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Abstract. Consider the toric surface S = C2 acted on by the torus T0 = (C∗)2. Let QuotS(E,n) be
the Quot scheme of length n quotients of the T1 = (C∗)N -equivariant bundle E = CN⊗OS . For a T =
T0×T1-equivariant K-theory class α ∈ KT(S), we prove universal series expressions for the equivariant

Segre numbers
∫
[QuotS(E,n)]vir

s(α[n]) and equivariant Verlinde numbers χvir(QuotS(E,n), det(α[n])).

Using these expressions we conclude a correspondence between the Segre and Verlinde series. When
α = Cr ⊗ OS , we also prove a weak symmetry in E and V . Some of the universal series shall
be computed using the method of Göttsche-Mellit, which was originally developed for non-virtual
invariants. When T0 is the 1 dimensional torus {(t1, t2) : t1t2 = 1}, the toric surface S = C2

becomes K-trivial. We define reduced versions of the Segre and Verlinde invariants and prove a
correspondence in this case. For X = C4 a toric Calabi-Yau 4-fold, we discuss the analogues of these
invariants and generalize Cao-Kool-Monavari’s cohomological limits on Hilbert schemes to Quot
schemes. The Segre-Verlinde correspondence and weak symmetry are conjectured for the X = C4

case, as well as some vanishings of the Segre and Verlinde series in specific ranks, based on empirical
data.
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1. Introduction

1.1. Definitions of Segre and Verlinde invariants. Let Y be a smooth quasi-projective variety.
For a torsion-free sheaf E, the Quot scheme QuotY (E,n) parameterizes quotients

E ↠ F

such that
rank(F ) = 0, c1(F ) = 0, χ(F ) = n.

When Y = C2 is a toric surface or Y = C4 is a toric Calabi-Yau 4-fold, we shall define equivariant
Segre and Verlinde invariants on these Quot schemes and find relations between them. In the
non-equivariant case where Y is a smooth projective curve, surface or Calabi-Yau 4-fold, such
relations are called Segre-Verlinde correspondence and are studied in [AJL+21, Boj21b, Boj21a,
GM22, GK22, JOP21, MOP21].

For a vector bundle V over Y , the tautological bundle V [n] on QuotY (E,n) is

V [n] = p∗(F ⊗ q∗V )

where p : QuotY (E,n)× Y ! QuotY (E,n), q : QuotY (E,n)× Y ! Y are projections, and F is the
universal quotient sheaf. This extends to the Grothendieck groups and associates each α ∈ K0(Y )

an α[n] ∈ K0(QuotY (E,n)). The Segre and Verlinde invariants are defined by integrating or taking
Euler characteristics of various insertions of these tautological bundles.

1.1.1. Invariants on Hilbert schemes of surfaces. Let us begin with the case Y = S a smooth
projective surface and E = OS . The Quot scheme QuotS(OS , n) is the Hilbert scheme Hilbn(S)
parametrizing ideal sheaves of 0-dimensional subschemes of Y of length n, which is known to be
smooth projective. For α ∈ K0(S), the Segre and Chern series, first defined by [Tyu94] in the study
of Donaldson invariants, are respectively

IS(α; q) :=

∞∑
n=0

qn
∫
Hilbn(S)

s(α[n]),

IC(α; q) :=
∞∑
n=0

qn
∫
Hilbn(S)

c(α[n]).

(1.1)

These series are related by c(α[n]) = s(−α[n]). The Verlinde series is originally defined for moduli
spaces of bundles on curves. Here it is defined by

IV(α; q) :=
∞∑
n=0

qnχ(Hilbn(S), det(α[n])).

1.1.2. Equivariant invariants on Hilbert schemes of surfaces. Now let S be a toric quasi-projective
surface with an action of T = (C∗)2. Details for equivariant cohomology and equivariant integration
are included in Section 2.1. Here we give a quick summary. Given a T-representation V , define its
equivariant characteristic classes by considering the associated bundle

ET×T V ! ET×T {pt} = BT

and taking its characteristic classes in H∗(BT) = H∗
T(pt). Denote cT, sT, eT, chT, tdT the equivariant

Chern class, Segre class, Euler class, Chern character, and Todd class respectively. From here
forward, we will always use equivariant classes for toric varieties, and we will omit the torus T from
the notations when it is clear from the context.

The action of T on S lifts to an action of T on Hilbn(S), giving an equivariant structure to V [n]

for any equivariant bundle V on S. For α ∈ KT(S), the equivariant Chern/Segre series are defined
by (1.1), where the integration

∫
Hilbn(S) is replaced by equivariant push-forward. The result of the
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integration lives in the ring of fractions of the equivariant cohomology ring H∗
T(pt), which we denote

H∗
T(pt)loc.
For α ∈ KT(S), the equivariant Verlinde series is

IV(α; q) :=
∞∑
n=0

qnχ(Hilbn(S), det(α[n]))

=

∞∑
n=0

qn
∫
Hilbn(S)

td(Hilbn(S)) ch(det(α[n])).

where χ is the equivariant Euler characteristic, and the equality follows from the equivariant
Riemann-Roch formula [EG99, Corollary 3.1].

