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1. VERTEX ALGEBRA AND SINGULARITIES

HHEEENHEEEEomeacoonnenms
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Vertex algebra is a complicated algebraic structure used in the proof of the Moonshine conjecture
in constructing infinite dimensional representations of sporadic groups. It is also used in represen-
tation theory of Kac-Moody algebras and infinite dimensional Lie algebras. In physics, this is used
in 2D conformal filed theory.

Given a vertext algebra, one can take its automorphism groups which is an algebraic group. It
character is a modular function. Its associated variety is an affine (Poisson) algebraic variety, and
its Lie algebra is a Lie algebra.

1



2
1.1. Motivation: Moonshine conjecture. The Moonshine conjecture is an unexpected connec-
tion between the Monster group M — the largest simple sporadic group — and the modular function
7 — a holomorphic function on the upper half plane. McKay observed that the coefficients of the
Laurent series of j relates to the dimensions of the irreducible representations of M. The Moon-
shine conjecture states that there exists a infinite dimensional representation V of M such that
V = ®n>oVy where

chV(q) := Z "= (1) —T44, q=e*T.
n>0

Such a representation is constructed with a vertex algebra structure where the automorphism group
of V' is M and the character of V is j.

1.2. Vertex algebra. A vertex algebra is

e A complex vector space V,
e cquipped with a vacuum vector |0),
e for a € V, a collection of fields a(,) € EndV for n € Z such that

a(z) = Z a(n)z_"_l € End V[z7],
nez
e a translation operator T € End V|

satisfying the axioms
V — End V[2*] linear and a(z)b € V((2)) for each b € V,
|0)(2) = Id, and a(2)|0) € V[z] with a(0)|0) = a. This means the field map is injective.
Ta(z) = [T,a(z)] = d.a(z), so that (T'a)(,) = —na(,—1) and T is uniquely determined.
locality: there exists some N = N, such that

(z —w)Na(2)b(w) = (z — w)Vb(w)a(z) € End V[z%, w*].

The locality condition is equivalent to several useful identities

* N—-1 C‘(w)
a(2)b(w) =Y m+ s a(2)b(w) :
j=0

where the first sum has poles in (z — w) with ¢j(w) € End V[w*] and ¢;(w)v € V((w)) for
v € V. The sum makes sense over |z| > |w|. The term : a(z)b(w) : is a type of product of
series that has no poles.

N-1
n
[agmy, b)) = < > (@(5)D) (m4n—j)>

=0
m m
(@) my = D ; (@m—i)bn+i) — (=1)"b(m4n—i)a(y)
i>0
Example 1.1 (Heisenberg algebra). Let H = C[z1,x2,...] and set

Tpp if n <0,

h(n) (p) =140 ifn= 0,
n%p if n > 0.
We get [h(n); P(n)] = MOm,—n Id. This means H is a representation of the Lie algebra

H=C[tF]aC-1



where [t™, "] = mdm,,—n1 and 1 is central, sending t" to h(,) and 1 to Id.

Note that although the definition requires a field for each element of H, we only gave some
unspecified field h(z). This still defines a vertex algebra as we will see later.

To finish defining the vertex algebra structure, we define |0) = 1 and note [h(2), h(w)] = 0yd(z, w)
where 0(z,w) = Y w"2~"". Locality is then satisfied due to the identity

(z —w)y oI §(2z —w) =0
o

Definition 1.2. Let V be a vector space. A series a(z) € End V[z¥] is a field if a(2)b € V((2)) for
any b € V. Two fields a, b are mutually local if there exists some N such that

(= — w)V[a(2), b(w)] = 0.

Lemma 1.3. If a,b,c are mutually local, then 0,a(z),b(z) are mutually local and : a(z)b(z) : and
¢(z) are mutually local.

We can give a new definition of vertex algebra:

A complex vector space V,

a vacuum vector |0),

a translation operator T,

a set of mutually local fields S,

satisfying the axioms
e T10) =0,
e [T a(2)] = &Za(z),' ‘
e V is spanned by azl = al(;h)|0> for a'i € S.

ni
The equivalence of the two definitions is given by the linear isomorphism that sends a(z) € (S)y

to a(2)|0) € V where (S)y is the space generated by S.

Example 1.4 (The Virasoro vertex algebra). Let H be a before. Take L(z) = 1 : h(2)h(2) : and
write L(z) = 3 Lz~ ™2, 80 Ly = L(ym41)- Then

m3—m

[Lm, Ln] = (m — n)Lm+n + T5m’_n Id .

We set Vir := (L(2)) .
o
1.3. Characters of vertex algebras. Let V be a vertex algebra, V = @®,czV, be a grading. We
say V is conformal if there exists w € V, with w(z) =3, .oz Lz~ "2 such that
° L_1 = w(o) = T,
e Lo = wy) acts semi-simply on V', with V,, the eigenspace ker(Lo — n1d),
® L, Ly] =+ ™50, —n - ¢ - 1d for some ¢ € R called the central charge.
The character of V is
xv (q) := try (gFo=e/?4) = =/ Z dim V,,q".
nez

Example 1.5. The Heisenberg vertex algebra H has central charge 1, where Lg acts on H gives
deg x,, = n, and

xul(g) =q [ -gn

n>0



1.4. Associated variety. Say V = span(c{aé;“) . a’(';w)]())]ni € Z}. Note that

Ay -+ Gy [0)(2) =

We set co(V) := span{az(zl) : ..al(;T)|0>|n1 + -+ mn, > 1} = span{a_g)bla,b € V}. The quotient
V/ca(V) =: Ry is a commutative, associative, Poisson algebra with a-b := a(_;)b and {a, b} := a(b.
Assume Ry is finitely generated, meaning S is finite, we take

)?V := Spec Ry, Xy := ()?V)red

to be the character variety of V.

p100a" (2) .. 00T a (2) ¢

n!...n,!

