
NOTES FOR RENNES

Abstract. This is the notes taken from talks given by Anne Moreau, Mircea Mustat, ă, and Enrica
Floris at the Equivariant Methods at the Henri Lebesgue Center in June 2025.
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1. Vertex algebra and singularities

Vertex algebra is a complicated algebraic structure used in the proof of the Moonshine conjecture
in constructing infinite dimensional representations of sporadic groups. It is also used in represen-
tation theory of Kac-Moody algebras and infinite dimensional Lie algebras. In physics, this is used
in 2D conformal filed theory.

Given a vertext algebra, one can take its automorphism groups which is an algebraic group. It
character is a modular function. Its associated variety is an affine (Poisson) algebraic variety, and
its Lie algebra is a Lie algebra.
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1.1. Motivation: Moonshine conjecture. The Moonshine conjecture is an unexpected connec-
tion between the Monster group M – the largest simple sporadic group – and the modular function
j – a holomorphic function on the upper half plane. McKay observed that the coefficients of the
Laurent series of j relates to the dimensions of the irreducible representations of M . The Moon-
shine conjecture states that there exists a infinite dimensional representation V of M such that
V = ⊕n≥0Vn where

chV (q) :=
∑
n≥0

qn−1 = j(τ)− 744, q = e2πiτ .

Such a representation is constructed with a vertex algebra structure where the automorphism group
of V is M and the character of V is j.

1.2. Vertex algebra. A vertex algebra is

• A complex vector space V ,
• equipped with a vacuum vector |0⟩,
• for a ∈ V , a collection of fields a(n) ∈ EndV for n ∈ Z such that

a(z) =
∑
n∈Z

a(n)z
−n−1 ∈ EndV [[z±]],

• a translation operator T ∈ EndV ,

satisfying the axioms

• V ! EndV [[z±]] linear and a(z)b ∈ V ((z)) for each b ∈ V ,
• |0⟩(z) = Id, and a(z)|0⟩ ∈ V [[z]] with a(0)|0⟩ = a. This means the field map is injective.
• Ta(z) = [T, a(z)] = ∂za(z), so that (Ta)(n) = −na(n−1) and T is uniquely determined.
• locality: there exists some N = Na,b such that

(z − w)Na(z)b(w) = (z − w)Nb(w)a(z) ∈ EndV [[z±, w±]].

The locality condition is equivalent to several useful identities

•

a(z)b(w) =

N−1∑
j=0

cj(w)

(z − w)j+1)
+ : a(z)b(w) :

where the first sum has poles in (z − w) with cj(w) ∈ EndV [[w±]] and cj(w)v ∈ V ((w)) for
v ∈ V . The sum makes sense over |z| > |w|. The term : a(z)b(w) : is a type of product of
series that has no poles.

•

[a(m), b(n)] =

N−1∑
j=0

(
n

j

)
(a(j)b)(m+n−j),

(a(m)b)(n) =
∑
i≥0

(
m

i

)
(a(m−i)b(n+i) − (−1)mb(m+n−i)a(i))

Example 1.1 (Heisenberg algebra). Let H = C[x1, x2, . . . ] and set

h(n)(p) :=


xnp if n < 0,

0 if n = 0,

n ∂
∂xn

p if n > 0.

We get [h(m), h(n)] = mδm,−n Id. This means H is a representation of the Lie algebra

H = C[t±]⊕ C · 1
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where [tm, tn] = mδm,−n1 and 1 is central, sending tn to h(n) and 1 to Id.
Note that although the definition requires a field for each element of H, we only gave some

unspecified field h(z). This still defines a vertex algebra as we will see later.
To finish defining the vertex algebra structure, we define |0⟩ = 1 and note [h(z), h(w)] = ∂wδ(z, w)

where δ(z, w) =
∑
wnz−n−1. Locality is then satisfied due to the identity

(z − w)j+1∂jwδ(z − w) = 0

⋄

Definition 1.2. Let V be a vector space. A series a(z) ∈ EndV [[z±]] is a field if a(z)b ∈ V ((z)) for
any b ∈ V . Two fields a, b are mutually local if there exists some N such that

(z − w)N [a(z), b(w)] = 0.

Lemma 1.3. If a, b, c are mutually local, then ∂za(z), b(z) are mutually local and : a(z)b(z) : and
c(z) are mutually local.

We can give a new definition of vertex algebra:

• A complex vector space V ,
• a vacuum vector |0⟩,
• a translation operator T ,
• a set of mutually local fields S,

satisfying the axioms

• T |0⟩ = 0,
• [T, a(z)] = ∂za(z),

• V is spanned by ai1(n1)
. . . air(nr)

|0⟩ for aij ∈ S.
The equivalence of the two definitions is given by the linear isomorphism that sends a(z) ∈ ⟨S⟩V

to a(z)|0⟩ ∈ V where ⟨S⟩V is the space generated by S.

Example 1.4 (The Virasoro vertex algebra). Let H be a before. Take L(z) = 1
2 : h(z)h(z) : and

write L(z) =
∑
Lmz

−m−2, so Lm = L(m+1). Then

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm,−n Id .

We set V ir := ⟨L(z)⟩H .
⋄

1.3. Characters of vertex algebras. Let V be a vertex algebra, V = ⊕a∈ZVn be a grading. We
say V is conformal if there exists w ∈ V , with w(z) =

∑
m∈Z Lmz

−n−2 such that

• L−1 = w(0) = T ,
• L0 = w(1) acts semi-simply on V , with Vn the eigenspace ker(L0 − n Id),

• [Lm, Ln] = · · ·+ m3−m
12 δm,−n · c · Id for some c ∈ R called the central charge.

The character of V is

χV (q) := trV (q
L0−c/24) = q−c/24

∑
n∈Z

dimVnq
n.

Example 1.5. The Heisenberg vertex algebra H has central charge 1, where L0 acts on H gives
deg xn = n, and

χH(q) = q−1/24
∏
n≥0

(1− qn)−1.

