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1. Introduction

Through out this note we will denote R = k[x1, ..., xn] where k is a field. By a basis of an ideal,
we mean a generating set of the ideal (not necessarily independent).

Given an ideal I = ⟨f1, ..., fm⟩ of R, consider the following problems:

Question 1.1 (Division and ideal membership problem). Given f ∈ R, determine if f ∈ I. If not,
express the image of f in R/I in terms of a basis for the vector space R/I over k.

Question 1.2 (The problem of solving polynomial equations). Find solutions in kn of the equations

f1(x1, ..., xn) = ... = fm(x1, ..., xn) = 0

namely compute the variety V (I).

When there is only one variable, problem (1) can be solved using Euclid’s algorithm, which
computes the unique monic generator g of the ideal I = ⟨f1(x), ..., fm(x)⟩. We can write f = gq+ r
using division algorithm, where r is the remainder, namely the image of f in R/I, expressed in the

basis {1, x, ..., xdeg(g)−1}. When the polynomials f1, ..., fm are linear, problem (2) is solved using
Gaussian elimination that reduces the matrix for the system of equations into row echelon form.

We shall try to generalize the division algorithm with the idea of ”initial ideals”. During which
we will be able to define the Gröbner basis. We will then discuss its properties and relations to the
above problems. We will see how to find such a basis and its applications in solving question 1.2.

2. Monomial Orderings

Both Euclid’s algorithm and Gaussian elimination take in I = ⟨f1, ..., fm⟩ and outputs a gener-
ating set for the ideal that is simpler to deal with. Observe that in each step, we are reducing the
polynomias with respect to some ordering of the terms.

Euclid’s algorithm uses division to find the greatest common denominator, where the degree of
the polynomial is reduced. This uses the ordering

1 < x < x2 < ...



Gaussian elimination eliminates the number of variables, namely a system of linear equations in
echelon form satisfies that the i-th equation does not contain the terms x1, ..., xi−1. This corresponds
to the ordering

xn < xn−1 < ... < x1

In general we can define similar orderings on all monomials of R.

Definition 2.1. A monomial order is a total order > on the set of monomials in {xα = xa11 ...xann :
α = (a1, ..., an) ∈ Nn} ⊆ R such that for multi-indices α, β, γ,

(1) xα < xβ ⇒ xα+γ < xβ+γ

(2) 1 < xα for all α ̸= (0, ..., 0).

From the conditions we see if xα is divisible by xβ, then xα ≥ xβ as a result of xα−β ≥ 1. This
shows that the a monomial order > is a well-ordering:

Lemma 2.2 (Eis, Lemma 15.2). Given any monomial order, every set of monomials have a least
element.

Proof. Let X be a set of monomials. Since R is Noetherian, the ideal generated by X is generated
by a finite subset Y ⊆ X. Then every element in X is a multiple of some element in Y . So each
element in X is greater than or equal to some element in Y . Hence the least element of X would
be the least element of the finite set Y . □

Example 2.3 (Lexicographic ordering). xα > xβ if and only if the first non-zero entry of α − β is
positive. This is the order by index when the polynomials are linear. ⋄

Example 2.4 (Degree lexicographic ordering). xα > xβ if and only if deg xα > deg xβ or deg xα =
deg xβ and the first non-zero entry of α − β is positive. This is the order by degree when there is
only one variable. ⋄

Example 2.5 (Reverse lexicographic ordering). xα > xβ if and only if deg xα > deg xβ or deg xα =
deg xβ and the last non-zero entry of α − β is positive. This ordering favours larger total degree,
but when total degree is equal, it favours smaller power on the rightmost variable. ⋄

Ideals generated by monomials are called monomial ideals. Similar to homogeneous ideals
in a graded ring, working with monomial ideals simplifies many problems. For example, xα is a
member of the ideal I = ⟨xα1 , ..., xαm⟩ if and only if xα =

∑
i fix

αi for some fi ∈ R, and by
comparing coefficients we see this holds if and only if xα is divisible by some xαi ; similarly, an
arbitrary polynomial f is a member of I if and only if each term of f is divisible by some xαi [Cox,
Lemma 4.2.3]. Finding greatest common divisors and least common multiples for monomials is also
trivialized to

