDAKACgAoAKACgAoAKACgAoAKACgAoA4b4leIL3wt4H8Q65pwH26ztYY7VyocQzXt5bWCXOwgqxtTdfaArhkYxYdWQstA4q7S/r9P677H5y/25rX9pf2z/a2o/wBreb539pfbbj7d5ud2/wC0+b52c/7ftjFBvZbdPT9D9Gfhp4gvfFPgbw9rmpD/AE+7tZo7pwoQTzWN5c2DXOxQFQ3X2X7SVQKgMpEaqgC0GElZtf1+v9dtjuqBBQAUAFABQAUAFABQAUAFABQAUAFAH5r/ABG8X634q8UatNqN1cfZrTUbu10/TvMdbawtrWeSGJI4M+WJysYa4n2iSWYszHaERQ3SSVl/l+r/AD+659Dfs4+Lta1WPWvDup3M99aaXBa3mnT3MjzS2qSySQy2fnOWdoCRHJbRFsQ7ZgnyMEQImlv12/rX9PnpY+oqDMKACgAoAKACgAoAKACgAoAKACgAoA+Sf2kPF2tWd/pXhSxuriy0640sarftbyPC1+893dWkVtM6FWa3t1s2kMG7y5HnVpVcxQlA0glq/P8Ar+raedzyX4P+L9a8P+M9BsLS6uH03WtVs9Kv9NMjvaypqE6WouRCSUjuLR5VuEnRVk2xvEzGGSVGCpJNPuv68v6112P0QoMQoAKACgAoAKACgAoAKACgAoAKACgDx/44eKdU8KeB5LnR5ZLa91PUrbSBexErNZQ3EF3czTwuOY5mjszbxyj54jP5kTJKqOoVBXfpr/X9Pt1vH4R0vxFrmi6nHrOm6pe2upJKJjdLPI0kzbtzLc7mYXUcnSWK4EscqkrIpUsGDWyenT+vu/rsfpt4e1KTWdA0PWJYvIl1XSNN1KSAZxDJfWcNy8Q3ZbEbSlRk5wBnNBi9G12f9d/z+82KBBQAUAFABQAUAFABQAUAFABQAUAY/iHUpNG0DW9XiiE8ulaRqWpRwHOJpLGzmuUiO3DYkaIKcHODxiga1aXd/wBdvz+4/MnVPEWua1qkms6lql7c6lJKZhdNcSLJCxbcq221lFtFH0higEUcSgLGoAAUNrJadP6+/wDrufd3wP8AFOq+K/A6XOsyyXN7pmp3OkG9mJM17Db29pcwzzOeZJkjvBbSSn55TB5krPMzuwZTVn66/wBf0u3S8vYKCQoAKACgAoAKACgAoAKACgAoAKACgD4D+OPi7WtY8aavok11cQ6Pok6WVppySPHbu6QxvLeTxKQs880rs0ckisY7fyo48AOzBtFJJeev9av9PQ639nXxdrQ8RTeFJ7q4u9HutPubuCCeR5V065tDGwkti5byIJo2eOaFNsbytDIArhjKCmla/Vf13X5P5XPs+gyCgAoAKACgD//X/v4oA83+Inwz0X4iWlsl9NNp+pWHmfYNUtkSR4klwZbe4gcqt1bMyrII98Ukci7oZkDzLKFKTj8/67S/L7/s8l8P/gVo3grVY9cvNUm1/U7Xf9gL2aWFnZu6lDcC2F1evNcqjMsUj3HlxbjIsPnLFJEDc29Onrf/ANtj+f3fa91oICgAoAKACgAoAKACgAoAKACgAoAKAMDxN4a0rxbot5oWswtLZXirlo2Ec9vNGweG5tpSGEc8MgDISrIwzHKkkMjowNOzv/X6/l954Hpf7M2i2mqJdan4jvNU0yKUSDTEsI7GSZVbcsNzfLe3BeJsbZfs9tayOm7y5ImKsoV7R9tfX/7Rfn9x9MRxxwxxxRIscUSLHHGihEjjRQqIirhVVFAVVAwAABjFBA+gAoAKACgAoAKACgAoAKACgAoAKAAgEEEZB4IPQj0PXr9PzoA+atf/AGa9D1PVZr7SNeudDsriZppNMOnR38UJdtzx2UxvbNreHJ/dxyx3PlDgMUVEUNFPTb8f/tH+f3ntng/whpHgjRIdD0ZJPIR3nuLidle5vbuUKst1cuqohkZY0jVUVUjijjjRQFywQ22/+Df9F+X32OpoEFABQAUAFABQAUAFABQAUAFABQAUAeQ/Ef4PaN8Qp4dS+2zaLrUMK2xv4YEuobm3Qlo47u0aW3Mrwl2EM0dxDIEYxyGVEhVAqMmvT7v/AG2X9d7+6fDj4PaN8PZ5tS+2za1rU0LWwv5oEtYba3chpI7S0WW4MTzFFE00lxNIUURxmJHmVwJSb9Pv/wDbY/12t73r1BIUAFABQAUAFABQAUAFABQAUAFABQBxvjjwPo/j3RzpGrCWIxSi5sb62KrdWN0FZPMjLhkkjkRjHPBICkqYI2SpFLEDTad1/X4P8vuueTeEv2dtF8P6xbavq2tT6+LGdLmzsf7PTT7Xz4mDwveD7ZevdrE4WQRKbeOR1UTLJEXiYKc21a343/8AbF+f32PouggKACgAoAKACgAoAKACgAoAKACgAoAo6nptlrGn3mlalAt1YX9vLa3UD5AkhmUqwDKQyOM7o5EKvG4WSNldQ1AHzb/wzFo/9ped/wAJTqP9kebu/s/+z7f7f5W7Plf2n9p8ndt+XzP7M99uaDT2j7a+v/3M+ktM02y0fT7PStNgW1sLC3itbWBMkRwwqFUFmJZ3ON0kjlnkctJIzOxagzL1ABQAUAFABQAUAFABQAUAFABQAUAFAHz/AONv2f8ARfFWs3Ot6bq83h+5v5WuNQgWxTULSe5c5muIYjd2MlvNOxMk/wC9ljeVjIsSFn3Bam0tfz/+0f5/cehfD/4eaL8PdNmstMea7u7145dR1K5CCe7eIMsKBE+SG2gDyeTArOVMsjSSSu5egUpN+nrf9I/l91ve76gkKACgAoAKACgAoAKACgAoAKACgAoA83+Inwz0X4iWlsl9NNp+pWHmfYNUtkSR4klwZbe4gcqt1bMyrII98Ukci7oZkDzLKFKTj8/67S/L7/s8l8P/AIFaN4K1WPXLzVJtf1O13/YC9mlhZ2bupQ3AthdXrzXKozLFI9x5cW4yLD5yxSRA3NvTp63/APbY/n932vdaCAoAKACgAoAKACgAoAKACgAoAKACgDA8TeGtK8W6LeaFrMLS2V4q5aNhHPbzRsHhubaUhhHPDIAyEqyMMxypJDI6MDTs7/1+v5feeB6X+zNotpqiXWp+I7zVNMilEg0xLCOxkmVW3LDc3y3twXibG2X7PbWsjpu8uSJirKFe0fbX1/8AtF+f3H0xHHHDHHFEixxRIsccaKESONFCoiKuFVUUBVUDAAAGMUED6ACgAoAKACgAoAKACgAoAKACgAoAZJHHNHJFKiyRSo0ckbqHSSN1Kujq2VZXUlWUjBBIOc0AfM+qfszaLd6o91pniO80vTJZTIdMewjvpIVZtzQ21817blIlzti+0W11IibfMklYMzBftH219f8A7R/n95754Z8NaV4S0Wz0LRoWisrNWw0jCSe4mkYvNc3MoCiSeaQlnIVUUYjiSOGNEUJbu7/1+n5fcb9AgoAKACgAoAKACgAoAKACgAoAKACgDxX4ifBPRfHmof21DqM2haw8ccV3cxWqXtterCgjikuLVp7RvtEcSpCJo7lAYkRJI3KI9Bam1pv8/wD7WX5/f9nW+HHwn0X4di5uYLmbVdYvIhbz6ncRJbhLYOshtrS2R5hbxSSIkk2+eeSR44/3iogSgUpN+S9f/tY/12+16pQSFABQAUAFAH//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9H+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+KP23/wDgoL+zJ/wT2+H2i/EH9o/xff6RH4r1K70fwT4Q8M6TJ4i8c+NtR06GC51WPw9occ1rCbTR7a5tZdX1nVr/AErQ9Oe+020u9Thv9V0u1vYnUjTV5O3bq36f8PH1LjCU9vve36/l95S/YZ/4KJ/svf8ABQ/wR4h8afs4eLtT1GfwZf2OneOfBPizR38N+OvBlzq0d1No0mt6Mbm9tZdO1qGyvm0rWtF1LV9GvJrDUrGPUBqOmajZ2pCpGorxe26tZr+vn6vaKlBw367W8vu/L7j7kqyQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/NB/4L/wD7Y7/tZf8ABQn4haJoOqm++GH7NyzfAnwKkE2+wutX8NX9xJ8TPEUSIz28k+q+PZNW0iDUrd5E1Lw74a8NzByiRqnnYifNUa6R0X6/jp8jspRtBd3r2/r+u5+z/wDwad/s3+K9L0P9pj9q/V5Lyw8JeLJdA+CHguwbfHb6/feG54/GHjTXZIn2CWDR5NS8MaNpN7EssUl3deKbPzUmsJo62wsWlKXR6L5bv8bbfdZmddrSPXf+v+H++5/Y/XWc4UAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9P+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD4X/AOClX7Vlv+xZ+xF+0D+0FHdwW/ijwx4JutF+HEU2xzd/E/xlLF4U8Aqls2WvYbDxHq9jreqW0alhomlancMY4YJJoIqT5ISl1S09Xou19fP7rFQXNJLz19F/X9XP8o3StL8ReN/E+m6LpVtqPiTxZ4v16z0vTbOMy32r694i1/UIrSzto2kZ5rvUdU1K7jiUyO8txczguzOxNeXq35t/izu29Ef60/7Cv7MOi/sa/skfAf8AZu0ZbVpfhp4D0yx8T39moEGt+PtWMviD4heIIztV2h1vxrquu6jarKXeCzuLa18x0gQ16sIqEYxXRfj1/G5wyk5SbfX8vxt9/wB59Z1RIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+K7/g68/auNzq37PX7Fvh7UswaZb3f7QPxOtYJdyNf339reCvhdp9z5RAjnsrGP4g6td2NwWZodX8O34iQfZ5H48VP4YL/E/wAl+v6dTooLeXyX6/p/SPy6/wCDdb9k4ftJ/wDBRTwX4213TPtvgH9mDR7j44a488O+ym8YabcwaR8K9NMpDLHqMPjO/tvGdlGy/v7bwRqSh0Kgtlh4c1RN7R9759O3XX5ddjSrLlj5vT+vyP8ASWr0TjCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAIbi4t7O3nu7ueG1tbWGW4ubm4kSG3t7eBGlmnnmkZY4oYY1aSWSRlREVmZgoJUA/yY/wDgov8AtP3P7ZH7bH7RP7Qv2qa60Hxt8QtStfAazb1Nt8NfCiQeEvh1B5D7Vtpm8HaJo1zfxRoiPqlxfXDKZp5Hfyqk+ecpdG9PRaL0ukd0FyxS7L8f+HP7bP8Ag2W/ZVHwQ/YMvPjjrmnfZPGn7VXjS78YLNLF5V5H8M/AsuoeEPh9Yzqw3mK41JfG/i2wm3bLnTPFtjIqBQrv24aHLDm6zd/ktv1fzOes7yt/L+b3/pH9G1dBiFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/1v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/Kb/gtl+0fJ+zH/AME1P2lfGGmX5sPFnjrwtF8FfBTxS+RdnXPi3cp4R1G50+YENDqGh+D73xT4mtJYz5sUmhh4isioy5VpclOT62svV6fhqy6a5ppfP7v6/qx/mV/Bn4W+I/jj8Xvhd8GfB8fm+Kviv8QfB3w68PAxvLGmr+M/EFh4esJ50Qqfs1vcaglxdOWRIraKWSSRERnXzYpykordtL7zsbsm3sj/AF7/AIVfDbwv8G/hh8O/hH4Jsxp/g74YeB/Cvw/8LWWEBt9A8IaHY6BpMcnlqqtMLGwgM0gUGSYvI2WYmvWSSSS2SSXojhbbbb3bud9TEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/jh/wCDtH46tb+Gf2Sv2aNPvMrq2t+N/jl4ssA+0xjQLG38B/D+5aMZ8xbk+IviTHlwojazGzeXfZyYqWkI925P5aL77v7jooL4pfJfm/0PyX/4Nt/gGnxl/wCCmfgvxfqFkLvQf2evh946+MV6J491o2s/ZLX4eeE42Y4AvbPX/Hdr4i09FYSeb4ee4AeO2lWssNG9S/8AKm/v0/X5fMus7Qa7u3636dvx67H+kNXoHIFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/zZv+Dj/wCMjfFb/gqP8TvD8N2bvSvgd4B+GXwg0x1fdAjw+Hv+Fi69DEv8L2fin4ia5p9zlVY3NlKPmRUdvOxDvVa/lSX6/m/Lt0vLrpK0F5tv+v6/U/Z//g0u+DC6f8K/2tv2hbu03SeLPH3gb4O6FeSR4a3h8A+H7vxn4ngtpOCY9Ql+I3hRrofMpfSbULtZHDbYWPuyl3aX3a/r+BFd6xXz/r+vyP6+q6znCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/9H+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8iH9tP4rH45/te/tPfGFbn7XafEf49fFbxZpMobeiaBq3jXWbjw9awvlt1vZaEdOsrY7mPkQRZJOTXlTlzTlLvJ29L6dunl9x3RVoxXZL+uv56eZ/oZ/8G9/wnHwr/wCCVf7Pc89sLXV/ihe/EP4sayAm3zj4n8c63p/hy5JwGkM/gfQvCr72AxnYpaNEdu+grUo+d3970/D+tEctV3m/Ky/rRfr6n7V1sZhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD59/a0+Jh+C/7LP7SPxeS4+yz/AAx+BHxa8eWkwbY4v/CngPXtb09ITkE3E17ZW8Nui/O88kaIC7KGmTtGT7Rb+5fP8vvHFXkl3aP8gmvJO8/18f2RvhiPgr+yr+zZ8ITbi1m+GXwI+E3ga8i27H/tHwx4F0LSNTmmGATcXGoWtzcXLsN0lxLLI+WY160VyxiuyS+5fP8AP7zhk7yk+7f5/L8vuPoeqJCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPi/wDbl/b2/Z5/4J6/CGH4w/tCa1rUOm6rrKeHPCHhDwhpkGueOfHPiFrWa/k0rwzpF3f6Tp5+x2FtPe6jqutaxo2hadEIYbzVIbzUNNtr2JzjTjzS9Elu32X/AAbW87WKjFydl/w3rv8Al954v/wTw/4Kz/sqf8FKofGGn/BGbxt4U8feArS21XxP8Mfifo+kaJ4vh8PXl0LC38U6S3h/xB4n0HXPD39ovFp93c6frD32k3l1p8Wt6dpn9q6Q1+qdWNS/LdNbp7/8H5Wt13Tk5wcLXs0+q/4ZW9NfXQ/TitCAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPx//wCC9PxEPw3/AOCUf7WF9DP5N/4q0HwR8O7BA2xrkePPiZ4O8OaxAp748NXuuXDrzvit5EP3srlXdqU/RL72l+X9aGlJXnH5v7l8uv8AT2P84L9lX4dD4v8A7T/7OXwna3+1R/Ez47fCTwDNblN6y2/i7x7oGg3IkXkeSIL+Rpmb5EiV3fCKxrzoK8oq17ySt8/l+f3HW9n6M/1/a9Y4AoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/gd/4OrPj+fG/7XnwW/Z80688/SPgT8I5vEur26SYFt45+MGrJfX9tNEvDPF4L8I+A72CWT51TV50jVFZ3l4cVK8ox/lV36v/AIC7aedzpoL3W+7t8l/wTq/+DTz4L6prv7TX7Svx/Y3MWg/Df4L6T8LkALxW19r3xX8Y6b4jhG/gXR0zSvhTfm4twWSB9VsLiZVdrRmMLH3pS7K33v8AHbvp53QV3ol3d/u/4f8ArU/u3ruOYKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//1P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Zz/g6i8enw5/wT8+Gvgq3n2XfxF/aZ8G211Bux5+g+F/AvxG8QXrYBy3k65D4ZO0gr8+4kMqBufFO1NLvJfhdm1BXk32X5/Nfk/kfym/8ENfAA+I/wDwVY/Y60WSHzoNG8eeIfH87Fd0cB+Gnw98YeP7OaQ9ExqXhyxjiY4/0mSFRl2UVy0FerDyu/uXy6/dvraxvU0hL0/N28/67bn+orXpHEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH+Tx/wAFQPjk37R3/BQb9rf4uR3n2/S9b+NPivQPDF4JPMW58FfD6eP4d+B7hDyqrP4R8K6LMI0LJGXKBmxuby6suapN/wB5pddFou35fdY7oK0Yry/rv18/vP7bv+DZj4FD4V/8E2tN+I15aeTrP7RHxX8e/EYzyx7Lv/hG/Dd3b/C7w9ZPwG+xi48D65rdhvHzx+IJLmNmhuI67cNG1NP+Zt/p+ny+ZzVneduyt+v6+XbpeX9DNbmQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//V/v4oA8A+NXxX1HwM1homgJAus6hatfzXtzEJ0sbIzSW8BggcNFLcXE0FwN06vFDHAcxStMhiC4xvq9v681b7n+B558MPjp4lv/EmnaD4tng1O01m6isLe+W0tbK7s725cRWYK2UNvbTW807JBIrxCVDKsyykI8Lg5QVrrp0/4N/0f4+79hUGYUAFABQAUAFABQAUAFABQAUAFABQBwHxL8bL4B8LXGtrbpdXstxDp+mW8pYQSX1wksiNOUIfyYYILi4kVCGl8oQq8ZlEiA4q7t/X5r8/vsfJWl/tCfEC01OO71K6stV08ygz6U2n2VpH5Jb50trq1to7uOVV4iknmuFVsGWOZc7g05F/wd/w5lb73+p9z6ZqFvq2m6fqlmWa01Kytb+1Zhhmt7yCO4hLDJwxjkUkZODxk9aDIu0AFABQAUAFABQAUAFABQAUAFABQBDcTxWtvPdTtsgtoZZ5nIJ2RQo0kjYHJ2opOBz6daAWunf+vL8/uP4bP+Dor49at8QG/ZM8CYis9EttR+Mni+LS0VfOjWKL4f6Jo13eTfM81zNFca2rbTHBCVZIUbc71x4t/Av8T/K36/0zqpRSv3sr/wBXdvxv5bHyp/wa8+Bh4q/4KVan4jeHenw0/Zy+KHi2OZlysN3quu+A/AEaqxGBNLa+NL4IoIZoUuCAVRysYVXqN9ov80vlv5/rErP3PVr+v6t+kv8ARErvOUKACgAoAKACgAoAKACgAoAKACgAoA+X/jJ8Zdb8Ma23hbws0FpdWcFvNqepzW8V1Mk11ClzDa2sNzHNahVtpYZZppYZWdphHGsXku8oaRimrv8Ar530+5/j7qfBv4y634n1tfC3iloLu6vILibTNTht4bSZ5rWF7ma1uoLaOG1ZWtYppYZYoYmRoTHIsvmq8QEopK6/r531+5fh731DQZhQAUAFABQAUAFABQAUAFABQAUAFAHkPxg+I8/w90WyOnQQz61rM08FgblWe3tobVImu7uSNSpleI3FvHDCSqNJN5khZImilCox5n5L+u8fz+77Xz14S/aD8X2ms2o8U3Vvq+i3FxHFeD7DZWdzZQSOFa5tJLG2tQ5gB8xorkSiZEaMNC7JLQW4K2mj++/4q33P8D7joMgoAKACgAoAKACgAoAKACgAoAKACgDm/F/iS38I+G9W8RXUbTx6ZbeasCttNxcTSx21pBvw3lia6mhiaTa3lq5k2Nt2MDSu0v6/T8/uPir/AIaD+I/9pfbftunfY/N3/wBj/wBmWn2Hy8/6nz/K/tTG3jf9v39938FBryR8/X/gc3/t3n5H2r4Q8SW/i7w1pHiK1jaCPU7YyPAzbzb3EMsttdwb8LvEN1BNEsm1fMVFfYu7YoZNWbX9fr+f3nSUCCgAoAKACgAoAKACgAoAKACgAoAKAPivx/8AHzxX/wAJBf6f4TuYNJ0rTbuazjnNlZ3l1qD20jRS3Epv4LqKKGWRCYIookkWEqZZGdiqBqoK2ur+79Zfn99vd9k+DHxQvPH1pqFhrUUKa3pCwSvcW0flQ39nOXRZjCCVhuIZU2XCpthcSxPEiZdFCZRtqtu3n63/AEX4e9gfth/GRf2ev2Uv2jvjgLhba6+FfwU+JPjXSHYgGbxDofhPVLvw3ZRlvl8/UdfTTdPtg2FNxcxhiFJNTOXLGUuybJiryS7tH+Q2TNczEkyz3E8pJJLSzTTSvySTueSWR25JLM7t3JryTvP9d/8AY3+C8f7Ov7J37OPwMW3W2uvhb8Fvh14O1hQoUz+JNJ8L6bF4ovpFGFE+peI/7U1C42gL591KQFG0V60VyxjHskjhk7yk+7f9dPy18j6UqiQoAKACgAoAKACgAoAKACgDwD41fFfUfAzWGiaAkC6zqFq1/Ne3MQnSxsjNJbwGCBw0UtxcTQXA3Tq8UMcBzFK0yGILjG+r2/rzVvuf4Hnnww+OniW/8SadoPi2eDU7TWbqKwt75bS1sruzvblxFZgrZQ29tNbzTskEivEJUMqzLKQjwuDlBWuunT/g3/R/j7v2FQZhQAUAFABQAUAFABQAUAFABQAUAFAHAfEvxsvgHwtca2tul1ey3EOn6ZbylhBJfXCSyI05Qh/JhgguLiRUIaXyhCrxmUSIDiru39fmvz++x8laX+0J8QLTU47vUrqy1XTzKDPpTafZWkfklvnS2urW2ju45VXiKSea4VWwZY5lzuDTkX/B3/DmVvvf6n3PpmoW+rabp+qWZZrTUrK1v7VmGGa3vII7iEsMnDGORSRk4PGT1oMi7QAUAFABQAUAFABQAUAFABQAUAFAFLUtQt9K06/1S7LLaabZXV/cso3MtvZwSXExVcjcwjjYhcjJ4yM5oA+GNU/aE+IF3qkl3pt1ZaVpwlJg0pdPsruPyA3yJc3V1bSXckrLgTSQTW6s2TFHCuNoa8i/4O34czv96/U+tfhp43Xx94Wt9ba3S1vYribT9Tt4ixgjvrdIpGaAuS/kzQXEFwiuS8XmmFnkMfmOGclZ2/r83+f3XO/oEFABQAUAFABQAUAFABQAUAFABQAUAfJnxb+NviHRvEV34a8JyQaeulFIb/U5LW3u7me8aNJJIbeO8iuLaK3txIInZoGlknWQq6Rqm4NIwVrvW/y0+93+5HRfBf4v6t4v1Cfw14mEE+pLayXthqUEEdsblIGQXFtdQQKluJlR/OhlgiiQxpKkke8I1ASjZXXz6/jf9H/8j9I0GYUAFABQAUAf/9b+/igDwD41fCnUfHLWGueH3gbWdPtTYTWVzKsC31kJpbiAQTviKK5t5p5ztnZIpo5zmaNoUSULjK2j2/ryd/vX4nnfwv8AgZ4msfEmna94tt4NLtNGuor+3sVu7W8u7y9tnElmc2Mtxbw28M6pPIzzGWQxrCsQWR5UBymrWXXr/wAC36r8Pe+w6DMKACgAoAKACgAoAKACgAoAKACgAoA4D4l+CV8feFrjREuEtb2K4h1DTLiUMYI763SWNFuAgLiGaC4nt3dFZ4vNEyxymPy3Bxdnf+vyf5fdc+SdL/Z8+IN3qiWmpWlnpWniUCfVX1Cyu4/IDfO9tbWtxJdyylM+VHPDbKXKiWSIFmUNOdf8Db8eV3+5fofdGmafb6Tpun6XZhltNNsrWwtVY5Zbezgjt4QxwMsI41BOBk84HSgyLtABQAUAFABQAUAFABQAUAFABQAUAQ3EEV1bz2s674LmGWCZCSN8UyNHIuRyNyMRkc+nSgFpr2/rz/L7z/PG/wCDmewn8I/tqfCj4b/b4tRsvD37PmleJbSWMkPF/wAJd8Q/H9t5F5EQBDfLZeGNPknEZeJ45YJEchticOKfvxXaN/vf/A/q510neLfd2+7tt1b6L5n1x/waS+CxffGH9sz4hmLJ8L/DT4UeC1n2/cHjvxR4s1x4g3bzD8OUdlzz5SnjFPCLWb7JL77/AOXf7ya70ivNv7v+HP7h67TmCgAoAKACgAoAKACgAoAKACgAoAKAPl74y/BrW/E2tt4p8LLBeXV5Bbw6npk1xDaTPNaQpbQ3VrNcvFasrWsUMU0Ms0LI0SyRmXzXWINIySVn/Xytr96/D3j4NfBrW/DOtp4p8UpBZ3VnBcQ6ZpkNxDdzJNdwvbTXV1NbPLaqq2ss0MMMU0rO0zSSNF5SJOBKSasv6+VtPvf4+79Q0GYUAFABQAUAFABQAUAFABQAUAFABQB5D8YfhxP8QdFshps0MOtaNNPPYC5Zkt7qG6SJbu0kkUMYXlNvbyQzFWQSQ+XJsSVpYgqMuV+T/rtL8vv+z88+Ef2ffGF3rVsfFNpBpGi21xHLeE39leXF7BE4Zra0jsJ7kIbgDyzNctCIY2aQJK6rC4W5q2mr+634O/3r8T7koMgoAKACgAoAKACgAoAKACgAoAKACgDm/F/hu38XeGtX8O3MrQR6nbCNZ1Xebe4hljubSfZld6w3UMMrx7l8xEKbl3bqBp2af9fr+X3nxT/wz78R/wC0vsP2HT/snm7P7Y/tS0+weXux53k+Z/amMfN5f9n+Z2296DXnj5+n/B5f/bfLzPtbwh4bt/CPhrSPDtrI08emWxjedl2G4uJpZbm7n2ZbYJrqeaVY9zeWrqm9tu9gybu2/wCv0/L7jpKBBQAUAFABQAUAFABQAUAFABQAUAFAHxV4++Afiv8A4SC/1DwnbQatpWpXc15HAb2zs7rT2uZGllt5Vv7i2ilhikdhBLFK8jQ7RLGrqWoNVNW10f3/AKR/L7r+97L8GPhfeeAbTUL/AFqWF9b1dYInt7Z/NhsLOAu6wmYYWa4mlffOUzCgiiSJ5PndgmUr6Lbv5+lv1f4+7+Qn/ByT8X/+FX/8EufiJ4bguvsuofHD4k/C74S2To+2dol16T4m6xDEAQTHd6D8NtT0+74Km1vJY2w0qVhiHak/7zS/X8kVRV5ryTf6fr/Wp/CL/wAE4/g8Pj5+3l+yP8J57X7dpfin49fDp/Edps8zz/B/h7xBaeKPGabcMP8AkVNF1lsuCi43SfIrVw01zVIL+8vw1OmbtGT8n/Wz/L7j/Wlr1ThCgAoAKACgAoAKACgAoAKACgDwD41fCnUfHLWGueH3gbWdPtTYTWVzKsC31kJpbiAQTviKK5t5p5ztnZIpo5zmaNoUSULjK2j2/ryd/vX4nnfwv+Bniax8Sadr3i23g0u00a6iv7exW7tby7vL22cSWZzYy3FvDbwzqk8jPMZZDGsKxBZHlQHKatZdev8AwLfqvw977DoMwoAKACgAoAKACgAoAKACgAoAKACgDgPiX4JXx94WuNES4S1vYriHUNMuJQxgjvrdJY0W4CAuIZoLie3d0Vni80TLHKY/LcHF2d/6/J/l91z5J0v9nz4g3eqJaalaWelaeJQJ9VfULK7j8gN8721ta3El3LKUz5Uc8NspcqJZIgWZQ051/wADb8eV3+5fofdGmafb6Tpun6XZhltNNsrWwtVY5Zbezgjt4QxwMsI41BOBk84HSgyLtABQAUAFABQAUAFABQAUAFABQAUAUtT0+31bTtQ0u7DNa6lZXVhcqpwxt7yCS3mCnnDGORgpxweeaAPhfVP2fPiDaao9pptpZ6rp5lIg1VNQsrSPyC3yPc211cR3cUoTHmxwQ3KhwwiklAVmDXnX/A3/AB5Vb7n+h9a/DTwQvgHwtb6I86XV7LcTahqdxEGEEl9cJFG624cK5hhgt7e3R3CvL5XnMkZk8qIM5O7v/X5L8vvsegUCCgAoAKACgAoAKACgAoAKACgAoAKAPkz4t/BLxDrPiK78S+E44NQXVWSa+0yS6t7S5gvFjSOSaCS8lgtpYLgRiVw06SxzNIFSSMoVDSM1az0t89PuVvvZ0XwX+EGreENRn8S+JjBBqLWkllYabBPHcm2SdkNxc3U8DPbmZkj8mGKCWZBG8rySByiUBKV1ZfPp+Fv1X/yX0jQZhQAUAFABQB//1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/ADa/+Dkrxb/wkf8AwVY+LOj+b5g8A/Dn4LeEgu7PkfbPh7pHjoxY/hyfGhm2+su4/erzsS/3r8lFfhf9f6ujro/AvV/1/V/waj+3H/BpX4RFl8Av2vPHnlYPiT4weAPCJnx/rB4J8F6hrIi3d/JPj8vj+Hz8/wAVb4Ve7N/3kvuX/BM6+8fRn9bldRgFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfxo/8HbPxZ8vTP2NfgXZ3OftV98VPiz4is9+Nn2C38L+D/BtyYxnd5v8AaXjuIOwXZ5JCb98mzkxb0hHzb/RfqdFBfE/Rf1/w33WPzR/4Nj/hKPiD/wAFMbDxvPa+ba/A34J/E74gxXLpuig1XxBDpPwnsogxBUXU1j8RdXmgXhjFZ3Uif6ljWWGjepf+VN/fp89/L9JXWdoW7tfOx/ouV6ByBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/wAtb/gtt4o/4S//AIKqftoat5nmfZPifYeF92c4/wCEH8EeFPBfl5/6Zf8ACP8AlY/h2Y7V5ld3qz9UvuSX6HbT+CPof1yf8GtXhf8AsL/gm94s1lo9r+Nf2ofiXr6yEfNJb2Hgn4WeE41Vupjjn8N3W0ZwJHlIwWauvDL936yb/T9P6uYVn768kv1/rr+No/0i10GIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/nS/8HOfxT/4Tz/gpne+C4rnzLf4J/A/4XeAZLZHzHb6jr8etfFi5lZBkLc3Fj8RtKSV/vvBb2ithYkFefiXepb+WKX36/qddFe56tv9P0/q5+l//BpL8LPL0n9s3423dtk3mo/Cb4WaBebMeX/Ztt4u8W+L7YSHO7zv7V8ESsi7dnkKz7t6bNMIvjl6L83/AJdPuIrv4V6v+tP1+XU/srrsOcKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8AJS/4KL+JD4u/b/8A22/EQfzIdS/aw/aCezfOf+JdB8VfFVppi54zs0+3tkyBg7cjAxXlVHepN/35fmd0VaMV2S/L5/n95/fb/wAG6fhv+wf+CS/7PF+U8uTxb4i+N3iSUEYZtnxq8d+G4Xbgf6y18O27oecxGMg4Irvw/wDCj5uX/pTX6eX4XlzVvjfkl+V/18/xtH9wK2MgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/KL/AOCrfxO/4W//AMFIv20vG63H2u1b9oHx74S026Db0udF+G+pt8ONDuIWyc282j+FLGS26EQNECqkFV8uq71Jv+8192n6HdBWhH0X4/f/AF22P7Zv+DZb4Y/8IH/wTB8P+LHt/Kl+NHxq+LPxFEzJiS4t9Iv9L+EsJ3H5jDHJ8MrgRLnYHeWRFBldm7cMrUl/ebf6fkjmrO87dkl+v6/1qf0HVuZBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/AB3Pjt4gPiz43/GTxSX80+Jfir8Q/EBkznzDrPi7WNRL577zc7s985715MtZSfeT/P5fl9x3rZeiP9Nn/gif4fHhn/gld+xdpwTy/tPwruPEG3GMnxZ4x8T+Ki+P+mh1kyZ/i3Z716VHSlD/AA/nr5/122OOp8cvU/UqtCAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOd8X+JtN8FeEvFHjLWX8rR/CXh3W/E2qybgvl6boOm3Oq3z7myq7LW1lbcwwMZOQKHpr2/rz/L7wWunf+vL8/uP8cfxV4j1Lxj4o8SeLtZk87WPFOvax4j1WbJPm6lrmoXOp30mWyx33V1K2WOTnnJryG7tvu7/1t+X3HoH+qv8A8Epfht/wqb/gm7+xV4Ma3+yXI/Z7+HvizUbUpse21j4i6RF8RNat5l7XEOreKryO465nWQ5OdzepSVqcF/dX46+X5fccU9Zy/wAT/DTy/rvufoHVkBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAx/EOrR6DoGua7NjydF0fU9Wl3cL5enWU94+TxgbYTnnp6UPTXt/Xn+X3gtdO/9eX5/cf40k00txNLcTu0s08sk00jctJLK5eR2PGWd2LHjqe1eOegf6yf/BM3Qx4c/wCCdn7DGl7PLkX9kv8AZ/v548YMd3rPwu8MaxeIw4+ZLq/mVz3YE85zXq01anBdox/L5/n95wz+OX+J/mz7gqyQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPgL/gqn8Rf+FV/8E4f21vGKT/ZblP2dfiV4Y066DbGt9X8f6Bc+AdGniboJ4tV8TWckGQQZljBVs7Wiq7U5v+6/x0KgrzivP+u39d9j/Kf8NaBqPizxH4f8LaRF52reJdb0rQNLh5/fajrN/Bp1lFxk/vLm5iTgZ+bjPFeWtWl3f9dvz+47npr2/rz/AC+8/wBjvwh4Z07wX4T8L+DtHTy9J8J+HdE8M6XHtCbNO0HTbbS7JNq/Ku22tYl2rwMYHAr1zz3rr3/ry/L7joqACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDw79p3WT4c/Zs/aF8QBth0L4HfFnWQ+cbDpngLX73dntt8jOe2KUvhl6P8AIcd16r8z/H4ryDvP9fb9kvRR4c/ZW/Zn8PBPLGg/s+/BnRRHjGwaX8OfDdiExxjb5G3GOMdq9eOkYrsl+Xz/AD+84Jbv1f5/P8/vPoKmIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8Fv8Ag5M+IP8AwhX/AASt+J+grP5EnxV+Jfwd+H0eG2vL9l8aWnxJngQjDfvLT4eXAlUH57cTI+6NnVsMQ7Un5tL8b/p5/rHWirzXkm/0/X+tT+Ff/gmR8PR8Uv8Agod+xZ4Kkg+1Wd9+0n8JdV1W227xcaF4V8YaZ4s1+FhzhJdE0O/R2IwiMXOQpripK9SC/vJ/dqdM3aMn5P8Arr/Xbc/1ka9Q4QoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD47/wCCh+rHQv2Av24NYVtkunfsi/tIXUBzj/So/g94xNqoPYvceUgPq3tUVNITfaEvyfr+X3lR+KP+Jfn8/wAvvP8AJLryjuP9krwBpA0DwH4J0ELsGieEfDekBMY2DTdGsrPbjjG3ycYx27Yr2Foku39ef5/ecD3fqzrqBBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfybf8HZ3j7+zv2af2UvheJtv/AAmPxy8U+PDb7seaPhv4CufD/mlerCA/FMLnopnXPLLXLin7kV/ev9y/4JvQ3k/L83/wO33H4Mf8G5/gEeNv+CrnwL1OWD7RafDfwr8YPH13GV3RqYvhn4j8I6bPJ/d+za34v0u5hbIxcxQZzna2GHV6q8k3+Fv18v0lrVdoPzsvxR/pYV6JxhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9b+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD88P+CtWqHR/wDgmd+3Fdhtnnfs4fErS8+o1zQp9FK/8DGobP8AgXvWdX+HP/Cy6fxx9T/Kz8LaX/bfibw7ou3d/a+u6Rpe3+9/aGoW9pt/HzsV5i1aXd/12/P7jseib7L+u/5fef7LYGOBwBwAO1eucAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/DD/wdp+OzqH7QH7Ivwy87cPCPwd8e+Oxb7v8AVH4i+NbLw+Ztvbzx8LRHux832bHO2uLFv3oLsm/vf/AOmgtJPzS+7/hzhP8Ag1A8BjVf2yP2h/iNJD5sXgr9nBvC8TsuVt7/AMe/EjwbfQzKcfLO1h4F1S3Q5GYZ7kYOSVWFXvyfaNvvf/A/q46791Lu/wAl/wAHv95/ezXccoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/9f+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8rv+C3GpHSv+CVX7Z90G2+b8MtN03PTjWfHXhLSCv/AAMXxX3zjvWVbSlP0/PTz/rtuXT+OPr/AF3/AK7bn+Zv+z3pv9s/H34H6QV3jVfi/wDDTTSmM7vt3jTRbXbjvnzcY/xrzo/FH/EvzOx7P0Z/sM16xwBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH+ct/wc2eOT4s/4Kg67oBm83/hWPwO+EXgYJuz9nGoWuufErycfw7j8QjPt4/1+7+LLefiXep6RS/N/r/Wh10fg9W/6/r9D9XP+DSHwN9k8Bftr/EuSHP9veL/AIL+BrOdl/1f/CJaN8QNf1KGJsced/wmulPOuTnyLY4GMtrhFpN+aV/v/wA/6sRXfwr1f9f8P9x/YbXWc4UAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8c/wDgv7qB03/gkX+1/cA4Mum/B3Tx6kar+0L8JdNYD1yl22fRck1lX/hT9F+a9f67bmlL+JH5/k/6/wCGP8679ijT/wC1v2yv2SdK27hqf7TfwF0/bjO77b8VPClttx3z5uMd686Gs4LvKP5/L8/uOuXwv0f5H+u7XrHAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf5av/BbTxt/wsD/gqn+2hrvm+cNP+KFl4JDZyF/4Vr4K8K/DoxDk48lvCxiI4wUII4rzK7vVn6pfckjtpq0I+l/v1/U/rg/4NavBP/CN/wDBOXxf4nlhxP8AET9pn4ia7DOy4aTTNF8HfDfwfbQqcDdFBqPh/WHU84luJxkYArrwy/d37yfz6f1/wTCs/fS7L+v61/G0f6Sq6DEKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/D/8A4OLb77J/wST/AGi7fOP7U8RfAyxx/e8v45fD3U8e/wDyDt3/AAHPascR/Cl58v8A6Un+nl+CUtaPxr0f9f1b8WpfwLf8E4bH+0v+ChX7CtkV3JP+2H+zV5q+sEfxl8GSz/8AkFHP864Kf8Sn/jj+aOmfwS/wv8mf61NeqcIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/kOftneNP+Fj/ALYH7VfxAEvnp43/AGj/AI3+LIpd25Wg8QfEvxPqtuIzkgRLBdRpEqnakSoi4VRXlTd5zfeUvzfp+X3HfFWjFdkvy+f5/ef6Kf8AwQD8Gf8ACFf8Emf2UoJYfKvfElj8TvGd623aZ/8AhJ/jF4/1DS5iOp/4kDaPEG53CIMMKQK76CtSh53f3v59Pv30vY5KrvN+Vl+Hy/rvufshWxmFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//S/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/BL/g5RvPsv8AwSr+JkGcf2j8T/gxZ4/vbPG9nqGP/JDd/wAB9qwxP8J+sfzNaPx/Jn8OP/BKqz+3f8FJ/wBhiDGdn7UPwcvMYz/yDvGmlahn/gP2XdntjNcVL+JD/Ejpn8EvR+f+X/A31tY/1e69Q4QoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAOZ8a+JbbwZ4N8W+MLzb9j8KeGde8S3W87U+zaFpV1qk+9uML5Vq2454HPGKHpr2/rz/L7wWunf8Ary/P7j/G2vby51G8u9QvJWuLy+uZ7y7nfl5rm6leaeVz3aSV2dvdq8c9A/1kv+CaXg7/AIQH/gnp+xL4WaLyLmy/Zc+CN7qMOMeVq+u/D3Qdf1lD0JK6rqd4CxALH5iFJIr1aatTgv7sfy9X+f3HDN3nL1Z9u1ZIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/T/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/nq/4OcLr7P8A8EwdVhzj7d8d/hHa4/vbH8RXuPf/AI893/Ac9qwxP8J+cl/n+nl+Fpa0fj+TP4wP+CPdp9s/4Ke/sRw4zs+PXhO7x1/48PtV9n/gP2fd7Yz2rjo/xYev6M6KnwS9D/VUr0ziCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+N/wDgoj4vPgL9gf8AbS8XJL5Nzov7LXx3n06Tdtxq8/wz8S2ejLuyCPM1W4s48j5hu+UE4DTN2hN9oy8uj9fy+8qCvKK7tef+X5/dY/yUoopJpI4YUaSWV0iijRSzySSMFREUZLM7EKqgZJOBnIryTuP9j/4a+E4/AXw58AeBoVRYfBngnwr4TiWPGxY/DuhWOjoqYyNgWzAXBxjGM8V7C0SXb+vP8/vOB7v1Z21AgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//1P7+KAOE8d/ETw/8P7KC51hp57m8aRbDTbNUe7ujEF82T948cUNvEXQSzSOuC4WNZXIRQpRb9O/9NX+/TzOX8CfGvwz431EaMtveaPqsodrS3vjC8N8I1Mjx29zC2PtCRq0hhlSLcisYmlIZVBuDWu6/r+9L/gef2fY6CAoAKACgAoAKACgAoAKACgAoAKACgDH17XtL8M6Tea1rNytpp9lGHmlILszMwSKGKNQWlmmkZYoo1BLOwztALUDSb0X9f1/W54jpf7SHg+/1RLK707VtKsppRFFql0LaSGPc2FkvIYJZJLeI8b3iNz5ecthFZ1CnB28/S3487/L7j6FVldVZGDKwDKykFWUjIZSMggg5BBwRyM5oIFoAKACgAoAKACgAoAKACgAoAKACgD+cj/g6LuPI/wCCaeixZx9s/aZ+Ftv9dvhX4lXePf8A49c9+me2V58T/D/7eRtR+P0T/Rfr5/jeP8c3/BHvV7fQP+CmP7H+t3dvNdW2k/FE6hNBb7PPdLXwz4hm/d+YyRl1KBwGdQduCRmuSj/Fh6/ozonrFrv/AF5fn9x/qYeGPE+j+L9Ht9b0O4NxZTlkZXXy7i2uI8eba3UOSYriLcpZcsjIySxO8Mkbv6ZwtW0OgoAKACgAoAKACgAoAKACgAoAKACgAoA8w8f/ABY8OfD54LS+S51HVbmLz4tNsRH5kduWZFuLuaVljt4pGR1iA8yaRkYiEoGdQpRb9P684/ffy0+0nw/+LHhz4gvPaWKXOnatbRefJpt95fmSW4ZUa4tZomaO4ijd0SUHy5oy6kwhCrsA4ten9ecvvv5a/Z9QoJCgAoAKACgAoAKACgAoAKACgAoAKAOX8X+MNE8EaQ+s65O8cHmLBb28CCW7vbl1Z1trWIsitIUR3ZpHjijRWaSVBgsDSb2/r8vuv9x5j4U+P/hTxLq8GjXFlf6JPezLb2FxetBLaTzyMEhgllhctbTTOwSLejQs5CtOpKhgpwa21+Vv/bpX9Lff9n3aggKACgAoAKACgAoAKACgAoAKACgAoAq317aabZ3WoX88drZWUEtzdXEp2xwwQoZJZHPJwqqTgAseihiQKASvofP3/DSvg/8AtP7L/ZWt/wBm+b5f9qeXbZ252+f9h83zvI6v977R5fP2bzP3VBfI7efa368/42+XQ+gbG9tNSs7XULCeO6sr2CK5tbiI7o5oJkEkUiHg4ZWBwQGHRgpBFBDVtC1QAUAFABQAUAFABQAUAFABQAUAFABQB+J//Bdb4+eH/B3/AATZ/a78Lae9zd61q3g7w14Ourm38tbKyk8XfEbwZ4ZurN5WcSXFz9k1aeOeKCNkhBkWWQSRTIuVZ2pT9Lfe7GtKLck+z/R+a/Jn+dR+zF4R/wCE/wD2k/2evAfled/wm3xx+E3hHycbvN/4STx7oGjeVt53eZ9t2YxznHNedBXnFd5RX4nVL4X6P8j/AGB69Y4AoAKACgAoAKACgAoAKACgAoAKACgDhPHfxE8P/D+ygudYaee5vGkWw02zVHu7oxBfNk/ePHFDbxF0Es0jrguFjWVyEUKUW/Tv/TV/v08zl/Anxr8M+N9RGjLb3mj6rKHa0t74wvDfCNTI8dvcwtj7QkatIYZUi3IrGJpSGVQbg1ruv6/vS/4Hn9n2OggKACgAoAKACgAoAKACgAoAKACgAoAx9e17S/DOk3mtazcraafZRh5pSC7MzMEihijUFpZppGWKKNQSzsM7QC1A0m9F/X9f1ueI6X+0h4Pv9USyu9O1bSrKaURRapdC2khj3NhZLyGCWSS3iPG94jc+XnLYRWdQpwdvP0t+PO/y+4+hVZXVWRgysAyspBVlIyGUjIIIOQQcEcjOaCBaACgAoAKACgAoAKACgAoAKACgAoARmVFZnYKqgszMQFVQMlmJwAABkknAHJxigD561X9pDwfYao9lZ6dq2q2cMpil1O2FtHDJtbDSWcM8sclzEP4HlNt5nVcoVdgtQdvP0v8Ajzr8vvPbtB17S/E2k2etaNcrd6fexl4ZQCjKysUlhljYBopoZFaKWNgCrqcbgQ1BLTWj/r+v62NigQUAFABQAUAFABQAUAFABQAUAFABQB5L4++MXhrwFdppdxDd6rrDRpNJYWPlKtpFIN0TXlxMwSJ5k+eKFElmMZWWREjkidwqMXL+v+DHp5/d9rU8AfE7w98QorkaZ9os9RslWS70u9Ea3CQs2xbmB4neK5tt5EbSIVeJ2RZoovNhMoJpr+v+C/z+656NQIKACgAoAKAP/9X+/igD49/aX0DVX1XRfEkcM02jppa6VNJGrPFZXkd7dXKtPgYiF5HdokTsdrvbMhIYIrBrBq1ut/69TyX4RaBquuePPDsmnQzGHSdUsdV1G7VWENrZ2U6XEizS4KqbsRG1iQ/NK8u0AqHZAqTST9Gfo5QYBQAUAFABQAUAFABQAUAFABQAUAFAHi/x50DVdf8AAUiaTDNczaZqlpq1zawKXmuLOC3vLecRxqC0phN0l2yLyUt2ZQzKqsFwaT17f1/X+Z8F2Gn3uqXtvp2nWs95fXcqwW9rbxtJNLKxwFVRzx1ZmwqKCzkKpZQ1P1D8OWFxpXh7QdLu5BNdabo2l2FzKG3CW4s7KC3mkDYBYPJGzBiMnOTnNBg936s2aBBQAUAFABQAUAFABQAUAFABQAUAfzVf8HUVx5P/AATj+Hkecfa/2t/hrb4/vbfhf8bbrB/8Bt3b7vsQ3Piv4a/xL8nv/X5s2ofG/wDC/wA0fx5/8ElYfP8A+Cif7MKYzt8W+I5v/Af4feL7jP4eVn8K5KP8WHr+jOifwv5fmf6cP7O3h/VdG8I395qUM1rHrepLeafbTqySG1ito4ReGNsMi3bAiLcqmSGCKZcxSxO3pnJNpvTp8/6/rV2tH6AoICgAoAKACgAoAKACgAoAKACgAoAKAPhD9oTQNVsfHNzrk8Mz6VrVvYfYbsKzW8ctnYwWc9kXA2xzrJbtciInLRziRd3z7Q2g1ZLqv6/r/gB+z3oGq33jm21yCGZNK0W3v/t12VZbeSW8sZ7OCyDkbZJ2kuFuTEDlY4DI235NwE2rNdX/AF/X/BPu+gxCgAoAKACgAoAKACgAoAKACgAoAKAPmr9pPQNV1LQ9B1exhmuLLQ7nUf7TihVnMMV/HZ+TeyIoJ8m3azkikl6RfaUJ2oWdQ0g0r+dv6/E+S/C+gar4l1zT9I0eGaW8ubmLEkSsRZxCRfNvZnAIhgtV/eyStjG0AZdkVg0bS3P1J/z/AJ6fy/Kg5woAKACgAoAKACgAoAKACgAoAKACgDgfijouo+IfAPiTSdJVn1C5tIZLeFDh7g2V7a30lrH6yXUVs9vGuQHeQISAxoKi7SR+bn2a5+0fY/s8/wBr877P9l8qT7R9o3+X5Hk7fM87zPk8vbv3/LtzxQbfkfpH8LtF1Hw94B8N6TqysmoW1pNJcQucvbm9vbq+jtZPSS1iuUt5FyQjxlASFFBjJ3kzvqCQoAKACgAoAKACgAoAKACgAoAKACgD+TX/AIOIW1bwF+xd470HVVmik8a/GTwDpME8gYR6raHWtT8ZQ3MMh+WZZB4aWaQKzGKaKSKTbLE6Lhif4T82v8/08vwtLpptNq3Tf+v835Xf2v5YP+CSvhMeNP8Agpj+w9o5i84Wn7R3w38VFMbhjwJrcPjjeR6Rf8I95p9Ame1cVJXqQ/xJ/dqazdoS9Pz+/wDrtuf6tNeocIUAFABQAUAFABQAUAFABQAUAFABQB8e/tL6Bqr6roviSOGabR00tdKmkjVnisryO9urlWnwMRC8ju0SJ2O13tmQkMEVg1g1a3W/9ep5L8ItA1XXPHnh2TToZjDpOqWOq6jdqrCG1s7KdLiRZpcFVN2IjaxIfmleXaAVDsgVJpJ+jP0coMAoAKACgAoAKACgAoAKACgAoAKACgDxf486Bquv+ApE0mGa5m0zVLTVrm1gUvNcWcFveW84jjUFpTCbpLtkXkpbsyhmVVYLg0nr2/r+v8z4LsNPvdUvbfTtOtZ7y+u5Vgt7W3jaSaWVjgKqjnjqzNhUUFnIVSyhqfqH4csLjSvD2g6XdyCa603RtLsLmUNuEtxZ2UFvNIGwCweSNmDEZOcnOaDB7v1Zs0CCgAoAKACgAoAKACgAoAKACgAoAxvEdhcar4e17S7SQQ3WpaNqlhbSltoiuLyynt4ZC2CVCSSKxYDIxkYxQNbr1R+Xl/p97pd7cadqNrPZ31pK0Fxa3EbRzRSqcFWU889VZcq6kMhKsGYNz70+A2garoHgKNNWhmtptT1S71a2tZ1KTW9nPb2dvAJI2AaIzG1e7VG5CXCswVmZVDKbTenb+v6/yPaKCAoAKACgAoAKACgAoAKACgAoAKACgD8+Pjh4f1XSPH2sX97DM1jrcyX2m3xVjBPF9nhR7dZPuiazdDA8JIdY0il2+VNGzBtBpq3Vf1/W/wAr2Ot/Zw8P6rP4qufESwzQ6PYabd2ct0yssN1dXTQiOziY4EzRhDczbNwh8qHzNrTQhgU2rW6/1v8A18ndOP21QZBQAUAFABQB/9b+/igBkkccqNHKiSRyKUeORQ6OrcFWVgVZSOCCMHocUAQ2tnZ2MZisrS2s4ixcxWsEUEZY9WKRIi7jjk4yfwoHdve/33/r+uxZoEFABQAUAFABQAUAFABQAUAFABQAUAFAFOHT7C3nkuoLGzguZs+dcQ20Mc8uTk+ZKkaySZPJ3NyeTjowO77v7y5QIKACgAoAKACgAoAKACgAoAKACgAoA/mT/wCDrSUp/wAE8vg5GD/rv2y/h6G90T4J/tCOe4/jCHoenbiubFfw1/jX5S/r/h2bUPif+F/mj+Wz/ggxaQ3v/BWn9jyCeKOaP/hIviZOY5UWRC1p8D/ibdRkowZSUkhV1OPlZQwwRleah/Fh/wBvf+kv1/rtub1Pgl/w3Vf1/wAOf6f9ekcQUAFABQAUAFABQAUAFABQAUAFABQAUAQz29vdRNBdQQ3MD4DwzxpNE+Dkbo5FZGweRkdeecAUBdrb/L+v67hBb29rEsFrBDbQJkJDBGkMSZOTtjjVUXJ5OB154yRQF29/8/6/rsTUAFABQAUAFABQAUAFABQAUAFABQAUABAIIIyDwQehHoevX6fnQBUtdPsLEyGysrS0Mp3Sm1toYDKw7yeUibzyeWJPPfJoHdvdv77/ANf12LdAgoAKACgAoAKACgAoAKACgAoAKACgAoAp/wBn2H2r7d9hs/tuMfbPs0P2rGNuPtHl+bjbxjd046c0Du+7t6lygQUAFABQAUAFABQAUAFABQAUAFABQAUAfyxf8HYPihbL9jH9nbwaGVZfEP7Tdt4ixwJHt/Cfwt+IWnyrn7xiE3i+1eRc7TIkDNlkSubFP3IrvL8k/wCt/vub0Pil6fqfzkf8G93hX/hKP+CtX7LzyR+ZaeGYfjD4quxtzs/sz4I/ESDT5PRfL1q90ttxz0wMMVNc2HV6sfK7/wDJX+vr+sdartB/Jfj6r9fNH+mpXpHGFABQAUAFABQAUAFABQAUAFABQAUAMkjjlRo5USSORSjxyKHR1bgqysCrKRwQRg9DigCG1s7OxjMVlaW1nEWLmK1gigjLHqxSJEXcccnGT+FA7t73++/9f12LNAgoAKACgAoAKACgAoAKACgAoAKACgAoApw6fYW88l1BY2cFzNnzriG2hjnlycnzJUjWSTJ5O5uTycdGB3fd/eXKBBQAUAFABQAUAFABQAUAFABQAUAFABQBTm0+wuJ47qexs57mHHk3E1tDJPFg5HlyvG0keDyNrcHkZ6KDu+7+8uUCCgAoAKACgAoAKACgAoAKACgAoAKACgCC5tbW8iMF5bQXUDEEw3MMc8RI6ExyqyEjsSOM984oD+v6/r8h8UMVvGkMEUcMMY2xxRIscaL/AHUjQBVHPQDH15oAkoAKACgAoAKAP//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/mI/4OuM/8O/vgkP4f+GxfA+fqPgr8fMfoW7/AJ1zYr+Gv8a/9JkbUPjf+F/mj+Yb/ggOAf8Agrl+x9np/a3xdP4j9n74sEfqBXNh/wCND/t7/wBJkb1Pgl6fqf6eFekcQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8a3/B3L4m8vR/2FPBscmftup/tDeJryIH7n9mWvwc0rTZGHfzf7X1VUOOPJkHO6uTFvSC7uT+63+ff77nRQ+3/wBu/qfnH/wa7+GP7e/4KW6rqvl7/wDhCf2avin4mDYz5Ju/Enw58G7wf4SR4sMWfSQjuazwq/ePyi/zX9df1jdb4PVr/P8ATy/C0v8ARFrvOQKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5jv+DraMt/wT2+DEo6R/tleAEP0k+CX7QZz9MxgderDrmubFfw1/jX/AKTI2ofE/wDC/wA0fy8/8ED5RF/wVv8A2PWPQ678VIvxm+A/xShX82kA/wD11zUP4sP+3v8A0lm9T4Jen6/L+u9rH+nvXpHEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/Cf/wdneJvtf7TH7Kfg3zMjQfgX4n8TeVn7n/CW+P7zSvM29vM/wCEKC57+Vj+GuLF/FD0f5/8A6aG0vUo/wDBpp4Z+1/tVftQ+MvLz/YP7PukeGfNx9z/AIS34jaBqvl57eb/AMIVuxnnyc87aWF+Kb/ur8X/AMDt9wV/hS8/yX/B7/ef3fV3HMFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5pv+Dqa2M//AATm+G0oGRZ/td/Da5b2D/Cn452mf++roD8fcVz4r+GvKa/J/wBf8Mjaj8b/AML/ADR/KT/wQquRa/8ABWL9jaUnAbxr4zts+958JviBaKPxacD8feuSh/Fh6v8AJm9T4Jeh/qH16ZxBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf56P/B0z4j/ALZ/4KP+DNJWTKeEf2WfhrojRg8JPe+Pfi14mdiOgkeHX7fccZKJEDkKtcGKf7xeUV+b/rr+keuj8HrJ/ov08vwvL7v/AODRnw5mT9vDxbLH91P2c/DljLj++3xr1PVI89seXo7YB5zk4wtXhF8b/wAK/P8A4BFd/CvV/wBfj1+8/s/rsOcKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA5H4geO/Cvwu8CeM/iV461e30DwV8PvCviDxr4t1y7JFtpHhvwxpV1rWt6lPjLGOz06yuZ2VAXfy9iBnIFDaSbeiWrfZfh+f3DSu0luz/LX/AG6P+Cn37T37aX7RPir4x33xT+I3gjwjb+Irx/g98OPDfjLXNA0T4ZeEbS7ceHLWwstD1C0sm8VmxjtbrxN4qSP+0tZ1tp5xcQ6fDpthYeZOrOcm7tK+iTei+XXu935K8Y9kYRikrJvq7bs/vD/4IO/tX/E79r3/AIJ4eA/HHxk8Q3fjD4jeAvGXjH4Ra/4y1OUz634rg8Itpmo+H9Y8QXLEvfa8PDPiLRtO1XVZy97rV1p8ms6jLc6jf3lw/bQm5005atNq/e3zfT+nvLmqpKbS9bbW9Lf8D8by+8PjJ+27+x5+z1c3On/Gz9p34F/DPWbQlZ/Dfiv4m+EtP8WKVXcwj8JnVX8SzFRjcIdKcruUNtLIG0c4x+KSXq1+V0/x89bMlQk9k38j4Z8Sf8F+P+CSfhiWS3u/2udK1K4TcBH4b+FXxz8SxSFeoj1DRPhlfaWf9lmvlRuqk5+WHXpL7a+Sk/8A2x/m/V2uUqU/5fva/U4B/wDg40/4JLq+wfH/AMVSL/z1T4H/ABnCH/vvwMkn5xD+lT9Ypd390v8AL9F8h+xn5G3p3/Bw7/wSLv2VJv2o7/S2fAA1H4FftChQT2aSx+Ft7EnXlmkCDqXAJ2v6xS/m/CX/AMg/67bC9lU/l/GJ9y/sv/8ABQb9jL9s+81vS/2Zv2gPBfxR1zw7ZLqms+GbJNc8O+LLLSWmitjrB8J+MtI8OeJJ9Hiuri2tLnVrXSZtNtbu6tLW5uo7i6t43uM4TvyyTt/XVJ/h83oiZQlH4k1+K/DT+vJn2RVkhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf/S/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/nM/4OiLI3X/BNHS5wMjTf2lfhZek/wB0SeG/iLp2fzvwv4/WufE/w/8At5fr/X/DmtH4/VP+v6/U/j8/4IsXosP+Cpv7Fc5OBJ8XEss++peGfEWnAf8AAjdBfx965KP8WHr+jOip8EvQ/wBTavTOIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/ADWP+DjvxCda/wCCsfxz00vu/wCER8GfBHw8Fznyxc/CTwl4r2e2T4nMmOP9ZnvlvOxP8V+SX5X/AF8/wtHro/AvNv8Ar+v1P3h/4NMfDotv2Zf2q/FmzB1v47eGvDpkxyw8L/D+x1IJnv5f/CXlgM8eYTxurfC/BJ/3vyS/z7feZ194+n6n9Y1dRgFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfl5/wWc+EPxu+Ov/AATX/aa+Gf7Plhqut/EjW/D/AIXvofC+gh217xf4Y8OeO/DHiTxr4W0OOHNzeaprHhTSdWhttHtFku/EZDeGraGebWEglzrRlKnJR3tt3XVdd1fp95dNqM03t+Xmf5b+uaFrnhnVr7QfEmjar4e1zS52tdT0XXNPu9K1bTrpPv219p1/Db3lpOmRuhuIUkXPKjIC+W1bR6PzO0+qfAn7eX7V3wr/AGbtR/ZQ+Fvxi8U/DT4N674/8R/EfxPpfgO9m8L+IfFOt+JdA8KeG7zTtc8XaTJb+IZvC8OneErTy/DFpf2ekXtxqGqS63batvsE0+1Umo8ibUbt6aN3to32/p3unGXGLfM1d2t/X3nyOq3F5cBVE11dXUwCqoee4uJ5nwAAN0ks0sjYAAZ3du7GoKPoTwr+yB+1p47giufBH7Lv7RXjG2nAaG48K/BP4leIYJlIyDFLpHhq7jkBBBBRiCOeAapQm9oSfpGT/r+uwuaPdff/AJnpUf8AwTa/4KISp5ifsHftk7CNwJ/Zl+NKkjsVV/BSMwIORhTn34NP2dT+Sf8A4DL+vx+6wueP88fviY2pf8E/P29NHVn1b9iT9rrS405Z9Q/Zt+Mlkij1L3HguNQMc5zjHOT1o9nU/kn/AOAyDmj/ADRfzX9a/wBdD9nf+Dfr9gr9s2x/4KEfDD47638Ivir8HfhN8HbPx1eeP/F/xB8IeJPAdh4hh8QeBPEfhSx8CaJbeJdP0t/FWo6nq+t6fdalZ2UV3b6FptjLrF9La30OjRXu2Hpz9opWcVG9209bq1tf8tN3bQirKPK1o29le/z/AA8vLZqX+hBXecgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/9P+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8AP+Dl/Tzef8EtfGdzt3f2T8Yvg7qBP9wSa/c6Vu/E6mE/4FWGJ/hP1j+f9dvxalrR+P5M/iV/4JK6gNM/4KY/sO3Jbb5n7SHw00/OcZOra7BpQX/gZvQmO+7FcVH+LD/Ev66f132Oip8EvQ/1aa9Q4goAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8ur/AILm6/8A8JJ/wVf/AGy9R8zzPs3jvwpoG7Ocf8Ip8LfAnhfy8/8ATL+x/Kx/Dsx2rza+tWfqvwil5f133O2n8EfT+v6/zP6vv+DV3QP7K/4J0fEPVWTEnif9rD4jamkhHLWtj8NPg1oUcYOBlI7nSrxl64eWTkdK6sKv3b85N/gl+n9WZhWfv+iX9f1f9I/0r10GIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf5tv/ByXpa6f/wVY+K92FCnXPhv8FtUYgY3tD8PtK0TcfUhdHVM+iAdhXn4n+K/Rf1/V/wtHro/AvV/1/X6I/Pj9iz/AIJ3/tV/t8+LR4e/Z3+HF34g0PTdf0fRPG/xD1G7stJ8C/DuPVxJOupeK9XvJ45Ejh0+3vNQi03S7bUtc1OKzlt9H0zUL0pbtnCnOo/dWl7N9F6/8DXye8blOMd38up/pr/sm/sIfsu/sY+A/DHg/wCCHwc+H/hfWNE0LTdM1r4hWnhfTf8AhYHjLU7axit9R13xJ4xvEv8AxRqN1qtys941rda1cWWnrcGx06G3sYooIvSjCMElFJfLV+r1b+fytsccpOTd2/v/AE/r8z7CqiQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/D/8A4OLtM+3/APBJP9ou627v7E8R/AzU84zs8344/D7Rt3tn+19mf9rHescR/Cl5cv8A6Ul+vn+N460fjXo/6/r9UfwLf8E4dT/sf/goR+wxqJbZHbftffs3eexOMW03xh8HwXXORj/RpZRyceuQDXBS0qQ/xx/F28/67bnTNXhL/C/yP9amvVOEKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/KB/4Ko65/wkP/AAUl/bnv9/meR+1J8Z9E3Zzj/hGfHGseG9meeI/7J8segXHGMV5dV3qT/wATX3afod0NIR/wr8Vfz/rtsf3I/wDBtdof9k/8Eq/hnf8Al7P+En+J/wAZ9cLYx5v2fxveeGvM98Dw8Is/9M8dhXbh/wCFHzcvzf8AX/DnNW+N+SX9f1+h+9tbmQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf5z3/BzjbiD/gp7qcgGDd/Af4SXDe5UeJbTPvxagfhjtXn4n+J/wBuo66PwfNn6tf8Gj9wW+HP7b1pniHxr8DrgDPQ3WhfEuMnHbItAM99vtWuE2n6r9TOvvH0Z/YPXWYBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8iP+C8uk/21/wSW/bFs9u/yfDHw41bGM4/sD42fDPXd3/AP7N357bc9qyrq9Kfon9zT/Q0pfHH1/NM/wA4P9kbV/7A/au/Zi13ds/sT9oX4Lavv/uf2b8SPDV5u6j7vk56j6jrXnQ+OP8Aij+Z1y2fo/yP9fOvWOAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/Ih/bW1v/hJv2yf2tfEm/zP+Eg/aa+POt+ZnO/+1fin4qv9+ec7vtG7Oec968mes5vvKX5/L8vuO+OkYrsl+Xz/AD+8/wBFH/ggFon9g/8ABI/9ka3ZNst/p3xd1uViMGT+2/j38U9Tt3PA6WVzbRqe6IvJ6t6NDSlD5/jJvz/rtsclV3nLysvw/wAz9ja1MwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/zr/8Ag5/Xb/wU0iOMb/2dfhS31xqvjhM/+OY/D2rz8T/E/wC3UddH4Pmz9Of+DRts+D/260z93xL+z02PTfpfxiGfx2enbvWuE2n6r9SK/wBn5/p/X/Dn9i9dZzhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9b+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD82/wDgsHov9vf8Ew/23LHbv8j4C+LdaxjOP+EcFr4h3d/uf2Xvz2254xms6v8ADn/hZdP44+p/lu/DrWf+Ec+IPgXxDv8AL/sHxl4Y1nzM48v+y9bsb7fnjG3yN2c8Y7V5kXZp9mn+J2PVNd1/Xb8/uP8AZGr1zgCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/wAcn4t6v/wkHxW+Juvbt/8AbfxC8Z6vvznf/aXiPUrzdnnO7zs5z+ea8iXxP1f5netl6I/1Av8AgjTpH9h/8Euv2J7Lbs8/4K6Rq+MYz/wkGqatr+7/AIH/AGnvz33ZPU16dH+FD/CvxOOp8cvU/TStCAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/zwv8Ag6Otmg/4KVaBKy4F7+zH8LrlD/eVPF3xOsy34PaOv/Aa8/FfxF5xX5tfp5fgnLro/B6N/wCf6+f4tR/RP/g0VukfSP2+rIH95BqX7Ml0w9Eu7b4+xIfxNk469u1a4Taa84/jf/Lv9xFf7Pz/AE/rf7j+yqus5z88f2l/+Crf/BPv9kr+0LL4xftN/Dy38Vad5kc/w/8ABF9N8SviBHeJkJY33hPwHD4g1LQJ5nUxxzeJk0SwU5ea8hiV5FzlVpw+KS9Fq/wu/vXzVi1TnLZP1ei/r+urP58v2lf+DsbwzZf2ho/7In7Mmp67OPNjsfHv7QGtxaLpySx5RZh8NfAV/qOoajZzN+9hkn+JGgXYhVVnsIppXS3wlil9iN/OWn4K719dPO75tY0P5pfJf5tfo/nYp/8ABJ7/AIOGv2l/2kf2wvAX7N37UnhX4aav4Y+N2q6h4e8H+Kfh74a1HwprXgbxd/Zl/qmh2l3ay67rFlr/AIW1Waw/sOZLiGHW9Nub+11eTWru0s7rT7gpYiUpqMknzaKy5bP753/8l9QqUkotxe26fVfh/XfY/snrrOcKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPjb/AIKK6IfEn7AH7b+hqm+bUf2SP2iobVcZ/wBNX4R+LpbE477byOBsDB+XggkGoqawmu8Jfk/T8/uKg7Si/wC8vzP8lCvKO4/2TvAmuDxP4I8G+JA28eIfCvh7XA+c7xq2kWd+Gz33faM575z3r2Frr3/ry/L7jgeja7P+u/5/edVQIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAzNb1JNH0bV9Xkx5elaZf6lJu4GyxtZblsnjA2xHPPT0oA/xnpZZJpZJpXMkssjyyO33nkkYs7npyzEk8dT2rxz0D/WS/4JlaSNE/4J0fsKWG3Yzfskfs+ahIuMFZtY+FnhfV51YcYYTX0gb/az1xmvVp/w6f8Agj+SOGfxy/xP8/n/AF22PuKrJCgAoAKACgAoAKACgAoAKACgAoAKACgBksscKNJNIkUajLSSuqIo9WdiFA+pH1HJoA5K/wDiH4A0osNT8ceD9OK5DC/8TaLZlcdd32i9jxjvnH1HWldLdr77f1/Xcdm9k/uv/X9djjb79oj9n/TM/wBpfHP4O6dj73274m+CrTH18/W4sfp+GDRePdfeFpdn9xyl3+2H+yPYZ+3ftS/s5WW3r9r+N/wzt8Y9fO8Tx4x7j+WaXNFfaivmv1/r8AtLs/uOcuf29f2GLMkXn7aH7J9qR1Fz+0X8IICPqJfGCkfiPy/iOeP88fvj/X9eQ+SX8svuf9f1oYc//BRv/gnta5+0ft2/sbxEdUf9pz4KB/wT/hN95/BWpe0p/wA8P/A4hyS/ll90jMk/4KZf8E6Ivvft3/sgH/rn+0Z8JJv/AEV4tbP4Y/mVPaU/54f+BxDkl/LL7n/XQ7L4bft2fsU/GPxbYeAvhR+1r+zj8RvHGreYNJ8H+DPjP8PfEPibV2iRpJU0nQ9M8QXGpanJFEjyyx2NtPJFErSuqxjNNTg3ZTi32Uk3+AOElq4tL0f9ff8A5n1bVEhQAUAFABQAUAFABQAUAFAH+f3/AMHWmkNa/wDBQH4M6woAh1f9kXwVAfU3WmfGD43pMT7fZruyA+h9BXBivji/7n5N/wCfb7zqo/A/KT/Jf1/wx+aX/BOH/gqv8Y/+CZOiftBQ/BTwF8P/ABZ4o+O9t8NrU658RP7ev9J8Ir8O28fGG5tfDug6noUus3t//wAJ3MYXu9ctrOwfT4zNY6lHdPEmdOq6XNZJ81t79L9vXv8Afdlzgp2u2rX0XW/qntbt91zgP2mf+Cqn7f8A+1x/aFl8Z/2mPiHe+FdR82Of4e+Db+L4cfDx7STISyvfB/gWHQNI12G3jJihn8Sw63qBXc099NLJI7qVWpLeb9E7L7lZfevmwUILaK9Xq/8APX+tj4d8IeCvGPxC8QWHhPwD4S8TeOPFOqyeVpfhrwhoOq+JfEGpS8DyrDRtFtb3UbyTJA2W9tK3IGOahJt2SbfZK7/Atu2r0XmftR+zV/wbuf8ABS39oP8As/VPEPwy0P8AZz8I3vlynXvj1rv/AAjmsfZzhp1j+Hmg2viP4g2t/HGf3Nr4i8O+HbeaYrE99bqs0ybRw9SW6UV/ef6K7f8A5L6bozlVguvM/L+kvu231vY/qV/4Jl/8G+XwT/YJ+Kfh/wDaG8efFPWvj78cPC1hqEfg+Y+G7XwV8O/A+p61p1xpWp6zpXh06n4h1jXdft9Lvr7S9L1jV9cgsLWG8udRh8NWurjTrzS+qlQjTfM3zS6aWS9FeWvm38nvHCdVyVkuVeur/r8fvP6Fa3MgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPGv2jNC/4Sj9nv47+GQnmHxF8GvifoQjxnzP7X8Ea5p+zHfd9o2475x3pS2fo/yGt16o/wAeyvIO8/16v2Odd/4Sj9kX9ljxNv8ANHiL9nH4H675mc+Z/a/wy8Mahvz33/aN2e+c969aOsYvvFfl8vy+44JfE/V/mfR1UIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8o+POqf2J8DfjPrW7Z/ZHwo+Iuqb842/YPCGsXe7PbHlZz/hSls/R/kNbr1R/jvV5B3n+tP8AspeOfhv8LP2NP2TNI8a+PvBHgxdF/Zk+A2muPFHivQfDywrYfCvwpbYc6tf2gUKIv4gowM8CvWjZRinZe6l22X9f0zhldyk7PVt7X6/L8vuLnij/AIKH/sD+C/MXxR+2r+ypo88Wd9jc/H/4WPqfy/e2aXB4pm1GUqeGEdqxBIB2kgMOpBbzj98f+B+f3AoSf2Zetn/wx85+J/8Agtx/wSq8ImQar+2h8Mrvy87v+EY03x142Bx18s+DPCeviXpx5Rbd/D1qPbUl9tfj+in+fyWrk/Zz/lZ89eJv+Dj/AP4JP6D5n9l/Gzxz402Z2jwz8Evipa+Zj/nn/wAJj4Y8KDnsZDH6nGKTxFJfav6KX/yMf67far2U30t80/y/r7mfPniT/g6i/wCCdejmSPRfh3+1b4slGRFJpvw8+G+nWTkdDJNr3xg0u9jQ9iumyuO8Y5NT9ap9pP8A7dS/OUvy++y5WqMu6X3/AJcrX4r9TwTxH/wdpfs723mf8Ij+yT8aNbxnyv8AhI/Gvgfwtu9PM/syPxh5ee+3zMdt3JqfrUf5Zfel+j/rXXRSfsJfzr7jwjxB/wAHc2qSeZH4V/YPsLXGRFd+IP2jLi/3/wB1pNP074Kab5eO6Lqcmf768VLxfaH3z/8AuY/YL+f8Dw7xB/wdl/tT3O//AIRX9lz9n/Rs58v/AISDWfiL4m2em/8As3XfCfmY4zjyt3bbU/WpfyxXzb/JR/L7rvmfsI/zP7v+H/rte54pr3/B09/wUc1XeNM8B/speGVORGdJ+G3xGu5kHYs/iD4x6zE746t9nVCeREPu0niqnaH3N/g2vz+8pUYeb/r5f133PGNc/wCDk/8A4Kq6sXNh8Ufhn4Y3Z2jQ/gv4EuBHnps/4SXTvEROO3meZ75+8y+s1fL/AMBS/OUv673XKexh5nkGtf8ABfv/AIK4a7vW4/a71OyifOItF+EfwD0Py1P8KT6X8LLW7OOzyXLydtxxlZ+sVf5vwj/8g/z+8fs6f8v4v9f67Hkus/8ABZL/AIKh67v+2/tsfG2AvnP9ja3p/h3Gf7g8P6XpYT2EezHbqTS9tV/nf4fpGP8A6UvnsP2cP5UeV6x/wUv/AOCieu7v7R/bp/a4ZHyHhsv2hfirpVs4PUPa6X4ps7dl/wBloyvsMCl7Wp/PP72vyk/+D5WGoRX2Y/cv+H/rzZ5nqn7ZH7Xuubv7b/aq/aR1jf8Af/tT45fE7UN+eu77X4om3Z98+47NPPP+eX/gUh8sey+7/I831P4y/F/W939s/Fb4k6uWzu/tPxz4nv8Adnru+16pJnPfPX0HVlzS7v7/APMLLsvuODvdS1HUn83UdQvb+TJPmXt3PdPk9TvnkkbJ7nPPfOM0Xb3v99/6/rsMpUgCgAoAKACgAoA9j+APww+Nfxe+LvgPwT+zz4a8Y+J/i9f+JtGl8FW/gaG//t7S9ctdRtp9O1+PU7Dy28O2+hXccOqXXia6urGw0CG1fVb2/s7a1kuIqipSaUU3K+lv60t36bvYTaSu3Zef9P8AL0uf6/Phi31u08N+HrTxNe2+peJLXQ9Jt/EGo2kfk2t/rcNhbx6te20QSMRW91frPPDGI49kbquxcbV9Zfj/AF6fl9xwP8P69fz+83KACgAoAKACgAoAKACgAoA/zwP+Dn3wF8YNC/4KJ2nj3x1HqFz8MfH3wg8EWPwP1STfJpNtong20+y+OfClnN/qotS0nx9rGs+JtU09T5sFp430a/lUJqtuzcGJT9pd7NLl+W6+93369Dqotctlunr89vwR+YP/AATi/wCCfXxF/wCCk3x+v/gN8N/HPgb4e3+g+AtW+JniHxD46bW5LeLwponiHwr4Z1CPQNM0PTL+bW/EIv8AxhpUttpV3daJZS2UWoXE2sWxtkjnyp03UlyppWV232ulptrr3+40nNQV2m9bWX9f5/i3H+yP9mT/AINev2GvhONO1j4/+K/iP+0/4mtvKkutO1C+l+Fnw0knjw6vD4W8F6jJ4wcCXO+HUviRqNhdRKsc+nmNpo37I4amvivJ/cvuT/8Ab/kc8q0nsuX8X/X9dD98/gv+zn8BP2cvD48LfAb4N/DX4Q6E0cSXNj8PvB2heFzqJi+7PrF3pdlb3ut3pPzyX+r3N7ezSEyTXDyFnbdRjFWikl5K3+X5fdcybctW2z2emIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/mz/AGwP+Dlj9mr9lv8AaU8Vfs+eH/gt8QPjVa/DPxReeDPil8QPD3ibQPDWnaP4n0W8aw8UaP4N0fVLK+l8ZXPhm/iutH1CXUtS8G2M2t2F7a2N5c6ekOrT888RGEnGzlbRtO1n5fFe3m466aXZtGi2k+a1+lvzP3z+BPxt+Hf7SHwe+HXx1+E+sNr3w7+KPhfTvFnhbUZbd7O7axv0IlstSspCZLDV9JvY7nStZ0+QtJYarZXlm7M8DNW8ZKSUls9UZNNNp7o9ZpiCgAoAKACgAoAKACgAoA//0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAKt9ZwajY3mn3SeZa39rcWdyh/jguoXgmTnj5o5GHPrQB/jRaxpk+i6vqmj3XF1pOo32mXIxjE9hcy2s3B5H7yJuD06V5D0bXZ/13/P7z0D/Vt/4JW6//AMJL/wAE2v2GNR3+Z9n/AGXPgzoJbOfm8K+CNJ8MMpPPKHRyh56rg5xXqUtacP8ADH8Fby/rvucVT45er/rp/Xfc++qsgKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPNPGHxo+Dvw983/hPvix8NPA4gz53/CYeO/C/hrytv3vN/tnVbDy9vff09uSqbS3aXq/8x2fZ/cfK/jD/AIKkf8E4/Avmr4h/bg/Zh86DIntdB+MXgrxdfwsvWOXT/COr65exyj/ni9ush4+TkBpdSmt5x+9P8pRt/W1nzNQm9VF/l/X9d2fK/jD/AIOCP+CTHg/zYz+1Knie9j3f6F4P+E/xn13zNv8Azy1NPh9BoLZPC51hc9QNo3LDr0l9u/opP/2xfn99ilSm+lvN2/4f+vNHyr4w/wCDpP8A4JweHfNTw/4V/ab8fSrkQyeHvht4O0uykYfdaSXxj8S/DV5FEe7Lp80oyP3B5qXiaa25n6K34t/ov/kqVGb3aXn/AF/wPwSl8q+MP+Dtn4NWXm/8IB+xp8TfE2N3k/8ACYfFXwr4G3/3fN/sXwt8Q/Kz/EFM23tuwah4qPSDfq0vyjL+u+vK/YP+dfcfK3jD/g7W+PF75v8AwgP7H/wj8NZz5H/CYfETxj448v8Au+b/AGLpPw987HGdnkbu23NS8W+kF85X/BQX5/eV7Bfzv7j5Z8Yf8HRn/BSjxH5q6Fof7NPw/R8iJ/DHww8T6jcQr/CTJ42+I3i6CSUD7zG0ETNyIUXC1LxVToopf4W/zlH8vuuuavYw8/wf5KP5fdZ83y54t/4OBP8AgrT4t82N/wBqqfw7ZyZxZ+EvhP8ABXQfKz/zy1K3+Hba4OOBu1V9uMgFiWaHiKr+1b0Uf/kZfn9/2WqUP5fm7/8ADHyn8QP+Cnn/AAUQ+KOm6rovjb9tL9o/U9E12yvNM1vQ7H4qeKvDmh6vpeowS2uoaXqej+GdQ0fTL/TL61mmtrzT7m2ks7m2keCeGSJyiy6tR3vOWu/T8mv/AEn77tlKEV9lfcn/AMH+vI+FKzKFJJJJJJJySepPqevJ+v50AKqs7KiKzMzBVVQSzMxwFUDJLEkAADJJwM5FAHrHhj4BfHbxv5f/AAhfwV+LXi4TY8o+GPhx4x1/zc9DH/ZWjXe/OeNhOe2f4a5ZP7Mn8n+n9fiK67r7/wCv69D6H8Nf8Ezf+CiPi7yzof7Dv7VksMuPKu9Q+BHxJ0OwlB6GPUdc8O6dYuvqy3LKO7DkVXsqn8k/ua/OMv676cq54L7UfvT/AC/r7mfQXhv/AIIY/wDBV/xUIzpn7Gnju1EmNv8Awkniv4W+DSM/89B4v8eaKYvfzQmO+MEM/YVX9h/+Sr/3J/XzF7SH8yPfPDn/AAbc/wDBVvW/L/tP4P8Aw+8H78bv+Ej+NXw1ufKz18z/AIRHXvFOdvfyjLntn+KlhqvZL1kl+Sl/XV3ZPtYd2/P/AIc938Pf8Gr3/BRfVvLfV/iF+yj4WjODLHqfxF+JN/doD1EcWg/B3VrSSQdNrX0cZ5IlPAqlhanVx+9v8Ul+X3h7aH977k/zlH+u1lze5eH/APg0w/aYudn/AAlX7VnwL0XOPM/4R/wx4/8AE2z+9s/tGy8JeZjtu8rOOduTtr6pL+df+A3/ABc1+X3k+3j/ACP7z2vQv+DRe7bZJ4m/bztoQMeZa6F+zdLc7vUJqGofHC12Y5ALaa+c5IXG1n9U/v8A/kn/AN0F7f8Aufiez6F/waVfAS32f8JN+178XtXxjzDoXw+8GeHd3rsGoaj4oMeecbjJjvnjdX1WP80n8kvzcvz++y5V7eX8i+89g0T/AINR/wBgu12Nr3xw/a11iRcEpYeK/hDo1tIe4eOT4M6rcbT6R3iOP75xhX9Vh/NP/wAlF7eXaK+9/lKP5fdd83rejf8ABsJ/wTJ0wJ9tH7QviLbjJ1n4safAXx13/wDCP+DNCAz32BPbGKf1al/e/wDAn+kV+nnfYXtp+X9ff+f3nqmj/wDBuN/wSb03b9t+BPjHxDtxn+2Pjf8AF6Dfjru/sDxhoeM99gT225+Wvq9L+Vv5y/8Ako/12+0e1n3X9f8ADW+Z6bpf/BA3/gkho+37L+x7oc23GDqnxV+POt5I/vDWfinfhs9wwI7YP8b9hSX2Pxk//cn9fIXtKn834Jfl/X3s9H0v/gjD/wAEttI2/ZP2Kfg5Nt6f2pZa7rmcf3v7a1u/3f8AAt2e+c/K/ZUv5I/1/wBuP836vcXtJ/zM9A07/glZ/wAE2dL2/Zv2GP2XJduMf2j8GfBGsZ/3v7X0i+3e+8tnocfxP2VP+SH/AICn+aj+X3XXMe0n/M/6/rqd1Yf8E9P2BNL2/wBm/sPfsg2BXo1p+zV8Gbd+O5ePwYrs3qxJY9T/ALR7OH8kP/AYr+v67i55fzy++R2Vj+xz+yLpmP7N/ZX/AGcNP2/d+w/A/wCGVptx0x9n8MR4x7AfhT5I/wAsfuj/AF/XoK8u7+86u0/Z0/Z8sMfYfgT8G7Lb937J8MfBNttx0x5Ohrj8APx42u0ey+4Ly7v7zpbb4T/CyyAFn8NPAFqB0Ft4N8OQAfTytOXH4Afpii0ey+4Ly7v7zbg8G+ELXH2Xwp4btsdPI0PTIcfTy7VcdPf+rMLvu++/X+v61NSPSNKh/wBVpmnxf9c7K2T/ANBjH+fXrQL+v6+5F1I44xtjjSMeiKqDj2XA/wA9+TQA+gAoAKACgAoAKACgAoAKACgD+UH/AIOxvhLdeIf2ZP2YvjVa2rXCfC/4zeJvAmoSxpvay0/4t+EY9UF1MR80do2p/CzTLJ5DiP7Xe2UR+eWMNy4qN4Rl/LK3yf8AwUjeg9Wu6/I/nl/4N/vjnYfA3/gqP8AH1q9TT9A+LaeK/gdqlxJII1a9+IOiTx+C7QbsK7aj8R9M8GaeqMVwbrzF3OiI/PQly1Y363j9+342NaqvB+Wv3f8AA9f1j/psV6RxhQAUAFABQAUAFABQAUAfxHf8HS/7Z3xT0n4y/CH9j3wB8QPEPhb4f2Xwstvir8T9G8L6ve6PH4u8SeLfEviHRfDujeLJNPuLefU9P8OaJ4T/ALZsNFuGOmNceKE1G6t7q8tdNksOPFTacYJ2Vru3W70+63fr1udNCKs5PvZfLt8+t/uPdf8Ag1Q/aH+PfxG0H9qX4NeOfGHiPxv8JPhXafCzX/Aw8T6re6zJ4C13xlc+OLLUPDugXeoTXFxaaB4gs/DP9qf2HHMNM03UNHur7T7W1udb1WW9eFlJqUXqlZq/S97r8L9LfO8prpKzW7vfz8/x/rQ/r8rrMAoAKACgAoAKACgAoAKACgD/ACLP25LRtP8A21/2wrB8h7L9qX9oG0YNncGtviz4thbdnJzlDnJznrmvJnpOa7Sl+fz/AD+8747L0X5fP8/vP9D/AP4N+b37f/wSI/ZEkL7mgtfjXZNk5K/Yf2jPi7aoh64xDFEVH9wrjAwK9GhrSh8/wk15f133OSr/ABJfL/0lH7KVqZhQAUAFABQAUAFABQAUAf/S/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8AH/8A2p/Dv/CIftO/tHeE/L8r/hF/jx8X/DvlYx5f9i/EHxFpvl47bPs23HbFeTP45f4pfmd62Xoj/ST/AOCE3iL/AISj/gk5+xxqXmeYbXwd448Ok5yV/wCER+LvxD8KCM+nljRQgHGAoAyADXo0HelD0a+5tfoclX45ev5pH621qZhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHlni745/BP4f+b/AMJ78YfhZ4J8jPnf8Jd8QfCXhvydv3vN/tnV7Ly9vOd23HcjHzJtLdpert/X9d2Ozeyf3X/r+ux8u+Lv+CpX/BOHwP5o1/8Abh/ZhaWDImttA+MXgvxfexMvVJLHwjq2u3iSj/ni0Hmf7Iyal1Ka3nH70/wTj+f3a8zUJv7L+5r+v67ny54u/wCDgX/gkv4R82J/2qYfEd5HnFn4R+FHxp17zduf9Vqdv8PE0I5OAN2rruyCDt3VDr0l9u/opP8A9tf/AKV83a5SpT/l++33/I+XPF//AAdG/wDBNjw55q6FoP7S/j51yIm8M/DHwtp0Erc7SX8a/EbwnPHETgs32Z5AvKxMw2NLxNNbcz9Fb8W/0X/yVKjPul9/+Tv96/E+W/F//B2r8BbLzf8AhAv2Qfi74lxnyP8AhL/iF4N8EeZ/d83+xtM+IPk54zt8/b23YBafrUf5ZP5pfkpfl99nyv2Ev519x8teL/8Ag7b+L175v/CA/sYfDfw3nd5J8X/FvxP422f3fNGjeDvh/wCbjjdsaLPYj+GHi30gvnL/AO0X5/cV7BdZv7j5b8X/APB01/wUY1/zY/Dvgj9l/wACQnIgl0b4d+OtX1GNTnBln8U/FHW7CWRf7yaXCh4BhHJqXiqnRRXyb/Nx/P7rrmaox7yf3flyp/i/1Plnxh/wcLf8FZ/Fvmxw/tM2fhKzl3brPwf8H/gxpu3PTytTvvAWqa5FtHCmPVEPdixAKw8RVf2reij/APIy/rv9mlSp/wAt/Nt/8MfLHi//AIKuf8FKPHPmjXf24f2lbdJs+bF4X+KnifwNA6t95DB4IvvDsPlMMhogixMvylApKtLq1X9uXy/4HJ/6S/nsP2cP5V/XqfLPjD9oH48/ELzf+E++Nvxd8cefnzj4w+JPjLxN52773m/2zrN75m7PO8tnPPepcpPeUn6t/r/X4FWXZfceRVIzS0rRtX128j0/RNK1LWb+X/VWOlWNzqF5Jzj93bWkU078kD5U6nHORtLN7f5/1/XYLpb/AOX9f13PpDwf+xB+2h8QfKPgX9kf9pnxhHNtKT+G/gV8T9ZtdrdJHu7DwtNbRRdC00sqxKOWcDJa1Tm9oS/8Bl/wf+D5bi5orql81+v9fgfVPg//AIInf8FUvHPlf2L+xd8U7Lztu3/hMLnwb8PNu7p5v/Cf+KvDXkf7XneXt/ixg7qVGq/sP52/WUf/AElfPcn2kP5kfVXg/wD4NqP+Cp/ibyv7a+Hvwo+Hnmbd/wDwmHxk8JXvkZ6+b/wgEnjndt/i8nzf9ndwKv6tV8v/AAJL8oy/rvd8s+2h5n1T4P8A+DT79sy/8pvHf7RP7NHhdHwZE8Mz/E/xncQqezJqPgLwVA8qj7yJdNHu4WdlAdqWFl1lH5Jv8G1+f3ideP8AK39y/V/130cvqfwh/wAGjlovlTePv257mbOPO03wh8AIrbb/AHvK1vWvi5d789Bv0BMY3EHO2qWE7z+6P/27/L7yXX7Q+9n1J4S/4NQ/2ItO8p/Gvx8/ag8USx7S8ehat8LfCNjOw6rJDc/DTxVerE3Pyw6jFKO0/WrWFh1c/wDyX/g/l95Pt5dor73+Uo/l913zQfta/wDBv1/wTZ/Zw/Yx/as+L/hvwb8UfEXjv4Xfs4/Gfxx4K1vxh8V/EFwmneMvDPw78Q6t4W1SfTPDieGNJ1FbHXrXT7t7C+sZtOvBEbe7tJ7aSSBydClGE5Wd1FtXk90tP5Vv9/ldRk41ZuUVpq193Xv0/pbn8DtcB0n+tJ8Ov+Cd/wCwr8P9G0SHQP2M/wBlvS9Us9M0+G41aL4C/C+TWp7qG1iSaa61m48MS6pcTPKru8k947l2dsgs1eqqcFtCPryq/wCn/A6X3OFzk/tS9Lv/AIC/D1sfUPhn4cfDzwUqJ4N8B+DPCSIu1E8M+F9D0FUXGNqLpVjaBVxxgADHHtVWS2S+639f13Fdvdv77/1/XY7OmIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+Hv+CkX7KEP7bP7FHx9/Z0hS2Hibxj4Ok1L4eXV00UMVl8S/B95a+LfATyXkmPsFne+JdG0/R9Yu0O5dD1LU4iHjlkjeKkOeEo91p6rVfiv6uVB8sk/PX0f9f1Y/ykgfGHwx8bA41rwX4/8Ah74qzh1uNK8Q+E/GHhPV+jIwjutN1rQta0/BVljuLO+tcELJEQvl6p9mn9zR3b+jP9Lr/gll/wAFhf2fv29/hB4M0zxV498HfD79qjStJsNG+JXwm1/V9O8O3/iLxHZwxWt34v8AhpaajNbjxN4X8STgalFpujPe6p4UuLttC1iHZDp+qav6NKrGpFapS6rz7r13sm+zva5xzpuLfWPR+XZ+n9bn7G3V1a2NvNd3tzBZ2lvG0txdXU0dvbwRLy0k00rJHFGo5Z3dVHUkc1sZnwX8fP8AgqV/wT4/Zotrx/i1+1j8H9O1WxWTzvCXhTxLD8SfHKyIDshk8FfDpPFHie0aaQeVFNf6Za2u8MZLiOOOZ4olUpx+KS9L3f4a/g7+Vmy1CT2T9WrL+vT9TgP2KP8Agr7+w9+3z431z4ZfAf4g65F8R9G0+71uHwR4/wDC194O1zxFoFhIkd9rXhY3Ml3put29l5sc17p9vqI16ys3N9d6PDYxT3MShVhUbUXqtbNNaeV73/D0e4Spyirvb+v6/wCGP06rQgKACgAoAKAP8wz/AIL2/EVviP8A8FXP2rbxLlp9P8Ja14F+HWmRly62a+B/hn4P0PWLaPkhQ3ie3167dBgLNdSggsCa82u71ZeVkvkvl1/p7nZSVoR89f63/rtsf0z/APBqV8NIfD/7E/xy+KM1qIdT+JP7Rd9oMdxt+a78N/DvwF4PGlPv6skOv+LvF0KpyEdJCDlyq9OFVoN95fgl/nfp99zGu/eS7L8/67/dY/qMrpMQoAKACgAoAKACgAoAKACgD/Jo/wCCmmktov8AwUW/brsWXaG/a5/aF1CNcYCwax8VfFOr26gcfKIL6ML/ALOOvWvLq6VJ/wCJ/i7+f9dtjuhrCP8AhX4K3l/Xfc/vF/4Nw9XGpf8ABJ34G2YbcdA8a/G7SGGc7DN8WvFevbfbK62r4/2s967cP/Cj5OX5t/r5/jaPNW+N+aX5W/Ty/C8v3SrcyCgAoAKACgAoAKACgAoA/9P+/igCC6urWygkur25gtLWFd01zdTR28ES5A3STSskaLk4yzKMkDvhgCpputaPrMby6Pq2m6tFEwWSXTb61vo42OcK72s0yoxwcBiCcHrigLNb/wCX9f13NKgAoAKACgAoAKACgAoAKACgAoAKACgAoAxbTxJ4d1C8fT7DXtFvb+Pd5ljaapY3N4mz7++2huJJl24O7dGNuOcYzQOz87ehtUCCgAoAKACgAoAKACgAoAKACgAoAKACgD/J4/4KjeG/+EU/4KPftzaTs8tZP2p/jbrcUeMBLfxR4/1vxPbKgwAI1g1iIRgDATaBmvLqq1Sf+Jv73f8AU7oO8I+i8v6/q25/dF/wbaeIxrn/AASn+FGmeZv/AOEO+JHxp8OFc58o3XxB1Xxd5eP4cjxSJcf9NM967cO/3S8nJfjf9f61Oat8fyR+8tbmQUAFABQAUAFABQAUAFABQAUAFABQBSv9S07Src3eqX9lptqrBWub+6gs7dWPRTNcSRRhjzgF8nHGcHaAFhqWnarbi70u/stStWYqtzYXUF5bsw6qJreSWMsOMgPkZ5xkbgC7QAUAFABQAUAFABQAUAFABQAUAFABQAySSOKN5ZXSKKNWeSSRlSONFGWd3YhVVQCWZiABySME0AcxJ478EQwT3U3jLwrFbWoJubiTxDpCQW4HUzyteeXCASM+YyY7/wCyDs+z+48S8V/tpfsdeBPN/wCE2/aw/Zq8HmHPmr4n+Onww0F0I6q0eqeKLZw+eAm1mJ4AycNLnFbyivWS/X+vwHyyf2ZP5P8AT1/E+ZfFn/BZP/gl34L83+2P22PgleeVnd/wietah49zjr5X/CC6X4k87px5Jfdn5evyy6tJfbj8v+Bzd+3ye8H7Of8AKz5j8Wf8HG//AASd8NeaNL+O3i/xzJFkGPwn8FPizFvdeqRTeL/CfhS2k5GBIs5hb7yylCGaXiKS+036KX+Ufy+77VKlPsl6nzH4t/4Oqf8Agn5o3mxeF/hV+1R4yuF3eVNH4K+GmgaTLjpuutU+LH9qR7jjrob4Xk/MNrQ8VT6KT+SX5yl/XfTlaoye7S+//Jr8fLS9z5h8W/8AB2/8O7TzV8CfsSeNde6iGXxb8bdC8I/7rywaP8OvG3ThjElz833RMuQ6y8WukG/WSX5Rl+f32fLSoPrPTyR8v+Lf+DtH9oy883/hBP2S/gp4cznyf+Et8ZeOvGvl/wB3zf7HHgDzccZ2eTu7bcgVP1uX8iX/AG83+UY/n913zP2Ef5n93/D/AJfefMHi7/g6G/4KW+I/NGi6b+zd4BD5EZ8K/CzxDfSQg/dKnxx8QfGCM4HUyRMhPOwAhKj61U7RX/brf5yj+X3XXNXsYef9eiX5fefL3i7/AIL/AH/BWjxf5sc37V17oFnJnbZ+EfhX8FvDnk7uvlalYfDtNc6dPN1WQrjKsrEtUvEVX9q3oor/ANtl+f3391qlBdL+b/qx8v8Ai7/gqN/wUc8b+YNf/bg/ag8qbd51rofxm8ceE7GVW6xy2HhPV9FspIj/AM8ngaMdl4DVLq1HvOXydvyt/wCkx+e5XJBfZj9yf5/19yPl3xd8bvjR8QPN/wCE8+LvxP8AG3n587/hLvH3irxJ52773m/2zqt55m7vvLZ7/wCzDlJ7tv1b/Udl2X3HmFIZpaVousa9dpp+h6TqWs38n+rstKsbrUbuTJx8ltZxTTNyQPlQ8nHGRRZvb/P+v67AfRvhD9iT9s34geUfA37JX7THjBJsGObwz8CvifrduVbo7XOneF7i3SIDlpZJljVcszqoLVXJN7Ql/wCAyf8AX9dhc0e6+/8AzPqPwj/wRZ/4Km+N/K/sb9iv4uWXm42f8JdH4Z+H23d083/hPfEPhvyevPnbNv8AFjBNWqNV/Yfzt+so/wDpK+e5PtIfzI+ifCP/AAbs/wDBTXxLqEWk6z4G+D3w/wBUkcRtpvi74+/DC81CBycbJbLwHrnja5LrnlIopn4wAxw9UsNV7JeskvyUv0/FqK9rBdW13s/1S/N/LQ+v/CH/AAajftxan5UnjX47/sveE4ZMFotG1n4oeLdRgU/eEsEvwz8NWBlBzhYdVnjI/wCWvJC2sLPrKK+92/JP8Plcl149pP7l+PM3+C/Q+pfCH/Bo5qL+VN4+/bmsrbGPO07wh8AZ77f6iLWtZ+LOn+XjkAvoEu7OSFxtalhO8/uh/wDdCXX7Q+9n1N4P/wCDTz9jqw8pvHf7R/7SnidkwZF8LH4Y+CoZSOSpTVPBHjmZI2PDKlwJNpwsqNh1tYWHWUn9yv8Am1+PzsL28v5Uvvf5Sj/XbXm+pvCH/BtF/wAEtPDXlf214J+L/wAQvLxv/wCEv+MXiKy8/HXzf+EBi8EY3d/I8j/Z24qlhqXZv1k3+Sj/AF1VmT7afl/X3/n959T+D/8AgiD/AMEqPA/lf2N+xj8OL4w42nxhrPxA+IO7HQyjx74w8SrPnv5wcHoc/dqlRpL7C+d/15/0+ehPtJ/zP8F+X9fez6n8H/sHfsQ/D7ym8Efse/sweFpoduy80T4D/C+w1BmXpJLqUPhdb+eUYH76e4kl4xu4G21CC2hFW8l/wH+H3CcpP7TfzZ9L6J4d8P8AhqzXT/DmhaP4fsFxtsdE0yy0qzXaMLttrGC3hG0cDCcDgYqrJbf5f1/XcV297/ff+v67GxQIKACgAoAKACgD87/+Cteof2b/AMEzv24rjdt8z9nH4k6fnp/yFtEm0vb2+99s2++cc5xWdX+HP/Cy6fxx9T/K08LWK6n4m8Oaa+Nuoa7pFi27AXbd6hbwHcTwBiQ5zxjr3rzFuvVf11/L7ztf9f1p+f3H+ytBPBdQx3FtNFcW8yiSGeCRJoZUbo8csZZHU9mUkHtXrnnktABQAUAFABQAUAFABQAUAFABQAUAFAEF1dWtlBJdXtzBaWsK7prm6mjt4IlyBukmlZI0XJxlmUZIHfDAFTTda0fWY3l0fVtN1aKJgskum31rfRxsc4V3tZplRjg4DEE4PXFAWa3/AMv6/ruaVABQAUAFABQAUAFABQAUAFABQAUAFABQBi2niTw7qF4+n2GvaLe38e7zLG01SxubxNn399tDcSTLtwd26Mbcc4xmgdn529DaoEFABQB/I5/wXS/4IUeLfjx4u8Q/tmfsXeG7fVvibrMTaj8b/ghYNb2N74/1C2iAl+I3w8WaSCyn8a3NtGo8WeFGkt5fF08A1zRDdeL7rULHxJyV6Dk+eC1+1HRX81591bXfVrllvTqpLllstn+jX6n8RPinwp4p8DeIdW8JeNfDev8Ag/xVoN5Jp+ueGfFOj6j4f8QaNfw/62y1XRtWt7TUdOu4iR5lteW0MyZ+aMZFcbTWjTT7P/gnSVbrXdbvbSKwvNY1W7sYAiwWV1qN3PaQrH9xYraWV4Ywn8ARFC9utF3td29Qst+v9f1/wxP4b8MeJfGWs2Xhzwh4e1zxV4h1KUQ6doPhvSb/AFzWdQmPSGy0vS7e6vrqU8Yjggkfn7pzihJvRJvyWv5f19wXS3/y/r+u5/VR/wAEEf8Agkb+2h4N/bJ+F37Xfxv+GHi34A/Cz4Sad4x1fTbX4hWz+FvHfj7W/FfgfxF4IsfD9h4IvXh8V6PpcEPiiXWdb1PxLo+k2V1ZWQ0nT/ttzfTPYdVClNTU5LlSvvu7prbdb31Xl71+aONWpHlcU7t6abLz6p/L8NGf3aV2nKFABQAUAFAH+S1/wUg8RSeLP+Cg37b+vSElbz9rD9oCK23HLCw0/wCKXijTdNRj03Jp9pbIccZXA4AryqutSf8Ajl+Dt5f133O6CtGPoj+8X/g3YHhvwl/wSk/Z8a91zRNP1Lxr4p+NviQ2N3qdha3szx/Gbxv4Uhb7NNcRzs0lv4Yg8siMl4vKK5UqW78OrUo+d3+L/rp+suardzdr6JX08r/kfvBWxkFABQBl65rWl+G9F1fxFrl7DpuiaBpeoa1rGo3BIt7DS9LtJb7UL2cqGYQ2tpBNPKVViERiASMUAfxd6n/wdleKYvj7Iul/st+GLr9mGHxI2np9o8SazD8b73wol59m/wCEojvRcDwRZ6zNYj+14/B0uiXFrHORoMnjLaW19eP6173we766+vw2+X/kx0ew0+LX008v6v8AdY/s28IeKtD8d+E/C/jfwxeDUfDXjLw7onirw9qAjkiF/ofiHTbXV9JvBFKqyxi6sLy3nEcirIm/a6hgQvYnfXo9Tnemnb+vP8/vOioAKACgAoA/yw/+Cz+g/wDCOf8ABUn9tXT9mz7R8YrzXsYxn/hKtB0PxPv7f6z+2PMz33Z5615lb+LP1/NHbT+CPof2Gf8ABr1r39sf8E0NQ0/fu/4RX9pL4qaCVzny/tHh/wCHvijZ7ZHiTzMHH+sz3y3Xhn+69JNfr+v9WZz1vj9Uv6/r9T+jCugyCgDP1LV9K0eAXOr6np+l27NsWfUby3soS/XYJbmWJC2OdobPp32g7N7X+6/9f12JrK/sdSt0u9OvLW/tJc+XdWVxDdW8mODsmgd43weDtY4oFZrf/L+v67lqgAoAKACgAoA//9T+/igD43/aa1XVP7a0DRTJKmjLpX9pLGpZYbjUZLy6tpWkAIWR7W3gtxEGDGEXUpXb5zbg0h17nkvwn1XVNL+IHhg6XJKDfatZ6bewxltlxp17OkN6s6D5ZEhgZ7pd4IilgSYYaMGgqXwu/wDX9f1ufpFQYhQAUAFABQAUAFABQAUAFABQAUAFAHiP7QGq6ppfw/lGmSSwjUdVs9N1GaEsrx6dNBeTSrvUgolxPb29rKcgSRTvCdyylaCofF/X9f16nwZbXNxZ3EN3aTy211bSpNb3EEjRTQzRsHjkikQhkdGAZWU5BGRnmg2P1G8NXl5qHhzQL/UE8u/vtF0q7vo9uzZeXNjBNcrs42bZncbMfL04xQYPd+pt0CCgAoAKACgAoAKACgAoAKACgAoAp6hNPb2F9Pax+dcwWdzNbw4J82eOF3hjwME75FVcA5OcDGRQNbr1R/le/wDBYKwu7D/gpH+1M19JJNeat4t8MeJrmeX789x4s+HPg3xNPMeAMyTas7HbwGyoxtwvmV1arP1T/BHbD4V/XU/rd/4NUvFFxq37Anxd8NzncnhP9qbxcLPJJKWmufDT4VagUHZV+2peyBQPvSMxJ34Xqwr/AHbXaT/Jf1+r2jhXXvJ+X9f1/wAE/pxrpMAoAKACgAoAKACgAoAKACgAoAKACgD4K/aD1XVLv4gXem3cko07SrPT00uAlhD5d3ZQXV1dImdrSy3UksEkoG4pbRxFiIlVQ1ht+f8AX9fkH7Pmq6pafEC0020klOnarZ6gmqwAsYPLtLKe6tbp0+4ssV3FDBHMQGVbmWIHEzhgJ7fl/X9fmfetBkFAGXq2uaJoFsbzXdY0vRbQZJutW1C0062AXliZ7yWGIbRyctx3I/hAPDPEn7Xn7J3g3zP+Ev8A2n/2ePCvlZ83/hJPjV8NtD8rHXzP7U8TW2zGDncBjvjFS5RW8or1a/X+vwHyyfRv5P8AT+vxPAPEn/BWD/gmn4V8z+1P25P2Z7ry87v+Eb+K3hjxkTj+4PCF9rhlPoIt5PYCp9rT/nj96f5Sj+X3XfNXs5v7L/Ffn/X3o+ffE3/Bfb/gkr4W8xLr9rnSdVnTIW38M/C743eJfNYdo7vRvhreaauezy30cZ6CQk4Ve3pL7a/8mf8A7j/r5D9nU/l/FL8/6+9Hz34m/wCDmn/gl5oPmf2X4h+N3jXZnb/wjPwhvrXzsdPL/wCEx1jwnt3dvN8v324y0vE0u7fpFv8ANx/rorIfsZ+S/T7r/gvvPnrxN/wdffsRWXmL4R+AH7UniGRMhG13SfhT4Xt5WHQrJZ/E/wAU3Cxt1DPaLIB96IEkVLxUOin/AOS/8H8/vH7CXeK+9/nGP5/ddc3zt4n/AODuPwnb+Yngz9hnxFquciK48T/H7TfD+zrtkks9J+EvibzMcExLex55AmX7zT9bX8j/APA//uY/YPrNfcfOnij/AIO0v2ibvzP+EL/ZK+C2gZz5X/CUeNPHPi/Zn7vmf2Svgjzcd9vk7u2zo0vFy6QS9ZN/lGP5/dd81ewX87+4+c/FH/B0t/wUg13zF0bwj+y74KQ5ET6D8NPHF/cov8JaTxX8VPEdvJIO7C0SMnnyVBCVP1qp2ivk3+co/wBdtOavYw/vfen+UY/12s+b5v8AFP8AwcSf8FafEnmJZ/tH6N4Rt5dwe38LfBb4KxYVs/LHea54C17U4dv8LwX6S8DMhGQ0vEVX9q3oo/5S/P7/ALLVKn/Lfzbf/DHzf4p/4LD/APBT7xh5n9rftt/He083O7/hFvFKeBsZ6+X/AMIVZ+HvJ68eSU2/w4/gn21V/bf4foofn8nq4v2cP5V/X9f1dnzP4x/bH/a7+Icc0Pj/APao/aO8cQ3H+vh8X/G/4meJIZsHIEkOseJ7yNgCAQCGAwMDjCw5ze85P1lJ/wBf12KUYrol6L/I+ftQ1PUtWuGvNV1C+1O7f791qF3cXtw3OfmnuZJZTzk8v1OeM/NN29/8/wCv67DKNAHd+Ffhd8TPHbIvgj4deO/GTSNtjXwr4R8QeIWkbONqDSNOvSzZ4woznjn+FqLeyb9E/wBP6/ELpb/nb+v67n014T/4Ju/8FBfHHlt4Y/Yl/ao1C3mx5WoS/Aj4laZpT7um3V9V8N2Oln1P+ljaCCeCDVKnUe0Jfc0vven4r1RLnFfaX3r/AIc+nPCX/BCP/grF4z8ptM/Y88W6dFJgmTxb44+EvgnylPV5YPF3j/RbsbRyY1tnm7LE7nYt+wqv7D++K/8Acn9fMXtIfzfg3+X9fcz6e8I/8Gyf/BUHxJ5X9s6D8DvAHmY3/wDCXfF20vfIz183/hBNE8bZ29/JEue2eKpYar/dXrL9FH8pf5E+2h5/16tfn959P+Ev+DTj9rm98r/hO/2mP2cvDe7BmHhO1+JnjRos9RH/AGv4R8BrKQPVogTxkDlqWFl1lFeib/Nx/P7rrmn28f5W/uX5OX5/fZ8v1B4S/wCDRzSI/Kl8d/tz6leZwZrDwl8ALbTdn94RavrHxb1Xzc9mbRIduMlGzhbWEXWb+Uf/ALd/l94vb/3PxPqDwj/wajfsO6b5UnjT47/tReKpo8F4tG1r4XeE9PnYfeEtvN8MvEt+I27LDqkMi9fObBFUsLDq5fel+KT/AC+4l15PZJfj+qt80/lY+ofCP/Btj/wSp8N+V/bPwt+JnxA8vG7/AIS740ePLLzsdfN/4QPUfBON3fyRF/sheNtLDUuzfq5f/a/p+gvbT8j6h8I/8EUf+CV/gjyv7G/Yt+FV75ONn/CXS+L/AIg5x083/hPfFHiTz+nPnb938RbOWpUaS+wvnf8AXn/T56E+0n/M/wCvQ+ovCP7DP7FXgHyj4I/ZD/Zj8JSQ7Slx4e+A/wALtJu9y4xI95ZeF4buWXgEzSzPKTyzseVtQgtoxXpFL8v6+8TlJ/ab+bPpDRtA0Lw5aLp/h7RdJ0KwXG2y0bTbPS7RcDA221lDBCMDgYQYHAxzVE3b3/z/AK/rsa1AHnvxV1TU9G+H3ifUNIeSO/hsoo4pociW3iury1tLq5iZcMklvaTzzJKpBiZBKCpTNA47q5+be5t2/c2/du35O7dnO7dnO7POc5zznvQbn6SfCnU9T1n4e+GNQ1d5JL+aymjkmmJM1xFa3t1aWlzKzfNJJcWkEEzytlpmfzWJL5oMJbux6FQIKACgAoAKACgAoAKACgAoAKACgD8uf+C1eof2b/wSw/bTuM7fM+E6afnp/wAhbxZ4a0sj/gQvNvvnHes638Kf+F/iXT+OPqf5iHwis/7R+K/wx0/G77d8Q/BVnt65+1eJNNgxjjOfMx1/KvMjrKK7tfn8vz+47Hs/Rn+sD+zJquqSN4l0d5JZdItYrK+gRyzR2d7cSzRyLCScR/bI4zJJGOGa28wAMXLeucs1pfrex9aUGQUAFABQAUAFABQAUAFABQAUAFABQB8b/tNarqn9taBopklTRl0r+0ljUssNxqMl5dW0rSAELI9rbwW4iDBjCLqUrt85twaQ69zyX4T6rqml/EDwwdLklBvtWs9NvYYy2y4069nSG9WdB8siQwM90u8ERSwJMMNGDQVL4Xf+v6/rc/SKgxCgAoAKACgAoAKACgAoAKACgAoAKAPEf2gNV1TS/h/KNMklhGo6rZ6bqM0JZXj06aC8mlXepBRLie3t7WU5AkineE7llK0FQ+L+v6/r1Pgy2ubizuIbu0nltrq2lSa3uIJGimhmjYPHJFIhDI6MAyspyCMjPNBsfqN4avLzUPDmgX+oJ5d/faLpV3fR7dmy8ubGCa5XZxs2zO42Y+Xpxigwe79TboEFABQB4l8Xf2av2dvj/BDbfHP4EfB/4wx20XkWbfEz4b+EPG89jHuLAafdeI9H1G508q5Lo9lNA6OS6kNzScYy+KKfqk/8/wAvvsNSa2bXoz5m0/8A4JP/APBNPS70ahbfsN/szyzq4kEeofCnwvq9kWBBwdM1WxvtNZMgZja08sjIKhSwaPZU/wCSP3X/AAcF+f3le0n/ADM+wPh38HvhJ8INOfSPhN8Lfhz8L9JkVEfS/h34I8M+CdOdI/8AVo9l4a0zTLZlQ8opiwvYDq1pJaJJeSVvy/r7yW29236u/wDX9dj0amIKACgAoAKACgD/ACHv20TM37Yv7WLXP/Hw37S/x2M//XY/FLxUZeuT9/PU/nXkz+Of+KX5s747L0X5H9o//BHVYl/4Jvfs0CH7n9m/Ehj/ANdW+MnxEaf/AMjGSvRofwoej/Fsyl8TP6LP2f8AVdU1T4fxjU5JZhp2rXmm6dNMWZ5NOhgs5ol3tlnS3nuLm1iySI4oFhXCxKF1Oefxf1/X9eh7dQSFAH5o/wDBYr4x/wDCiv8AgmV+2N43iuvsmoal8IdV+GmkSo+y5XVfjHfaf8J7SaywQ/2uyPjJtQjePL262b3R2pA7pnVdqc3/AHWvv0/UumrzivP8tT/Lr+GngTWPij8R/h/8MvDy79f+Ivjbwr4E0NAjSb9Y8Xa7YeH9MXy1w0m691CAbFO5s7RgkV5iV2l1bS+/7vz+47Xom+39ef5fef7EHhDwvpHgfwn4X8FeH4Psug+EPDuieF9EtuP9H0jw/ptrpOmwfKFX9zZ2kMfCqPl4A6V66007f15/n9557117/wBeX5fcdFQAUAFABQB/mh/8HE/hJ/DH/BWb9om/8sxW3jXQfgv4ts1xhWR/g14G8OXkicDcJdW8N6jK5y371pACNu1fOxC/ey81F/gl+n9WOuj8C8m/zv8Ar5/jaP8AQP8A8Gm3jBL39k/9p7wCJQZPDP7Q+m+MGhzzGnjj4beGdFjlK9hM3w9kQHv5BH8Nb4V+5Jf3r/el/kZ1/ij6fr/wT+rWuowCgD88fjdquqaj8RNdt9Rkl8nS5YrHTbZywit7L7PDMjRITgfazJ9rkkAzI0o5KKiqG8VZLz1Ot/Zw1XVIPGN3pEEkr6XfaVdXN9b5YwRzWjwC2vducJKGk+y78fOlxtbcVj2AprS/Y+4aDEKACgAoAKAP/9X+/igDkPGPgbw746sI7DX7V5Rbu8lneW8nkX1lJIFWRrafDALIqqJYZY5oJCkbPEzxRsgNNrb+vz++33nO+C/hD4P8DXp1LTIr6+1PY8cN/q08NzPaxyqVlW1S3t7O2haRCY3mFu05jZ4hKI5JUcG5N/8AA/4aP3W89Pteo0EhQAUAFABQAUAFABQAUAFABQAUAFAGdq2k6drmnXek6taRX2n30RhubaYHZImQwIKsrxyRuqyRSxOksUqJLG6uisoCdtTyLS/2fvh/peqJqZj1XUVhlE0OnaleQT6dG6tuQNFDaW89xGjAfurq5nikA2zJKhYMFc8v+D/UVb73b8T26gkKACgAoAKACgAoAKACgAoAKACgAoAKAP8ANt/4ORvA9j4N/wCCpXxHvNPso7G38cfDL4R+MTFCmyKSdvC6+FrmdF+6BJceFpNwQKgcOFVQAK87Er96/NRf4W/T+rHZSd4Lyuv6/p/pH9qf+DSfxN9r+Cf7Y/g3zM/2D8U/hh4m8rP3P+Et8JeItK8zb283/hCtucfN5OOdtb4V+7Nf3k/vX/AMq+8fR/1+J/XTXUYFe6vLSxha4vbq3s4E+9PdTx28K/70srKg/E/lgGgDzfWfjh8FvDu7/hIPi98L9C8v7/8AbPj/AMJ6Zsx13fbdWt9uP9ofln5VePdfeO0uz+48n1n9un9iTw4HPiH9sX9lfQhHnzDrP7Qnwk0vZjru+2+L4MY9yPfHFJzgt5xXrKIcsn0b+T/T+vxPJda/4Kt/8E1dA3/bv25f2Y59mc/2L8XPCXiTOP7n/CO6jqnme3l7s9h2qfa0/wCeP3p/lKP5fdd81ezn/K/69TyLW/8AguT/AMEovD+/7d+2X4Bn2Zz/AGJ4Z+JviXOP7n/COeCNVMnt5e/PYngsvbUv51+P6Rl/6U/lsHs5/wArPH9c/wCDiz/gkppG/wCxftF+IfErJkbdD+B3xwi3kdkfxB8P9BjPOQG37D1DFdrMniKS+1f0Uv8A5GP5/d9p+yqP7Nvmn+X9fczxzXP+Dnr/AIJkaTv+wSftCeJ9udv9h/Ceyt/Mx/c/4SXxh4exnt5mz3xjDT9Zpf3v/AW/zlH+u1k5P2M/L8V+Sl+X33fL41rv/B13+wra718OfAj9q/WnXIVtV8OfCPQYJCOhWS3+L2uzhD2aS1R/WIYwyeKh0U//ACX/AIP5/eP2Eu8V97/OMfz+665vGNe/4O2fg1b7/wDhGP2NPidq+M+X/b3xV8K+HN/pv/s/wr4p8vPfb5mO27FL61H+ST+aX5Rl/XfXlfsH/OvuPFNe/wCDuXxNN5i+F/2EtC03qIpde/aIv9bz6PJb6f8ABrQNuepjW6bHQSnrUvF9offP/wC5lewX8789DxPX/wDg7J/azud//CLfsx/s7aPnPl/2/f8AxK8SbPTf/Z3inwp5mO+3ys9tuc1P1qX8sV82/wAlH8vuu+Y9hH+Z/db8Wn+X3HiHiH/g6V/4KSaz5g0zwp+y34TDZCHQvhj44unjHbDeKPiv4jRmHctEVJ6IBgUniqnRRXyb/Nx/P7rrmr2MP733r9Ir+u58tfEj/gv1/wAFM/iZNDc6l8WfA+hXNtG8NtceHPg18Mo54YXYv5Pm634c1x54kcs8SXRmWJnkaMAyylpeJq90vSK/Xm/X5FKnFbX/AK/rt9x4in/BY3/gpdbyXc2n/tYeNtFnvYvJuLjw74d+Hnhu5MO4OYorjQfB2mz28TOqu0ds8SOyRswJiQpPt6v87/8AJf8A5WPki91+N/6/rseb+Iv+Cnn/AAUZ8VbxrH7cv7Vnly5EtvpXx0+I3h61kBzlJLTw94g0u1eM/wDPNoinTC8A0nVqP7cvk7fk/wD21fK1g5Ifyx+5P8/6+5Hg3iP9pz9pPxh5n/CW/tCfHDxT5ufN/wCEj+LHj3W/M3dfM/tPXrnfnvu698Yy088v5pfe/wCv69R2j2X3HjV7f32p3D3mpXt3qF3J/rLq9uZru4k5z8887vI3JJ+Zjyc9zUjKlAGzo3hzxD4jn+y+HtB1nXrrIH2bRtLvtUnyeg8mxguJMnPA2c+9Oze1/u/rugPefDP7Gv7X3jTy/wDhDv2VP2kvFnm48r/hGfgb8T9e8zPTy/7L8LXe/ORjbnOffNPkm9oS/wDAZP8Ar+uwuaK6pfNfr/X4H0J4Z/4JGf8ABTXxZ5f9l/sP/tEWvm42/wDCTfD/AFPwXjPTzP8AhMRoPk9efN2be+MELfsar+xL8P15P1+WhPtIfzI+hfDP/Bvr/wAFbPE3lyD9lV9BtZMf6V4m+MHwM0jy8/8APTT2+JM2sLxycaYcYwfmxuaw9V/Zt6uP/wAlL8vv+yva0/5vlZ/8MfRPhf8A4Ng/+Cm2v+X/AGr/AMM8+CN+N3/CUfFjULvyc9fM/wCEM8F+L87e/kmXPbORur6rU/u/+BX/AAUF+f3i9tDz/r7vz+4+i/DH/Bpv+1zd+X/wmf7TP7OWgZx53/CMWvxN8XbP73l/2r4Q8E+bjtu8nPfbn5aWFl1nFeib/OUf67ac0+3j/K39y/Jy/P77Pl+i/C//AAaNOfKm8a/t2KBx52n+F/2eS2fXytY1X4yJjuBv0NvU9NtUsJ3n90P/ALoL2/aH4n0f4W/4NN/2RrTy/wDhNv2mf2jfEGMed/wi1r8MvB/mevl/2t4P8c+VnnG/z8e+MtX1WHWUv/JRe3l/Kvvv+Ca/P7z6R8Lf8GxH/BMbw95f9rW/7QHjnZt3f8JT8Wbaz87HXzP+EJ8I+D8bv4vJMX+zj+G1hqX95+rf6JL8/Un20/L+vm/672bl9F+Hf+Df/wD4JLeG4DHb/so2mqXRTa2oeIvit8bNfnLY+WUWmp/Ea40hHU87Y9NSJyMSxSqSlUqFJfYv68z/APb1+X3WE6tT+a3kkv8Ahz2z4ef8Eg/+Cb/w2vk1DS/2Rfgfr88GTaDxv8NvBfjKK1fGBLGmvaBeebKgP7uW7Nw8b4lj2zKjpSpU1tCP3J/nGP5/dpzJ1Jd2vRv+vuPsfwp+zz8AfAnl/wDCD/A74P8Ag3yceT/winwz8F+HfKx93y/7I0Wz8vGBjbjGOCMVSjFdEvRf5E3l3f3nr6qqKqooVVAVVUAKqgYCqBgAADAAGAOBjFMQtABQAUAFABQAUAFABQAUAFABQBDcW8F3BPa3UMdxbXMUkFxBMiyQzQTIY5YpY2yrxyIxR0YYZTg5yaAPEv8Ahnj4d/2l9v2az9n83zP7I/tFf7Nxuz5W77P/AGl5XbH9pbscb+1BfPL/AIP/AAOX/wBu8/I9tt7eC0ggtbWGO3traKOC3ghRY4YYIUEcUUUa4VI40UIiKMKowMYFBBNQAUAFABQAUAFABQAUAFABQAUAFAH5Df8ABee+/s7/AIJK/tiXG7b5nhr4bWOf+wp8bvhlpm3/AIF9r2/8C96yr/wp+i/NGlL44+v6P1/rtuf5v/7J+jR+I/2pf2avD028Ra78f/g5o0piIEgj1T4i+HLJ/LLK6h9s52FkcBsEqw4rzofHH/FH8zrez9Gf66XhTwfoPgvTP7K0C0+zQNJ51xNI5mu7ucqFM11O3zSPtAVFUJDEvywxRKWDescLbbu/6/Bfl99jp6BBQAUAFABQAUAFABQAUAFABQAUAFAHIeMfA3h3x1YR2Gv2ryi3d5LO8t5PIvrKSQKsjW0+GAWRVUSwyxzQSFI2eJnijZAabW39fn99vvOd8F/CHwf4GvTqWmRX19qex44b/Vp4bme1jlUrKtqlvb2dtC0iExvMLdpzGzxCURySo4Nyb/4H/DR+63np9r1GgkKACgAoAKACgAoAKACgAoAKACgAoAztW0nTtc0670nVrSK+0++iMNzbTA7JEyGBBVleOSN1WSKWJ0lilRJY3V0VlATtqeRaX+z98P8AS9UTUzHquorDKJodO1K8gn06N1bcgaKG0t57iNGA/dXVzPFIBtmSVCwYK55f8H+oq33u34nt1BIUAFABQAUAFABQAUAFABQAUAFABQB/kmf8FENCk8Nft9/tt6FIDjTf2tP2iIISwwZLQ/FvxbLZTYwMedaPBKBjo/GcV5VRWqTX9+X5/L+u+53Rd4xfdL8vl+X3H9zn/BAH4Y+DPiP/AMEsv2c9X1K41ldR0TW/jToOpQWV7bxWtxJB8bfH+qWwlSSymniI07VrKIi3uINyIH4dmdu/Du9KPldf+TP+uv6Rwqyam13s/TT/AAu/fddvM/oG0nSdO0PTrTSdJtIrHT7GIQ21tCDsjTJYklmZ5JJHZpJZZXeWWV3lkdndmbYwbvqaNABQB/Ln/wAHV/xk/wCER/Yv+CnwZs7v7PqXxk+OsWt30AfBvvCPwq8Lane6rbmMEFkj8VeLfAl2ZDuWN7aNSu6VGXmxUrQUespfgt/xsbUF7zfZfn/X9WP5hf8AghV8G/8AhdX/AAVM/ZU0q4tftGkeAvFmr/GPV5SnmJZf8Ko8Nav4y8O3Trggb/G2m+FrKNzjy57yJ8gqA3NQjzVY+Xvfdt262/4OxtVdoS89Pv8Av6fftpe5/qDV6RxhQAUAFABQB/AJ/wAHV/w/bQf26vg18QYIDHY/EH9mnQbCeXbxca94K+IXj+1v3D9CY9E1rwxEU5ZdgYna6KvBilacX3j+Kb/Rr+mdVB+612l+h75/waTfEJbD4r/tl/CiSfLeKvh58KfiFaWzNnavgDxJ4r8N6hPEh+7vPxK0yO4ZR8+y2D52JVYR6zXkn91/8xV1pF+bX3/8Mf2/12nMFAHm/jb4VeEvHk0V5q8N3a6jDGIRqWlzx213JApJSGfzoLm2nVCT5bS27Sxg7UlCEooUpNbf5f8Atsv67393R8F/Dzwz4Ct54dCtpfPu9n2vUL2UXF/crHny43lWOKOOJCSwht4YIix3sjv86gnJy36f12j+X3fa7egQUAFABQAUAf/W/v4oAKACgAoAKACgAoA53xb4v8J+APDWteM/HXifw94L8H+G7CbVPEPirxZrOneHvDmhaZb48/UNZ1vV7mz0zTLKHI826vbqCBNw3SDIobtq9F5glfQ/PjW/+CxP/BMDQDIt/wDtt/AqcxFgx0TxLN4lBKnB8tvDljqqzAn7rRF1YcqSCC2bq0l9uPy/4Df5el/hlfs5/wArPLNW/wCC9f8AwST0Xd9s/bE8Ozbc5/sn4Y/HLXun93+w/hjqW/22bs9s9KXt6S+2v/Jn/wC4/wCvkP2dT+X8V+v9djzvUv8Ag4u/4JJ2Jb7L+0X4i1nHQ6b8DPjlEG/3f7X+H2kkZ/2gvvS+sUv5r/KX/wAjH8/u+0/ZTfRL7n+X9fczhr//AIOWv+CWVnn7P48+Leq46Gw+DniiPd9P7TOm/wDjyr74pfWaXd/dIPYz8jkrv/g5+/4JlW2fJT9ojUMd7T4UaWm76fb/ABtZH89v4fxL6zS/vf8AgLf5yj+X3WXMexn5HN3P/B01/wAE3YM+V4L/AGrLzH/Pt8Mvh6mfp9r+L9t+oWj6zS/vf+Af/dB+xn3j97/+Rf4N/K75cWb/AIOr/wDgnZET5fwm/bGucd4fhz8GwD9PtHx/tz+aj9CaX1qn2n9y/wA/06+T5j2Mu8fvl/8AKzNl/wCDrj/gn6M+R8E/2xpPTzfA3wUh/Pb8fp8fn+eBR9ap/wAs/wDyUPYS7x/F/wDtq/r1bjmTf8HXv7Cq5+z/AAE/azlPbzvDnwegz9dnxkuMfrR9ap/yz/8AJQ9hLvH8f/ken49eXYxrj/g7E/Y2XP2X9nD9pqb0+0RfCu2z9fL+IF3j8N3p7svrUP5Zf+Sj9hL+Zfd/w39d7XMC5/4Ozf2Xkz9j/ZY+Pc/937Tr/wAPLTP18rVr3Gfq2PfPyn1qP8sv/JQ9hL+dfcc7df8AB2t8C0z9i/Y9+LNx6faviR4Ps8/XytFvsfr7E80fWo/yy/8AJf8Ag/l94ewl/OvuOZu/+DuH4epn7B+w/wCM7n+79r+OmiWWfr5Pwxv9v4bqX1uP8j/8D/8AuYewf86+45a8/wCDuuyXI0/9gG6m9GvP2oYbXHoSkP7Pt5n6CQf7wwaPra/kd/8AH/8Acx+w/v8A4HKXv/B3N4rk3f2f+wj4etf7v239onUr/H+95HwZ03d+AWl9b/uf+T//AHMfsF/O/uORvf8Ag7Z+M8m7+zv2Nfhha5zt+2/FPxVqGPTd5HhjTd2O+Nme2ORS+ty/kX/gf/3MPYR/nf3HIX3/AAdmftSyZ/s39lr4A2n937drfxF1DH18jWtMz+S/hxuPrcv5F/4E/wD5Fev4aP3g9hH+d/ccdff8HX37csm7+zPgD+yhaZ+79u0H4v6jt/3vs/xf0vd+BT9aX1qf8sf/ACYfsI95fgv/AG1/16Ny42//AODqb/goxd5+z/DT9kTSwen2L4b/ABXlK+n/ACEfjnfgn6gjnpwAq+tVO0P/ACb/AIH5/cP2MP733r/5Ffp+D5uKv/8Ag5+/4Ka3m77On7O+lZ6fYPhRqcm3/d/tPxvqfT/b3e4OPmX1mp/d/wDAf/t1+X3B7GHmcTqH/Byn/wAFUrzd9n+JPwt0nOcf2f8ABnwXLt/3f7UttS6dt273PGKPrNXy/wDAV+sn/XYPYw8zhNR/4OJf+CuN9u+zftNaRpAbP/IO+BXwAk2/7p1X4Y6kR7Elj6HPzUvrFXul8o/5S/rvvF+yp/y387v9DgdT/wCC8v8AwVp1bd9q/bF8Txbuv9mfDn4KaLjP93+x/hnY7P8AgAGPbjavb1X9t/dFf+4/6+Y/Zw/l/Fv8/wCvuR53qn/BZX/gqLq+77V+2x8a4t2c/wBl6xpmiYz/AHf7G0iw2e2zp2xnKr21X+d/+S//ACC/Neq3D2cP5UfE/wAaPj18aP2jPGEfxA+O/wAT/Gvxb8bQ6PZ+H4fFHjzXr7xFrUOh6fcXt3Y6RFfX8sssWn2lzqN/Pb2kZEMUt5cOihpXZs3Jyd5Nt93/AMO/z+67KSSVkrLyMzwB8Zfi/wDCiHW7f4W/FX4kfDW38SnTz4jg8AeOfE/g6HXzpIvhpR1uLw7qenJqp0wanqQ083y3H2IahfC28r7ZcFxNrZteja/L+vvY7J7/AJX/AK/rsXdX+O3xv8Qbv7e+MnxV1vfnf/a/xD8Xalvz13fbNXl3Z75LZ/A7jmk+rfzf6/1+ArR7L7jza+1HUNTmNxqV9eahcHOZ766nu5jnrmWd3fkjJ+Y5/Old/wBa/wBf12GU6ACgDU0vQ9b1uXyNF0fVNXnyF8nS9Pu9Ql3HoPLtIZmycjAwM5707N7X+6/9f12A9Y0T9mj9o7xLs/4Rz4AfGzxB5mPL/sT4VeOtV356bPsGhXG/ORjHXtnOafJL+WX3SFePdfeewaH/AME5v+CgfiTYdF/Ye/a3vopMbbpf2dvi3DYnPTN/ceEobJc9RunGRzkgZpqnUe0J/wDgL/Np/l9wc0V9pL5r9f6/A9j0P/gjh/wVC8RbPsH7E3xwt9+Nv9uaDZeGMZ6b/wDhJdS0ny/fzBHjuRVexqv7D/D9XD8vm9FGfaQ/mR7LoX/Bv5/wVw1/Y0X7Jd3pkD4zPrvxg+Amj+Xn+/aXnxSTUT7hLNyMcg01h6r+zb1cf/kpfl9/2T2kP5l+L/L+vuZ7PoP/AAbR/wDBUzV9g1DwN8IvC2/G4698Y/DVx5Wf7/8AwjEfiQnHfyt/tngtX1ar/d/8C/yg/wA/uJ9rDu35/wDDntWg/wDBqr/wUL1LZJrPxU/ZL8OQnHmRz+Pfipqd+mf7sGm/BaaycjnOdTTngEglqaws+rj97f4pL8vvF7aPaX3L/wCST/Dy03PbNA/4NLv2jLnZ/wAJT+1p8FNHzjzP7A8G+OvEm312f2j/AMIpvx23bM/7NV9Ul/Ov/Af/ALdfl9wvbx/lf3/8P+f3nt/h/wD4NGIhsk8Vft4yOOPMs/D/AOzisf12alqPxtlz6DdpQx1Oc7aawnef3Q/+6CdftD73/Xke5eHv+DTH9mW22f8ACV/tV/HbWsY8z/hHvDXw/wDDO/12f2jY+LfLz23ebj35qvqsf5pf+S/8H8/vF7eX8q+//hvz+49y8Pf8GsH/AATm0jy21bx/+1b4qkGDImq/Ef4cWNq5HUJH4f8Ag9o9zHGf7rXkkg/56/3a+q0+8n/28l+UZfn99nyp1pdor5P/AOSs/uXfupe7eHP+Dbr/AIJR6J5f9p/B34geMNmN3/CR/Gv4l23m46+Z/wAIlr/hbG7v5Xl9eNvFP6vS7P75f5r8/vF7afke8+Hf+CF//BJ/wv5f9mfsa+Brny8bf+Ei8XfFTxhnb08z/hLfHut+b7+bv3dweapUaS+wvnf9XP8AL5rRSn2k/wCZ/h+n9dz3nw5/wS//AOCcvhTy20f9hr9lYyRY8qfV/gd8PfElzGV6Ol14j0HVrhZB2lWUSdfmOSKpU6a2hH7k/wA1H+u1k5HtJ/zS+9/oe/eG/wBmb9m/wb5f/CIfs/fBHwr5WPK/4Rv4UeA9C8vHTy/7M0G22Y7bcY7Yxmq5Y9l93+RN5d3957NaWdpYQR2tja29laxDbFbWkEdvBGvpHDEqRoPZVA+nApiLFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB+K3/Bw3e/ZP+CRH7VMQO1tQvPgRZKc4Jx+0Z8JrxwP96O0cEd1JFY1/4U/+3fxkjSl/EXlf8n/X9M/z6f8Agn/Zf2l+3j+xNp2N32/9rn9m6y29c/avjJ4MgxjnOfMx0/OuCn/Eh/jj/wClI6pfDL/C/wAvl+f3H+t/XqnCFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH+W5/wAFvPBB+H//AAVV/bN0TyjEuo/EnSvG6jGA4+JPgTwl8QmlU9CJJPE7sSM4cup+YMF8yurVZ+t/vR20/gj6fkf1o/8ABrN46HiX/gnZ438Jyzhrr4c/tM+P9Ihti4LxaPr/AIL+HHiuzn29UiuNV1jX40B+9JazEda68K702u0n+Sfy38/0jhXXvJ91+X9dvvuf0pV0GIUAFAH8K/8Awdoal42m/aN/ZO0e+029j+HGnfBPxfqXhfV3jlGnXnjbWfHUlr49022lP7lr3TdC0H4cXV7Gh81YNVsGkwjx1xYq/NDe1n6Xvr87JHTQtaXe/wCHT9S5/wAGnPwLvtY+PH7TX7R97pNx/YvgT4X6H8IdC1a4t3FhN4h+IviWy8Va1Dptw6+VNqekaN8PtPXURAzTWFj4ns1nCRatD5phY+9KVtla/r/w39XCu9Er9b2/r+vuP7nK7TmCgAoAKACgD+P7/g7Y+GLX3wy/Y3+MsFsVXwx47+KXwx1O7VeJW8deH/DPirQ7aZ/WAfDrxDLarkf8fN2TuyNvJi1pCXZtfer/AKHRQfxL0f8AX/D/AHn4/wD/AAbU/FAfD7/gqT4F8NSXH2eH4z/Cj4t/DGTc22KV7TQIPirawyE4XMt58MbeOAMfnuWhiTdJIitlhnarbvFr9f0/q5dZXg/Jpn+kDXoHIFABQAUAFABQAUAFABQB/9f+/igAoAKACgAoAKACgD+ej/g5U+Cv7Q/xn/YI0KD4FaJ4o8YaN4G+Mfh/xt8YPBXg20vtR1zVvAth4b8UWVprUmj6Ykt/r2ieFPEt/pGq6vpkFveCzU2viq4tltfDM99Zc+IjKVP3ejvJLtr5O9t+m3zNaLSk79VZN6f1f+mr2l/ntaX8LPidrkhh0T4c+PNYlDtGYtL8IeINQkDqdrIUtNPmYOrfKy4yDwcYw3Byy7P7v8jquu6+89O0n9j/APa117b/AGH+y5+0VrW/BT+yfgl8S9R3Z6bfsfhmbdntj9cfM+Sf8kv/AAGQc0e6+/8AzPRdN/4Jw/8ABQnV9raf+wv+1/cRv92b/hm74ww2xz6XU/g+K39/9ZnHPI+6/ZVP5J/+Atfo/wCtddVJc8f54/fE7mx/4JO/8FLdRA+z/sN/tLR7un274V+JdLP4jU7K0K/8CxjvT9lV/kl/X/bi/Neq3F7SH8yOus/+CM//AAVGvgDD+xR8aEz0+2aXpGnHn1F/q9sV/HGOnqWfsav8j/8AJf8A5Nf11e8j2kP5kdJbf8EPP+CrV0AYv2MviImf+fnXvhzZn8Rd+NISPx/MY+Y9jV/kf/kv/wAsD2kP5kbUP/BB7/grRPgp+xz4qXP/AD2+IfwYt/z+0fEiEj8hjoeo2nsKv8j/APJf/lnkHtIfzL8f6+804v8AggR/wVymxs/Y+1cZ/wCevxc/Z/g/PzviumPxC/hnNP6vV/k/GP8A8sF7Sn/N+EjSh/4N8v8Agr3N939kSVR3M3x1/Zpgx+EvxlVu/QBj/NT6vV/l/GP/AMm/67bh7Sn/ADfhL+v680bNv/wbuf8ABXObHm/sw6XaZ/5+Pjv+z22Pr9k+KV1+mT7HFP6vV7JfOP8AnL8/v+ye1p/zX+T08zftv+DcT/grHPjzfgX4Mss/8/Pxv+EbY+v2Pxdd/oPpn+E+rVey++Ie0p/z/hI6K1/4Nqv+CqNxjzvh18K7HPX7V8ZfB77fr9hmvc49s+2elP6tV/u/+Bf/AGj/AD+8XtoeZ01p/wAGxn/BTy5x52n/AAEsM9ftfxbZ9v1+w+GL3OPbPtnk0fVqv93/AMD/APuYe2h5nUWf/BrZ/wAFJrnHn+KP2XNOz/z+fFDxu+36/wBn/Ci/6e2fb0Y+q1O8V/283+UY/n913zHtoef9f15/i3HrLL/g1M/4KFT4a8+