1.1.3. Virtual invariants on Quot schemes. In general, Quot schemes of surfaces and Hilbert schemes
of 3-folds and 4-folds are not smooth, in which case we do not have a fundamental class to integrate
against. One way to resolve this is to work with a virtual fundamental class [QuotY (E,n)]vir.

For a smooth surface S and a torsion free sheaf E, a perfect obstruction theory for QuotY (E,n)
of virtual dimension nN was constructed in [MOP15, Lemma 1]. To it, one may associate a virtual
fundamental class [QuotS(E,n)]vir [BF98, LT96] and a virtual structure sheaf Ovir [CFK09]. When
S is compact, the virtual invariants are defined similarly as before, with the usual fundamental
class [QuotS(E,n)] replaced by the virtual class [QuotS(E,n)]vir, and the Euler characteristic χ(·)
replaced by the virtual Euler characteristic χvir(·) := χ(· ⊗ Ovir).

Unlike for surfaces and Fano 3-folds, the usual obstruction theory for a Quot scheme of a Calabi-
Yau 4-fold X is not perfect, so the previous method does not induce a virtual fundamental class.
However, using a (−2)-shifted symplectic structure in the sense of [PTVV11], Borisov–Joyce [BJ15]
and Oh-Thomas [OT20] constructed a virtual class [QuotX(E,n)]viro(L) ∈ H2nN (QuotX(E,n),Z).
Here L denotes the determinant line bundle detRH omq(I, I) on QuotX(E,n) where I is the
universal subsheaf. As indicated by the subscript, this class is dependent on some choice of
orientation o(L), that is a choice of square root of the isomorphism

Q : L ⊗ L! OQuotX(E,n)

induced by Serre duality. There is also no canonical virtual structure sheaf, and instead, we have a
“twisted” structure sheaf Ôvir. The Verlinde numbers are defined via the “untwisted” virtual Euler
characteristic χvir(·) = χ(· ⊗ det

1
2 ((E∨)[n])⊗ Ôvir) [Boj21a, Section 1.3].

1.1.4. Equivariant virtual invariants on Quot schemes. To define equivariant virtual invariants on
Y = Cd, d = 2, 4, we first give QuotY (E,n) some torus action. Let

T0 = (C∗)d/(∼) = {(t1, . . . , td) : t1, . . . , td ̸= 0}/(∼)

act on S = Cd naturally by scaling coordinates, where we mod out by the subgroup ⟨∼⟩ = ⟨t1t2t3t4⟩
when d = 4. Let T1 = (C∗)N = {(y1, . . . , yn) : yi ̸= 0} and E = ⊕N

i=1OY ⟨yi⟩ be the T1-equivariant
bundle of rank N with weights y1, . . . , yN . This induces a T0 ×T1-action on QuotY (E,n) by acting
on the middle term of the sequence

0! I ! E ! F ! 0.

Let α ∈ KT0(Y ), then we can write

α = [⊕r
i=1OY ⟨vi⟩]− [⊕r+s

i=r+1OY ⟨vi⟩]

where v1, . . . , vr+s are its T0-weights. However, instead of thinking of vi as T0-weights, we would
like to view them as generic parameters. Therefore we introduce an additional torus T2 = (C∗)r+s
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acting on Cr × Cs respectively. Set T := T0 × T1 × T2 and denote

KT(pt) = Z[t±1
1 , . . . , t±1

d ; y±1
1 , . . . , y±1

N ; v±1
1 , . . . , v±1

r+s]/(∼),

H∗
T(pt) = C[λ1, . . . , λd;m1, . . . ,mN ;w1, . . . , wr+s]/(∼).

where we quotient by the ideals (∼) = (t1t2t3t4 − 1) and (∼) = (λ1 + λ2 + λ3 + λ4) respectively
when d = 4.

Recall that the non-virtual equivariant invariants are defined using equivariant localization.
Similarly, the virtual equivariant invariants for S = C2 can be defined using virtual equivariant
localization [GP97, CFK09]. For toric Calabi-Yau 4-folds, the equivariant Donaldson-Thomas
invariants were first introduced in Cao-Leung [CL14, Section 8]; the K-theoretic invariants were
predicted by Cao-Kool-Monavari [CKM22] and formalized by J. Oh and R. P. Thomas [OT20] using
the twisted virtual structure sheaf and their virtual equivariant localization. The equivariant Segre
and Verlinde numbers for X = C4 are special cases of these invariants. For more details of these
constructions, see Sections 3.4 and 5.1.

On the Quot scheme QuotY (E,n) where E = ⊕N
i=1OY ⟨yi⟩, we define equivariant virtual Segre

and Verlinde series for α = [⊕r
i=1OY ⟨vi⟩]− [⊕r+s

i=r+1OY ⟨vi⟩] to be respectively

SY (E,α; q) :=

∞∑
n=0

qn
∫
[QuotY (E,n)]vir

s(α[n]),

CY (E,α; q) :=
∞∑
n=0

qn
∫
[QuotY (E,n)]vir

c(α[n]),

VY (E,α; q) :=

∞∑
n=0

qnχvir(QuotY (E,n),det(α[n])).

Remark 1.1. It is important to note that the above definitions, when Y = X = C4, are dependent
on a choice of signs at each fixed point Z ∈ QuotX(E,n)T, which is suppressed from the notation.
One could compare this to the choice of orientation in the compact case. We denote the sign at Z
to be (−1)o(L)|Z , and in the equivariant setting, we call o(L) a choice of signs.