GCD(xα, xβ) = x
min(α1,β1)
1 ...xmin(αn,βn)

n

LCM(xα, xβ) = x
max(α1,β1)
1 ...xmax(αn,βn)

n

To describe a division algorithm on R, we use the following terminology:

Definition 2.6. Let > be a monomial order and f ∈ R. The initial term of f , written as in>(f)
or in(f) (when the order is clear), is the greatest term of f with respect to >. The initial ideal
of an ideal I is the ideal generated by all initial terms of elements in I:

in>(I) = ⟨in>(f) : f ∈ I⟩

When working with monomials, since k is a field, scalar multiples do not affect the ideals they
generate. Sometimes we will apply definitions or results to monomials that are not monic, this
would be interpreted as first multiplying a scalar to cancel the coefficient, and then apply the
results.



Theorem 2.7 (Division Algorithm). Let > be a monomial order and let f1, ..., fs ∈ R. Then every
f ∈ R can be written in form

f = q1f1 + ...+ qsfs + r

where qi, r ∈ R and either r = 0 or r is a linear combination of monomials that are not in
⟨in(f1), ..., in(fs)⟩. Furthermore, for each i,

in(f) ≥ in(qifi)

Proof. We begin by setting p = f and q1 = ... = qs = r = 0, and repeat the following steps until
p = 0:

(1) If some in(fi) divides in(p), then subtract in(p)
in(fi)

fi from p and add in(p)
in(fi)

to qi.

(2) If no in(fi) divides in(p), then subtract in(p) from p and add it to r.

First we show that the algorithm terminates. Suppose we performed step (1), setting p to be

p′ = p− in(p)

in(fi)
fi

Observe that the initial term of in(p)
in(fi)

fi is the same as the initial term of p, and it will be cancelled

out in the difference. Thus the initial term of the new value of p is strictly smaller. Suppose we
performed step (2), then we also see that the initial term of p become strictly smaller.

By Lemma 2.2, a decreasing chain of initial terms would eventually stabilize after finitely many
steps, which means that we would not be able to perform either step (1) or (2). Thus we reach the
case p = 0 and the algorithm terminates.

It remains to show the algorithm outputs the required polynomials. During each step, the
following holds

f = q1f1 + ...+ qsfs + p+ r

because the changes on the right hand side cancel out. Note that in each step, the initial term of

p is at most the initial term of f . As a result, terms added to qi satisfy in(f) ≥ in
(

in(p)
in(fi)

fi

)
, so

in(f) ≥ in(qifi). At the end of the algorithm, we have p = 0 and terms are added to r only if they
are not divisible by any in(fi), so the final expression

f = q1f1 + ...+ qsfs + r

satisfies the requirements. □

Note that for an ideal I = ⟨f1, ..., fs⟩, the ideals ⟨in(f1), ..., in(fs)⟩ and in(I) may be different, as
seen in the following example.

Example 2.8. Let I = ⟨xy, y2 − x⟩, then
y · (xy)− x · (y2 − x) = x2 ∈ I

Using degree lexicographic ordering, we have x2 ∈ in(I). But

⟨in(xy), in(y2 − x)⟩ = ⟨xy, y2⟩
does not contain x2. ⋄

When the ideals ⟨in(f1), ..., in(fs)⟩ and in(I) are the same, the remainder in the division algorithm
is expressed in a basis for R/I by the following theorem, thus giving us an answer to Question 1.1.
In particular, f is inside I if and only if the remainder is 0. We shall see later that such a basis
f1, ..., fs for I always exists, and is called a Gröbner basis.

Theorem 2.9 (Macaulay’s Theorem [Eis, Thm 15.3]). Let I be any ideal of R, for any monomial
order >, the set B of all monomials not in in(I) form a basis for R/I.