Example 1.6. We have Ry = C[z;] and Xy = C with the trivial Poisson structure. o

Denote J)Z'V = Spec JRy the arc space of Xy . Here JRy is the jet algebra of Ry, which
is a differential graded algebra, and corresponds to a commutative vertex algebra. The Hilbert
polynomial is

HPjp,(q) := Y _ dim(JRy).q"
n>0
where the grading is given by the order of jets.
Example 1.7. The jet algebra of Clxy,...2,] is C[07z; : 5 > 0,5 = 1,...,n]. We have JRy =
C[@ ;] and HPjr,,(q) = [T,50(1 — ¢") ") = ¢"/*'xu(q). °
1.5. Virasoro vertex algebra. Let & := @,z L, ®C1, [Ly,, Ly = (m—n)Lyin + m? g 0m,—n1
and 1 central. Fix ¢ € C and take £ " := &,,>_1L,,. Define
Vire :U(g) ®U(g®(c1 (CC

= Spec(c{L_nl_g, ey L—nr—2|0> TN > 0}

This has a unique vertex algebra structure such that [0) = 1,8 = {L(2)}.

Remark 1.8. Vir€is not always simple as a vertex algebra or Z-representation. It is not simple if

6(“ U)

and only if there exists u,v > 2 coprime, ¢ = 1 — . Set Vir, the simple quotient of Virc. ¢

Example 1.9. (u,v) = (2,2r + 1), then we have Kac-Weil formula
XVirg ort1 (Q) = q—c/24 H (1 - qn)_l

n#0,41,2r+1
and
RViT2,2r+1 = C[l‘]/xr.
Also,
HPjgy,,, (0) = ¢*XVir,. ()
if and only if (u,v) = (2,2r 4+ 1). ©

1.6. Li filtration. A vertex algebra V admits a filtration whose graded algebra resemble the jet
algebra of Ry . Take

FPV = spanc{a® a'T_m_l)|0> ing+ - +n, >pl

(=n1—-1) "

Then GrV = ©FPV/FPHV = Ry @ ... is a commutative vertex algebra. Let ¢ be the quotient
maps to the graded pieces, then

op(a)og(b) = opigla—1)b), dop(a) = opt1(Ta), TFPV C PPty

and Ry generates GrV as a differential algebra.



Example 1.10. GrVir¢ = C[L_2,L_3,...] and Ry = C[z] for x = L_2|0) = o¢(L_2|0). o
There exists a surjection of differential Poisson algebras JRy — GrV because
Homdiﬁ alg(JRa A) = Homalg(R, A)

Example 1.11 (Affine vertex algebra). Let g be a finite dimensional Lie algebra over C. Set
g := g[tT] ® Ck where [zt™, yt"] = [z, y|t"™ " + m(2|y)dm, —n K where (2|y) is a non degenerate two
form.

Example 1.12. Let g = sl,,, then [z,y] = zy — yz, (z|y) = tr(xy). o

Take V*(g) = U(8) ®u(gppack) Ck = spanc{xéinrl) . .xé:nril)|0>} where {2’} is a basis of
g. o
Remark 1.13. If g = C, then V¥(g) = H. o

One can construct more vertex algebras from V¥(g) via orbifold /commutant, quotient, H*(V*(g)),
etc.
We have Ry = Clg*] = Clz’ : i € I]. This gives
GrV*(g) = Sym(t! — 1]g[t™"]) = JClg"]
by zit~ "~ — 9"l
In general, V¥(g) is not simple, and write Lj(g) the simple quotient. It is hard to compute R Li(g)
but some X7, (5 is known.

Example 1.14. Let g = sl,,, k = —n +p/q, p > n. Then X (4 is the closure of some nilpotents.
Let g = slo = {(z,9,2) : 2 +yz = 0} with k = =2+ 2/3, L = L_4/3(g = slo). Then

Xp = Clz,y,2]/1, VT = (a? + yz) and xz(q) = H Py, (q)-
Let Z(V) be the center of a vertex algebra, which is a commutative vertex algebra. Then
Z(V*(g)) = C whenever k is less than —h" the dual Coxeter number. o

Definition 1.15. A vertex algebra V' is lisse if Xy = {pt}, which happens if and only if dim Ry <
oo. It is quasi-lisse if Xy has finitely many symplectic leaves.

Example 1.16. The chiral differential vertex algebra Dg? is quasi-lisse but not lisse, as XD% >2T*X
has one symplectic leaf. o

Theorem 1.17. If V is quasi-lisse,
SS(V)red := Spec GrV 22 (J Xy )sed
as topological spaces.

Conjecture 1.18. If V is quasi-lisse, then Xy is reduced (so its closure has one symplectic leaf).