⋄
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1.4. Associated variety. Say V = spanC{a
i1
(n1)

. . . air(nr)
|0⟩|ni ∈ Z}. Note that

ai1(n1)
. . . air(nr)

|0⟩(z) = 1

n1! . . . nr!
: ∂n1

z ai1(z) . . . ∂nr
z air(z) : .

We set c2(V ) := span{ai1(n1)
. . . air(nr)

|0⟩|n1 + · · · + nr ≥ 1} = span{a(−2)b|a, b ∈ V }. The quotient

V/c2(V ) =: RV is a commutative, associative, Poisson algebra with a·b := a(−1)b and {a, b} := a(0)b.
Assume RV is finitely generated, meaning S is finite, we take

X̃V := SpecRV , XV := (X̃V )red

to be the character variety of V .

Example 1.6. We have RH = C[x1] and X̃H
∼= C with the trivial Poisson structure. ⋄

Denote JX̃V = Spec JRV the arc space of XV . Here JRV is the jet algebra of RV , which
is a differential graded algebra, and corresponds to a commutative vertex algebra. The Hilbert
polynomial is

HPJRV
(q) :=

∑
n≥0

dim(JRV )nq
n

where the grading is given by the order of jets.

Example 1.7. The jet algebra of C[x1, . . . xn] is C[∂jxi : j ≥ 0, i = 1, . . . , n]. We have JRH =

C[∂jxi] and HPJRH
(q) =

∏
n≥0(1− qn)−1) = q1/24χH(q). ⋄

1.5. Virasoro vertex algebra. Let L := ⊕n∈ZLn⊕C1, [Lm, Ln] = (m−n)Lm+n+
m3−m

12 δm,−n1
and 1 central. Fix c ∈ C and take L + := ⊕n≥−1Ln. Define

V irc :=U(L )⊗U(L⊕C1 Cc

∼=SpecC{L−n1−2, . . . , L−nr−2|0⟩ : ni ≥ 0}.
This has a unique vertex algebra structure such that |0⟩ = 1,S = {L(z)}.

Remark 1.8. V irc is not always simple as a vertex algebra or L -representation. It is not simple if

and only if there exists u, v ≥ 2 coprime, c = 1− 6 (u−v)2

uv . Set V irc the simple quotient of V irc. ⋄

Example 1.9. (u, v) = (2, 2r + 1), then we have Kac-Weil formula

χV ir2,2r+1(q) = q−c/24
∏

n ̸=0,±1,2r+1

(1− qn)−1

and
RV ir2,2r+1 = C[x]/xr.

Also,

HPJRV iru,v
(q) = qc/24χV iru,v(q)

if and only if (u, v) = (2, 2r + 1). ⋄

1.6. Li filtration. A vertex algebra V admits a filtration whose graded algebra resemble the jet
algebra of RV . Take

F pV = spanC{a
i1
(−n1−1) . . . a

ir
(−nr−1)|0⟩ : n1 + · · ·+ nr ≥ p}.

Then GrV = ⊕F pV/F p+1V = RV ⊕ . . . is a commutative vertex algebra. Let σ be the quotient
maps to the graded pieces, then

σp(a)σq(b) = σp+q(a(−1)b), ∂σp(a) = σp+1(Ta), TF pV ⊆ F p+1V

and RV generates GrV as a differential algebra.
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Example 1.10. GrV irc = C[L−2, L−3, . . . ] and RV irc = C[x] for x = L−2|0⟩ = σ0(L−2|0⟩. ⋄
There exists a surjection of differential Poisson algebras JRV ! GrV because

Homdiff alg(JR,A) ∼= Homalg(R,A).

Example 1.11 (Affine vertex algebra). Let g be a finite dimensional Lie algebra over C. Set
ĝ := g[t±]⊕Ck where [xtm, ytn] = [x, y]tm+n +m(x|y)δm,−nK where (x|y) is a non degenerate two
form.

Example 1.12. Let g = sln, then [x, y] = xy − yx, (x|y) = tr(xy). ⋄

Take V k(g) = U(ĝ) ⊗U(g[t±])⊕CK) Ck
∼= spanC{x

i1
(−n1−1) . . . x

ir
(−nr−1)|0⟩} where {xi} is a basis of

g. ⋄
Remark 1.13. If g = C, then V k(g) = H. ⋄

One can construct more vertex algebras from V k(g) via orbifold/commutant, quotient,H∗(V k(g)),
etc.

We have RV k(g)
∼= C[g∗] ∼= C[xi : i ∈ I]. This gives

GrV k(g) ∼= Sym(t[ − 1]g[t−1]) ∼= JC[g∗]
by xit−n−1 7! ∂nxi.

In general, V k(g) is not simple, and write Lk(g) the simple quotient. It is hard to compute RLk(g)

but some XLk(g) is known.

Example 1.14. Let g = sln, k = −n+ p/q, p ≥ n. Then XLk(g) is the closure of some nilpotents.

Let g = sl2 = {(x, y, z) : x2 + yz = 0} with k = −2 + 2/3, L = L−4/3(g = sl2). Then

X̃L = C[x, y, z]/I,
√
I = (x2 + yz) and χL(q) = HPsl2(q).

Let Z(V ) be the center of a vertex algebra, which is a commutative vertex algebra. Then
Z(V k(g)) = C whenever k is less than −h∨ the dual Coxeter number. ⋄
Definition 1.15. A vertex algebra V is lisse if XV = {pt}, which happens if and only if dimRV <
∞. It is quasi-lisse if XV has finitely many symplectic leaves.

Example 1.16. The chiral differential vertex algebraDch
X is quasi-lisse but not lisse, as X̃Dch

X

∼= T ∗X

has one symplectic leaf. ⋄
Theorem 1.17. If V is quasi-lisse,

SS(V )red := SpecGrV ∼= (JX̃V )red

as topological spaces.

Conjecture 1.18. If V is quasi-lisse, then XV is reduced (so its closure has one symplectic leaf).

2. Minimal model program and singularities

2.1. Motivation: MMP for surfaces over C.
Theorem 2.1. Let S be a smooth surface, E ⊆ S a (−1)-curve. Then there exists S such that
µ : S ! S is an isomorphism on S \ E and µ(E) = pt.