Proof. Suppose B is not linearly independent. Let
∑

i uix
βi ∈ I be a non-trivial linear relation

where 0 ̸= ui ∈ k, xβi ∈ B. Say uix
βi is the initial term of this expression, then xβi ∈ in(I),

contraidtcting the definition of B.
Suppose B does not span R/I. By Lemma 2.2 there is an element f with minimal initial term

such that f + I is not in the span of B. If in(f) ∈ B, then subtracting in(f) gives an element with
smaller initial term, whose image is also not in the span of B, contradicting the minimality of f .
If in(f) /∈ B, so in(f) ∈ in(I). Say in(f) = in(g) for some g ∈ I. Then f − g has the same image
in R/I as f , but with a smaller initial term, again contradicting minimality of f . □

3. Gröbner Basis

Theorem 3.1 (Dickson’s Lemma, [Cox, Theorem 2.4.5]). Let I = ⟨xα : α ∈ A⟩ be a monomial
ideal. Then I = ⟨xα1 , ..., xαs⟩ for some α1, ..., αs ∈ A.

Proof. When n = 1, A ⊆ N, so we can take its least element α and then I = ⟨xα⟩.
Suppose for an induction that the theorem is true for n− 1. Let

J = ⟨xβ : β = (α(1), ..., α(n− 1)), α ∈ A⟩ ⊆ k[x1, ..., xn−1]

By induction hypothesis J is generated by finitely many β’s, say J = ⟨xβ1 , ..., xβt⟩. For each
i, we can find some αi ∈ A such that αi = (βi, αi(n)). Take m = maxi{αi(n)}, and for each
0 ≤ j ≤ m− 1, define ideals

Jj = ⟨xβ : β = (α(1), ..., α(n− 1)), α ∈ A,α(n) = j⟩

Now by induction hypothesis again, Jj = ⟨xβ
(j)
1 , ..., x

b
(j)
tj ⟩. Now for each α ∈ A, let β = (α(1), ..., α(n−

1)). Then xβ ∈ J and is a multiple of xβi for some i. If α(n) ≥ m > αi(n), then xα would be a

multiple of xαi . If α(n) ≤ m− 1, then xβ ∈ Jα(n) and is a multiple of xβ
(α(n))
i x

α(n)
n . Therefore I is

generated by a subset of the finite set

{xαi : i = 1, ..., t} ∪
m−1⋃
j=0

{xβ
(j)
i xjn : i = 1, ..., tj} ⊆ I

and the powers on x are indeed a subset of A, finishing the induction. □

Note that in(I) is a monomial ideal, so applying Dickson’s lemma yields the following corollary

Corollary 3.2. Let I ⊆ R be a non-zero ideal. in(I) has a finite basis of form {in(g1), ..., in(gt)}
for some g1, ..., gt ∈ I.

Something interesting to note is that given a finite basis for a monomial ideal I, if any element
is divisible by another, we can remove it and obtain a smaller basis. Repeating this process we get
a basis whose elements do not divide each other. Such a ”minimal” basis of (monic) monomials is
unique because given two such bases A and B, each element in A would be divisible by an element
in B and vise versa, giving us A ⊆ B and B ⊆ A.

Theorem 3.3 (Gröbner basis theorem [Cox, Thm 2.5.4]). Let I ⊆ R be an ideal. Then I =
⟨g1, ..., gt⟩ for g1, ..., gt ∈ I from the previous Corollary.

Proof. Say I is non-zero. Pick any monomial order. By the previous corollary, we can write
in(I) = ⟨in(g1), ..., in(gt)⟩ for some g1, ..., gt ∈ I. We shall proceed to show that I = ⟨g1, ..., gt⟩.

Let f ∈ I, apply division algorithm and get

f = q1g1 + ...+ qtgt + r



where either the monomials in r is not divisible by any in(gi) or r = 0. However r = f − q1g1− ...−
qtgt ∈ I implies in(r) ∈ in(I) = ⟨in(g1), ..., in(gt)⟩, which means in(r) is divisible by some in(gi), so
we must be in the case r = 0 and f ∈ ⟨g1, ..., gt⟩. □

Definition 3.4. Let > be a monomial order and I ⊆ R. A Gröbner basis of I with respect to >
is a finite set of elements g1, ..., gt ∈ I such that

in(I) = ⟨in(g1), ..., in(gt)⟩

We know from the previous theorem that a Gröbner basis for I is a basis for I. Recall from last
section that such a basis gives a solution to Question 1.1 when used with division algorithm. By
Dickson’s lemma, such a basis always exists. Although the proof of Dickson’s lemma is technically
constructive, it is too complicated practically. To fully answer Question 1.1, we shall develop an
algorithm to compute for a Grob̈ner basis in the next section.