2. MINIMAL MODEL PROGRAM AND SINGULARITIES
2.1. Motivation: MMP for surfaces over C.

Theorem 2.1. Let S be a smooth surface, E C S a (—1)-curve. Then there exists S such that
w:S — S is an isomorphism on S\ E and u(E) = pt.

Remark 2.2. E is a (—1)-curve is and only if Kg-E = —1 and E? = —1. We have S 2 Bl; S. ©

Theorem 2.3 (Factorization of birational morphisms). Let Si, So be smooth surfaces. If f :S] —
Sy is birational, then there exists smooth surfaces S1 = Y1,Yo, ..., Y =2 Sy with maps

m Y1 =Y
such that Y;_1 = Bly, Y; and mp0---om = f.
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Consequently, if S is a smooth surface not containing any (—1)-curve, then f : S — S’ birational
and S’ smooth means S = S’. So S is minimal with respect to the order where S; < S5 if and only
if there exists f : So — 5] birational.
By contracting all (—1)-curves, one can show minimal surface exists after finitely many steps, as
bs goes down after contracting a 2-cycle.

Theorem 2.4 (Classification of minimal surfaces). If S is a minimal surface, then either

e Kg is semi-ample if and only if ¢y S — Z has fiber with trivial canonical bundle,
o S is P2 or Pc(€) for a rank 2 bundle € over a curve C.

In higher dimensions, a condition on self intersection D - D does not imply D is contractible. We
instead consider the condition that Kx - C < 0 for any C' C D. Also, if f: X — X, then X is not
necessarily smooth, so we need to consider singular varieties.

Example 2.5. Let Y be smooth of dimension 3, and X = Bl,Y. Then Y is a Kx-negative
contraction, but the exceptional divisor E satisfies E3 = 1.

If Y is smooth and C' C Y is a smooth curve, then X = Blg Y is a P! fibration over C, where
KX . (ﬁber) = —2.

Consider X = (zy + zw = 0) C A* with singularity at 0. The blow up of A* resolves X, and we
haveKX:ﬂ* Y—FE. <o

2.2. Discrepancy. Fundamentally, the idea used in MMP is to take a resolution of singularity
f:Y — X with Ky = f*Kx + Y a;E;, and encode the singularities in the coefficients a;.

Definition 2.6 (Canonical divisor). Let X be normal. Write detTX*" = O(—3_d;D}). The
canonical diwvisor is Kx =) d;D; where D; = D¢.

Remark 2.7. Since Sing X has codimension at least 2, Kx is defined up to linear equivalence.
Kx is not Cartier nor Q-Cariter in general, so f*Kx does not make sense.
If u: X7 — Xo is birational, then u.(Kx,) = Kx,. o

Definition 2.8. A pair (X, D) is the data of a normal variety X and a Q-Weil divisor D such that
Kx + D is Q-Cartier.

Example 2.9. If X is smooth, then (X,0) is a pair.
If X is Q-factorial and D is Q-Weil, then (X < D) is a pair. o

Definition 2.10. Let X be normal and D = > a;D; be Q-Weil. Then Supp D = > D; is/has
simple normal crossing if each D; is smooth and for all z € X, there exists a neighbourhood U and
coordinates z1, ...z, such that D; = (z; =0) in U.

A log resolution of (X, D) is a resolution of singularity f : Y — X such that E is divisorial, and
E + D has SNC support.

BY Hironaka’s work, resolutions and log resolutions exist, and are given by compositions of
blow-ups.

Example 2.11. Let D = (2™ — y™ = 0) be the union of m lines. Let 7 : Blg A? — A? be the
blow-up. Then 7 is a log resolution of (A%, D) and 7*D = D + mE. o

Definition 2.12 (Discrepancies). Let (X, D) be a pair, and f : Y — X birational. Write Ky =
f*(Kx + D) + > a;E; such that the support of E; is in the exceptional divisor or D. Then
a(E;, X, D) := a; is the discrepancy of E;.

Remark 2.13. If E; C Supp D, and D = > d;FE;, then a(FE;, X, D) = —d;. o
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Example 2.14. If X is smooth, and f is the blow up of a closed subscheme Z C X of codimension
¢, then a(F, X,0) =c— 1. o

Definition 2.15. The discrepancy of the pair (X, D) is disc(X, D) = inf{a(F, X, D) : E exceptional}.
The total discrepancy is inf{a(FE, X, D) : E divisor of X}.

Definition 2.16. A divisor D = ) d;D; is

terminal >0
canonical >0
KLT < disc(X,D)is | > —1 and |d;]
PLT > —1
LC > -1

We say X with Kx being Q-Cartier is of these properties if (X, 0) is.

Remark 2.17. KLT stands for Kawamata log terminal, PLT stands for purely log terminal, and
LC stands for log canonical. o

Lemma 2.18. A pair (X, D) is kit or lc if and only if there exists a log resolution f : Y — X such
that

a;>—1or > —1
respectively.

If (X,0) is a pair, then it is terminal or canonical if and only if there exists a log resolution such
that

a; >0o0r >0

respectively.

Example 2.19. Let X be smooth and )| D; be SNC. Then (X, ) d;D;) is klt if and only if d; < 1,
and lc if and only if d; < 1.