Remark 2.2. E is a (−1)-curve is and only if KS ·E = −1 and E2 = −1. We have S ∼= Blpt S. ⋄
Theorem 2.3 (Factorization of birational morphisms). Let S1, S2 be smooth surfaces. If f : S1 !
S2 is birational, then there exists smooth surfaces S1 ∼= Y1, Y2, . . . , Yk ∼= S2 with maps

πi : Yi−1 ! Yi

such that Yi−1 = Blqi Yi and πk ◦ · · · ◦ π1 = f .
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Consequently, if S is a smooth surface not containing any (−1)-curve, then f : S ! S′ birational
and S′ smooth means S ∼= S′. So S is minimal with respect to the order where S1 ⪯ S2 if and only
if there exists f : S2 ! S1 birational.

By contracting all (−1)-curves, one can show minimal surface exists after finitely many steps, as
b2 goes down after contracting a 2-cycle.

Theorem 2.4 (Classification of minimal surfaces). If S is a minimal surface, then either

• KS is semi-ample if and only if ϕ|mKS | : S ! Z has fiber with trivial canonical bundle,

• S is P2 or PC(E) for a rank 2 bundle E over a curve C.

In higher dimensions, a condition on self intersection D ·D does not imply D is contractible. We
instead consider the condition that KX · C < 0 for any C ⊆ D. Also, if f : X ! X, then X is not
necessarily smooth, so we need to consider singular varieties.

Example 2.5. Let Y be smooth of dimension 3, and X = Blp Y . Then Y is a KX -negative
contraction, but the exceptional divisor E satisfies E3 = 1.

If Y is smooth and C ⊆ Y is a smooth curve, then X = BlC Y is a P1 fibration over C, where
KX · (fiber) = −2.

Consider X = (xy + zw = 0) ⊆ A4 with singularity at 0. The blow up of A4 resolves X, and we
have KX = π∗KX + E. ⋄

2.2. Discrepancy. Fundamentally, the idea used in MMP is to take a resolution of singularity
f : Y ! X with KY = f∗KX +

∑
aiEi, and encode the singularities in the coefficients ai.

Definition 2.6 (Canonical divisor). Let X be normal. Write detTXsm = O(−
∑
diD

◦
i ). The

canonical divisor is KX =
∑
diDi where Di = D◦

i .

Remark 2.7. Since SingX has codimension at least 2, KX is defined up to linear equivalence.
KX is not Cartier nor Q-Cariter in general, so f∗KX does not make sense.
If µ : X1 ! X2 is birational, then µ∗(KX1) = KX2 . ⋄

Definition 2.8. A pair (X,D) is the data of a normal variety X and a Q-Weil divisor D such that
KX +D is Q-Cartier.

Example 2.9. If X is smooth, then (X, 0) is a pair.
If X is Q-factorial and D is Q-Weil, then (X < D) is a pair. ⋄

Definition 2.10. Let X be normal and D =
∑
aiDi be Q-Weil. Then SuppD =

∑
Di is/has

simple normal crossing if each Di is smooth and for all z ∈ X, there exists a neighbourhood U and
coordinates x1, . . . xn such that Di = (xi = 0) in U .

A log resolution of (X,D) is a resolution of singularity f : Y ! X such that E is divisorial, and

E + D̃ has SNC support.

BY Hironaka’s work, resolutions and log resolutions exist, and are given by compositions of
blow-ups.

Example 2.11. Let D = (xm − ym = 0) be the union of m lines. Let π : Bl0A2 ! A2 be the

blow-up. Then π is a log resolution of (A2, D) and π∗D = D̃ +mE. ⋄

Definition 2.12 (Discrepancies). Let (X,D) be a pair, and f : Y ! X birational. Write KY =

f∗(KX + D) +
∑
aiEi such that the support of Ei is in the exceptional divisor or D̃. Then

a(Ei, X,D) := ai is the discrepancy of Ei.

Remark 2.13. If Ei ⊆ Supp D̃, and D̃ =
∑
diEi, then a(Ei, X,D) = −di. ⋄
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Example 2.14. If X is smooth, and f is the blow up of a closed subscheme Z ⊆ X of codimension
c, then a(E,X, 0) = c− 1. ⋄

Definition 2.15. The discrepancy of the pair (X,D) is disc(X,D) = inf{a(E,X,D) : E exceptional}.
The total discrepancy is inf{a(E,X,D) : E divisor of X}.

Definition 2.16. A divisor D =
∑
diDi is

terminal
canonical
KLT
PLT
LC

 ⇐⇒ disc(X,D) is


> 0
≥ 0

> −1 and ⌊di⌋
> −1
≥ −1


We say X with KX being Q-Cartier is of these properties if (X, 0) is.

Remark 2.17. KLT stands for Kawamata log terminal, PLT stands for purely log terminal, and
LC stands for log canonical. ⋄

Lemma 2.18. A pair (X,D) is klt or lc if and only if there exists a log resolution f : Y ! X such
that

ai > −1 or ≥ −1

respectively.
If (X, 0) is a pair, then it is terminal or canonical if and only if there exists a log resolution such

that

ai > 0 or ≥ 0

respectively.

Example 2.19. Let X be smooth and
∑
Di be SNC. Then (X,

∑
diDi) is klt if and only if di < 1,

and lc if and only if di ≤ 1.

Let X = A2 and D = (xm−ym = 0), and Y = Bl0A2. Then KY = π∗(KX +D)− D̃+(1−m)E.
So a(E,X,D) = 1−m and (X,D) is lc if and only ifm ≤ 2. Similarly, we have a(E,X, 12D) = 1−m

2

and (X, 12D) is lc if and only if m ≤ 4 ⋄

Proof. Suppose E is exceptional over X with respect to g : Y1 ! X. Let h : Ŷ ! X be the
resolution of the indeterminant of Y1 and Y . Write

KŶ = h∗(KX +D) + aẼ + E′

such that Ẽ ̸⊆ SuppE′. Let p : Ŷ ! Y1 be the factoring map and apply p∗ to get a = disc(E,X,D).