4. Buchberger’s Criterion and Algorithm

Macaulay’s Theorem shows that when dividing using a Gröbner basis, the remainder is always
unique, but in general, the remainder from division algorithm depends on the choice of i in step
(1) (as in the proof of Theorem 2.8). We shall make this process determinate by taking i to be
maximal. This requires us to treat the set {f1, ..., fs} as an ordered s-tuple.

Definition 4.1. Write f
F
for the unique remainder from the determinate division algorithm, when

dividing f by ordered s-tuple F = (f1, ..., fs).

Definition 4.2. Let 0 ̸= f, g ∈ R be polynomials. The S-polynomial of f and g is

S(f, g) =
LCM(in(f), in(g))

in(f)
f − LCM(in(f), in(g))

in(g)
g ∈ R

Similar to two integers x, y satisfy the relation lcm(x,y)
x x − lcm(x,y)

y y = 0, the S-polynomials are

constructed to match the initial terms of f and g and subtract them, so that the initial terms
cancel out. In particular,

(⋆) in(S(f, g)) < in

(
LCM(in(f), in(g))

in(f)
f

)
With these notations, we can state Buchberger’s Criterion for when a basis is a Gröbner basis.

Theorem 4.3 (Buchberger’s Criterion). Let I ⊆ R be an ideal. A basis G = {g1, ..., gt} ⊆ I is a
Gröbner basis if and only if for all pairs i ̸= j, we can view G as an ordered t-tuple in some order,
and have

S(gi, gj)
G
= 0

Before giving the proof, we shall first show a useful property of S-polynomials which will be an
essential step of the proof.

Lemma 4.4. Suppose we have a sum
∑t

i=1 pi where the initial terms of pi differ only by scalars.

If in
(∑t

i=1 pi
)
< in(pi), then

∑t
i=1 pi is a linear combination of S(p1, pj) with coefficients in k.

Proof. Since all pi have the same initial term and in
(∑t

i=1 pi
)
< in(pi) suggests that the initial

term gets canceled, let di be the leading coefficient of pi, we must have
∑t

i=1 di = 0. Observe that

LCM(in(pi), in(pj))

in(pi)
=

1

di



So

S(pi, pj) =
1

di
pi −

1

dj
pj

Now
t∑

j=2

−djS(p1, pj) =
t∑

j=2

pj −
dj
d1

p1

=
t∑

j=2

pj +
−
∑t

j=2 dj

d1
p1

=
t∑

j=2

pj +
d1
d1

p1, since
t∑

j=1

dj = 0

=

t∑
i=1

pi

□

proof of Buchberger’s Criterion. Let G = {g1, ..., gt} be a basis of I. Suppose G is a Gröbner basis.

Since S(gi, gj) ∈ I, by the division algorithm we automatically have S(gi, gj)
G
= 0.

Conversely, suppose all S(gi, gj) have remainder 0. Suppose for a contradiction that G is not a
Gröbner basis. Then there exists some expression

f =

t∑
u=1

fugu ∈ I

such that in(f) /∈ ⟨in(g1), ..., in(gt)⟩. Let m = max(in(fugu)). By Lemma 2.2 we may assume that
this expression for f is chosen so that m is as small as possible. If m = in(f) (up to a scalar
mutiple), then in(f) = in(fvgv) for some v, and it follows in(gv) divides in(f), which contradicts
out assumption. Thus m > in(f).