Let X = A2and D = (2" —y™ = 0), and Y = Bly A2, Then Ky = 7*(Kx +D)— D+ (1—m)E.
Soa(E,X,D) =1—mand (X, D) is lc if and only if m < 2. Similarly, we have a(E, X, D) = 1—2
and (X,1D) is Ic if and only if m < 4 o

Proof. Suppose FE is exceptional over X with respect to g : Y1 — X. Let h : Y — X be the
resolution of the indeterminant of Y7 and Y. Write

Ky =h"(Kx + D) +aE+E'

such that E Z Supp E'. Let p: Y — Y; be the factoring map and apply p. to get a = disc(E, X, D).
Write ¢ : Y — Y. Then

Ky =q" (Ky)+)_ BiGi=q"(f*(Kx + D)+ Y bjEj) + Y BGi.

So E appears in S b;E; + Y B:G; and for one of the E; or G;, we have a = b; or a = f3;. In the
former case, we are done by assumption.

We may assume ¢ is a composition of blow-ups. Say ¢ is a single blow up along some Z. Then
a = codimy Z — 1 + coeﬁ’E(q*ZbiEi) = codimy Z — 1 + ZZCE- b;. Since . F; is SNC, Z is
contained in at most codimy Z of them and we are done. O
Proposition 2.20 (K-negative contraction preserves terminality). Let X be a terminal variety

and f : X — Y birational with irreducible exceptional divisor E, such that Ky is Q-Cartier and
for all C contracted, Kx - C < 0, then Y is terminal.



2.3. Multiplier ideal.

Definition 2.21. Let X be smooth, D > 0 a Q-Weil divisor. The multiplier ideal of D is
(X, D) = ps(Ox:(Kx1/x — W' D]))

where 1 : X' — X is a log resolution of (X, D). By Hartog’s lemma Z(X, D) is an ideal sheaf.

Lemma 2.22. Let X be smooth and D > 0. Then (X, D) is kit if and only if Z(X, D) = Ox, and
le if and only if Z(X,cD) = Ox for all0 < c< 1.

Proof. Write Kx» = p*Kx + Y a;E; and y*D = D + 5. b;E;. Then

Kyxix — D] = (ai = [bi]))Ei = Y _|di| Ds.
Then Z(X, D) = Ox if and only if a; — |b;] > 0 and —|d;| > 0, if and only if a; — b; > —1 and
—|di] >0, if and only if (X, D) is klt. O

Definition 2.23. Let (X,A) be a pair and A > 0. The multiplier ideal of D with respect to
(X,A) is

T((X, &), D) = (Ko — i (Kx + &+ D))
where p is a log resolution of (X, A + D).

Example 2.24. Let X C C"*! be a hypersurface and X5 = ( such that Blg X is a log resolution
of X. Say X = (z{+---+2%,, =0). Then

KBIOX =7n1"Kx + (n—d)E
so I(X,0) = (mg)?" for d > n. ©
2.3.1. Analytic construction.

Definition 2.25. A map ¢ : U C C" — [—00, 00) is plurisubharmonic if it is upper semicontinuous
and for all line L C U and a € LN U, we have

1 2w )
ola) < / (o + re?)dd.
2 0

Example 2.26. If ¢(z) = log |z| or ¢(z1,...,2,) =log>_ |zi|, then ¢ is plurisubharmonic. o
Definition 2.27. If ¢ is PSH, then the multiplier ideal of ¢ is
Z(p)(U) = {f : U — C holomorphic, measurable : |f|?e*¢ € L _(U).}

Example 2.28. Let D = Y a;D;,a; € Qs¢ and U C X such that D, N U = (y; = 0). Take
ep =Y. a;logly;|. Then

2
Ten)U) = {f € Ox ()= e 1L ).

[T lyif?e ~
Theorem 2.29. Let X be smooth and D =Y a;D;,a; € Qso. Then
Z(X,D)*™ =Z(¢p).
Proof. Assume D is SNC and take U such that D; N\U = (z; =0). Let f € I(¢p)(U) and Assume

f= Hz;iZ Then

fI? —a;
T1 |2 [zl € Lo (U)
i

if and only if d; — a; > —1, which happens if d; > |a;]. hence f € O(—|D])* =Z(X, D). O



2.4. Vanishing theorems.

Definition 2.30. A Q-Cartier divisor D is nef if for all curves ¢ C X, D -C > 0. It is big if
dim H°(X, mD) = O(mdmX),

Example 2.31. Let g : Y — X be geometrically finite and A ample on X. Then ¢g*A is nef and
big. o

Theorem 2.324(K0daira vanishing theorem). Let X be smooth projective and A ample Cartier.
For alli>0, H(X,Kx + A) =0.

Theorem 2.33 (Vanishing for nef and big). If B is a nef and big Cartier divisor, then for all I,
H'(X,Kx + B) =0.

Theorem 2.34 (Kawamata-Viehweg vanishing). Let N be Cartier and N = B+ A is a numerical
equivalence. If B is nef and big, A = > a;A; is SNC and a; € QN (0,1), then for all i > 0,
HY(X,Kx + N)=0.
Theorem 2.35 (Local vanishing). Let X be smooth and D be a Q-divisor. If p: X' — X is a log
resolution then for all i > 0, '

R'uOx/(Kxiyx — [p*D]) = 0.