When N = 1, the weight on E = OY ⟨y1⟩ is not necessary as this extra action does not
affect the fixed locus, so we sometimes ignore it by setting y1 = 1. By definition, the coef-
ficients of the Chern and Segre series are rational functions in the cohomological parameters
λ1, . . . , λd,m1, . . . ,mN , w1, . . . , wr+s. For the Verlinde series, they are in K-theoretic parameters
t1, . . . , td, y1 . . . , yN , v1 . . . , vr+s. Using the identification of Remark 2.4, they can be viewed as
functions in the cohomological parameters as well. Define

∗Y,i(E,α; q) := ∗Y (E,α; q)|
deg λ⃗,m⃗,w⃗=i

to be the part with total degree i in those variables, for ∗ ∈ {S, C,V}. More precisely, by restricting
a multi-variable function to a certain degree, we mean the following.

Definition 1.2. Let f(z1, . . . , zk) be a function in the ring of fractions of C[[z1, . . . , zk]]. Consider
the formal Laurent series expansion of f(bz1, . . . , bzk) in the variable b:

f(bz1, . . . , bzk) =

∞∑
i=−∞

fi(z1, . . . zk)b
i.

For i ∈ Z, the part of f with total degree i is

f(z1, . . . , zk)|deg z⃗=i := fi(z1, . . . , zk).
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1.1.5. Reduced invariants on Quot schemes of surfaces. When S is aK-trivial surface, the obstruction
on QuotS(E,n) contains a trivial summand making e(T vir) vanish, as a result, the invariants all
vanish. We may instead consider the reduced classes and invariants from Gromov-Witten theory
and stable pair theory [KT14], which has been employed to study the enumerative geometry of
Hilbert schemes in for instance [GSY17]. In the case of QuotS(E,n), a reduced perfect obstruction
theory can be obtained by removing one copy of OQuotS(E,n) from the usual obstruction for Quot

schemes. The equivariant analogue of a K-trivial surface would be S = C2 with the action of the
1-dimensional torus T0 = {(t1, t2) : t1t2 = 1}. Let T red be the virtual tangent bundle obtained from
the reduced obstruction theory. For E = ⊕N

i=1OS⟨yi⟩ and α = [⊕r
i=1OS⟨vi⟩]− [⊕s

i=r+1OS⟨vi⟩], we
define the reduced Segre, Chern, Verlinde series to be respectively

Sred(E,α; q) :=

∞∑
n>0

qn
∫
[QuotS(E,n)]red

s(α[n]),

Cred(E,α; q) :=
∞∑
n>0

qn
∫
[QuotS(E,n)]red

c(α[n]),

Vred(E,α; q) :=

∞∑
n>0

qn
∫
[QuotS(E,n)]red

td(T red) ch(det(α[n])).

1.2. Summary of results for surfaces.

1.2.1. Computation of Chern series. Consider the case S = C2 with the T = (C∗)2-action. Using
the tools from [GM22], we are able to compute the non-virtual equivariant Chern series for bundles
of rank 2 as follows in Section 4.1.

Theorem 1.3. For V a vector bundle of rank 2 over S = C2, we have

IC(V ; q) =(1 + q)
∫
S c(V )

where
∫
S denotes equivariant push-forward to a point.

Remark 1.4. For a class γ ∈ H∗
T(pt)loc and an invertible power series F (q), the expression F (q)γ

is to be interpreted as

exp (γ log(F (q))) =

∞∑
n=0

(γ log(F (q)))n

n!
∈

( ∞⊕
i=0

H i
T(pt)

)
loc

[[q]].

In the above theorem, this gives us

[qn]IC(V ; q) =

(∫
S c(V )

n

)
In Section 4.2, we extend the computation for the above theorem to the virtual setting and obtain

the Chern series of line bundles for Hilbert schemes. Note that in the non-equivariant setting, this
series can be retrieved from [OP22, Corollary 15].

Corollary 1.5. Let S = C2, and L = OS⟨v1⟩ a T-equivariant line bundle over S. We have

CS(OS , L; q) =

(
1

1− q

)∫
S c(L)c1(S)

.

By extracting the part with the lowest total degree in λ1, λ2, w1, we obtain the following 2-
dimensional analogue to the Donaldson-Thomas partition function for C3 [MNOP06b, Theorem 1],
or Cao-Kool’s formulation of Nekrasov’s conjecture for C4 [CK17, Appendix B].
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Corollary 1.6 (Corollary 4.3). For S = C2, the following equality holds

∞∑
n=1

qn
∫
[Hilbn(S)]vir

1 = e
λ1+λ2
λ1λ2

q
.

1.2.2. Universal series expressions. A common approach used to find closed formulas for the Segre
and Verlinde series is by computing their universal series. In the non-virtual Hilbert scheme case for
projective surfaces, it was proven in [EGL99] using methods of cobordism classes that the Segre
and Verlinde invariants admit the following universal series expressions

IC(α; q) = A0(q)
c2(α)A1(q)

χ(det(α))A2(q)
1
2
χ(OS)A3(q)

c1(α)KS− 1
2
K2

SA4(q)
K2

S ,

IV(α, q) = B1(q)
χ(det(α))B2(q)

1
2
χ(OS)B3(q)

c1(α)KS− 1
2
K2

SB4(q)
K2

S

where the products in the exponents are intersection products. The series Ai(x), Bi(x) are universal
in the sense that they only depend on α through its rank and are independent of the surface. Explicit
formulas for these series were conjectured and computed in [Leh99, MOP17, MOP21, EGL99, GM22].
The Segre-Verlinde correspondence in this case concerns the relations between Ai and Bi. It was first
proposed by D. Johnson and Marian-Oprea-Pandharipande in relation to the study of Le Potier’s
strange duality [MOP17, Joh18] and recently proven by Göttsche-Mellit [GM22].