Write q : Ŷ ! Y . Then

KŶ = q∗(KY ) +
∑

βiGi = q∗(f∗(KX +D) +
∑

bjEj) +
∑

βiGi.

So Ẽ appears in
∑
bjEj +

∑
βiGi and for one of the Ej or Gi, we have a = bj or a = βi. In the

former case, we are done by assumption.
We may assume q is a composition of blow-ups. Say q is a single blow up along some Z. Then

a = codimY Z − 1 + coeff
Ẽ
(q∗

∑
biEi) = codimY Z − 1 +

∑
Z⊆Ei

bi. Since
∑
Ei is SNC, Z is

contained in at most codimY Z of them and we are done. □

Proposition 2.20 (K-negative contraction preserves terminality). Let X be a terminal variety
and f : X ! Y birational with irreducible exceptional divisor E, such that KY is Q-Cartier and
for all C contracted, KX · C < 0, then Y is terminal.
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2.3. Multiplier ideal.

Definition 2.21. Let X be smooth, D ≥ 0 a Q-Weil divisor. The multiplier ideal of D is

I(X,D) = µ∗(OX′(KX′/X − ⌊µ∗D⌋))
where µ : X ′ ! X is a log resolution of (X,D). By Hartog’s lemma I(X,D) is an ideal sheaf.

Lemma 2.22. Let X be smooth and D ≥ 0. Then (X,D) is klt if and only if I(X,D) = OX , and
lc if and only if I(X, cD) = OX for all 0 < c < 1.

Proof. Write KX′ = µ∗KX +
∑
aiEi and µ

∗D = D̃ +
∑
biEi. Then

KX′/X − ⌊µ∗D⌋ =
∑

(ai − ⌊bi⌋)Ei −
∑

⌊di⌋D̃i.

Then I(X,D) = OX if and only if ai − ⌊bi⌋ ≥ 0 and −⌊di⌋ ≥ 0, if and only if ai − bi > −1 and
−⌊di⌋ ≥ 0, if and only if (X,D) is klt. □

Definition 2.23. Let (X,∆) be a pair and ∆ ≥ 0. The multiplier ideal of D with respect to
(X,∆) is

I((X,∆), D) = µ∗I(KX′ − ⌊µ∗(KX +∆+D)⌋)
where µ is a log resolution of (X,∆+D).

Example 2.24. Let X ⊆ Cn+1 be a hypersurface and XSing = 0 such that Bl0X is a log resolution
of X. Say X = (xd1 + · · ·+ xdn+1 = 0). Then

KBl0 X = π∗KX + (n− d)E

so I(X, 0) = (m0)
d−n for d ≥ n. ⋄

2.3.1. Analytic construction.

Definition 2.25. A map φ : U ⊆ Cn ! [−∞,∞) is plurisubharmonic if it is upper semicontinuous
and for all line L ⊆ U and a ∈ L ∩ U , we have

φ(a) ≤ 1

2π

∫ 2π

0
φ(α+ reiθ)dθ.

Example 2.26. If φ(z) = log |z| or φ(z1, . . . , zn) = log
∑

|zi|, then φ is plurisubharmonic. ⋄

Definition 2.27. If φ is PSH, then the multiplier ideal of φ is

I(φ)(U) = {f : U ! C holomorphic, measurable : |f |2e2φ ∈ L1
loc(U).}

Example 2.28. Let D =
∑
aiDi, ai ∈ Q>0 and U ⊆ X such that Di ∩ U = (yi = 0). Take

φD :=
∑
ai log |yi|. Then

I(φD)(U) = {f ∈ OX(U)| |f |2∏
|yi|2ai

∈ L1
loc(U)}.

⋄

Theorem 2.29. Let X be smooth and D =
∑
aiDi, ai ∈ Q>0. Then

I(X,D)an = I(φD).

Proof. Assume D is SNC and take U such that Di ∩U = (xi = 0). Let f ∈ I(φD)(U) and Assume

f =
∏
zdii . Then

|f |2∏
|xi|2ai

=
∏

|xi|2|di−ai| ∈ L1
loc(U)

if and only if di − ai ≥ −1, which happens if di ≥ ⌊ai⌋. hence f ∈ O(−⌊D⌋)an = I(X,D)an. □
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2.4. Vanishing theorems.

Definition 2.30. A Q-Cartier divisor D is nef if for all curves C ⊆ X, D · C ≥ 0. It is big if
dimH0(X,mD) = O(mdimX).

Example 2.31. Let g : Y ! X be geometrically finite and A ample on X. Then g∗A is nef and
big. ⋄

Theorem 2.32 (Kodaira vanishing theorem). Let X be smooth projective and A ample Cartier.
For all i > 0, H i(X,KX +A) = 0.

Theorem 2.33 (Vanishing for nef and big). If B is a nef and big Cartier divisor, then for all I,
H i(X,KX +B) = 0.

Theorem 2.34 (Kawamata-Viehweg vanishing). Let N be Cartier and N ≡ B+∆ is a numerical
equivalence. If B is nef and big, ∆ =

∑
ai∆i is SNC and ai ∈ Q ∩ (0, 1), then for all i > 0,

H i(X,KX +N) = 0.

Theorem 2.35 (Local vanishing). Let X be smooth and D be a Q-divisor. If µ : X ′ ! X is a log
resolution then for all i > 0,

Riµ∗OX′(KX′/X − ⌊µ∗D⌋) = 0.

Theorem 2.36 (Nadel vanishing). Let X be smooth projective, D be Q-Weil and L Cartier. If
L−D is nef and big, then for all i > 0,

H i(X,O(KX + L)⊗ I(X,D)) = 0.

We assume the first two, and prove the third.

Proof.

Lemma 2.37. Let X be smooth and projective, L a divisor on X and m a positive integer. There
exists a finite surjection f : Y ! X and a Cartier divisor N on Y such that f∗L = N⊗m.