Theorem 2.36 (Nadel vanishing). Let X be smooth projective, D be Q-Weil and L Cartier. If
L — D is nef and big, then for all i > 0,

HY(X,0(Kx + L)®ZI(X,D))=0.
We assume the first two, and prove the third.
Proof.

Lemma 2.37. Let X be smooth and projective, L a divisor on X and m a positive integer. There
exists a finite surjection f:Y — X and a Cartier divisor N on'Y such that f*L = N®™,

Proof. Tt suffices to prove it for the very ample bundle ¢*Opn (1) because of the following. Suppose
L = A; ® Ay where Ay, Ay are very ample. Let ¢; be the embeddings induced by A;. Then if we
have maps f1 : Y17 — X, fa : Yo — Y] such that ffA4; = Nfam and f5 fi Ay = Nég’m, then we have
f L+ (FN) @ Ny)e,

Let v : PV — P¥ be the map [zg : -+ : zn] = [z : -+ : 2. Then we take Y to be XXgpv Py
and Y its normalization.

Lemma 2.38. Let X be smooth and D C X smooth. If Ox(D) = £%™ for a line bundle . Let
V() be the total space of £, and U C X an open set trivializing £. Say UN D = (y = 0) and
V(&) =2 U x A over U. ThenY = (y™ — y(x) = 0) C U x Al glue to a smooth Y. The map
v:Y — X is finite of degree m and totally ramified at D. We have

’Y*OU = @:103_1
Lemma 2.39 (Injectivity lemma). Let f : Y — X be a finite surjection for X,Y normal. Let
E — X be a vector bundle. Then for all j,
H(X, &) — HI(Y, [°€)
18 1njective.
We do an induction on 7 where A = >""_, a;A;.
Let a; = § for 0 < ¢ < d. Then there exists p : X’ — X of degree d such that X’ is smooth and

p is generically finite, with A} = p*A; = dA’ for some A’ Cartier on X. We can alo find p such
that p* > 7 o Ay = > Al is SNC. Set N’ = p*N and B’ = p*B.
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Then there exists a cyclic map g : X” — X’ of degree d, totally branched along A, and N" —cA"” =
B" + 37 a;A] for a; € (0,1).
By induction, H’ (X", —N" 4+ ¢A”) = 0. Since q is finite, spectral sequences show

HI(X',q.Oxn(—=N" 4+ cA")) = H (X', 003 (N + (c —i)A') =0

Since the direct sum contains a copy of O(—N’), we conclude H7 x X', O (—N')) = 0, and by
injectivity lemma, H7(X,—N) = 0.
O

2.5. Terminal sigularities. When X is a surface, X is terminal if and only if X is smooth.

Proposition 2.40. Let X be projective and suppose Kx is Q-Cartier. Then
e I[f H C X is a general hyperplane section, then (X,0) is terminal/canonical if and only if
(H,0) is.
e (X,0) is terminal implies codim X > 3.

Proof. Induction on dimension of X. Let p : X’ — X be a resolution of singularity. Let H be a
hyperplane section, so Sing H C Sing X N H. Let H' be the strict transform, so we can assume H’
is smooth.

We have K x/+J' = p*(Kx+H)+Y_ a;F;. If X is terminal, then H is terminal and by induction,
codimy Sing H > 3. Each component of Sing H is contained in a component of Sing X N H, so
codimy Sing X > 3. O

Recall D Cartier is base-point free if for all x € X, there exists D' ~ D effective such that
x ¢ Supp D. The base locus of D is BsD = Np/¢|p| Supp D'

For all D with |D| # ¢, there exists a resolution of base locus p : Y — X such that |u*D| =
|M| + F for F > 0 and M base-point free, such that Supp F' = Bsu*D.

Theorem 2.41. If X is smooth and L is Cartier, and BsL has codimension at least 2 such that
for all x € X, there exists B, € |L| with (X, By) is canonical in a Zariski neighbourhood of x, then
for B € |L| general, we have (X, B) canonical.

2.6. Inverse of adjunction.

Theorem 2.42 (Singular relative vanishing). Let (X, D) be a pair and D > 0. Let p: X' — X be
a log resolution. Then for all j > 0,

R . Ox(Kxr — |p*(Kx + D)) = 0.

Theorem 2.43 (Connectedness of non-klt locus). Let X be normal and D = > d;D; > 0. Let
[ Y — X be alog resolution of (X,D). Set A=3, _ ja;F; and FF =5 _ ja;E;. Then
Supp F' is contained in the neighbourhood of every fiber of f. B

Theorem 2.44 (Adjunction for pairs). Let (X, D) be a pair and S a normal irreducible Cartier
divisor. Let S € sup B and (X, B + S) be a pair. Then

(Kx + B+ S)|s = Ks + Bg
for some Bg such that (S, Bg) is a pair.

Theorem 2.45. If B > 0, then (X, S + B) is plt in a neighbourhood of S if and only if (S, Bg) is
klt.
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3. SINGULARITY AND HODGE MODULES

3.1. D-modules. Let X be a smooth irreducible algebraic variety over C of dimension n. Let
Dx C &Endc(Ox) be the subsheaf generated by Ox and Derc(Ox). This is a sheaf of non-
commutative ring.

The sheaf Dx admits a filtration F.Dx by order of differential operators. If z1,...,z, are local
coordinates, then F,Dx is generated by Ox0% for aj + -+ + a,, < p. The graded pieces

Grl Dy = Sym®(Jx)

is a sheaf of commutative rings.