For virtual invariants on Quot schemes of a smooth projective surface S and torsion free sheaf E,
the universal series expressions are given by [Boj21a, Theorem 1.2]:

SS(E,α; q) = Avir
1 (q)c1(S)c1(α)Avir

2 (q)c1(S)
2
Avir

3 (q)c1(S)c1(E),

VS(E,α; q) = Bvir
1 (q)c1(S)c1(α)Bvir

2 (q)c1(S)
2
Bvir

3 (q)c1(S)c1(E).

The explicit formulas are computed in [AJL+21, Theorem 17] for A1, A2, B1, B2 and in [Boj21a,
Theorem 1.2] for A3, B3.

Unlike the compact case where the invariants are simply numbers, the equivariant invariants can
contain terms of various degrees in H∗

T(pt)loc. This is reflected by the following theorem where
the non-virtual equivariant Segre and Verlinde invariants are written as infinite products of series
labeled by partitions. The notations for partitions are set in Section 2.2. For a partition µ and a
K-theory class α, denote

cµ(α) :=

ℓ(µ)∏
i=1

cµi(α).

Theorem 1.7 (Theorem 3.9). Let S = C2. For any r ∈ Z, N > 0, there exist universal power
series Aµ,ν,ξ(q), Bµ,ν,ξ(q), dependent on N and r, such that for E = ⊕N

i=1OS⟨yi⟩ and α ∈ KT(S)
of rank r, the equivariant virtual Segre and Verlinde series on QuotS(E,n) can be written as the
following infinite products

SS(E,α; q) =
∏

µ,ν,ξ partitions

Aµ,ν,ξ(q)
∫
S cµ(α)cν(S)cξ(E)c1(S),

VS(E,α; q) =
∏

µ,ν,ξ partitions

Bµ,ν,ξ(q)
∫
S cµ(α)cν(S)cξ(E)c1(S),

CS(E,α; q) =
∏

µ,ν,ξ partitions

Cµ,ν,ξ(q)
∫
S cµ(α)cν(S)cξ(E)c1(S).

The series in the above expressions are universal in the sense that they depend on the input α
only by its rank r. Sometimes for clarity, we will add superscripts N, r to indicate the ranks of E
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and α. Note that the series labeled by µ, ν, ξ are exponentiated to homogeneous rational functions
in

H∗
T(pt)loc = C(λ1, λ2;m1, . . . ,mN ;w1, . . . , wr+s)

of degree |µ|+ |ν|+ |ξ| − 1. The degree 0 terms occur when one of µ, ν, ξ is the partition (1) and
the rest are the empty partition (0). The argument of Section 3.3 shows that the series with degree
0 exponents are necessarily equal to the series from in the projective case, that is

A(1),(0),(0)(q) = Avir
1 (q), A(0),(1),(0)(q) = Avir

2 (q), A(0),(0),(1)(q) = Avir
3 (q),

B(1),(0),(0)(q) = Bvir
1 (q), B(0),(1),(0)(q) = Bvir

2 (q), B(0),(0),(1)(q) = Bvir
3 (q).

(1.2)

The universal series expressions of the reduced invariants take a much simpler form; as opposed
to having series exponentiated to some powers of cohomology classes, we have the following additive
expressions.

Theorem 1.8 (Theorem 3.15). When S = C2, the equivariant reduced Segre and Verlinde series
for E = ⊕N

i=1OS⟨yi⟩ and α ∈ KT(S) are

Sred(E,α; q) =
∑
µ,ν,ξ

log (Aµ,ν,ξ(q)) ·
∫
S
cµ(α)cν(S)cξ(E),

Vred(E,α; q) =
∑
µ,ν,ξ

log (Bµ,ν,ξ(q)) ·
∫
S
cµ(α)cν(S)cξ(E),

Cred(E,α; q) =
∑
µ,ν,ξ

log (Cµ,ν,ξ(q)) ·
∫
S
cµ(α)cν(S)cξ(E)

where Aµ,ν,ξ, Bµ,ν,ξ and Cµ,ν,ξ are the same series from Theorem 1.7.

1.2.3. Virtual Segre-Verlinde correspondence. When Y is compact, the virtual Segre-Verlinde corre-
spondence has been proven for compact surfaces and Calabi-Yau 4-folds [Boj21a, Theorem 1.6] for
torsion free sheaves E to be

SY (E,α; q) = VY (E,α; (−1)Nq).

As a corollary to Theorem 1.7 and the relations (1.2), we prove the following “weak” equivariant
Segre-Verlinde correspondence.