Proof. It suffices to prove it for the very ample bundle φ∗OPN (1) because of the following. Suppose
L = A1 ⊗ A∨

2 where A1, A2 are very ample. Let φi be the embeddings induced by Ai. Then if we
have maps f1 : Y1 ! X, f2 : Y2 ! Y1 such that f∗1A1 = N⊗m

1 and f∗2 f
∗
1A2 = N⊗m

2 , then we have
f∗2 f

∗
1L+ (f∗2N1 ⊗N∨

2 )
⊗m.

Let ν : PN ! PN be the map [x0 : · · · : xN ] 7! [xm0 : · · · : xmN ]. Then we take Y to be X×φ,PN ,νPN

and Y its normalization. □

Lemma 2.38. Let X be smooth and D ⊆ X smooth. If OX(D) = L ⊗m for a line bundle L . Let
V (L ) be the total space of L , and U ⊆ X an open set trivializing L . Say U ∩D = (y = 0) and
V (L ) ∼= U × A1 over U . Then Y = (ym − y(x) = 0) ⊆ U × A1 glue to a smooth Y . The map
γ : Y ! X is finite of degree m and totally ramified at D. We have

γ∗OU = ⊕m
i=0L

−i.

Lemma 2.39 (Injectivity lemma). Let f : Y ! X be a finite surjection for X,Y normal. Let
E ! X be a vector bundle. Then for all j,

Hj(X, E) ! Hj(Y, f∗E)
is injective.

We do an induction on r where ∆ =
∑r

i=1 ai∆i.
Let a1 =

c
d for 0 < c < d. Then there exists p : X ′ ! X of degree d such that X ′ is smooth and

p is generically finite, with ∆′
1 = p∗∆1 = dA′ for some A′ Cartier on X. We can alo find p such

that p∗
∑r

i=2∆i =
∑

∆′
i is SNC. Set N

′ = p∗N and B′ = p∗B.
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Then there exists a cyclic map q : X ′′ ! X ′ of degree d, totally branched along A, andN ′′−cA′′ =
B′′ +

∑r
i=2 ai∆

′′
i for ai ∈ (0, 1).

By induction, Hj(X ′′,−N ′′ + cA′′) = 0. Since q is finite, spectral sequences show

Hj(X ′, q∗OX′′(−N ′′ + cA′′)) = Hj(X ′,⊕Od−1
i=0 (−N

′ + (c− i)A′) = 0

Since the direct sum contains a copy of O(−N ′), we conclude Hj ∗ X ′,O′
X(−N ′)) = 0, and by

injectivity lemma, Hj(X,−N) = 0.
□

2.5. Terminal sigularities. When X is a surface, X is terminal if and only if X is smooth.

Proposition 2.40. Let X be projective and suppose KX is Q-Cartier. Then

• If H ⊆ X is a general hyperplane section, then (X, 0) is terminal/canonical if and only if
(H, 0) is.

• (X, 0) is terminal implies codimX ≥ 3.

Proof. Induction on dimension of X. Let p : X ′ ! X be a resolution of singularity. Let H be a
hyperplane section, so SingH ⊆ SingX ∩H. Let H ′ be the strict transform, so we can assume H ′

is smooth.
We have KX′+J ′ = p∗(KX+H)+

∑
aiEi. If X is terminal, then H is terminal and by induction,

codimH SingH ≥ 3. Each component of SingH is contained in a component of SingX ∩ H, so
codimX SingX ≥ 3. □

Recall D Cartier is base-point free if for all x ∈ X, there exists D′ ∼ D effective such that
x /∈ SuppD. The base locus of D is BsD = ∩D′∈|D| SuppD

′.
For all D with |D| ̸= ϕ, there exists a resolution of base locus µ : Y ! X such that |µ∗D| =

|M |+ F for F ≥ 0 and M base-point free, such that SuppF = Bsµ∗D.

Theorem 2.41. If X is smooth and L is Cartier, and BsL has codimension at least 2 such that
for all x ∈ X, there exists Bx ∈ |L| with (X,Bx) is canonical in a Zariski neighbourhood of x, then
for B ∈ |L| general, we have (X,B) canonical.

2.6. Inverse of adjunction.

Theorem 2.42 (Singular relative vanishing). Let (X,D) be a pair and D ≥ 0. Let µ : X ′ ! X be
a log resolution. Then for all j > 0,

Rjµ∗OX′(KX′ − ⌊µ∗(KX +D)⌋) = 0.

Theorem 2.43 (Connectedness of non-klt locus). Let X be normal and D =
∑
diDi ≥ 0. Let

f : Y ! X be a log resolution of (X,D). Set A =
∑

ai>−1 aiEi and F = −
∑

ai≤−1 aiEi. Then
SuppF is contained in the neighbourhood of every fiber of f .

Theorem 2.44 (Adjunction for pairs). Let (X,D) be a pair and S a normal irreducible Cartier
divisor. Let S ̸⊆ supB and (X,B + S) be a pair. Then

(KX +B + S)|S = KS +BS

for some BS such that (S,BS) is a pair.

Theorem 2.45. If B ≥ 0, then (X,S +B) is plt in a neighbourhood of S if and only if (S,BS) is
klt.
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3. Singularity and Hodge modules

3.1. D-modules. Let X be a smooth irreducible algebraic variety over C of dimension n. Let
DX ⊆ EndC(OX) be the subsheaf generated by OX and DerC(OX). This is a sheaf of non-
commutative ring.

The sheaf DX admits a filtration F•DX by order of differential operators. If x1, . . . , xn are local
coordinates, then FpDX is generated by OX∂

α
X for α1 + · · ·+ αn ≤ p. The graded pieces

GrF• DX
∼= Sym•(TX)

is a sheaf of commutative rings.
If M is a coherent DX -module, then one can take a good filtration, i.e. an exhaustive increasing

filtration F•M such that GrF• (M) is locally finitely generated over GrF• DX , which is a sheaf on the
total space of the cotangent bundle. Equivalently, we want FpM to be coherent OX -modules such
that Fp · Fq ⊆ Fp+q with equality for q ≫ 0.

From M we get its singular support

SS(M) = Supp(GrF• M)red ⊆ T ∗X

which is independent of F•.

Theorem 3.1 (Kashiwara). Every irreducible component of SS(M) has dimension at least n.

