
Kernel: SageMath 10.6

Some background

Let be an algebraically closed field.

Defn: Affine -space over , denoted , is the set of -tuples of elements of . An element of is called a point.

Defn: Projective -space over , denoted , is defined as the set of equivalence classes of -tuples with

entries from , under the equivalence relation , for . Essentially, takes each line

passing through the origin of as one point.

Defn: A set (resp.) is algebraic when it is the zero set of some set of polynomials (resp. homogenous

polynomials) . (We'll denote the zero set of by).

Defn: The Zariski topology is defined by taking the open sets to be the complements of the algebraic sets. Note that it is

indeed a toplopgy, i.e. the intersection of two open sets is open (since the union of two algebraic sets is algebraic) and the

union of any family of open sets is open (since the intersection of any family of algebraic sets is algebraic).

Defn: A subset of a topological space is irreducible when it cannot be expressed as the union of two proper subsets

both closed in .

Defn: An affine or projective variety is an irreducible set under the Zariski topology. Varieties are basically the zero sets of

irreducible polynomials.

In [1]:

Out[1]:

Singularities

For a plane curve given by the equation , the regular points are the points where the curve is smooth. This is

equivalent to the points on the curve where the partial derivatives of do not both vanish. The singular points (a.k.a.

singularities) are the points on the curve that aren't regular, namely where

The code below computes and prints these points for the curve given above:

In [2]:

Out[2]:

Resolution of Singularities

We can "resolve" singularities (i.e. make them smooth) via blow-ups.

Defn: The blow-up of at is the (closed) subset of defined by the equations

.

k

n k An n k An

n k Pn n + 1 (a ​, ...a ​)0 n

k (a ​, ...a ​) ∼0 n (λa ​, ...λa ​)0 n λ = 0 Pn

An

Y ⊂ An Y ⊂ Pn

T T Z(T)

Y

Y

reset()
%display latex
Partitions.options.latex="list"
load("blowup.sage")
p = y^2-x^2*(x+1)
p = y^2-x^7
c = Curve(p)
show(p)

−x +7 y2

f(x, y) = 0
f

​ =
∂x
∂f

0, ​ =
∂y
∂f

0, f(x, y) = 0.

show(latex(c.getSingularities()))

x = 0, y = 0[[]]

An 0 X A ×n Pn−1 {x ​y =i j y ​x ​∣i, j =i j

1, ...n}

There is a natural morphism given by the projection to the affine part of an element of .

A few notes:

1. Let be a point in . If , then is a single point, since we can uniquely determine the homogenous

coordinates for the projective part. Indeed, if , then for each , . We can set to be anything other

than 0, and this yields the same homogenous coordinate (any such choice of is just a scalar multiple of any other

choice). In particular, setting gives .

2. since the homogenous coordinates of the projective part are subject to no restriction.

3. The blow-up of looks like , except the point has been replaced by a copy of , denoted as the

exceptional divisor.

4. Let be a line passing through , given by parametric equations with a set of not all 0 and where

. Let . can be written parametrically as , (which is true

because the are homogenous coordinates). For , this parameterization still makes sense, so altogether, it

gives the closure of in . Note that the slope of the line determines (i.e. intersects

according to its slope).

Defn: Let be a closed subvariety of passing through (we can just think of as a polynomial curve passing

through). The blow-up of at the point is given by (closure of the inverse image of , analogous

to above?????), with as defined above. is called the strict transform (moving forward, we'll denote all strict transforms

with tildes), and when we compute the total inverse image of under , we also get a copy of , which intersects

according to the slope(s) of where it passes through . We explore this in more depth in the example below.

Blow-ups of

Let be the homogeneous coordinates in the blow-up of at , which we will denote . The blow-up

of is covered by two sets, namely and . With respect to this cover, there are two charts:

 given by and given by .

Note that in , the choice of coordinates comes from the fact that we can write in terms of and using the equation

 (from the definition of the blow-up). A similar argument applies to the choice of coordinates for . Also note that

[insert note about which points are "captured" by which chart]

To blow up a curve , consider the map given by (same as defined above; we

changed the name to avoid confusion). We want to compute and . Note that

imbeds into without restricting the homogeneous part, and applying and restricts the imbedding to

since the two charts come from the equation . can be thought of as a circle, and each chart covers all but one

point, so the idea is that for each chart, we can remove a point from the circle, flatten it into a line, and treat the

homogeonous coordinates as an affine coordinate (hence why the charts map to). Together, the images of under

these two charts make up .

Once we blow up , if singularities still exist in the image of under either chart, we continue the process.