Corollary 1.9 (Corollary 3.11). In the setting of Theorem 1.7, we have the following correspondence

Aµ,ν,ξ(q) = Bµ,ν,ξ((−1)Nq).

whenever one of µ, ν, ξ is (1) and the other two are (0). In particular, the degree 0 part satisfies

SS,0(E,α; q)− VS,0(E,α; (−1)Nq) =

∞∑
n=2

fn
(λ1λ2)n−2

·
(∫

S
c1(S)

)2

· qn

for some terms fn ∈ H2n−2
T (pt) dependent on α.

This is weak in the sense that only the series whose powers are degree 0 satisfy the usual
correspondence. Computation for small values of n shows that the other series might not agree,
i.e. the terms fn can be non-zero. Hence the “strong” Segre-Verlinde correspondence does not
hold for C2 in the equivariant setting. One might ask whether there is any relations between the
series whose powers have non-zero degrees. To answer this, we compute some identities satisfied by
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Cµ,(0),ξ, Bµ,(0),ξ in Section 4.3. Before stating these identities, some notations are needed. Given
any partition µ, integer a ∈ Z and n > 0, the binomial coefficients for µ is(

a

µ

)
:=

ℓ(µ)∏
i=1

(
a

µi

)
,

and the downward factorial of a by n is

(a)(n) := a · (a− 1) · · · (a− n+ 1).

Furthermore, set
(a)(0) = 1, (a)(−1) = (a+ 1)−1.

For multiple integers n1, n2, . . . , nm, the multinomial coefficient is(
a

n1, . . . , nm

)
=

a!

n1! . . . nm! · (a−
∑

i ni)!
.

Theorem 1.10 (Theorem 4.5). For rank r ̸= 0 and n, k > 0, the universal series of Theorem 3.9
satisfy the following identities

[qm]
∑
|µ|=k

(
|r|
µ

)
logCµ,(0),(0)(q, z) =

|r|
mk

(
mr − 1

mN − 1

)(
m(r −N)

k − 1

)
,

[qm] logB(1)k,(0),(0)(q) =
mk−2

k!

(
m(r +N)− 1

mr

)
,

[qm]
∑
|ξ|=k

(
N

ξ

)
logC(0),(0),ξ(q) =

r

mk

(
mr − 1

mN − 1

)(
m(r −N)

k − 1

)
,

[qm]
∑
|ξ|=k

(
N

ξ

)
logB(0),(0),ξ(q) =

|r|k−1Nmk−2

k!

(
m(r +N)− 1

mN

)
where (1)k = (1, . . . , 1) is the partition with k copies of 1.

When r > 0, we have

[qm]
∑

|µ|=k1

∑
ξ=k2

(
r

µ

)(
N

ξ

)
logCµ,(0),ξ(q) =

r(r −N)

k1k2

(
mr − 1

mN − 1

)(
m(r −N)− 1

k1 − 1, k2 − 1

)
,

[qm]
∑
ξ=k2

(
N

ξ

)
logB(1)k1 ,(0),ξ

(q) =
rk2mk1+k2−2

k1!k2!

(
m(r +N)− 1

mr

)
.

In particular, setting k = 1, the first two equalities of this theorem give

C−r,N
(1),(0),(0)(q) = −Br,N

(1),(0),(0)((−1)Nq).

This is consistent with the Segre-Verlinde correspondence in degree 0 from Corollary 1.9 because by
the fact that S(E,α; q) = C(E,−α; q), we have

Ar,N
(1),(0),(0)(q) =

(
C−r,N
(1),(0),(0)(q)

)−1
.

Furthermore, when k = 2, we have the following correspondence in degree 1.

Corollary 1.11 (Corollary 4.6). The universal series of Theorem 3.9 satisfy the following corre-
spondence (

C−r,N
(1,1),(0),(0)(q)

)r2 (
C−r,N
(2),(0),(0)(q)

)(|r|2 )
=
(
Br,N

(1,1),(0),(0)((−1)Nq)
)|r|(r+N)

.
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C−r,N
(0),(0),(1,1)(q)

r2C−r,N
(0),(0),(2)(q)

(|r|2 )
)|r|

=
(
Br,N

(0),(0),(1,1)(−q)r
2
Br,N

(0),(0),(2)(−q)(
|r|
2 )
)r+N

.

Also proven in [Boj21a, Theorem 1.7] is a symmetry for virtual Segre series, which states

SY (E, V ; (−1)Nq) = SY (V,E; (−1)rq)

for torsion free sheaves E and V of rank N and r respectively. Similar to the Corollary 1.9, we have
the following weak version of this symmetry.

Corollary 1.12. In the setting of Theorem 1.7, for α = V = ⊕r
i=1OS⟨vi⟩, we have the following

symmetry

AN,r
µ,ν,ξ((−1)Nq) = Ar,N

ξ,ν,µ((−1)rq)

whenever one of µ, ν, ξ is (1) and the other two are (0). In degree 0, we have

SS,0(E, V ; (−1)Nq)− SS,0(V,E; (−1)rq) =
∞∑
n=1

gn
(λ1λ2)n−2

·
(∫

S
c1(S)

)2

· qn

for some terms gn ∈ H2n−2
T (pt).

A computer calculation for cases
n = 1, for N ≤ 5, r ≤ 3,

n = 2, for N ≤ 3, r ≤ 3,

n = 3, for N ≤ 3, r ≤ 2,

n = 4, 5, for N ≤ 2, r = 1

suggests that the strong version of the symmetry holds for equivariant Segre series, i.e.