Rearrange the summands so that the first t′ of them have initial terms are scalar multiples of m.
We have

f =
∑

fugu =
∑
v≤t′

fvgv +
∑
u>t′

fugu

=
∑
v

in(fv)gv︸ ︷︷ ︸
initial term of each summand is scalar multiple of m

+
∑
v

(fv − in(fv))gv +
∑
u>t′

fugu︸ ︷︷ ︸
their initial terms are strictly less than m

Our goal is to replace these summands by something smaller, thus finding another expression of
f with a smaller m and contradicting its minimality. Since m > in(f), the initial terms (scalar
multiples of m) in the above sum must cancel out, meaning

in

(∑
v

in(fv)gv

)
< m

Let pv = in(fv)gv, then in(pv) are scalar multiples of m for all v ∈ V , and we can apply Lemma
4.4 to get ∑

i

in(fv)gv =
∑

avS(p1, pv)



for some scalars av. Let dv be the leading coefficient of pv, then

S(p1, pv) =
1

d1
p1 −

1

dv
pv

=
1

d1
in(f1)g1 −

1

dv
in(fv)gv

Note that this expression is very similar to the S-polynomial, namely it matches the initial terms
of g1, gv by multiplying monomials (in this case 1

d1
in(f1) and

1
v in(fv)) and subtracts them. The only

difference is that we are matching the initial polynomials tom in this case instead of LCM(in(g1), in(gv)),
therefore we observe

S(p1, pv) =
m

LCM(in(g1), in(gv))
S(g1, gv) := mvS(g1, gv)

Recall our assumption that S(gi, gj) has remainder 0 when divide by G for all i, j, so division
algorithm gives

S(g1, gv) =

t∑
u=1

f (v)
u gu where in(f (v)

u gu) ≤ in(S(g1, gv))

Now equation (⋆) from Definition 4.2 says

in(S(g1, gv)) < in

(
LCM(in(g1), in(gv))

in(g1)
g1

)
Therefore for each u,

in(mvf
(v)
u gu) ≤ in(mvS(g1, gv)) < in

(
m

in(g1)
g1

)
= m

Finally, we have the expression

f =
∑
v

in(fv)gv +
∑
v

(fv − in(fv))gv +
∑
u>t′

fugu

=
t′∑

v=1

t∑
u=1

avmvf
(v)
u gu +

t′∑
v=1

(fv − in(fv))gv +
∑
u>t′

fugu

where each term of the summand has initial term strictly less than m, giving us the desired con-
tradiction. □

Theorem 4.5 (Buchberger’s Algorithm, [Eis 15.9]). Let F = {f1, ..., ft} ⊆ I be a basis for I. A
Gróbner basis can be constructed using the following algorithm:

If all the S(fi, fj)
F
= 0, then they form a Gröbner basis. If it is non-zero for some i, j, add it

to the set F and repeat.

Proof. The correctness follows from Buchberger’s criterion. To show that it terminates, recall from

division algorithm that if in(S(fi, fj)
F
) ̸= 0, then ⟨in(f1), ..., in(ft), in(S(fi, fj)

F
)⟩ is a strictly larger

ideal than ⟨in(f1), ..., in(ft)⟩, and will eventually be equal to in(I) since it is Noetherian.
□

5. Applications of Gröbner Basis

Given a system of polynomials in k[x, y], we could try to take linear combinations of the
polynomials to get a polynomial in k[x], then solve the one variable polynomial and substi-
tute the solution for x into the other polynomials to solve for y. More generally, given ideal
I ⊆ S = k[x1, ..., xn, y1, ..., ym], we would like to find J = I ∩ R = I ∩ k[x1, ..., xn]. This can be



computed easily using Gröbner basis, with respect to an elimination order (with respect to
the variables y1, ..., ym), that is an order on S satisfying

if f ∈ S and in(f) ∈ R, then f ∈ R

The lexicographic ordering (considering y > x) is one such order.

Proposition 5.1 (Eis, Prop 15.29). Let > be an elimination order on S. Let I be an ideal of S.
If g1, ..., gt is a Gröbner basis for I and g1, ..., gu are those that do not involve the variables yi, then
g1, ..., gu is a Gröbner basis in R for J = I ∩R.