If M is a coherent D x-module, then one can take a good filtration, i.e. an exhaustive increasing
filtration F..M such that Gr/ (M) is locally finitely generated over Gr? Dy, which is a sheaf on the
total space of the cotangent bundle. Equivalently, we want F, M to be coherent Ox-modules such
that F, - F4 C Fpyq with equality for ¢ > 0.

From M we get its singular support

SS(M) = Supp(Gr M)yeq € T*X
which is independent of F..
Theorem 3.1 (Kashiwara). Fvery irreducible component of SS(M) has dimension at least n.

Definition 3.2. Say M is holonomic if dim(SS(M)) = n or M = 0. These form an abelian
category whose objects are of finite length.

3.2. Riemann Hilbert correspondence. The category of holonomic D x-modules with regular
singular support is equivalent to the category of perverse sheaves on X.

Saito’s Hodge modules are holonomic D-modules with a fixed good filtration and other data and
conditions.

Example 3.3. e Ox with the filtration

0X7p20

‘ﬂox:{op<o

is a holonomic D-module, where Gr7 (Ox) is the structural sheaf of zero section on T*X,
which has dimension n support. It corresponds to the perverse sheaf Cx|[n].

e Let U <5 X be open. Then R7j,Oyp is roughly Hg;r\lU((’)X), where H%,(—) = RPT(—), the
local homology of X \U — X. If U =X\ Z and Z = (f =0), then Rj,Op = (’)X[%], and
Hy(Ox) = Ox[1/f]/Ox.

e Let Z be a smooth dimension r closed subscheme of X. Then i, Oz = H7, " (Ox).

Holonomic D-modules are perserved by pullbacks and pushforward.

3.3. b-functions. Let 0 # f € O(X). Consider Ox[1/f, s] f* the free rank 1 module over Ox[1/f, s]
where s is a variable and f? is a formal generator. This is a D-module via

D'fS:SD]Ef)fS

for D € Der(Ox).
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Theorem 3.4 (Bernstein, Kashiwara). There exists a polynomial b(s) # 0 such that

b(s)f* € Dx[s] - f*.
The monic generator of ideal of such functions is the b-function bs(s).
Example 3.5. e Let Z = (f = 0) be smooth. We have local coordinates such that z; = f.
Then 0,, - 2i*! = (s = 1)z§ which means bs(s)|s + 1. In fact, bs(s) = s + 1.
e If f is invertible, then by(—1) = 0 because b(—l)% € Dx-1=0x.
o Let f = af+- - -+a2. Then Oy, f51! = (s41)22; f and 92 f571 = 2(s+1) f5+s(s+1)4x} f51.
This means Y 92 f571 = (s + 1)(2n + 4s) f*, so bg(s)|(s + 1)(s + 5).
o
Remark 3.6. Existence of bs(s) implies O X[%] is fintiely generated over Dy. o

Remark 3.7. Similar results hold for all sections of M ¢[s] f* when M is a holonomic D-module. ¢

Theorem 3.8 (Kashiwara). All roots of bs(s) are rational and negative. More precisely, if 7 :
Y — X is a log resolution of (X, Z) and w*(Z) = ) a;E; with Ky /x = ) k;iE;, then every root of

ki
a

be(s) is equal to — /_l for some i and somel € Z~q.

Corollary 3.9. All roots of by(s) are at most —min k;—fl = let(X, 2).

It is proven by Kollar by definition of bs(s), integration by parts, and analytic description of lct
(sup{c > 0|# is locally integrable}) that

by(—let(X, Z)) =0.

Definition 3.10 (Saito). The minimal exponent of f is &(Z) = — largest root of bs(s)/(s +1) €
@>0 U {OO}

By definition, lct(X, Z) = min{1, &}.
Theorem 3.11 (Saito). & > 1 if and only if Z has rational singularity (if and only if (X, Z) is
plt).
3.4. V-filtrations. We want to “restrict Ox to Z”, but Z might not be smooth. Let ¢ : X —
X x A! be the graph of f. Let H = (t = 0) C X x Al then we can restrict.,Ox to H.

Let

By = 1:0x = Hyx(Ox 1)
= Ox[t];-+/Oxt]
1

~Pox |2

DO |77y

=== D Oxdjs.
Jj=0
The V-fibration on By is a decresing exhaustive filtration by D x-submodules (VIBf)aeq that is
—1 i
1

discrete and left continuous, i.e. there exists [ € Z~( such that V' is concentrated on (% i€Z),
such that

o t-V® C Vel when equality if a > 0,

° 815 Ve cC Va—l’

e 0;t — o acts nilpotently on Gr{y,

e cach V? is finitely generated over Dx (t, Ot).
The above definition uniquely characterizes V*By. From existence of b-functions and rationality of
roots, one can show there exists a V-filtration.
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3.5. Connection between V-filtration and b-funftion. Let B}T = L*Ox[%] = @(’)X[%]ng
which contains By. There eixsts an isomorphism
1 1
r rx 3] f 3
f f
such that § is mapped to f*, Ost-action to the s-action and t-action to the automorphism induced

by s +— s+ 1.
The existence of b-function gives

L:Ox[=] = Ox|

by(—04t) - 6 € Dx|s] - t6

and rearranging gives the existence of V-filtrations.
We can characterize V° By by the b-function: for any U € By, thereexists a monic b, of minimal
degree such that b,(s) - u € Dx(s,t)tu. If w = ¢ then b, = by.