ϕ : X → An X

P An P = O ϕ (P)−1

a ​ =i  0 j y ​ =j ​y ​

a ​i

a ​j
i y ​i

y ​i

y ​ =i a ​i (y ​, ...y ​) =1 n (a ​, ...a ​)1 n

ϕ (O) ≅−1 Pn−1

An An O Pn−1

L O x ​ =i a ​ti a ​i t ∈
A1 L =′ ϕ (L −−1 O) ∈ X − ϕ (O)−1 L′ x ​ =i a ​ti y ​ =i a ​i

y ​i t = 0
L̄′ L′ X (a ​, ...a ​)1 n L̄ ϕ (O)−1

Y An O Y

O Y O =Y
~

​ϕ (Y − O)−1 ˉ Y

ϕ Y
~

Y ϕ E Y
~

Y O

C2

[u : v] C2 O X ⊆ C ×2 P1

C2 U = {u = 0} V = {v = 0}

ϕ ​ :1 U → Bl ​CO
2 (x, y)[u : v] ↦ (x, ​)

u
v ϕ ​ :2 U → Bl ​CO

2 (x, y)[u : v] ↦ (y, ​)
v
u

ϕ ​1 y x ​

u
v

xv = yu ϕ ​2

C ψ : X → C2 (x, y)[u : v] ↦ (x, y) ϕ

ϕ ​(ψ (C) ∩1
−1 U) ϕ ​(ψ (C) ∩2

−1 V) ψ (C)−1

C C ×2 P1 ϕ ​1 ϕ ​2 X

xv = yu P1

C2 C

C
~

C C

Computing the charts

The code below computes the equations of the images of under the two charts at each singularity. Note that in the

equations, we perform the change of variables and . This allows us to perform the

substitutions (which comes from the fact that) into the original polynomial to get the

polynomial under the first chart with the change of variables. Likewise, the polynomial under the second chart is given by

substituting into the original polynomial.

In [3]:

Out[3]:

Computing the strict transform and exceptional divisor

Next, we can factor the images of under each chart to get and . will be a factor of raised to some power, and

 is everything else. In the example below, we're looking at the image of under . We can also compute the number

, which is number of copies of the exceptional divisor we have, and corresponds to the power the factor of is raised

to.

In [4]:

Out[4]: Original polynomial:

Resolving further singularities

In this example, under still contains a singularity, so we need to blow it up again. Note that when looking for

singularities in , we only need to check points that intersect with (i.e. points where = 0), since these are the points

at the original singularity point. We already know that points away from the singularity were regular to begin with, so even if

singularities appear at those points in blow-ups, we can ignore them.

In [5]:

Out[5]:

C

(x, ​) ↦
u
v (x ​, y ​)1 1 (y, ​) ↦

v
u (x ​, y ​)2 2

x = x ​, y =1 x ​y ​1 1 y = x ​

u
v

y = x ​,x =2 x ​y ​2 2

chartpolys = c.computeCharts(x1, y1, x2, y2)
chartpolys
img = chartpolys[0][0]

Original polynomial:

−x +7 y2

Singularity:

x = 0, y = 0[]

Polynomial under first chart (first homogenous coordinate is nonzero):

−x ​ +1
7 x ​y ​1

2
1
2

Polynomial under second chart (second homogenous coordinate is nonzero):

−x ​y ​ +2
7

2
7 x ​2

2

C C
~

E E xn

C
~

C ϕ ​1

N ​E x ​n

stne1 = computeStrictTransformAndExceptionalDivisor(img, x1, 0)

−x ​ +1
7 x ​y ​1

2
1
2

E : {x ​ =1 0}

:C
~

{−x ​ +1
5 y ​ =1

2 0}

N ​ =E 2

C
~

ϕ ​1

C
~

E x ​n

c1 = Curve(stne1[0], x1, y1)
show(c1.polynomial)
c1.getSingularitiesWithConstraint()
show(c1.singularities)

−x ​ +1
5 y ​1

2

x ​ = 0, y ​ = 0[[1 1]]

In [6]:

Out[6]:

In [7]:

Out[7]: Original polynomial:

The function below takes a polynomial curve and goes through all the steps until its singularities are fully resolved.

In [8]:

Out[8]:

Original polynomial:

chartpolys = c1.computeCharts(x_3, y_3, x_4, y_4)

Original polynomial:

−x ​ +1
5 y ​1

2

Singularity:

x ​ = 0, y ​ = 0[1 1]

Polynomial under first chart (first homogenous coordinate is nonzero):

−x ​ +3
5 x ​y ​3

2
3
2

Polynomial under second chart (second homogenous coordinate is nonzero):

−x ​y ​ +4
5

4
5 x ​4

2

stne2 = computeStrictTransformAndExceptionalDivisor(chartpolys[0][0], x3, stne1[1])

−x ​ +3
5 x ​y ​3

2
3
2

E : {x ​ =3 0}

:C
~

{−x ​ +3
3 y ​ =3

2 0}

N ​ =E 4

fullyResolveSingularities(p)

Original polynomial:

−x +7 y2

Singularity:

x = 0, y = 0[]

Polynomial under first chart (first homogenous coordinate is nonzero):

−x ​ +1
7 x ​y ​1

2
1
2

Polynomial under second chart (second homogenous coordinate is nonzero):

−x ​y ​ +2
7

2
7 x ​2

2

−x ​ +1
7 x ​y ​1

2
1
2

E : {x ​ =1 0}

:C
~

{−x ​ +1
5 y ​ =1

2 0}

N ​ =E 2

Original polynomial:

−x ​ +1
5 y ​1

2

Singularity:

Original polynomial:

Original polynomial:

Original polynomial:

x ​ = 0, y ​ = 0[1 1]

Polynomial under first chart (first homogenous coordinate is nonzero):

−x ​ +3
5 x ​y ​3

2
3
2

Polynomial under second chart (second homogenous coordinate is nonzero):

−x ​y ​ +4
5

4
5 x ​4

2

−x ​ +3
5 x ​y ​3

2
3
2

E : {x ​ =3 0}

:C
~

{−x ​ +3
3 y ​ =3

2 0}

N ​ =E 4

Original polynomial:

−x ​ +3
3 y ​3

2

Singularity:

x ​ = 0, y ​ = 0[3 3]

Polynomial under first chart (first homogenous coordinate is nonzero):

x ​y ​ −7
2

7
2 x ​7

3

Polynomial under second chart (second homogenous coordinate is nonzero):

−x ​y ​ +8
3

8
3 x ​8

2

x ​y ​ −7
2

7
2 x ​7

3

E : {x ​ =7 0}

:C
~

{y ​ −7
2 x ​ =7 0}

N ​ =E 6

No singularities for =C
~

y ​ −7
2 x ​ that intersect the exceptional divisor7

−x ​y ​ +8
3

8
3 x ​8

2

E : {x ​ =8 0}

:C
~

{−x ​y ​ +8 8
3 1 = 0}

N ​ =E 6

No singularities for =C
~

−x ​y ​ +8 8
3 1 that intersect the exceptional divisor

Original polynomial:

Original polynomial:

Labelling Exceptional Divisors

In the examples above, the labelling of the coordinates is a bit arbitrary. If we think of the coordinates used in the process

of resolving singularities in a binary tree (where each copy of is a node, and a node's children are itself under each

chart, with the left child corresponding to the chart where the first homogenous coordinate is nonzero, and the right child

corresponding to the chart where the second homogenous coordinate is nonzero), then for each copy of , in the

coordinate system is the index of the corresponding node if the binary tree were stored in an array. This labelling is a bit

confusing, and mostly exists to make writing the code easier. (It also breaks down when we have multiple singularities.)

Fortunately, there are better ways to label exceptional divisors, and the coordinates associated with them. Consider the

figure below:

Here, is the curve and is a line not tangent to . If we blow it up, we get something that looks like this:

−x ​y ​ +4
5

4
5 x ​4

2

E : {x ​ =4 0}

:C
~

{−x ​y ​ +4
3

4
5 1 = 0}

N ​ =E 4

No singularities for =C
~

−x ​y ​ +4
3

4
5 1 that intersect the exceptional divisor

−x ​y ​ +2
7

2
7 x ​2

2

E : {x ​ =2 0}

:C
~

{−x ​y ​ +2
5

2
7 1 = 0}

N ​ =E 2

No singularities for =C
~

−x ​ +1
5 y ​ that intersect the exceptional divisor1

2

(C)2

(C)2 n

C L C

We label as and as . We get another exceptional divisor in this blow-up, which we label by adding the

labellings of and .

Defn: Let and be two divisors (curves) intersecting at a point . The divisors between and are the exceptional

divisors that result from blowing up P (and inductively, intersection points of , , and previous exceptional divisors).

Setting and as above, we can inductively label the exceptional divisors that appear in our blow-ups, where

 is the exceptional divisor that appears in the blow-up of the intersection of and . In this way, as we

blow up intersections of exceptional divisors, we construct a Stern-Brocot tree.

In this tree, two vertices are connected if they intersect in the graph of a blow-up. The fractions (orange) are constructed

by for . Notice that they increase from left to right, and are always in lowest terms (i.e. the numerator and

denominator are coprime).

The values of and also give us information about the coordinate system. If we denote the starting coordinate system

, then the change of coordinates to where first appears is given by , where are

integers that can be uniquely determined given .

In []:

C E ​0,1 L E ​1,0 E ​1,1

C L

L L′ P L L′

L L′

E ​0,1 E ​1,0

E ​κ+κ ,r+r′ ′ E ​κ,r E ​κ ,r′ ′

​

κ+r
κ E ​κ,r

κ r

(x, y) E ​κ,r (x, y) = (​ , ​)x~ry~a x~κy~b a, b
κ, r