Definition 3.2. Say M is holonomic if dim(SS(M)) = n or M = 0. These form an abelian
category whose objects are of finite length.

3.2. Riemann Hilbert correspondence. The category of holonomic DX -modules with regular
singular support is equivalent to the category of perverse sheaves on X.

Saito’s Hodge modules are holonomic D-modules with a fixed good filtration and other data and
conditions.

Example 3.3. • OX with the filtration

FpOX =

{
OX , p ≥ 0

0, p < 0,

is a holonomic D-module, where GrF• (OX) is the structural sheaf of zero section on T ∗X,
which has dimension n support. It corresponds to the perverse sheaf CX [n].

• Let U
j
↪−! X be open. Then Rqj∗OU is roughly Hq+1

X\U (OX), where H∗
Z(−) = RpΓ◦

Z(−), the

local homology of X \ U ! X. If U = X \ Z and Z = (f = 0), then Rj∗OU = OX [ 1f ], and

H1
Z(OX) = OX [1/f ]/OX .

• Let Z be a smooth dimension r closed subscheme of X. Then i+OZ
∼= Hn−r

Z (OX).
⋄

Holonomic D-modules are perserved by pullbacks and pushforward.

3.3. b-functions. Let 0 ̸= f ∈ O(X). ConsiderOX [1/f, s]fs the free rank 1 module overOX [1/f, s]
where s is a variable and fs is a formal generator. This is a D-module via

D · fs = sD(f)

f
fs

for D ∈ Der(OX).
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Theorem 3.4 (Bernstein, Kashiwara). There exists a polynomial b(s) ̸= 0 such that

b(s)fs ∈ DX [s] · fs+1.

The monic generator of ideal of such functions is the b-function bf (s).

Example 3.5. • Let Z = (f = 0) be smooth. We have local coordinates such that x1 = f .
Then ∂x1 · xs+1

1 = (s = 1)xs1 which means bf (s)|s+ 1. In fact, bf (s) = s+ 1.

• If f is invertible, then bf (−1) = 0 because b(−1) 1f ∈ DX · 1 = OX .

• Let f = x21+· · ·+x2n. Then ∂xif
s+1 = (s+1)2xif

s and ∂2xi
f s+1 = 2(s+1)fs+s(s+1)4x2i f

s−1.

This means
∑
∂2xi

f s+1 = (s+ 1)(2n+ 4s)fs, so bf (s)|(s+ 1)(s+ n
2 ).

⋄
Remark 3.6. Existence of bf (s) implies OX [ 1f ] is fintiely generated over DX . ⋄

Remark 3.7. Similar results hold for all sections ofMf [s]f
s whenM is a holonomicD-module. ⋄

Theorem 3.8 (Kashiwara). All roots of bf (s) are rational and negative. More precisely, if π :
Y ! X is a log resolution of (X,Z) and π∗(Z) =

∑
aiEi with KY/X =

∑
kiEi, then every root of

bf (s) is equal to −ki+l
ai

for some i and some l ∈ Z>0.

Corollary 3.9. All roots of bf (s) are at most −min ki+1
ai

= lct(X,Z).

It is proven by Kollár by definition of bf (s), integration by parts, and analytic description of lct

(sup{c > 0| 1
|f |2c

is locally integrable}) that

bf (−lct(X,Z)) = 0.

Definition 3.10 (Saito). The minimal exponent of f is α̃(Z) = − largest root of bf (s)/(s+ 1) ∈
Q>0 ∪ {∞}.

By definition, lct(X,Z) = min{1, α̃}.
Theorem 3.11 (Saito). α̃ > 1 if and only if Z has rational singularity (if and only if (X,Z) is
plt).

3.4. V -filtrations. We want to “restrict OX to Z”, but Z might not be smooth. Let ι : X !
X × A1 be the graph of f . Let H = (t = 0) ⊆ X × A1, then we can restrictι∗OX to H.

Let

Bf := ι+OX = H1
ι(X)(OX×A1)

= OX [t]f−t/OX [t]

=
⊕
j≥1

OX

[
1

(f − t)j

]
=

δ= 1
f−t

⊕
j≥0

OX∂
i
tδ.

The V -fibration on Bf is a decresing exhaustive filtration by DX -submodules (V dBf )α∈Q that is

discrete and left continuous, i.e. there exists l ∈ Z>0 such that V α is concentrated on ( i−1
l ,

i
l , i ∈ Z),

such that

• t · V α ⊆ V α+1 when equality if α > 0,
• ∂t · V α ⊆ V α−1,
• ∂tt− α acts nilpotently on GrαV ,
• each V α is finitely generated over DX⟨t, ∂tt⟩.

The above definition uniquely characterizes V •Bf . From existence of b-functions and rationality of
roots, one can show there exists a V -filtration.
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3.5. Connection between V -filtration and b-funftion. Let B+
f := ι∗OX [ 1f ]

∼= ⊕OX [ 1f ]∂
j
t δ

which contains Bf . There eixsts an isomorphism

ι∗OX [
1

f
] ∼= OX [

1

f
, s]fs

such that δ is mapped to fs, ∂tt-action to the s-action and t-action to the automorphism induced
by s 7! s+ 1.

The existence of b-function gives

bf (−∂tt) · δ ∈ DX [s] · tδ

and rearranging gives the existence of V -filtrations.
We can characterize V •Bf by the b-function: for any U ∈ Bf , thereexists a monic bu of minimal

degree such that bu(s) · u ∈ DX⟨s, t⟩tu. If u = δ then bu = bf .

Theorem 3.12.

V αBf = {u ∈ Bf | all roots of bu is ≤ −α}.

Example 3.13. We have δ ∈ V αBf if and only if α ∈ lct(X,Z). ⋄

More generally,

Theorem 3.14 (Budur-Saito). For all α,

{g ∈ OX |gδ ∈ V αBf} = I(X, (α− ε)Z)

for 0 < ε≪ 1.