MP7Hdindf+E/+M1zMP+ARfAMQn/wI/Mc0/qs/5of+Tf12F7aPaX3R/wDk/wDP8Wo9bZf8Gnv7akm3+0f2if2XbXP3vsV/8WL/AB67fP8Ahnpu7Hvsz7U/qsv5o/8Ak3/A/P7he3j/ACv8F+r29NfKx19j/wAGmH7S0mP7S/at+Blpn732Hwv4+1DHrjz7TTN347Pxp/VJfzr/AMB/+3X5fcHt4/yP7zsbH/g0i+K0mP7S/bU+Htp/e+w/B3xJqOPXHn+OtMz+O3146MfVH/Ov/AP/ALoHt4/yP7zs7H/g0V1R8HU/2+rC2/vLY/sx3F9n1Ae4+Pun4zyNxQ467WwRT+qf3/8AyT/7oL266Q/E7Sw/4NGvB8e3+0/26/Et5j732D9nvS9Oz67ftHxi1Xb+O/Hvzuf1Rfzv/wAA/wDuge3fSH4/15Hbaf8A8GlPwIj2/wBq/tgfFu8/v/2f8OvB2mZ/3ftOr6tt9Od2OvPAp/VY/wA0vuS/V/1prq5L28v5F953enf8GnX7HcW3+1v2kv2lr3pu/s7/AIVdpefXb9p8Caxt9slse+DR9Vh/NL/yUPby/kX3nfab/wAGqP8AwTytNrX/AMWv2v8AVXGNyS/ED4QWls2PSO0+BEVwue+btjjoRg7q+q0+8380vyjL+u+vKvbT7R+5r85S/L77rl9D0z/g2C/4JlWG37Uf2h9b24z/AGn8WNNi34/vf2N4K0jGe+zb7EYo+rUv73/gX+UF+f3i9tPyP52/+DgX/gmj+zb/AME79W/ZVb9mzQPFGiaJ8XNK+MMXik+JvF2reLZ7rV/AF38NmsZIZtTYrYD7H41lVobZIo5yu8qWiO3nr0o0+XlvZ3vq3qvX176+VkbUpufNfpb8f+GPKf8Ag3x/Zb/Zn/a//bQ8ffCP9qH4Y2HxS8I2/wCzv4u8a+FdHv8AxD4v8PR2XjPQPiB8MNPhvBL4P8Q+Hbu8B8O694ija1vri6suRIbRpkjngWHhGc2pK6Ub9e6XSUe//DWfMVW4xunbX7/68n33uf2saR/wRT/4JYaJt+x/sW/CibZjH9ryeLdfzj+9/b3ifUQ/vvD56HPWu32NJfYj+P6qf5/JaOXP7Sf8zPUdH/4JZf8ABNzQ9v2L9hb9lefZjH9sfBLwF4h6f3v7f0XUt/vvDZ70/ZU/5If+Ap/mo/l911zHtJ/zP8f6/ryR6po/7D37Ffh3b/wj/wCyB+y7oWz7n9j/AAA+E+mbOmNv2LwlDtxgdPbp/C1CC2hFekY/1/XkLmk/tSfzf6/1+B6vo3wX+D3hzZ/wj3wn+Gmg+Xjy/wCxvAnhfS9mOmz7DpkG3HbBGO2Kdl2X3Cu+7+89Ghghtokht4YoIYxtjihjSKJF9EjQKqj2AH6imIloAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPwp/4OPrz7L/wSf+NsGcf2j44+CVmR/e2fFbwvqGPfmwDf8Bz2NYYj+FL1j+a/rr+CcdaPxr0f9f1+p/CF/wAExrL7f/wUa/YSgxny/wBrn9nu9x/2Dfin4Y1HP/Afsu78PauKl/Eh/iX5nTP4Jf4X+X9f0z/WTr1DhCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/PI/4Oivhe/gv/AIKNaF48htGSx+MX7P3w+8SzXwjKxXGv+FdX8V/D7ULQyYAkubLRPDHheaYDOy3v7MEjIFcGKVqifeK+9aflY6qL9y3Z/wBf1r+No/oJ/wAGj3jPVZLT9uH4eywXMuiWdz8CPGdjcqjmzstV1KL4paJqkE0nKLc6paaVo8lqg2u8Wj3ZO8INmmEek15p/ff/ACJrr4X6r+vx6fdY/szrrOcKACgDxf45/s6fAj9pnwhH4C/aA+EvgT4veEYL5NUstF8deHrDXYdL1WON4U1XRp7qI3mi6oLeWa2/tHSrmzvWtZ57Uzm3nljdSjGStJJrez/4Z/l16ajUnHVOz2/r8Db+EXwX+EvwC8D6b8NPgn8OPBvwr8A6TJPPYeE/Avh/TvDmix3d2Va91CW0023t1u9Tv3RZNQ1S88/UL+VRLeXU0gDsJKKtFJLstP8AL8vuuDbbu22/M9NpiCgAoAKACgD8MP8Ag4v+CuofGL/glz8V9S0bSrnWdY+CvjL4e/Gm0s7O3e5uorDQdYl8JeLNUREVmS30LwP438T63qc52pbaTp1/O7BEescRHmpP+61L7tH32Tb/AMrtmlJ2mvPT79vx/rQ/hg/4JN3njSx/4KWfsQXHgHTL3VteP7R/w0trqzsI5JJx4Rvtet7L4hXsnlAtFY6Z4BuPEup6ncMDDa6bZ3dzODBFIK4aV/aQt/Mvu6/gdM/gl6H+rdXqHEFABQAUAFABQAUAFABQB//Q/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5JP+DtTwp9s+AP7Ifjjys/8I78YfH3hTzsf6v/AITLwXYav5W7oPN/4QTfjPzeTkZ2muXFL3Yv+9b71/wDehvL0/r8z8Rv+DbbxX/wj3/BVn4S6R5mz/hO/hz8afCm3OPO+x/DzWPHHl4/ix/whvnY5/1W7+HK4YZ2qrzTX6/p5fpLSt8D8mvzt+vn+Lcf9JSvROQKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/AH/AIOXrv7N/wAEtfGsOcfb/jB8HbTHrs8Q3F9j/wAks9+n4rhif4T83H8/6/pmtH4/kz+JP/gktafbf+CmH7DsOM7P2kPhpd4/68Net77P/Afs+78PauKl/Eh/iR0VPgl6H+rVXqHEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHxN+2x/wT0/ZX/4KB+D/AA94R/aV8AzeI5PBt7e3/gnxboGsX3hnxr4QuNUS2i1ePRde051ZtO1iKzsxqmi6rb6lol7NZWF7Npzahpun3dpE6caitJXttvp93/B/NxqM5R2fr5/1/W7Oi/Y5/Yc/Zr/YN+G138Lv2bPAS+ENE1jVBrvinWNQ1K/8QeLfGOtpALWHU/E3iPVJZr29a0tQYNO063FnoukxyXI0rTLI3l61w4QjBWirK9+uv3/8D8nIlJyd2fW9USFABQAUAFABQAUAFABQAUAV7yztNQtLqwv7W3vrC+t57O9sryCK5tLy0uYmhubW6tpleG4t7iF3inglR4pYnaORWRmFAHy98Gf2G/2PP2d/GutfEf4G/s0/Bn4V+O9fiurfUPFXgrwHoWia0llfOJL3TdKvLa0V9B0m9dUa80jQv7O026MUHn2r+RCFlQhF3UUn3S1/JW+Tf4IpzlLRttH1TVEhQAUAFABQAUAFABQAUAf/0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+br/g6U8KHX/+Cb3hTXEi3P4G/af+GniCSUD5o7XUfBfxQ8ISIWwSIpLnxLZFhkAyRwk5IWufEq9P0kn+a/X+tTai/f8AVP8Ar+rfpL+Rn/giZ4s/4Qv/AIKpfsXax5nlfbPijeeE92cZ/wCE98F+KvAojzx/rj4j8nH8W/bznFclB2qw9WvvTX6/1c3qfBL0/rv/AF23P9SuvTOIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/nb/wCDny58j/gmSYs4+2/tDfCe2x/e2af40vMe/wDx6bu/3c9gV58T/C9ZL/P9PL8LS1o/H8mfxv8A/BGq1+1/8FRf2J4sZ2fGvSLrH/XlpmrXufw+z5/D2rko61Yf4vy18v677HRU+CXof6olemcQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8Vv8Ag4W8J/8ACVf8Elv2m5Y4vNu/Ct38HfFlouM7f7O+NXw/stRlB5K+VompapJnHRdp2qxZca6vSl5Wf4r06f09jSk7TXndfh/Xb81L/Ph/YL8W/wDCB/tw/sdeM2l8mHwx+1F8BNZu3ztBsLH4peFptRic9o57FbiGXp+7d+RnNcFN2qQf96P5/P8AL7zqlrGS7xf5fL8/uP8AXHr1ThCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5u/+DpW58j/gm34Tizj7Z+1N8MLYj12+BPi1d4/O1B/D6Vz4n+H/ANvI1o/H6J/5fr5/jeP8j/8AwRDtvtX/AAVW/YwiIzt+JWrXP/gH4B8YXgPfoYM/4da5KP8AFh6/ozoqfBL0P9SSvTOIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD89f8AgrL4R/4Tf/gml+3DonlecbX9m74m+KkjA3EyeA/D9z45jKryS6SeHVdABuLKNuSRWdVXpzX91/hqXT+OPqf5V/hXX7rwp4n8OeKLHP23w3r2j6/Z4O0/atH1C31G3w38J822TB7da8xOzT7NM7T/AGTdO1C11bT7DVLGUTWWpWVrqFnMOktreQR3FvKOvEkUiOOe/evXPPemnb+vP8/vLtABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfzP/8AB1ZceT/wTq+Fkecfa/2w/hxb/Xb8H/j3dY/8ls/h7VzYr+Gv8a/KRtQ+N/4X+a/r/hkfyr/8EIrf7T/wVm/Y4jxnb4u8e3H/AIC/Bz4jXWfw8nP4e1ctD+LD1f5M3qfBL0P9QivTOIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA8Y/aQ8I/8LA/Z4+PXgPyvPPjf4MfFHwj5ON3nf8ACSeB9c0bytv8XmfbdmO+cUpK6a7pr70NOzT7NM/x7q8g7z/Xm/Y18Xf8LA/ZC/ZW8d+b558afs4fA/xW0udxkfxD8M/DGrOzHk7y922/PzBshsEEV60HeMX3in96OCWkpLs3+fz/AD+8+kqoQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8xH/AAdcTbf+Cf3wSt8/639sXwPNj18j4KfHxM/h9o9e/eubFfw1/jX/AKTI2ofE/wDD+q6f8HTzufzC/wDBAeHz/wDgrl+x8mM7dX+Ls3/gP+z98WJ8/h5ef/1VzYf+ND/t7/0mRtV/hy+X5r+vy6H+njXpHGFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//V/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAEZVdWV1DKwKsrAFWUjBVgcggg4IIwRwc5oA/wAcj4s+EW+H/wAVPiZ4DaNom8E/EDxl4RaJs7om8N+I9S0YxtnJ3IbLacnORznmvIkrSa7Nr7megtUn3/ry/L7j/T//AOCMnjD/AITn/glx+xTrXm+d9i+DWn+D9+7dj/hXmta14AEWf+mA8M+Tt/g2bf4a9Ok704f4Uvu0/Q4qitOXrf79f1P05rQgKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+XX/g69lx+wt8A4c/6z9rLw9Lj/rl8H/jEufw879a5sV/DX+Nf+kyN6HxP0/Vf1t9x/NX/wAG+Mfm/wDBXz9kRccLJ8dpD7eV+zP8ZpAe/dRj3OOM5rmw/wDGh/29/wCkyNav8OXy/NH+m9XpHGFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/Jv/AOCnfg7/AIQP/gop+274bWLyIIf2ofjTq1jBt2iHTPE3jzW/E+lRIP8AnnHp2sWqRn+JFVu9eXVVqk1/eb+/U7oO8I/4V+R/dd/wbb+MR4n/AOCU3wk0bzfMPw9+Inxo8HMucmE3nxD1jx6sR7j5PG6ygHGFlGOCC3bh3ekvJyX43/X+tTmrfG/NL8rfp5fheX7xVuZBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfyy/8AB2FJj9iv9neH+/8AtRWEmP8Arl8J/iYv6ed+tcuK+CP+L9H/AFv95vQ3l6fqfzl/8G8cXmf8FeP2VXxnyLP48y/TP7OHxchz/wCRsfj71hh/4sfSX5P+uv5uOtX+HL5fmv6/4dH+mdXonGFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/Md/4OAvBv8Awhv/AAVn/apjii8qy8S3Hws8ZWR27fO/4SL4NfD+61SXHQ519NYTcM7tm4/MWC+bXVqsvOz/AAXr1/pbHZSd4Lyuvx+XT+nuf0pf8GonjL+0/wBiX4+eBpJfMm8JftOanr0SFstBp/jH4YfDq3giVf4Yjf8AhTVJ145lmnPPFdOFfuSXaX5pf5d/uMa695Puvyf/AAe33n9SFdJiFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/Kv8A8HY0mP2Pv2bIs/f/AGlGkx6+V8L/ABwufw8717965cV8Ef8AF+jN6G8vT9T+ef8A4N2I9/8AwVw/Zpb/AJ46L8dZPz+AfxLh/wDav+c1hh/4sfSX5P8Arp+LUtav8N/L81/XX8bx/wBMCvROMKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP88z/g6T8Gf8I5/wAFH/CviKOLEPxB/Zl+G/iGScLhZL/SfGHxK8HTxFv4pYbLw1pjv1xFPBzyFXgxStUT7xX5tfPby/WXXR+D0k/0f6+f42j95/8ABo74zxN+3J8PJ5eXj+AnjPS4M9PKb4r6Hrsu3POfO8OpkAY24YnKBbwj+Nej/NbW9Ovy6kV18L9V/X9P5fa/tArsOcKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Ur/g7Jkx+yf+zFF/f/AGh9Rk/79/DbxMvT/tr68e+a5cV8Ef8AF+hvQ3l6H4A/8G5qb/8AgrT+z22P9V4Y+OT/AEz8FPHcef8AyJj8fesMN/FXpL8jSt8D9V+f4f0urP8ASzr0TkCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+ID/AIO2/Bn2L4r/ALF3xDEOP+El+Hnxe8GPOB97/hCPEngvXIoXbtt/4WDK8YJ53ylc4euLFrWD8mvy/wAzpobS9V/X4HhX/BqV4z/sn9uf43+CJZfLt/GX7MGu6pAhbifVfCPxM+Gptogvdxpev63OG/hSGQfxUsK/fku8b/c/+D/Vh117qfZ/n/Xb7rH9+ldxyhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfyff8HZj4/Ze/ZYj/vfHvX3/AO/fw81Zf/alcuK+CP8Ai/Q3oby9D8Gf+DcRN3/BWP4Ft/zz8GfG5/z+Efi6P/2p/nNYYb+KvSX5Glb4H6r8+n9fmj/Snr0TkCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/9L+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5Nv8Ag7P8Ffb/ANmn9lH4i+Vu/wCEW+OfinwV5+3/AFf/AAn3gG61zyt3bzv+Fbb9ufm+z5521y4pe5F/3rfev+Ab0N5en9fmfg9/wbk+Nf8AhE/+Cr/wN0ppvJg+IPg/4zeCp2LbUfZ8LfE/jK1hc9P32oeD7OKJed9w0Kj5iCuGHdqq801+F/0/rQ1qq8H5Wf4r+uv6x/0qq9E4woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5NP+Ds98fs1/sop/e+OPit/++PAVwP8A2p/nNcuK+CP+L9DehvL0Pwt/4NvU3f8ABV34Mn/nn4C+Nj/TPww8RJ/7Pj/JrDDfxV6S/I0rfA/Vfn1/r8j/AEna9E5AoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//0/7+KAPmT4+fEjXfDVzpvhjw/dS6ZNe2H9p3+owYW7+zy3Fxa21tazYLW5MlrcSTyxbZyPJWOVF8wOFwinq/6/H8LfPoeYfCj4s+LLTxZpGj6zq9/rmla5qFtpcseqXEt9cW9xfzJbWtzbXVw01xH5VxJF5sRlMDwNKPLEojkQKlFWbWlv62uvv19D7qoMgoAKACgAoAKACgAoAKACgAoAKACgDy/wCL3jS88DeD5dT01U/tO+vYNJsJpEWSO1nuIbm4e6aNgVkaG3tJjCjhozO0RlR4wyOFRV3+P9ar9fQ+LtL+LXxB0vU49T/4SfVb8iUSTWWpXc15p06bsvC1lK7QQpIMrutY7eSMHMLoyqVDTli9Lf1+F/v18j9DtE1OPW9G0nWYUaKLVtMsNTiiY5aOO+tYrpI2OBlkWUKTgZIzgZxQYvTTt/Xn+f3mnQAUAFABQAUAFABQAUAFABQAUAFAFa8uo7Gzu72UMYrO2nupQoyxjt4nlcKOMsVQ4Gevpmga1aXd/wBdvz+4/OzX/i7481zVZtRj8Q6ppEJmZrTTtKvp7KztYd37qFo7dohdlVwJJbsSvK2S2FKqgbKKS2X3f8P+f32Pyn/4OAptS+MP/BJnxJr+sxC51X4O/H74QeJ7i+SJEE0OpvrngC2vpFjRY4rhh4+kspjEqI5ZH4M7JXPiVel6ST/T9fP9YuCtU06p/p5v8lbbU/kQ/wCCR3jX/hAf+Cmf7EOveb5AvP2h/AHg55M7QI/iLqQ+H0is3ACSJ4oaNyTgK5zgE1x0XarD/El9+n6mtTWEvR/hr5f132P9WOvUOIKACgAoAKACgAoAKACgAoAKACgD49+OfxQ8S2HiWfwnoGo3WjWulwWjX1zYSNbXt5d3ltFeri7jKTw28NvcQoscEkReUzNMzqIlQNIRVrvX+vV3+5fOwfA34o+Jb7xNb+E9f1G61m11SG7axub+Rrm9s7uztZr5s3cm+ea3mt7edGjnllKSiFoWRTKjgTirXWn9eqt9z+Vz7CoMwoAKACgAoAKACgAoAKACgAoAKACgDwv46eP9V8FaLpdnocn2XU9fmvEW/wBiO9naWCW5uTAHV0W5me8t0jlZW8qMTMgWby5EC4Ru9dl/W91br0fyPmPwl8YfGnh/WbW8v9e1TWtNe4jGpWGq3k9+ktozgTfZjcvO9rOiFnge3aNRIqLIkkJeOgtxTXn6fpdX+/TzufohQYhQAUAFABQAUAFABQAUAFABQAUAFAHIePfEr+D/AAjrfiKOFZ59Pto/s0T58tru7uYbG1MoUhjClxcxSTKpVmiV1VlJDUDSu0v6/Nfn958Ef8LW+In9pf2p/wAJbrHn+b5vkfam/s3Oc7P7K/5B3lY+Xy/sm3HvzQbcsdrf16/12PvfwD4mfxh4Q0PxFLCsE+oW0guYo8iNbuzuZ7G7MQbLCF7i2lkhVizLEyqzMRuYMWrNr+vzf5/cdfQIKACgAoAKACgAoAKACgAoAKACgD+Sz/g7SbH7O37JSf3vjT41b/vnwNGP/Z65cV8Ef8X6G9DeXofzxf8ABCXUdR0r/gox8Nb7Sr+8028g8EfFXZd2FzNaXMayeCNTjdUngeOVVkVyjgNhlJVgykq2GG/ir0f5f1/SNqnw/P1/r+uzP9Gf4C/EXWvFkGq6H4gna/vdIit7q01KQL9ontJnaGSG7ZQollt5BGY523SypKwmZmiV39E5pxS1Xp/Wv6ed9bH0TQZhQAUAFABQAUAFABQAUAFABQAUAFAHzJ8fPiRrvhq503wx4fupdMmvbD+07/UYMLd/Z5bi4tba2tZsFrcmS1uJJ5Yts5HkrHKi+YHC4RT1f9fj+Fvn0PMPhR8WfFlp4s0jR9Z1e/1zStc1C20uWPVLiW+uLe4v5ktrW5trq4aa4j8q4ki82IymB4GlHliURyIFSirNrS39bXX36+h91UGQUAFABQAUAFABQAUAFABQAUAFABQB5f8AF7xpeeBvB8up6aqf2nfXsGk2E0iLJHaz3ENzcPdNGwKyNDb2kxhRw0ZnaIyo8YZHCoq7/H+tV+vofF2l/Fr4g6Xqcep/8JPqt+RKJJrLUrua806dN2XhayldoIUkGV3WsdvJGDmF0ZVKhpyxelv6/C/36+R+h2ianHrejaTrMKNFFq2mWGpxRMctHHfWsV0kbHAyyLKFJwMkZwM4oMXpp2/rz/P7zToAKACgAoAKACgAoAKACgAoAKACgDM1rU49F0fVtYmRpYtJ02+1KSJDhpI7G1luXjUnIDOsRUEjgnPOKAWunf8Ary/P7j88dU+LXxB1TVJNT/4SfVbAmUyQ2Om3c1np0CbsxwrZxOsEyRjC7rqO4kkAzM7sWLBtyxWlv6/G336eZ9o/CHxreeOfB8Wp6kqf2nY31xpN/NGgjjup7eG1uEuljUBI2ltruDzkQLGJ1lMapGUjQM5Kz/H+tX+noeoUEhQAUAFABQAUAFABQAUAFABQAUAFAHxP8Zfir4p/4SvUfDmh6pe6JpmiyraO2mzyWd5e3YjR7iaa7gKXKxpI5hhgimWJkj82QF3+QNYxVtdb67f8F/p6HUfAb4m+IdZ1mbwn4hvrjV45bKe806+u3M17by2uwy281y3725hmhZ5Fe4eSWKSIKp2SlUBTirXWlvL/AIK/J38rH1hQZhQAUAFABQB//9T+/igDxz4r/CeL4iRWV5ZXsWm67psT28E9wjvaXdo7+YLW6Me6WHypWeWCeJJtnmzo8Enmo0QVGXL6etv/AG2X9d7+7w3w3+AV14a1208QeJ9S0+8m0yX7Rp2n6WbiW3N2v+purm5ure0k/wBGb97FBFb8zrHI84RGilByndWS/H/7Rfn959OUEBQAUAFABQAUAFABQAUAFABQAUAFAHIeOPB1h468O3WgX8j2/mvHcWd5Gokksr6Dd5FysbMiyKA8kU0RZDJBLKiyRuyyIDTs7/8AA/R/l91z5m0v9mXW/wC1EGta/pS6MkoaR9N+2SajcQq2TGsNzawW9rJKo2+abm6EJO4Rz7cUF+0XRa+v/wBzPsC0tbextbaytY1htbO3htbaFc7Yre3jWKGNc5O2ONFUZOcDnNBmWKACgAoAKACgAoAKACgAoAKACgAoAZJGksbxSKrxyI0ciMMq6ONrqwPBVlJBB6g470AfIGv/ALM+qvqs0nhvW9LTR5pmkjh1VryO8sonbPkK1va3cd4Ih8qSu9q7jAkUMC7Bqqitqnf1/wDtH+f3nxh/wV5+Btiv/BIr9svwZas2p3dr8PdL+IWoXrRbGnu/h1458HePnmhi3SGC3tLbwpiOPzGIRZZHctLIKyrK9Kfpf7tfL+u9rBCV6ke19Pmrb2V/u8tNz/Nx+Afjb/hWnx0+C3xH837P/wAK/wDiz8OfG3n7tvk/8Ip4w0fXfN3cbfL+wb92eNueMV50XaUX2kn9zOp7P0Z/sP16xwBQAUAFABQAUAFABQAUAFABQAUAeAfFb4Kt451FPEGh39rp+stBFbXsN+JhZXywLst5zPbxzzW9xFEFgb/R545okhA8lo3aULjK2j29f/tZfn9/2T4U/BVvA2ov4g1y/tdQ1lYJbayhsBMbKxWddlxOJ7iOCa4uJYi0C/6PBHDE8wPnNIjRASlfRbev/wBrH8/u+17/AEEBQAUAFABQAUAFABQAUAFABQAUAFAHm/xM+Hdp8RNFhsXufsGpafM9zpd+Y/OSKSRAk9vcRBkZra5VI/MKMJI5IoZV3hHilCoy5X/wbfpL8vvv7viHhH9m/ULPWra+8V6rpdxptlcR3AsNKa7nfUDC4eOG5lurWyW2t3ZV88RrcPJHviUxFxKoU56aJ/f/APaL8/uPregzCgAoAKACgAoAKACgAoAKACgAoAKAMbxDodj4l0XUtB1JWay1O2e3m8sgSRkkPFPESComt5kjnhLBlEsallZQy0DTs79v68/y+8+S/wDhmPxD/aXl/wDCR6N/Y/m/8fnl3v8AaXk7uv8AZ3k/ZvN2/wAP9qbM87/4aDT2i7O/r/8Acz608PaHY+GtF03QdNVlstMtkt4fMIMkhBLyzykAKZriZ5J5ioVTLIxVVUqtBm3d37/15fl9xs0CCgAoAKACgAoAKACgAoAKACgAoA/kl/4O1Gx+z/8AsiJ/e+MXj1v++fBViP8A2euXFfBH/F+hvQ3l6H4E/wDBADwjqPjf/gpP8OdA0ueyt7yb4ffFm4WW/knitglt4NvnkDPb291JuKZ2AREFuCy9axw38VeSf9f1+hrUdo3815fo/wAvuuf6PXws+GFt8OrC8827XUdZ1Qwm/u442jt4ooN5htLRHJk8pGkkeSZ9r3DlSYoliRF9A5ZSv6ff+No/l91ve9WoJCgAoAKACgAoAKACgAoAKACgAoAKAPHPiv8ACeL4iRWV5ZXsWm67psT28E9wjvaXdo7+YLW6Me6WHypWeWCeJJtnmzo8Enmo0QVGXL6etv8A22X9d7+7w3w3+AV14a1208QeJ9S0+8m0yX7Rp2n6WbiW3N2v+purm5ure0k/0Zv3sUEVvzOscjzhEaKUHKd1ZL8f/tF+f3n05QQFABQAUAFABQAUAFABQAUAFABQAUAch448HWHjrw7daBfyPb+a8dxZ3kaiSSyvoN3kXKxsyLIoDyRTRFkMkEsqLJG7LIgNOzv/AMD9H+X3XPmbS/2Zdb/tRBrWv6UujJKGkfTftkmo3EKtkxrDc2sFvaySqNvmm5uhCTuEc+3FBftF0Wvr/wDcz7AtLW3sbW2srWNYbWzt4bW2hXO2K3t41ihjXOTtjjRVGTnA5zQZligAoAKACgAoAKACgAoAKACgAoAKAK93a299a3NldRrNa3lvNa3MLZ2y29xG0U0bYwdskbspwc4PGKAPj/VP2Zdb/tRxouv6U2jPKWjfUvtkeo28LNkRtDbWs9vdSRKdvmi5tRMRuMcG7FBp7RdVr6//AHM+mfA/g6w8C+HbXQLCR7jynkuLy8kURyXt9Pt8+5aNWdY1ISOKGIM5jgiiRpJHVpHCG7u//B/Rfl99jr6BBQAUAFABQAUAFABQAUAFABQAUAFAHzj8UPgVN4v1mXxF4c1GysNQvVj/ALSs9S89LOeaKNIlu4bi2huZIZHijRZojbSJK6+cJEdnVg0jOys7vt0/9tl+f3/Z3PhP8HV8AT3OsarfQalrtzbtZxfZFkFjYWzujzCF5ljluJ52jQNO8MHlxqYkjbzJHoFKd9Fovv8A/bY2/ra3ve5UEBQAUAFABQB//9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPmf9tLwT/wsr9jz9qz4eCLz5PHH7N/xu8KQRgZY3Ov/DTxNplq0fUiaO5uYpIWX5klVHXDAGpmrwku8ZL718/y+8qOkovtJfn8/wAvvP8AIfryTuP9hP8AZz8bf8LL/Z7+BHxH877R/wAJ/wDBr4YeNvP3b/P/AOEq8EaHrvnbud3mfb9+7PO7POa9eLvGL7pP8Pl+X3HBLd+r/M9lpiCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+R/8A4O1W/wCLDfsgL6/Fz4iN/wB8+DdKH/s3p+VcuK+GP+L9DehvL0PxW/4NrBn/AIKpfDU/3fhd8Zj/AOWXdL/7NWOG/i/9us0rfB80f6RNegcgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//1v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAr3dpbX9pdWN5ClxaXtvNaXUEgzHPbXEbQzwuOMpJE7IwzyrEcUAf44HxE8JXPgH4geOvAt5v+1+CvGPifwldeYMSfafDmt32jz+YMDD+bZtuGB82eBjFeQ1Ztdm1933fl9x3rVJ91/Xb8vuP9SH/gjz44/4WD/wTC/Yk17zvP8AsHwI8LeCN+7dj/hWbXnw38rPrB/winkY/h8vaelenSd6cH/dX4aHHU+OXr+Z+k1aEBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/I5/wdrH/ixf7Ho9fiz8Rz+Xg/Rv8AGuXFfDH/ABfob0N5eh+Lv/BtSM/8FUPh37fCr4yn/wAtCUf19v0w2OG/ir0f9f1/kaVvg+aP9IWvQOQKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/ycv8Agp94I/4V3/wUU/ba8KrD9nt4P2mvjDrOnwbdqwaT4r8aat4s0eFBgfu4tL1u0SM4+aNVbnNeXVVqk1/eb+/U7oO8YvyX5fP8/vP7pf8Ag2y8b/8ACWf8EqvhboZm81vhp8S/jN4IYbtzQ/bfHV/8REhbqRiPx8kiqekbpjC7RXbhn+6Xk5L8b/r/AFY5q3xvzS/r+v1P3orcyCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Rr/g7W/5Ib+x5/wBlX+JX/qIaHXLivgj/AIv0N6G8vQ/GD/g2p/5SofDz/slPxl/9RGWscN/E/wC3WaVvg+aP9ISvQOQKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//Q/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/zOP8Ag4b8Df8ACFf8FY/2jrmKHyLHxxpvwj8c2KbcBv7S+EngzStWmB6P5/iLRNamLDGGkKHJUmvOxCtVl52f4W/P0/C8uyk7wXldfj/l6/pH+hn/AINOfHP9pfskftLfDhpt7+EP2iLPxisRbLQweP8A4ceF9IQKCSUikn+Hdy6qMIZfPYAuzmt8K/cku0r/AHr/AIH9XMq/xL0/X+uv3H9V1dRgFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8jn/B2sP+LF/sen0+LPxIH5+D9F/wAK5cV8Mf8AF+n/AATehvL0Pxe/4NqT/wAbUPh37/Cr4yj/AMtCU/0/zg1hhv4q9Hf+vX+tTSt8HzR/pCV6JyBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/z/v8Ag6u8Df2H+3l8HvHEEPl2vjv9mLw1bXEm3Hn634S+I3xIsrxy3Rimjal4ci2/eUJkkhlC8GKXvxfeP5N/1t99zqov3Wuzf6f11/FKP0Z/waR+OfsfxK/bU+GrzZ/4SPwN8HfHNvAzZ2/8IXr/AI60C9miUnjf/wAJ9YJOyj5vLtw5+RBV4R6zX+F/dfp811+8muvhfqv6/wCG+4/t1rsOcKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5IP+DtVc/Ab9kBvT4u/ENf++vBuln/ANk/ziuXFfDH/F+n9dPuN6G8vQ/FX/g2tbH/AAVT+Go/v/C74zL9ceCrpv8A2XNY4b+L/wBuv+v6/Q0rfB80f6RNegcgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//0v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP4yP+DuDwLmH9iD4mW8P3Jfjp4F1a429fNT4Y6/4eh39tvk+J32tnO7K42vu48Wvgfqvy8/0+fQ6KD+Jej/rT9fl1Pz3/AODXXx1/wi3/AAUm1rwzJNti+Jf7OHxM8KxwM2FlvtI8Q+AfHsMirkZmhsvCGpKhGSsM1wMAMxqMK7VGu8X+Dv8A1t36WldZe56Nf1/X6H+h/XecgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfyU/wDB2kmf2ev2R5P7vxm8cJn/AK6eCLdv18v9PauXFfDH/F+hvQ3l6H4h/wDBtm+3/gqv8KV/56fDf40p9cfD/VJP/aee/wDMrhhv4q9Jfl/X9I0rfB80f6SVeicgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5k/+DqjwL/b/AOwH8KvGsEO+78AftOeEjcTbc+Tofir4ffEnSL35gCV8zWovDa8kKcYOW2VzYpXpp9pL8U/Nfk/kbUH7zXdfl/Xf77n8sP8AwQn8df8ACvv+Crv7H+qvN5VvrXjDxd4FuULbUuP+Fg/DLxt4MsoZORuxqmt2E8K/8/EMJwcANzUHarD1a7bprz6/0r3N6ivCX3/d939d9j/UKr0jiCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+Tj/g7Oiz+zP8Aspz4/wBX8dfE8Wf+u3gC9fH4+R69u9cuK+CP+L9DehvL0Pwm/wCDb+Xy/wDgq/8ABRM/6/wN8bYvrj4WeJp8f+Qc9+nsSuGG/ir0f5f1/SNK3wP1X9f1/mf6UFeicgUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8YP+DgnwJ/wnX/BJz9p3yYfO1Dwcfhb470/5d3lf8I/8W/BA1iboSPL8M3mu/MMYz8x2F6xrq9KXlZ/ivTp/T2NKTtNed1+Hz6/0tz/ADxv2I/Hf/Cr/wBsv9k74jNN5EPgj9pH4JeJ7yQttU6do/xI8N3upRSnj9zcafDcwT88wySDjNcFN2nB/wB6P5/P8vvOuWsZLun+Xy/P7j/XYr1TgCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+U/wD4OyLct+yR+zNd44g/aMu7fPobr4Z+LZAPx+xnv274rlxXwR/xfob0N5eh/Pv/AMG6VyIP+Ctn7OkRP/H54d+OdsPcr8DfiDd4/K1J/CsMP/Fj5qX5N/p5fhaWtX+G/K35r+v+GP8AS4r0TjCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP//V/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+MP+CjXgT/AIWX+wJ+2d4JSH7Rd61+zJ8azpUO3dv13Tfh/rur+H+MEnbrdhp7cDcMZXDYqKivCa/uy/L5fn9xUHaUX5r+uv5fef5L1pdXFjdW17ZzPb3dncQ3VrcRHEkFxbyLLBNGezxSoroezKD2ryjuP9jn4Z+Mbf4ifDf4f/ECz2G08deCPCnjG1MRzGbfxNoNhrUHlnnKeVfLsOfu465r2Fqk+/8AXl+X3HA9G12f9d/z+87egQUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB/Lx/wdeac8v7CfwG1YKSlj+1p4b092/unU/g98ZLhAfTd/ZLenI+gbmxX8OP+Nf+kyN6HxPvb9f+GP5pP+DffUU0z/grt+yPLI22K6uPjXpzdtz6j+zr8XLS2X8buW3+uMDqK5sP/Gh/29/6TI1q/wAOXy/Nev8AXbc/04q9I4woAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAxfEmg2Hinw7r/hjVE8zTPEei6poOox4B8yw1exn0+7TByDut7iRcEYOec80DWjT7P+u/5fef43niXQb/wr4j1/wvqieXqfhvW9V0HUY8EbL/R7+fT7tMNhhtuLeRcEZGMHGK8hqza7O39b/n953n+q7/wSo8e/8LJ/4JufsSeKWm+0zL+zh8MfC95cFt7z6j4B8O2vgPUppW7zyah4auXnPH74yZA6V6lN3pwf91fl8v677nDNWnL1f4/f/XbY/QCrJCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP51f+DoDw42uf8EzINTEe8eDv2jPhT4jZsZ8pbrR/HfhHzCf4ct4pWLPH+sx3AbnxK/dekk/0/X+rs1o/H8n/AF/X6H8cv/BGnxIPCn/BUX9ifVDJ5YuvjVpPhvdnGT4y0vV/CCx9v9a2uiLHffjnOK5KLtVh62+9W/U6KnwS9PyP9USvTOIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP8lv/gpB4D/4Vn+3/wDtn+CUh+z2mj/tNfGiTSoduzy9C1fx7rmt+HxjAH/IE1LTzlQFb7ygKQK8qqrVJr+8/wAXfz/rXS9jui7xi/Jf10/L7j+9H/g3F8ef8Jn/AMEpPgrpDzefcfDXxr8Y/Adw5bdIm74ka944s4ZD1HkaZ42sIYVONtskKj5Qpbvw7vSj5XX4/wCT8+/W0eat8b80vyt+nl+Dcv3TrYyCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPxi/wCDgrwmfFf/AASV/amEURlvPDY+Efiy04z5Y0b42fDs6nKepGzQ7jVTkdP4sLk1jXV6U/k/ukvTp/T2NKTtNeen9aPr6ep/nk/sN+LR4C/bU/ZD8btL5MXhL9p34DeIriQttUWukfFLwtfXayHgeVJbQSxyg8NEzg5BIrgpu04P+9H8/n+X3nXLWMl3T/L5fn9x/rp16pwBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/Mv/4OEvAX/CC/8FYf2lJYYfI0/wAcWvwq8e6eu3G/+2vhP4Ms9YmzwG87xNpWuybgP4tp3OrM3m4hWqy87P8ABfrf+rnZSd4Ly0/rRdPX1P6Kf+DTzx9/av7IP7R/w0ebzJfBX7RMHi6OJm3Pb2XxC+HPhTTIY1HVIHvPh7qMyKDtM0ly4wzPXThX7kl2l+aX9f8ADGVf4k/L8n/we33n9U9dJgFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfA//AAVO8Gnx5/wTf/bf8PLD9omH7M3xc8Q2sAXc0174M8Ial4xsY415zM95oMCwj/nqUxjrUVFenNf3Zfl8v677F0/jj6r8f6/qx/lKaFrF54e1vRtf09/L1DQ9V0/WLFzn5LzTLuG9tn4wflmgQ8HPHGOK8tOzT7O52n+yZ4f1qz8SaDoniLTm36fr+kabrVg+Qd9nqtnDfWrZHB3QTocjg5yOor1zgeja7P8Arv8An95r0CCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//0f7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+AX/g6x8Bf2F+3T8GPH0EHlWnj79mfQbC5k28XOu+DPiJ8Qra9l39CyaJrXhqApyVESsThwq8OKVpxfeP5N/5/1c6qD91rs/z/AK7/AHWPfP8Ag0l8e/Yfit+2b8L3m/5Gj4e/Cbx7b27NnH/CCeJPF3h68mjU/d3f8LGsUnZR8+23D52JVYR6zX+F/dfp811+8VfaL83+P/DdvuP7fq7DmCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPOvjB4MX4jfCX4o/D10WRPHnw68beDGjbG2RfFHhrU9EZGzxtYX2054wee9Jq6a7poa3Xqv66fn9x/jnOjRsyOrI6MUdHBVkZThlZTgqykEEEZBGDjmvIO8/1vf2AfG3/AAsf9hj9jnxy03n3Pib9mL4GanqL7txGry/DTw2msxM3O57fVUvIHbu8ZJxnFerTd4QfeMfy+X5a+RwzVpSXm/63f5/cfXNWSFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//S/v4oA8p+J3xU0/4dW9pF9jbVNZ1FZJLSwE3kRR28ZCPd3c2yVki8w7IY44y87pKoaNUeRAqMb+n3/wDt0f67W97jPh18e7fxbrUHh/W9Ki0i9v2Mem3VrcPNaT3G1mW0mSVRJBLIFKwSB5EllKxFYmdN4OULap6dbq3/ALe/y+659E0EBQAUAFABQAUAFABQAUAFABQAUAFAHMeMPFemeC9Bu9f1XzGgttkcNvDtM93dTHbBawhiF3yNlmZjtiiSSVsqhoGk27L+vxX5/fY+c9L/AGnDLqiJrHhmO10eWUI01leyXF7aRM2POdJIY47vYMF441tmIBMe5gI6C3T00evmtP8A04fV0E8N1BDc28izW9xFHPBKhyksMyCSKRD3V0YMp7gg96DMloAKACgAoAKACgAoAKACgAoAKACgBGZUVmdgqqCzMxAVVAyWYnAAAGSScAcnGKAPlPxB+0wlrqs1t4e8Pw6hpdvM0X26+u5YJb9UbaZraGKAi2hfBMLTGaR0KvJDE5MShooaa/l/9uvPp99j3vwL420vx7oUet6akluVle1vrGZlaaxvI1R3hZ1CrLG0ciSwTqqiWJ1LLHKJYYghprf+vz/PTzOyoEfxuf8AB2/4C87w9+xJ8UIIdv8AZus/G3wFqtwFz5v9tWPw58Q6BCz/AMPkf2B4lkRc/N9okIxsNcmLWkH5tfk/0Z0UH8S9H/X4dfvufmZ/wbDePv8AhEP+CmsXhtpvLX4p/AD4reCFhLYWefS7rwp8SkAQkBpY4fh/cOrAM6x+cBhGessM7VPWLX5P9P60LrfB6Nf5fr5/heP+itXoHIFABQAUAFABQAUAFABQAUAeIfE/4z2fgG8i0Ww04avrbwR3Nwks5t7OwhlyYROyJJLNcTKvmLAnlBIWjleX50RguML6vb0u/wD0qP5fd9pPhf8AGez8fXkui3+nrpGtpA9zbpFMZ7O/hix5whZ1SWG4iVvMNu/mh4VeVJTsdEAlC2q29LP/ANKl+X3/AGfcKCAoAKACgAoAKACgAoAKACgAoAKACgDgviH8QNM+HujJqd7DJe3V1MbbTdOidYnu51QySF5WWQQW0KAGefy5SpeNFjZ5EVgpRcvl/XeP5/d9rxrwj+0fFqus22meItEg0u1v7iO2g1GzupJktJZnEcP2yKZATAXYCW5jdfJHztCyB2QKdPs/vX/27/L7z6ioMwoAKACgAoAKACgAoAKACgAoAKACgDM1rWLDw/pV/rWpymGw022kurlwNz7IxwkacF5pXKxQxg5kldEGM0DSu7f1+n5/cfLX/DT0v9p/8ipH/Y/m7cf2g39p+TnHm58kWvm7cv8AZ9pTP7v7Tj99QX7PTfX00/8ATh9S6LrFh4g0qw1rTJTNYalbR3Vs5G19kg5SROSk0Thopoycxyo6HOKCGrO39fr+f3mnQIKACgAoAKACgAoAKACgAoAKACgAoA/yA/2q/BK/DX9qH9pH4crGsS+Afj38YPBaRLgLGnhb4heItDRExgbFWxAXbxtxjIINeTNWnJdpSX4netl6I/0Zv+CBfxYsPib/AMEtv2YrMTudc8BeH/FngbV7aUgvFB4Z+JPjXRNEliYE7oJdF06w2qcPCRsZFQxPL6NB3pQ8lb7m/wCv+GOSqrTfZ2/L5/1rpsfstWpmFABQAUAFABQAUAFABQAUAFABQAUAeU/E74qaf8Ore0i+xtqms6isklpYCbyIo7eMhHu7ubZKyReYdkMccZed0lUNGqPIgVGN/T7/AP26P9dre9xnw6+Pdv4t1qDw/relRaRe37GPTbq1uHmtJ7jazLaTJKokglkClYJA8iSylYisTOm8HKFtU9Ot1b/29/l91z6JoICgAoAKACgAoAKACgAoAKACgAoAKAOY8YeK9M8F6Dd6/qvmNBbbI4beHaZ7u6mO2C1hDELvkbLMzHbFEkkrZVDQNJt2X9fivz++x856X+04ZdURNY8Mx2ujyyhGmsr2S4vbSJmx5zpJDHHd7BgvHGtsxAJj3MBHQW6emj181p/6cPq6CeG6ghubeRZre4ijnglQ5SWGZBJFIh7q6MGU9wQe9BmS0AFABQAUAFABQAUAFABQAUAFABQBFPPDawTXNxIsNvbxSTzyucJFDChklkc9lRFLMewBPagD5R1X9pwx6o6aP4ZjutIilKLPe3slve3kStjzUjjheOz3jlEkFywGDJhiUQNFT01evktP/Th9GeD/ABXpnjTQbTX9K8xYLnfHNbzbRPaXUJ2z2swUld8bYZWU7ZYnjlXCuKCGmnZ/1+L/AD+6509AgoAKACgAoAKACgAoAKACgAoAKACgDwL4l/HK18E6q3h/SdMTWNWt0ie/knnaCysWmRZY7fEUbS3NwYnSWQK8UcKui+Y8peOILjC++i9P/to9P6X2tr4X/F6x+Ib3Om3Fj/ZOuWcH2prVZ/tFteWodI5J7SVo4pFeF5I1mt5QWVZEkjkmXzfIBSi16en56y6+evnb3fY6CQoAKACgAoA//9P+/igD5V/aH8Ca7q95pfirR7O51OC100aVqFraRvcXNqsN1c3cF2tvGGlkhk+2TRzvGreR5UbyYRmag0g1t1v/AF6bd/uPKvhF8PfEeseMNE1OXTb6w0nQ9StNVu7+7t5rWJm0+ZLmG0tzMiG4mnnjjjdIg3kxM8kuAEoKk0k/Nf137/8ADbn3/QYhQAUAFABQAUAFABQAUAFABQAUAFAHk3xo8Ial4y8FSWOkL52o6dqFtrFvaBghvfs0F1bTWyM2F80wXkssKsf3ksSRjBcUFRaT17f1/Wn4Wl8O6V4E8X6xqkej2fh7VVvHlEUoubG6tIbT5trSXs08SR2sUfJd5WH91cuVVg2btqfpNoOmf2LoejaN5pn/ALJ0rTtM845Bl+wWkNr5uDyPM8rdjtnFBg9W33f9dvy+41aBBQAUAFABQAUAFABQAUAFABQAUAVb61W+sryyd2jS8tbi1Z0+8i3ELxM69PmUPkc9R2oA/NXxB8PvF3h3VZtJvND1KaRJmjtrizsrm6tb+PdiOazmhikWVZVw3lg+dGT5U0UcquihupJr+v8AJX37dlqfY3wK8F6t4Q8L3cmtwvaX+t3q3v2CTiWztYoFht1uUyfLupSZZZIvvxRtFHKEmWSNAyk7v9f6/wCD+No+3UEn823/AAdJ+Af+Ep/4JzeFPFsMG65+GX7Sfw81+e5C5aLSNf8ACvxA8F3UDN/BDcar4h0KRjxmW2gXPJVufEq9O/aSf6fr5fhaW1F+/wCqf9f1b9JfyMf8EUvH3/Ct/wDgqf8AsXeIDN5C6n8VpPALMW2h/wDhafhTxJ8MkhPQN50ni5IlU9XZcZbaK5KLtVh62+9NeXf/AIfY3qK8Jel/u1/T+rH+phXpnEFABQAUAFABQAUAFABQAUAfFXx88A+IP+ErufFlhYXepaVq8Fl58lnDLctp91ZWcNi0VxFEryRQyxW0MsVwy+S0kkkRIdVDBrBq1uq/r9fP8bRPgH4B8Qf8JXbeLL+wu9N0rSIL3yJLyGW2bULq9s5rFYreKVUklhiiuZpZbhV8lZI44gS7MFAm1a3V/wBfp5fhaX2rQZBQAUAFABQAUAFABQAUAFABQAUAFAHz/wDtAeCdY8VaLpGpaJby39z4fmvmn0+3Uvcz2moJa+bNbQrlria3ksof3EQMrxyyMgYpiguDSuu9v6/p/efK3hD4c+KPFWt2umw6TqNpbfaIxqOoXVpcWttYWyuPPkeaaONDOIw3k2ylppZAFUYDFQ0bS1f9fn+X3n6U0GAUAFABQAUAFABQAUAFABQAUAFABQBxXxF8N3Pi3wXr3h+zdY7y+tYmtC7bEe5sru3v4IXc8Ik8tqkDu3yosm88LQOLs0/6/X+u25+en/CE+L/7S/sf/hGtb/tLzfJ+zf2ddbt27bu8zyvK8n+L7Tv+z+X+93+X81BvfS/Tc/Qv4deG7nwl4L0Hw/eOsl5Y2srXZRt6Jc3t3cX88KOOHSCW6eBHX5XWPeOGoMJO7b/r9P677na0CCgAoAKACgAoAKACgAoAKACgAoAKAP8AK4/4LIfDeX4Uf8FO/wBsnwjKMGb4szeNImwQZbb4m+HtC+JVpO2esk9t4thllIyDK74JHzN5lZWqz9b/AHq52wd4Rfl+Wn9fhsf1p/8ABrDqba7+wz8Q2lu0Z/BXx58X+CrawDEyxWd94c8E+ODdyJ91YJ7zxNdQ2pHLTW1/kABWbrwz/d27Sfy6/wBf8Axr/EtN1e/4f5bH9OldBgFABQAUAFABQAUAFABQAUAFABQAUAfKv7Q/gTXdXvNL8VaPZ3OpwWumjStQtbSN7i5tVhurm7gu1t4w0skMn2yaOd41byPKjeTCMzUGkGtut/69Nu/3HlXwi+HviPWPGGianLpt9YaToepWmq3d/d281rEzafMlzDaW5mRDcTTzxxxukQbyYmeSXACUFSaSfmv679/+G3Pv+gxCgAoAKACgAoAKACgAoAKACgAoAKAPJvjR4Q1Lxl4KksdIXztR07ULbWLe0DBDe/ZoLq2mtkZsL5pgvJZYVY/vJYkjGC4oKi0nr2/r+tPwtL4d0rwJ4v1jVI9Hs/D2qrePKIpRc2N1aQ2nzbWkvZp4kjtYo+S7ysP7q5cqrBs3bU/SbQdM/sXQ9G0bzTP/AGTpWnaZ5xyDL9gtIbXzcHkeZ5W7HbOKDB6tvu/67fl9xq0CCgAoAKACgAoAKACgAoAKACgAoAyte0z+2tD1nRvNMH9raVqOmecMkxfb7Sa183A5Pl+bux3xiga0afZ/13/L7z82dV8CeL9H1STR7zw9qrXiSmKIW1jdXcN3821ZLKaCJ47qKTgo8TH+62HDKobp31PuL4L+ENS8G+Co7HV18nUdR1C51i4tCwc2X2mC1tobZ2XK+aILOKWZVP7uWV4zkoaDGTTenb+v61/G0fWaCQoAKACgAoAKACgAoAKACgAoAKACgD4U+Nnw+8RWPi/VNftdOvNR0bW5lvI7uzgluha3DRRpcWl4sKu1uyyozwO4WKWB4xHIZElRA1hJWttb+uytq+7v5WOq/Z98A6/a69N4t1WxutL0+3sLi0sUvIZLae/uLsxqzxwShJDaQQq5ad0CSTPEsJk2TFAU5Lb+lt99/X77s+waDMKACgAoAKAP/9T+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/JH/guv4B/wCFi/8ABKT9r7SY4PNutB8H+E/H1q4XdJbf8K7+JXgzxpfzx9dudH0TUreZscW084+XO5cqyvSn6X+53NKbtOPrb7/v/rtuf5sf7M/j7/hVH7R/7P3xRM32YfDb42/Cnx8bjds8geD/AB3oPiEzb+NojGnby2eMZ4xXnQdpRfaSf4nW1dNd00f7BVescAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf5zn/Bzh4D/wCEQ/4Kfat4h8nyx8U/gV8JPHXmbcfaDp0fiH4ZGXP8RUfDtYCeoESjoBXn4lfvPWKf6fp/Vzrov3PRtfr+v9an6n/8GkPjz7T4L/bY+GM023+xfFHwW8eafbs3+t/4SjSfiF4f1iaJc/8ALD/hENDSdsDP2m3AJwQuuEek12af33/yIrr4X6r+v+G++5/YpXWc4UAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//V/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPm79sjwB/wALW/ZF/aj+GQg+0S/ED9nn4zeDraILuc3niL4deItKsXiHJE8V3cwSwMvzJMkbphlBqZq8ZLvFr71YqLtKL7NeXX5/l95/kMV5J3H+wR+zJ4//AOFsfs2/s+fFLz/tJ+JXwQ+FHj43G7eZ28YeA9A8QtKXydxkOoli2eScnFevF3in3Sf4HBJWbXZtfie4UxBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH8OP/B2v4C/s/wCNn7HfxQEOP+Et+FvxM8BPcBfvf8K88W6B4hjhZsceX/ws+V0UnnzJCBwxrixa1g/Jr7rf5nTQekl5p/f/AMMeSf8ABqP49/sb9tn48fDuabyrbx1+zXqGuwIWwtzq/gX4jeBEtYAuctKNJ8Wa9cqcELFbzAkbgGWFfvyXeN/uf/B/Adde6n2f5/12+6x/fTXccoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH//1v7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgBrokqPHIiyRyKySRuodJEcFXR1YFWVlJVlYEEEggg4oA/x2Pjd4Ek+Fvxn+LvwyljaKX4c