SC2(E, V ; (−1)Nq) = SC2(V,E; (−1)rq).

In Theorem 1.10, if we swap N and r for the identity involving C(0),(0),ξ, we would get the exact
identity for Cµ,(0),(0). This also suggests that the strong Segre symmetry holds.

As for the Verlinde series, in the (non)-equivariant case, the (weak) Segre symmetry together with
the (weak) Segre-Verlinde correspondence would imply a (weak) Verlinde symmetry. However, the
“strong” Verlinde symmetry does not hold for S = C2, which can be observed from the asymmetry
of the series in Theorem 1.10.

1.2.4. Reduced Segre-Verlinde correspondence. For the reduced invariants on S = C2, let us denote
Sred
i and Vred

i the degree i parts of the reduced Segre and Verlinde series respectively, in the sense
of Definition 1.2. In this setting, the fact that the series from Theorem 1.8 are the same ones from
Theorem 1.7 gives us the following reduced Segre-Verlinde correspondence and Segre symmetry in
degree −1.

Corollary 1.13. In the setting of Theorem 1.8, we have the following correspondence

Sred
−1 (E, V ; q) = Vred

−1 (E,α; (−1)Nq).

When α = V is an equivariant vector bundle, we have the following symmetry

Sred
−1 (E, V ; (−1)Nq) = Sred

−1 (V,E; (−1)rq).
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Let α ∈ KT(S) with rank r. Write c1λ = c1(α) and c2λ
2 = c2(α) for some c1, c2 ∈ Q, then we

can use the Theorem 1.8 to show that for some series A2(q), A1(q), A0(q), B1(q), B0(q), dependent
on r and N ,

Sred
0 (E,α; q)|m1=···=mN=0 = − log

(
A(2),(0)(q)

)
· c2 − log

(
A(1,1),(0)(q)

)
· c21 + log

(
A(0),(2)(q)

)
=: A2(q)c2 +A1(q)c

2
1 +A0(q),

Vred
0 (E,α; q)|m1=···=mN=0 = − log

(
B(1,1),(0)(q)

)
· c21 + log

(
B(0),(2)(q)

)
=: B1(q)c

2
1 +B0(q).

Using the identities of Theorem 1.8, we can get the corresponding relations in the reduced case.
For example, Corollary 1.11 gives a Segre-Verlinde correspondence in degree 0. Furthermore, we
have the following formula for B1(q) from Theorem 1.10 by setting k = 2.

Corollary 1.14. The series B1(q) is explicitly given by

[qn]B1(q) = −1

2

(
(N + r)n− 1

rn

)
for n > 0 and r ̸= 0. The binomial coefficient

(
n
k

)
for negative input k is [x−k](1 + x−1)n.

We give some conjectural formulas for A0, B0 in terms of A1, B1 when N = 1, respectively,
checked for n ≤ 20, r < 5.

Conjecture 1.15. When N = 1 and r ∈ Z, we have

[qn]B0(q) =

(
r+1
2

)
(n− 1)− 1

6
[qn]B1(q).

When N = 1, r < −1 and n > 1, we have

[qn]A0(q) =
1

12
r(nr + n+ 2)[qn]A1(q).

1.3. Correspondence for 4-folds and other observations.

1.3.1. Segre-Verlinde correspondence. Since all toric Calabi-Yau 4-folds are non-compact, we do
not know how the invariants in the non-compact case relate to the ones in the compact case. We
have seen for the surface case the powers on the universal series have a factor of c1(S). Considering
the series given in [Boj21b, Proposition 4.13] and [Boj21a, Equation (3.38)], together with Section
5.3, we see that this term should be replaced by c3(X) in the 4-fold case. Motivated by Corollary
1.9 and 1.12, we conjecture a weak Segre-Verlinde correspondence and symmetry for X = C4. The
correspondence part was checked with a computer program for

n ≤ 6, for N, r ≤ 1,

n ≤ 3, for N, r ≤ 2,

n ≤ 2, for N, r ≤ 3,

n ≤ 2, for N, r ≤ 4.

The symmetry part was checked for
n ≤ 4, for N = r = 1,

n ≤ 3, for N = 1, r = 2,

n ≤ 2, for N = r = 2,

n ≤ 2, for N = 1, r = 3.
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Conjecture 1.16. Let X = C4, E = ⊕N
i=1OX⟨yi⟩, V = ⊕r

i=1OX⟨vi⟩, and α ∈ KT(X), then for
some choice of signs o(L), we have the following symmetry and correspondence

SX(E, V ; (−1)Nq) = SX(V,E; (−1)rq),

SX,0(E,α; q)− VX,0(E,α; (−1)Nq) =

∞∑
n=1

Fn

(λ1λ2λ3λ4)n−2
·
(∫

X
c3(X)

)2

· qn

for some terms Fn ∈ H4n−6
T (pt) dependent on α.

1.3.2. Nekrasov’s conjectures. In [CK17, Appendix B], Y. Cao and M. Kool gave the following
formulation of Nekrasov’s conjecture [Nek20, Section 5]. We generalize this to Quot schemes of C2

and C4 as follows.