Similarly we know if p ∈ Z≥0, α ∈ (0, 1], then α̃(Z) ≥ qp+ α if and only if ∂pt δ ∈ V αBf .
For all p ∈ Z, with P ⊆ U ⊆ V open, we have local minimal exponents from bf |V (s)|bf |U (s), and

for U small, this converges to α̃p(z) and bf,p(s).

3.6. The Hodge filtration on OX [ 1f ]. Let p ∈ X have local coordinates x1, . . . , xn and take

w1, . . . , wn ∈ Q>0 with deg xI = wi. Let f =
∑

monomial of degree 1. If f has an isolated
singularity at p, the nwe can compute bf,p(s) and the V -filtration.

A pure Hodge module is understood as a family of pure Hodge structures with singularities. A
mixed Hodge module is a homological formalism set up for Hodge theory.

The data of a mixed Hodge module consists of (M,F•M,P, α,W•) and conditions defined induc-
tively on dimension of support by vanishing and nearby cycles, such that in dimension zero, these
are mixed Hodge structures.

• M is a holonomic DX -module.
• F•M is a good filtration called the Hodge filtration.
• P is a perverse sheaf over Q
• α : PC ! DRan

X (M) is an isomorphism.
• W• is a finite increasing filtration called the weight filtration.

There exists an abelian category of MHM on X, with morphisms strict with respect to F• and
W•. The categories Db(MHM(X)) satisfies six-functor formalism.

Example 3.15. QH
X [n] := (OX ,F•OX ,QX [n],weight = n) is a MHM. One usually study the MHM

given by functors applied to QH
X [n]. ⋄

Remark 3.16. We may allow X to be singular by embedding (locally) into smooth schemes. For
each Z, QH

Z = π∗ZQH
pt where πZ : Z ! pt.

All HM we consider are polarizable. ⋄
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3.7. Graded de Rham complex. If M is a DX -module, then

DRX(M) = 0 ! M ! Ω1
X ⊗M ! . . .! Ωn

X ⊗M ! 0

is a complex over C concentrated from degree −n to 0. If F•M is a good filtration, then we get a
filtration on DRX(M) with graded pieces

GrFp DRX(M) = 0 ! GrFp (M) ! Ω1
X ⊗GrFp+1(M) ! . . .! Ωn

X ⊗GrFp+n(M) ! 0.

This gives GrF−pQH
X [n] = Ωp

X [n− p].
Since every morphism of MHM is strict with respect to the Hodge filtration, we get

Db(MHM(X)) ! Db
Coh(X)

commutes with proper pushforward and duality.

3.8. Vanishing and nearby cycles. Let Z = (f = 0) for 0 ̸= f ∈ O(X). We have a V -filtration

on Bf = ι∗OX = ⊕j≥0OX∂
j
t δ. This carries a Hodge filtration Fp+1Bf = ⊕j≤pOX∂

j
t δ which induces

filtrations on GrαVBf as a filtered DX -module.
The nearby cycle is

ψf (OX) :=
⊕

α∈(0,1]

GrαVBf

as a filtered DX -module, and the vanishing cycle is

Ψf (OX) = Gr0VBf (−1)⊕
⊕

α∈(0,1)

GrαVBf .

The MHM corresponding to these filtered D-modules are ψfQH
X [n],ΨfQH

X [n] have rational struc-
tures given by Deligne’s nearby/vanishing cycles.

If Z
i
↪−! X is closed and U = X \ Z j

−! X, we have an exact triangle

i∗i
!QH

X [n] ! QH
X [n] ! j∗QH

U [n] !+1 .

As OX -modules, Hq(J∗QH
U [n]) = Rqj∗QH

U [n] and Hq
Z(i∗i

!QH
X [n] = Hq

Z(OX).
Let Z be a reduced hypersurface, then the above becomes

0 ! OX ! OX [
1

f
] ! H1

Z(OX) ! 0.

Thus understanding Hodge filtrations on OX [ 1f ] is the same as understanding that of H1
Z(OX).

The Hodge filtration on H1
Z(OX) is as follows. There exists a short exact sequence

0 ! Gr0VBf
t
−! Gr1VBf

τ
−! H1

Z(OX) ! 0

where the filtration on H1
Z(OX) is the quotient filtration. Here the map τ is given by

Gr1VBf H1
Z(OX)

V 1Bf

OX [ 1f , s]f
s OX [ 1f ]

τ

s7!−1

Suppose f = xa11 . . . xann and Iλ(f) = I((λ− ε)Z) = (x
⌈λa1⌉−1
1 . . . x

⌈λan⌉−1
n ).
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For all λ, we have V λBf =
∑

j>0DXIλ+j(f)∂
j
t δ, and we have similar formulas for Fp∩V λ. With

ai = 0 or 1, we have Z SNC. Then the Hodge filtration on OX [ 1f ] is given by

FpOX [
1

f
] =

{
0, p < 0,

FpDX · OX [ 1f ], p ≥ 0.

Suppose Z is smooth (locally x1 = 0). Then

FpOX(Z) = OX((p+ 1)Z)

is the pole order filtration. In general, FpOX(Z) = IP (Z) · O((p + 1)Z) ⊆ OX((p + 1)Z), where
Ip(Z) is the p-th Hodge ideal of Z.

We can describe Ip(Z) using τ . Any u ∈ V 1Bf is of form
∑p

i=0 hi∂
i
tδ as we have ∂itt

i 1
f i δ =

(−1)is(s− 1) . . . (s− i+ 1) for s = −∂tt. This means Ip(Z) = {
∑
i!hif

p−i|
∑p

i=0 hi∂
i
tδ ∈ V 1Bf}.

As a consequence, when p = 0, we have I0(Z) = I((1− ε)Z), and Ip(Z) = OX if and only if for
all z ∈ Z, there exists hp∂

p
t δ+lower order terms∈ V 1Bf at z, if and only if ∂pt δ ∈ V 1Bf , if and only

if α̃(z) ≥ p+ 1.

Theorem 3.17. If Z ↪! X and X ↪! X is smooth such that Z|X′ ↪! X ′ is reduced, then

Ik(Z|X′) = Ik(Z) · OX′ .