Theorem 3.12.
V*By = {u € By| all roots of b, is < —a}.

Example 3.13. We have § € V*By if and only if o € lct(X, Z). o
More generally,
Theorem 3.14 (Budur-Saito). For all «,
{9 € Ox|gd € VBs} =1(X,(a —€)2)
for 0 <e 1.

Similarly we know if p € Z>¢,a € (0, 1], then &(Z) > gp + « if and only if 97§ € V*By.
For all p € Z, with P C U C V open, we have local minimal exponents from by, (s)|bg, (s), and
for U small, this converges to d&y,(z) and by, (s).

3.6. The Hodge filtration on OX[%]. Let p € X have local coordinates z,...,z, and take
Wi, ..., wy, € Qso with degzy = w;. Let f = ) monomial of degree 1. If f has an isolated
singularity at p, the nwe can compute by, (s) and the V-filtration.

A pure Hodge module is understood as a family of pure Hodge structures with singularities. A
mixed Hodge module is a homological formalism set up for Hodge theory.

The data of a mized Hodge module consists of (M, F.M, P, a, W.) and conditions defined induc-
tively on dimension of support by vanishing and nearby cycles, such that in dimension zero, these
are mixed Hodge structures.

e M is a holonomic D x-module.

e F.M is a good filtration called the Hodge filtration.

e P is a perverse sheaf over Q

e o : Pc — DR (M) is an isomorphism.

e IV, is a finite increasing filtration called the weight filtration.

There exists an abelian category of MHM on X, with morphisms strict with respect to F. and
W.. The categories D®(M HM (X)) satisfies six-functor formalism.

Example 3.15. Q[n] := (Ox, F.Ox,Qx|n], weight = n) is a MHM. One usually study the MHM
given by functors applied to Q¥ [n]. o

Remark 3.16. We may allow X to be singular by embedding (locally) into smooth schemes. For
each Z, QIZ{ = W}Q{i where 7z : Z — pt.
All HM we consider are polarizable. o



14
3.7. Graded de Rham complex. If M is a Dx-module, then

DRY(M)=0—-M—-=QYk oM - ... QM =0

is a complex over C concentrated from degree —n to 0. If /.M is a good filtration, then we get a
filtration on DRy (M) with graded pieces

Gr; DRx(M) =0 — Gr) (M) — Q% ® Gr} 1 (M) — ... = Q% ® Gr} (M) — 0.

This gives Gr” Q¥ [n] = Q% [n — p].
Since every morphism of M HM is strict with respect to the Hodge filtration, we get
D*(MHM (X)) = Do (X)

commutes with proper pushforward and duality.

3.8. Vanishing and nearby cycles. Let Z = (f =0) for 0 # f € O(X). We have a V-filtration
on By = 1,0x = ®i>00x08]4. This carries a Hodge filtration Fpr1By = Bi<pOx 0] '§ which induces
filtrations on Gr{; By as a filtered Dx-module.

The nearby cycle is

@ Gry, By

a€(0,1]
as a filtered Dx-module, and the vanishing cycle is
Up(Ox) =Gy Bs(-1)® €5 Gr{By.
ae(0,1)
The MHM corresponding to these filtered D-modules are 1;Q4 [n], ¥ ;Q%[n] have rational struc-
tures given by Deligne’s nearby/vanishing cycles.
If Z<5 X is closed and U = X \ Z 2, X, we have an exact triangle
i’ Q¥ [n] — Q¥[n] — A.Qf [n] =" .
As Ox-modules, H4(J.QH[n]) = R%,QHn] and HE (i.i'QE[n] = HL(Ox).

Let Z be a reduced hypersurface, then the above becomes

}] . HL(Ox) — 0

Thus understanding Hodge filtrations on O X[%] is the same as understanding that of #.(Ox).

0— Ox — Ox]

The Hodge filtration on H},(Ox) is as follows. There exists a short exact sequence
0— GiYB; & Grl, By & HL(0Ox) — 0
where the filtration on HL(Ox) is the quotient filtration. Here the map 7 is given by

Gr%/Bf — H1Z<Ox)

I

VB

[

Ox[L, sl ==L ox[4]

Suppose f=z{' ... and I\(f) = I(A—¢)Z) = (xg’\aﬂ_l . .a:,?‘a”_l).
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For all \, we have VAB; = >j>0 DXIAH(f)(?f(S, and we have similar formulas for 7,NV*. With
a; =0 or 1, we have Z SNC. Then the Hodge filtration on (’)X[%] is given by

1 0, p <0,
FOx[2] =
P X[f] {]:pDX'OX[]lf]a pZO

Suppose Z is smooth (locally 1 = 0). Then
Fp0x(2) = Ox((p+1)2)

is the pole order filtration. In general, 7,0x(Z) = Zp(Z) - O((p+1)Z) C Ox((p+ 1)Z), where
I,,(Z) is the p-th Hodge ideal of Z.