Conjecture 1.17. Let Y = Cd, E = ⊕r+1
i=1OY ⟨yi⟩, and V = ⊕r

i=1OY ⟨vi⟩. When d = 2, or d = 4
with some choice of signs o(L), we have

CY (E, V ; q) = exp

(
q

∫
Y
cd−1(Y )

)
.

Note that when N = 1 and Y = C2, this is exactly Corollary 1.6. When Y = C4, we shall
show that this conjecture is a consequence of Nekrasov-Piazzalunga’s conjecture [NP19, Section
2.5] using a Quot scheme version of Cao-Kool-Monavari’s cohomological limit [CKM22, Appendix
A] in Proposition 5.9. For Y = C2, we check it for N = 2, 3, 4, 5 up to and including n = 7, 4, 2, 2
respectively.

Since [QuotY (E,n)]vir has virtual dimension nN , we have CN
Y (V ; q) = 1 when N > r in the

compact case simply for degree reason, which means the corresponding Verlinde series is also trivial
due to the Segre-Verlinde correspondence. In the non-compact case, the above conjectures suggest
that they may contain negative degree terms. However, with a computer calculation for N = 2, 3, 4, 5
and all possible r, up to and including n = 8, 5, 2, 2, we see a complete vanishing when N > r + 1
for Chern numbers, and when r < N for rank −r Verlinde numbers.

Conjecture 1.18. Let Y = Cd, N > 1, and E = ⊕N
i=1OY ⟨yi⟩. When d = 2, or d = 4 with some

choice of signs, we have for r = 0, 1, . . . , N − 2 and V = ⊕r
i=1OY ⟨vi⟩,

CY (E, V ; q) = 1.

Furthermore, for r = 1, . . . , N − 1, we have

VY (E,−[V ]; q) = 1.

In Proposition 5.9, we also show that the Chern series part of this conjecture for d = 4 is a
consequence of Nekrasov-Piazzalunga’s Conjecture 5.7.

2. Preliminaries

2.1. Equivariant cohomology and K-theory. Given a topological groupG acting on a topological
space M , the equivariant cohomology H∗

G(M) is defined to be H∗(EG×M/G), where EG! BG
is the universal principle G-bundle on the classifying space BG. The map M ! pt induces a ring
homomorphism H∗

G(pt)! H∗
G(M), making H∗

G(M) a module over H∗
G(pt) for any M , and we can

view H∗
G(pt) as a “coefficient ring”.

Definition 2.1. Given a G representation V , viewed as a vector bundle V ! {pt}, we define its
equivariant characteristic classes by taking the associated bundle

EG×G V ! EG×G {pt} = BG
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and taking its characteristic classes in H∗(BG) = H∗
G(pt). Denote cGi , eG, chG, tdG the equivariant

versions of the i-th Chern class, the Euler class, the Chern character, and the Todd class respectively.

Example 2.2. For the action of a d-dimensional torus T = (C∗)d = {(t1, . . . , td) : ti ̸= 0}, the
coefficient ring is

H∗
T(pt) = H∗(BT) = H∗((CP∞)d) = C[λ1, . . . , λd]

and λ1, . . . , λd are exactly the equivariant first Chern classes of 1-dimensional T-representations
with weight t1, . . . , td respectively. In general [Edi97, Section 3.2],

cT1 (C⟨t
w1
1 . . . twd

d ⟩) = w1λ1 + · · ·+ wdλd.

For the d− 1-dimensional subtorus T′ = {(t1, . . . , td) ∈ Cd : t1 . . . td = 1} ⊆ T, the inclusion induces
the following isomorphism to the quotient ring:

H∗
T′(pt) ∼= C[λ1, . . . , λd]/(λ1 + · · ·+ λd).

We can construct the equivariant K-group KG(M) from the G-equivariant vector bundles. When
M = Cd, vector bundles over M are trivial, but they may carry non-trivial G-actions. Therefore
the equivariant bundles on Cd correspond to finite-dimensional G-representations. The equivariant
characteristic classes of vector bundles can then be extended to the K-theory classes. For example,
the Euler class of α = [V ] − [W ] ∈ KG(pt) is eG(α) = eG(V )/eG(W ), which lives in the ring of
fractions H∗

G(pt)loc; the Chern character is chG(α) = chG(V )− chG(W ), which lives in
∏∞

i=0H
i
G(pt).

Example 2.3. When Y = Cd with the natural action by T = (C∗)d or T′ = (C∗)d−1, we have the
following character rings:

KT(Y ) ∼= Z[t±1
1 , . . . , t±1

d ] ∼= KT(pt),

KT′(Y ) ∼=
Z[t±1

1 , . . . , t±1
d ]

(t1 · · · td − 1)
∼= KT′(pt)

where for any weight w = (w1, . . . , wd), the line bundle OY ⟨tw⟩ := OY ⊗ tw simply corresponds to
its character tw = tw1

1 · · · twd
d .

Remark 2.4. We will occasionally identify Chern characters, which are power series in cohomology,
with elements in K-theory by

tw1
1 · · · twd

d ↔ chT(OY ⟨tw1
1 · · · twd

d ⟩) = ew1λ1+···+wdλd .

This allows us to consider certain classes in cohomology as elements of KT(pt). For example, for
the line bundle L = OY ⟨tw1

1 · · · twd
d ⟩, we write

chT(Λ−1L
∨) = 1− e−cT1 (L) = 1− t−w1

1 · · · t−wd
d ∈ KT(Y ).