Proof. Let xα ∈ in(J) ⊆ in(I) be a monomial. Then xα is a multiple of in>(gi) for some i since
g1, ..., gt is a Gröbner basis. Since xα ∈ R and > is an elimination order, we must have i ≤ u. Thus

in(J) ⊆ ⟨in(g1), ..., in(gu)⟩

The other inclusion follows from that g1, ..., gu ∈ I ∩ R = J . Therefore in(J) = ⟨in(g1), ..., in(gu)⟩.
Thus by definition 3.4 g1, ..., gu is a Gröbner basis for J . □

Now given an ideal I ⊆ k[x1, ..., xn], we can find V (I) by first finding I1 = I ∩ k[x1], solve and
substitute into I2 = I∩k[x1, x2], and so on. Note that this way each point in V (Ii) can be extended
to a point in V (Ij) for j > i. If V (I) is finite, then Ii must contain some equation that involves
xi. By the above proposition, if we compute a Gröbner basis and order them increasingly with
respect to the lexicographic ordering, then the first few equations will only contain x1, followed
with equations involving only x1, x2, and so on. Computing V (I) is then simplified to computing
roots for a series of one-variable polynomials.

Example 5.2. Find complex roots to the equations

12x2 − 3y = 0

6xy − 10y2 − 3y = 0

Solution: Let I = ⟨12x2 − 3y, 6xy − 10y2 − 3y⟩. Using lexicographic ordering with x > y, the
S-polynomial of the basis is

S(12x2 − 3y, 6xy − 10y2 − 3y) =
1

12
y(12x2 − 3y)− 1

6
x(6xy − 10y2 − 3y) =

5xy2

3
+

xy

2
− y2

4

Its remainder after division algorithm is

25y3

9
+

17y2

12
+

y

4

Thus we write

I = ⟨12x2 − 3y, 6xy − 10y2 − 3y,
25y3

9
+

17y2

12
+

y

4
⟩

Solving the cubic equation 25y3

9 + 17y2

12 + y
4 = 0 gives y = 0 or y = − 51

200 ± 3i
√
111

200 . Substitute back
to the original equations yields

(x, y) = (0, 0) or (
3± i

√
111

40
,− 51

200
± 3i

√
111

200
)

⋄

Example 5.3. Find the defining equation over Q for the algebraic number z satisfying

z5 +
√
2z − a2z + a = 0

where a3 + a− 1 = 0.



Solution: Extend the basis F = {x2 − 2, a3 + a− 1, z5 + xz − a2z + a} to a Gröbner basis using
lexicographic ordering with z < a < x. Then we shall obtain equations that only involve z. From
those equations we can then find the minimal polynomial of z over Q.

⋄

In general, Proposition 5.1 can be used to compute the closure of the image of an algebraic
variety under a projection:

Lemma 5.4. Let I ⊆ k[x1, ..., xn] be an ideal. Let π : kn → km be the projection onto the first m
coordinates. If k is algebraically closed, then V (I ∩ k[x1, ..., xm]) is the smallest variety containing
π(V (I)).

Proof. Let X = V (I), J = I ∩ k[x1, ..., xm]. Observe that π(X) ⊆ V (J) since polynomials in J are
those in I that do not involve xm+1, ..., xn. So V (I(π(X))) ⊆ V (J).

Conversely, suppose f ∈ I(π(X)), then f(a1, ..., am) = 0 for all (a1, ..., am) ∈ π(X). View f as

an element of k[x1, ..., xn] shows that f ∈ I(X) =
√
I by Nullstellensatz. So fN ∈ I for some N ,

and since f ∈ J , fN ∈ J for some N and f ∈
√
J . Hence I(π(X)) ⊆

√
J and

V (I(π(X))) ⊇ V (
√
J) = V (J)

□

As a result of Macaulay’s Theorem, one can also compute the number of roots when the variety
has dimension 0 (finite) using a Gröbner basis. We state the following Theorem as a fact:

Theorem 5.5 (Affine Bézout’s inequality). Let I be an ideal of R. If V (I) is finite, then |V (I)| ≤
dimk(R/I). When k is algebraically closed, |V (I)| = dimk(R/I) if and only if I is radical.
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