Theorem 3.18 (Saito). If f ∈ O(X) and g ∈ O(Y ) with f+g ∈ O(X×Y ), for p ∈ Z(f), q ∈ Z(g),
we have

α̃(p,q)(f + g) = α̃p(f) + α̃q(g).

3.9. The Du Bois complex. LetX be a smooth projective variety. Then the complex Ω•
X and ωp

X
are fundamental objects. If X is singular, they behave badly and do not respect global geometry.

Suppose Z is reduced over C. Du Bois and Deligne introduced (Ω•
Z , F•) with

Ωp
Z = GrpFΩ

•
Z [p] ∈ Db

Coh(Z).

This is the right obeject for Hodge theory as

• CZ
∼= Ω•

Z ,
• The corresponding sequence Ep,q

1 = Hq(Z,Ωp
Z ⇒ Hp+q(Z) degenerates at E1 for Z proper,

• For Z projective and L ample, Hq(Z,Ωp
Z ⊗ L) = 0 for p+ q > dimZ.

There exists a canonical morphism (Ω•
Z , stupid filtration) ! (Ω•

Z , F
•) that gives an isomorphism

on Zsm.
The definition of Ω•

Z is in terms of simplicial resolutions.

3.9.1. Steenbrink’s description via log resolution. Let Y ! X be a log resolution where π−1(Z) is
SNC. With an analogue of Mayer-Vietoris sequence, we have for all p and exact triangle

Ωp
X ! Ωp

Z ⊕Rπ∗Ω
p
Y ! Rπ∗Omega

p
E
.

It is known that ΩE
p
E = Ωp

Y /Ω
p
Y (logE)(−E). Applying the octahedral axiom gives

Rπ∗Ω
p
Y

(Id,0)
−−−! Rπ∗Ω

p
Y ⊕ Ωp

Z
sum
−−! Rπ∗Ω

p
E

and exact triangle

Rπ∗Ω
p
Y (logE)(−E) ! Ωp

X ! Ωp
Z

+1
−−! .

Remark 3.19. If Z has quotient or toric singularities, then

Ωp
Z = Ω

[p]
Z := j∗Ω

p
Zsm

where j : Zsm ↪! Z. ⋄
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3.9.2. Description via Hodge modules.

Theorem 3.20 (Saito). If Z ↪! Xsm, then

Ωp
Z
∼= RHomOX

(GrFp−nDRX(i∗i
!QH

X [n]), ωX)[p].

Sketch of proof. Set

U = X \ Z X Z

π−1(U) Y E

j i

∼=
j′

π

This gives an exact triangle

GrFp−nDRX(i∗i
!QH

X [n]) ! GrFp−nDRX(QH
X [n]) ! GrFp−nDRX j∗QH

U [n]
+1
−−! .

Also,
j∗QH

U [u] = Rπ∗j
′
∗QH

π−1(U)[n] = Rπ∗Ω
n−p
Y (logE)[p].

Apply RHomOX
(−, ωX), we get

RHomOX
(Rπ∗Ω

n−p
Y (logE)[p], ωX) ! RHomOX

(Ωn−p
X [p], ωX) ∼= Ωp

X [−p] ! ∗ +1
−−! .

where the term ∗ ∼= Ωp
Z [−p] by the exact triangle from before.

The first term is

RHomOX
(Rπ∗Ω

n−p
Y (logE)[p], ωX) ∼= Rπ∗RHomOY

(Ωn−p
Y (logE), ωY )[−p] ∼= Rπ∗ΩY (logE)(−E)[−p].

3.10. The Du Bois complex when α̃ is large.

Theorem 3.21. Let Z ↪! X be a reduced hypersurface and p ∈ Z≥0. Then α̃(Z) ≥ p+ 1 for some
p ∈ Z≥0 if and only if Ωi

Z ! Ωi
Z is an isomorphism for all i ≤ p.

In this case we call Z a p-Du Bois singularity. If p = 0, then we get (X,Z) log canonical if and
only if Z has Du Bois singularity.

Lemma 3.22. If α̃(Z) ≥ p+ 1, then codimZ(Zsing) ≥ 2p+ 1.

Proof. If r = dimZsing, we let X ′ be the intersection of r general hyperplanes in X and get Z ∩X ′

is an isolated singularity. This means α̃(Z ∩X ′) ≥ p+ 1 since X ′ is general. Hence

α(Z ∩X ′ ≤ dimX ′

2
=
n− r

2
implies n− r ≥ 2p+ 2. □

Proof of theorem. we know Ωp
Z
∼= RHomOX

(GrFp−nDRX H1
Z(OX), ωX)[p+1]. This involves graded

pieces GrFi H1
Z(OX) for p− n ≤ i ≤ p.

Since α̃(Z) ≥ p+1 , we have FiH1
Z(OX) = OiH1Z(OX) for i ≤ p, where Oi = OX((i+1)Z)/OX .

Then
GrOi H1

Z(OX) = OZ((i+ 1)Z).

Then
ΩZ

∼= [0 ! OZ(−pZ) ! Ω1
X |Z ⊗OZ(−(p− 1)Z) ! . . .! Ωp

X |Z ! 0]

is concentrated in degree −p to 0, given by the truncated Koszul complex of OZ ! ΩX |Z ⊗
OZ(Z) tensored by OZ(−pZ). The zeroth cohomology of this compelx is Ωp

Z , and we want other
cohomologies. The Koszul complex is exact in non-zero degrees if and only if

depth(JacZ ,OZ) ≥ p ⇐⇒ codimZ(Zsing) ≥ 2p+ 1.

So now we can apply the lemma. □
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Theorem 3.23. If Z ↪! Xsm is a reduced hypersurface with α̃(Z) > p ≥ 2, then

X ∈ Z ⇒ Hp−1(Ωn−p
Z )x ∼= OZ,x/ JacZ OZ,x.

In particular, the right-hand side is non-zero if z ∈ Zsing, so Z does not have quotient or toric
singularity.

Theorem 3.24. Z has p-rational singularity if and only if α̃ > p + 1, so p-rational impleis p-Du
Bois implies (p− 1)-rational.

□
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