We can describe Z,(Z) using 7. Any u € V!By is of form Y ¥, h;0i6 as we have thi%é =
(—1)'s(s—1)...(s—i+1) for s = —;t. This means I,(Z) = {>_ilh; fP~|>°F_ h;0;6 € VIBy}.

As a consequence, when p = 0, we have Zy(Z) = Z((1 — €)Z), and Z,,(Z) = Ox if and only if for
all z € Z, there exists h,0} d+lower order termse Vle at z, if and only if Y9 € Vle, if and only
if a(z) >p+1.
Theorem 3.17. If Z — X and X — X is smooth such that Z|x: — X' is reduced, then

Ii(Z|xr) = I(Z) - Ox.

Theorem 3.18 (Saito). If f € O(X) and g € O(Y) with f+g9 € O(X xY), forp € Z(f),q € Z(g),
we have

Ap,q) (f +9) = ap(f) + ag(9).

3.9. The Du Bois complex. Let X be a smooth projective variety. Then the complex Q% and wh
are fundamental objects. If X is singular, they behave badly and do not respect global geometry.
Suppose Z is reduced over C. Du Bois and Deligne introduced (2%, F.) with

O = GrpQy[p] € Dgoy(2).
This is the right obeject for Hodge theory as
b QZ = f.Z7
e The corresponding sequence EV'? = H1(Z,Q), = HP19(Z) degenerates at E for Z proper,
e For Z projective and . ample, H1(Z,QF, ® L) =0 for p+ ¢ > dim Z.
There exists a canonical morphism (0%, stupid filtration) — (23, F**) that gives an isomorphism

on L.
The definition of 2% is in terms of simplicial resolutions.

3.9.1. Steenbrink’s description via log resolution. Let Y — X be a log resolution where 7—1(2) is
SNC. With an analogue of Mayer-Vietoris sequence, we have for all p and exact triangle

Q% — Q) © Rm.Qy — Rm.Omegal .
It is known that Qg% = Q). /O (log E)(—E). Applying the octahedral axiom gives

R, 0% 10 pr b @ Qb S Re b,

and exact triangle
R % (log E)(—E) — Q% — 0 L
Remark 3.19. If Z has quotient or toric singularities, then
o =Y =,

where j : Zg,,, — Z. o
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3.9.2. Description via Hodge modules.

Theorem 3.20 (Saito). If Z — X, then
Q% = RHom@X(Grf_n DRy (i*i!Qg [n]), wx)[p]-

|

> F

Sketch of proof. Set

i

U:X\Z% —

J= lﬂ

T U) —L

This gives an exact triangle
Grl_, DRy (ii'Q¥[n]) — GrJ_, DRx(Q¥[n]) — Gr_, DRy 7.Qf [n] * .
Also,
7xQHu] = Rﬁ*j;Qf_l(U) [n] = Rm.Qy " (log E)[p].
Apply RHomo, (—,wx), we get
RHomo, (R, QP (log E)[p], wx) — RHomo (V%5 P[p],wx) = Q8 [—p] — * 5 .

where the term * = Q7 [—p] by the exact triangle from before.
The first term is

RHomo, (Rm.Qy P (log E)[p],wx) = RmRHomo, (Qy *(log E),wy)[—p| = Rm.Qy (log E)(—E)[—p].
3.10. The Du Bois complex when & is large.

Theorem 3.21. Let Z — X b¢ a reduced hypersurface and p € Z>o. Then &(Z) > p+1 for some
p € Z>o if and only if QY — QY is an isomorphism for all i < p.

In this case we call Z a p-Du Bois singularity. If p = 0, then we get (X, Z) log canonical if and
only if Z has Du Bois singularity.

Lemma 3.22. If &(Z) > p+ 1, then codimyz(Zsing) > 2p + 1.

Proof. If r = dim Zs;y,4, we let X’ be the intersection of r general hyperplanes in X and get Z N X’
is an isolated singularity. This means @(Z N X') > p + 1 since X' is general. Hence
dmX" n-—r
ZNnX' < =
a =72 2

implies n —r > 2p + 2. ]
Proof of theorem. we know Q, =~ RHomo, (Grf_n DRx H%(Ox),wx)[p+1]. This involves graded
pieces Gr{ HL(Ox) for p—n <i < p.

Since &(Z) > p+1, we have F;H}, (Ox) = O;H'Z(Ox) for i < p, where O; = Ox((i+1)2)/Ox.
Then

GrPHL(Ox) = Oz((i +1)Z).
Then
Q, 20— O0z(—pZ) = Q|z002(-(p-1)2) - ... — |z — 0]
is concentrated in degree —p to 0, given by the truncated Koszul complex of Oy — Qx|z ®
Oz(Z) tensored by Oz(—pZ). The zeroth cohomology of this compelx is 7, and we want other
cohomologies. The Koszul complex is exact in non-zero degrees if and only if
depth(Jacz,0z) > p <= codimz(Zsing) > 2p + 1.

So now we can apply the lemma. O
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Theorem 3.23. If Z — Xgp, is a reduced hypersurface with &(Z) > p > 2, then

XeZ=H1Q, "), =20z,/)Jacz Oy,

In particular, the right-hand side is non-zero if z € Zging, so Z does not have quotient or toric
stngularity.

Theorem 3.24. Z has p-rational singularity if and only if @ > p + 1, so p-rational impleis p-Du
Bois implies (p — 1)-rational.

0
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