/E/x94EkifO+OTwh4r1bw+8b7vm3I2nlWzzkc15ElaUl2bX3P5/n953rVJ91/Xb8vuP8ATc/4ImeP/wDhZP8AwSu/Yx18z+e+lfC658AOS25o/wDhVnjDxP8ADSKBh1XyoPCcKRqcfuvLZfkKFvSou9KD8rfdp5dv+H3OOppOXr+av5/122P1NrUgKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/lJ/4OyPAP9p/spfsx/E5Yd7+C/wBoDVfBLTBdzQQfEb4ea7rT7iASkMk/wztkdjhPN8hCS7IK5cUvci+0rfen/kb0H70l5X+5/wDBP58v+DeHx/8A8IL/AMFX/wBne0mn+z2Hj/SPi14Av33bQ39pfCvxbrWkQEcB/tPiTQNEgVT0eRXGSgFYYd2qx87r8P8AM1qq8H5Wf4/5ev6x/wBMOvROMKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//X/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/ACs/+Cxnw/8A+FZ/8FQP22fDfkfZhqHxw8QePli27Bt+K9pp3xSWULx8twvjETqQMMJQwwCK8ysrVZ+t/vV/1O2m7wj6W+7T9D+x/wD4NfviB/wl/wDwTSuvC7z75fhV+0L8UPBscDN88NlrGmeDfiPC6oeRBNeeOdQ2MPkeaK5AJdHC9eGd6XpJr9f1MKy9/wBUv6/q36y/otroMQoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD8J/+Dj74f/8ACa/8Ep/jFrKQfaLj4YeOvg78QLdVXdIm/wCIWjeAryeMckeRpnjq+lmYfdtknY4RWNY4hXpS8mn+Nvy9fxvHWj8a80/yv+nl+CUv4Nv+CbfxA/4Vd/wUA/Yx8cPN9ms9I/aX+DkGrT79nlaBrfjnRtA8Qvu4HGh6pqHysQr/AHHKqSa4aTtUg/7y/HQ6Zq8ZLyf9br8/vP8AWhr1DhCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//0P7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/wA5T/g5q+H/APwhv/BULxD4j8jyv+FsfBH4RePzJtx9pbTbDWPhb5xOBvKj4bLb5ycCBV42ivPxKtU9Yp/mv0/rQ66L9xeTa/X9f60P1d/4NI/iB9r8B/tqfCyabb/YPi74OfEDT7dm/wBb/wAJbo3jrw5rE0Sf9O//AAhWhx3DYH/HzbD5v4dcI9Jrs0/vv/l2+8ivvF+v4f8AD9vvP7Dq6znCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPgf/gqb8P8A/hZ//BOP9tjwisH2q4k/Zw+KPiPT7YLua41fwN4avfHOjQRj/ntLqvhyzjhPGJWQkjG5Yqq9Oa/uv8Ffy/rXW1ioO04vzX9df67bn+Uv4e1zUPDOv6H4k0mXyNU8PaxpuuabNz+51DSb2G/s5flIb93cW8b8EHjgjrXlp2afZ3O566d/68vz+4/2P/CPiXT/ABn4U8MeMNJbfpXivw9oviXTH3B9+n67pttqlm25cK263uozuAwc5GM166117/15fl9x57007f15/n950NABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//R/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD+HX/g7X+H39n/ABm/Y5+Kqwf8jb8Mfid8PprkLn/knnirw94jtoJHA+X/AJKfdSQqx+f9+UHyOa4sWtYPya+63+Z00Npeq/r8Dxn/AINS/iD/AGH+2/8AHD4dTz+VaeP/ANmzVdYt4y2Bc654F+IfgV7OEL3ddG8S+I7gEZ2pBIP4sqsK/fku8b/c/wDgjrr3U+z/ADX/AAO33H9+FdxyhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHL+N/Cth468F+L/BOqgHTPGPhfX/CuogqHBsPEOlXek3gKHhgbe7kBU8N0PWh66d/68vz+4a0afZ/13/L7z/HC1vR7/wAPazq+garCbfU9D1O/0fUrc5zBf6ZdS2V5CcgHMVxBIhyAfl5A5FeO9NO39ef5/ed5/q7/APBL/wCIP/C0f+Cdn7FXjJ5/tV1dfs2/CjRNTuS25rjW/B3hTTvBuuzuf+ekus6BfSSL/A7Mv8NerTd6cH/dXn/l/Xe1zhmrTkvN/wBdf67bH3dVkhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9L+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP5Wf+DsH4ff2v8Asgfs5fE6ODzZvA37RE3hGWRVy9tp/wARPh34p1KeVjg7IHv/AIe6XBISVBnmtV5LLXLil7kX2l+a/wCAb0H7zXdfk/8Ag9/vP50f+DfL4g/8IB/wVf8A2aUmn8jTvHMPxQ+H2pHdt83/AISD4V+MJ9Fg7BvN8VaboC7T16rl1QVz4d2qx87r718+tv8AgaM1qq8JeWv9bf132P8ATUr0jjCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/ACWf+Cjnw9/4VX+33+2X4Djg+zWeh/tK/GNtIg27PL8P6t461nW/Dg28AZ0HUtOb5RsOcphSK8qorVJr+8/Ld+r/AD+653Qd4xfl/XRfl95/el/wbi/EL/hOP+CU/wAGNHkn+0XXww8bfGD4e3Tlt0i/8XD1rx1YQSen2bR/HGm28K4G22jgHONzd+Hd6UfJtfj/AJHNVVpvzs/0/P0/C8v3UrYyCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//0/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/ED/AIOJvh0/j7/glJ8er+2tWvL/AOG/iH4T/EWyijjMkiJp/wASfDnhzWbpcA7FsvDXijW7yeQ4C2sE5JA4bHEK9KXlZ/c1+l+/6x1pO0153X9f0v0l/Av/AME4vFepeCf+CgH7FXiXSYbm6vLH9qX4FwNZ2aPJdX9lqvxJ8O6Rqmn2yJlnn1DTL+8solAbc84BVgdrcFN2qQ/xR/F/P+u250yV4yXk/wCun5/cf609eqcIUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAf5p3/BxX8K7/AOG//BVT44azLplxp+i/Fvw38LPib4clkgeK31G2uPh7oHg7X72zlKhLlH8ZeDvEqzuhbZdieJsFMt52IVqr80n+FvzR2UneC8m1+v5ev42j/RD/AMGolz4pP7Evx7sNR069h8JRftN6nqPhjVLiORbW/wBTv/hj8O7PxNaWEj/LLHpy6Rock/k5iS51CVT++84L0YW/s325nb7lf+rffqY1/iXfl/V/8Hr9x/UhXSYhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//U/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDmvGfg3wr8RPCPibwF468P6V4r8GeM9C1Xwx4q8M65ZxX+j6/4f1uym07VtI1OynDRXNlf2VxNbXETjDRyHodpUaTTT1T0a7r8fy+8E7a9Vqflf+zR/wAEOf8Agnb+yj8cLX9oH4W/CrX7nx5oV9cal4Fh8b+N9d8ZeHfh1qFwssa3/hLSNVkbfqVlDK8elar4mufEeqaTJsvdNvbXUYo7xco0acJc0Vqtrtu33v8A+S/U0lUnJWe3W3X+v66n661qZhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB8z/tH/ALGv7Lf7Xmm6Fpf7SnwP8B/F6DwvPPceGrvxRpbf21oDXZiN9Do/iLTZ9P1/TbLUWt7ZtS0601KKw1F7W1e+trhra3KTKEZfFFSt36fP+vO+kZUpSjs2j1v4Y/C34cfBbwN4f+Gfwk8D+F/hz8PvCto1l4e8H+DtGstB0DSoJJpbm4Ntp9hFDB595dzT31/dyK93qF/cXN9fTTXlxPNK0kkklZLZL+l+X3Cbbd27tne0xBQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB//9X+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//W/v4oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/1/7+KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD/9D+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA//R/v4oAx9c8QaL4asW1LXdSttMslYJ51y5HmSEErFDEivNcTFVZhDBHJIVVmCFVcqDSb2Mnw1498IeL3mi8O65bajPAu+W22XNpdrHkKZRaX0FtcvCrFVaZImjVnUM+WQUA01uv1/H5f1Y66gQUAFABQAUAFABQAUAFABQAUAFABQBDcXEFpBNdXU0VtbW8bzT3E8iQwwxRqWklllkISONFBZ3chVAySAM0AcJpnxV+H2sakmkaf4nspr+STyYYpI7y1inlJ2rFb3d3aw2lxJI2FiSGd2lYhYw5IoHyta2/r06fp8z0GgQUAFABQAUAFABQAUAFABQAUAFABQAUAcDrXxR8A+HtRbSdX8SWlvqCMI5reKG9vTbuf4LqSxtbmK1kGRujuJInUEFgo5oKUW9bfjb+v67naWV9Z6laQX+n3UF7ZXUYlt7q2lSaCaNujxyoWVhnIODwwKnBBChLVtC1QAUAFABQAUAFABQAUAFABQAUAFABQBzniPxd4b8I28V14i1e20yKdmWBZfNluJymN/kWltFNdTCPK+Y0ULrHuXeV3LuBpN7f18+geHPF3hvxdby3Xh3V7bU4oGVZ1i82K4gL52efaXMUN1CJMN5bSwosm1thba20Bprf+vn1OjoEFABQAUAFABQAUAFABQAUAFABQAUAUdS1PT9Hsp9R1S8t7CxtV3z3V1KsMMak7VBdurOxCRouXkdgiAuyqwBynh/4leB/FF6dO0PxDa3l9hilq8V5ZTTBAWf7Ml/a232oqoLsLbzCEUucIrMoNxa6fr/AMN/XY7mgQUAFABQAUAFABQAUAFABQAUAFABQAhIAJJAABJJOAAOSSTwAB1J/pQB53/wtv4cf2l/ZP8AwlmnfbPN8ndtu/sPmZ24/tT7N/ZeN3G/7Xs/2u1BXLLez/ry/rueiAggEEEEAgg5BB5BBHBBHQj+tBItABQAUAFABQAUAFABQAUAFABQAUAFAHFeI/iL4L8JXKWfiDXrWxvJFVxaLFd3tyiP9x5oNPt7qW3RxyjzpGrryhIFA1FvW342Oi0fWtJ8QWEWp6Lf22pWExIS5tZBIm9cb43HDxTJkeZDKqSxnh0GaAaa0f8AX9f1sadAgoAKACgAoAKACgAoAKACgAoAKACgDH1zxBovhqxbUtd1K20yyVgnnXLkeZIQSsUMSK81xMVVmEMEckhVWYIVVyoNJvYyfDXj3wh4veaLw7rltqM8C75bbZc2l2seQplFpfQW1y8KsVVpkiaNWdQz5ZBQDTW6/X8fl/VjrqBBQAUAFABQAUAFABQAUAFABQAUAFAENxcQWkE11dTRW1tbxvNPcTyJDDDFGpaSWWWQhI40UFndyFUDJIAzQBwmmfFX4faxqSaRp/ieymv5JPJhikjvLWKeUnasVvd3drDaXEkjYWJIZ3aViFjDkigfK1rb+vTp+nzPQaBBQAUAFABQAUAFABQAUAFABQAUAFABQB59qfxV+H2j6k+kah4nsob+OTyZoo47y6iglB2tFcXdpazWlvJG2VlSadGiYFZAhBoHyt62/r06/r8ju7e4gu4Ibq1miuba4jSaC4gkSaGaKRQ0csUsZKSRupDI6EqwOQSDmgRNQAUAFABQAUAFABQAUAFABQAUAFABQByviXxv4V8HpC3iPWbbTWuAWggZZ7m6mRTtMkdnZxXF00Qb5TKIfKDfKXByFBqLey/T+v67lzw94o8P+K7Nr7w9qltqdsjiOVoC6ywORuVLi2mSK5tnZRuRZ4Yi6jcoIBoBprc3qBBQAUAFABQB/9L+/igD4y/ab/tL/hIPDnmeb/Y/9jy/ZOvk/wBpfbZv7Qx/D5v2b+zN3fZsx1ag1hs+9/8Ahv1PJfhV/aX/AAsTwj/ZXm/aP7ZtfP8AK3Z/s3d/xNt+3/ll/Zv2rzM8bevagqXwu/8AXb8T9J6DAKACgAoAKACgAoAKACgAoAKACgAoA8M/aG/tL/hXcn2Dzfs/9s6d/a/lZx/Zu252+bj/AJZf2l/Z2c8btmeKC4fF+X9el/6sfBi7ty7N27cNu3O7dnjbjndnGMc56dqDU/Uvw1/aH/COaB/a+/8AtX+xdK/tPzM+Z/aH2GD7Z5mefM+0eZvz/Fn3oMHu7bX0NugQUAFABQAUAFABQAUAFABQAUAFAFPUPtX2C++w4+2/Y7n7HnGPtXkv9nzu+XHm7M549aBrdeqPyquvtP2m4+2ed9r8+X7V9o3/AGj7T5jef5/mfvPO83d5u/59+7d82aDc+1f2av7T/wCEQ1b7V5v9m/20/wDZfmbtufs0X277Pu/5Yed5edn7v7R9o/5aGSgznbTv1/4P/BPoygzCgAoAKACgAoAKACgAoAKACgAoAKAPgX9oL+0v+Fj3323zfsn9naX/AGPvz5f2H7InneTnjH9p/wBob8f8tN2ei0G0Ph+ev9elv6uH7Pv9pf8ACx7H7D5v2T+z9U/tjZu8v7B9kk8nzscY/tT+z9m7/lptxQE/h+en9el/6sffVBiFABQAUAFABQAUAFABQAUAFABQAUAfL/7Tv9pf2N4X8nzf7J/tHUPt+3Plfbvs9v8A2Z5uON3k/wBp+Vn/AG+4FBpDd9/6v+h8l6J/aX9s6V/Y3m/2t/aNn/Zvk7vN+3faI/svl7ed3nbOn48UGj2d9up+qlBzhQAUAFABQAUAFABQAUAFABQAUAFAHnPxb/tL/hXHiv8Asnzftf8AZybvJz5n2H7Xb/2pjbzj+zPtnmY/5Z7sUFR+JX7/APDfifm7QbH6RfCP+0v+FceFP7W837X/AGe+zzt3mfYPtdz/AGVndzj+y/sez/pnsoMZfE7d/wDh/wAT0agkKACgAoAKACgAoAKACgAoAKACgAoA/L/xt/af/CX+Jf7Y83+0v7a1H7T527dn7TJ5e3P/ACw8ny/s23939n8ryv3eyg6Fbpt5f8A+h/2Yf7T87xX/AK3+x/K0/O7d5H9p759vlZ+Xzfsu77Rs+bZ9m83jyaCJ2t53+dvzPrmgyCgAoAKACgAoAKACgAoAKACgAoAKAPjL9pv+0v8AhIPDnmeb/Y/9jy/ZOvk/2l9tm/tDH8Pm/Zv7M3d9mzHVqDWGz73/AOG/U8l+FX9pf8LE8I/2V5v2j+2bXz/K3Z/s3d/xNt+3/ll/Zv2rzM8bevagqXwu/wDXb8T9J6DAKACgAoAKACgAoAKACgAoAKACgAoA8M/aG/tL/hXcn2Dzfs/9s6d/a/lZx/Zu252+bj/ll/aX9nZzxu2Z4oLh8X5f16X/AKsfBi7ty7N27cNu3O7dnjbjndnGMc56dqDU/Uvw1/aH/COaB/a+/wDtX+xdK/tPzM+Z/aH2GD7Z5mefM+0eZvz/ABZ96DB7u219DboEFABQAUAFABQAUAFABQAUAFABQBieJf7Q/wCEc1/+yd/9q/2Lqn9meX/rP7Q+wz/Y/Lx/y0+0eXs/2sUDW6vtfU/LRt25t+7fuO7dnduz827PO7PXPOeveg3PvP8AZ4/tL/hXcf2/zfs/9s6j/ZHmbsf2bttt3lbv+WX9pf2jjHG7figyn8X5/wBelv6ue50EBQAUAFABQAUAFABQAUAFABQAUAFAH52fGv8AtP8A4WT4i/tPzc+bbfYPM3eX/Zn2WL7H9nz8vlbd2/y/l+0/aN370yUG8bWVvw7/AOZ1v7OH9p/8Jxd/ZfN/s7+xbr+1cbvIx5sH2LzP4PP+0f6jP7zy/tOz5POoFO1vPp/wP+Afc1BiFABQAUAFAH//0/7+KAMbXPD2i+JbFtN17TbbU7JmEnk3CnMciggSwSoVmt5grMomgdJQrMoYKzBgabWxk+GfAPhDwe80nh3RLbT5518uW6MlzeXbRkhjELq+nublIWZVZoY5REzIjMpKqVAbb3f6fh8/6udfQIKACgAoAKACgAoAKACgAoAKACgAoAhuLeC7gmtbqCK5triN4Z7eeNJoZ4ZFKyRSxSApJG6kq6OCrKcEEHFAHB6Z8Kfh7o+ppq+n+GbKK/jkE0Mkk17dRW8yncstvaXdzNZ28kbYaJ4YI2iYBoipVTQPmb0v/Xr1/X5HoVAgoAKACgAoAKACgAoAKACgAoAKACgAoA4HWvhd4B8Q6i2rav4btLjUHYSTXEU17ZG4cfx3UdjdW0V1IcDdJcRyuwADFhxQUpNaX/C/9f12O0srGz020gsNPtYLKytYxFb2ttEkMEMa9EjiQKqjOScDliWOSSWCW76lqgAoAKACgAoAKACgAoAKACgAoAKACgDm/EnhDw14ut47XxFpFtqccDM0DyGWG4ty+N/kXdtJDdwiTavmJFMiybEL7tq7QabW39fLqHhvwh4a8I28lr4d0i20yOdlad4zLNcXBTOzz7u5kmu5hHuby0lmdY97lNu5twDbe/8AXy6HSUCCgAoAKACgAoAKACgAoAKACgAoAKAKOpaZp+s2U+m6rZ29/YXS7J7W6iWWGQAhlJVujowV45Fw8bqsiEOqsoByfh/4aeBvC16dS0Pw9a2l/wDNsupJ7y+mgDgq/wBmbULm5+yllLIxtvKJRmjPyMysDcm+v6f8P/Xc7qgQUAFABQAUAFABQAUAFABQAUAFABQAhAIIIBBBBBGQQeCCDwQR1B/rQB51/wAKj+HH9pf2t/wimn/a/N87Zvu/sHmbt2f7K+0f2XjP/LP7J5ftQVzS2u/68/67HooAAAAAAAAAGAAOAABwAB0A/pQSLQAUAFABQAUAFABQAUAFABQAUAFABQBxXiP4deC/Ftyl54g0G1vryNVQXay3dlcuifcSafT7i1luEQcIk7yKi8IADQNSa0v+FzotH0XSfD9hFpmi2FtpthCSUtrWMRpvbG+Rzy8sz4HmTSs8sh5dzigG29X/AF/X9bmnQIKACgAoAKACgAoAKACgAoAKACgAoAxtc8PaL4lsW03XtNttTsmYSeTcKcxyKCBLBKhWa3mCsyiaB0lCsyhgrMGBptbGT4Z8A+EPB7zSeHdEttPnnXy5boyXN5dtGSGMQur6e5uUhZlVmhjlETMiMykqpUBtvd/p+Hz/AKudfQIKACgAoAKACgAoAKACgAoAKACgAoAhuLeC7gmtbqCK5triN4Z7eeNJoZ4ZFKyRSxSApJG6kq6OCrKcEEHFAHB6Z8Kfh7o+ppq+n+GbKK/jkE0Mkk17dRW8yncstvaXdzNZ28kbYaJ4YI2iYBoipVTQPmb0v/Xr1/X5HoVAgoAKACgAoAKACgAoAKACgAoAKACgAoA891P4U/D3WNTfV9Q8M2Ut/JIZppI5r21iuJmO5pbi0tLmGzuJJGy0rzQSNKxLSlizGgfM1pf+vXp+nzO8t7eC0ghtbWCK2treNIYLeCNIYYIY1CxxRRRgJHGigKiIAqqMAADFAiagAoAKACgAoAKACgAoAKACgAoAKACgDlfEvgjwr4wSFfEejW2pNbgrBOzT211CjHcY47yzlt7pYi3zGITeUW+YoTksDUmtn+v9f12Lnh7wv4f8KWbWPh7S7bTLZ3EkqwB2lncDar3FzM8tzcuqnajTzSlFO1SATQDbe5vUCCgAoAKACgD/2Q==" } }, "cell_type": "markdown", "id": "7f64359a-2158-4ee4-8037-d790960f0b00", "metadata": {}, "source": [ "### Labelling Exceptional Divisors\n", "\n", "In the examples above, the labelling of the coordinates is a bit arbitrary. If we think of the coordinates used in the process of resolving singularities in a binary tree (where each copy of $\\mathbb(C)^2$ is a node, and a node's children are itself under each chart, with the left child corresponding to the chart where the first homogenous coordinate is nonzero, and the right child corresponding to the chart where the second homogenous coordinate is nonzero), then for each copy of $\\mathbb(C)^2$, $n$ in the coordinate system is the index of the corresponding node if the binary tree were stored in an array. This labelling is a bit confusing, and mostly exists to make writing the code easier. (It also breaks down when we have multiple singularities.)\n", "\n", "Fortunately, there are better ways to label exceptional divisors, and the coordinates associated with them. Consider the figure below:\n", "
\n", "\n", "
\n", "Here, $C$ is the curve and $L$ is a line not tangent to $C$. If we blow it up, we get something that looks like this:\n", "
\n", "\n", "
\n", "We label $C$ as $E_{0, 1}$ and $L$ as $E_{1, 0}$. We get another exceptional divisor in this blow-up, which we label $E_{1, 1}$ by adding the labellings of $C$ and $L$. \n", "\n", "**Defn:** Let $L$ and $L'$ be two divisors (curves) intersecting at a point $P$. The *divisors between $L$ and $L'$* are the exceptional divisors that result from blowing up P (and inductively, intersection points of $L$, $L'$, and previous exceptional divisors). \n", "\n", "Setting $E_{0, 1}$ and $E_{1, 0}$ as above, we can inductively label the exceptional divisors that appear in our blow-ups, where $E_{\\kappa + \\kappa', r + r'}$ is the exceptional divisor that appears in the blow-up of the intersection of $E_{\\kappa, r}$ and $E_{\\kappa', r'}$. In this way, as we blow up intersections of exceptional divisors, we construct a *Stern-Brocot tree*.\n", "
\n", "\n", "
\n", "\n", "In this tree, two vertices are connected if they intersect in the graph of a blow-up. The fractions (orange) are constructed by $\\frac{\\kappa}{\\kappa + r}$ for $E_{\\kappa, r}$. Notice that they increase from left to right, and are always in lowest terms (i.e. the numerator and denominator are coprime). \n", "\n", "The values of $\\kappa$ and $r$ also give us information about the coordinate system. If we denote the starting coordinate system $(x, y)$, then the change of coordinates to where $E_{\\kappa, r}$ first appears is given by $(x, y) = (\\tilde{x}^r\\tilde{y}^a, \\tilde{x}^\\kappa\\tilde{y}^b)$, where $a, b$ are integers that can be uniquely determined given $\\kappa, r$.\n" ] }, { "cell_type": "code", "execution_count": null, "id": "e4895838-3747-47a0-9f44-44b4c3dfda8b", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "SageMath 10.4", "language": "sage", "name": "sagemath-10.4" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.4" } }, "nbformat": 4, "nbformat_minor": 5 }