The reason we consider equivariant cohomology is for equivariant integration. The integration
formula of [EG95b, Corollary 1] via equivariant localization states that on a smooth complete variety
Y with the action of a torus T, for λ an equivariant cohomological class, we have

πY ∗(λ) =
∑
F

πF∗

(
i∗Fλ

eT(NFY )

)
where the sum goes through the components F of the fixed locus, NFY denotes the normal bundle,
π denotes projection to a point, and i denotes the inclusion map. The right hand side of this formula
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can be used to define equivariant integration in general; for Y an arbitrary smooth variety with
finitely many fixed (reduced) points, the equivariant push-forward of πY is∫

Y
: H∗

T(Y )! H∗
T(pt)loc,

α 7!
∑
x∈Y T

i∗xα

eT(TxY )
.

(2.1)

Example 2.5. Again let Y = Cd with the natural T = (C∗)d-action. The only T-fixed point of Y
is the origin. At the origin, the character for the tangent space is T0Y = t1 + t2 + · · ·+ td ∈ KT (pt),
so eT(T0Y ) = λ1 · · ·λd. Substituting into (2.1), we have∫

Y
α =

α

λ1 · · ·λd

2.2. Partitions and solid partitions. A partition µ is a finite sequence (µ1, µ2, . . . , µℓ) of non-
increasing positive integers. The size |µ| is the sum of µi’s and we call ℓ = ℓ(µ) its length. The
empty sequence (0) is the empty partition with size |(0)| = 0. Each partition µ corresponds to a
young diagram which consists of pairs of non-negative integers (i, j) ∈ Z2

≥0 as follows

µ ! {(i, j) : j < µi+1}.

A pair □ = (i, j) in the above set is called a box in µ, which we denote □ ∈ µ. The conjugate partition
µt is defined to be the partition whose boxes are {(j, i) : (i, j) ∈ µ}. Denote c(□), r(□), a(□), l(□)
the column index, row index, arm length and leg length of □ = (i, j) ∈ µ, defined explicitly as follows

c(□) = j, r(□) = i,

a(□) = µi+1 − j − 1, l(□) = µt
j+1 − i− 1.

When i, j > 0, a necessary condition for box (i, j) to be in µ is that both (i− 1, j) and (i, j − 1)
are in µ. When i = 0 (resp. j = 0), we only need (i, j − 1) ∈ µ (resp. (i− 1, j) ∈ µ).

A solid partition π is a finite sequence (πijk)i,j,k≥1 of positive integers such that

πijk ≥ πi+1,j,k, πijk ≥ πi,j+1,k, πijk ≥ πi,j,k+1.

The size of |π| is the sum of the πijk’s. As a 4-dimensional analogue to partitions, the solid partition
can also be viewed as a collection of boxes

π  ! {(i, j, k, l) : l < πi,j,k} ⊆ Z4
≥0.

Similar to partitions, we have

(i, j, k, l) ∈ π implies


(i− 1, j, k, l) ∈ π unless i = 0,

(i, j − 1, k, l) ∈ π unless j = 0,

(i, j, k − 1, l) ∈ π unless k = 0,

(i, j, k, l − 1) ∈ π unless l = 0.

(2.2)

For a positive integer N , an N-colored partition of size n is an N -tuple of partitions µ =
(µ(1), . . . , µ(N)) such that |µ| :=

∑
|µ(i)| = n. Figure 2.1 illustrates how the partitions are coloured

based on their index. Similarly, an N -colored solid partition is an N -tuple of solid partitions.
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Figure 2.1. A 3-colored partition µ = (µ(1), µ(2), µ(3)) of size |µ| = 19 where

µ(1) = (5, 3, 1), µ(2) = (4, 1), µ(3) = (3, 2) are colored by green, blue and yellow
respectively

2.3. Admissible functions and universal series. We consider the notion of admissibility in the
sense of [Mel18], which will be an important condition in finding universal series for equivariant
invariants.

Definition 2.6. Let F (Q1, Q2 . . . ; q1, . . . , qd) ∈ Q(q1, . . . , qd)[[Q1, Q2, . . . ]] be a series in finitely
many variables Q1, Q2, . . . with constant term equal to 1. Then using the plethystic exponential
Exp, we can write

F = Exp

(
L

(1− q1) · · · (1− qd)

)
such that L is a power series in the variables Q1, Q2, . . . whose coefficients are rational functions in
q1, . . . , qd. The series F is called admissible with respect to the variables q1, . . . , qd if the coefficients
of L are polynomials in q1, . . . , qd.

Suppose F (Q;m1, . . . ,mN ;w1, . . . , wr; q1, . . . , qd) ∈ Q(q1, . . . , qd)[[Q;m1, . . . ,mN ;w1, . . . , wr]] is
admissible with respect to q1, . . . , qd with constant term 1, we have the following Laurent expansion

logF (Q; m⃗; w⃗; ; eλ1 , . . . , eλd) =
∞∑

k1,...,kd=−∞
Hk1,...,kd(Q; m⃗; w⃗)λk1

1 . . . λkd
d .

Since F is admissible, by the definition of plethystic exponential,

(1− q1) · · · (1− qd) logF (Q; m⃗; w⃗; q⃗)

is regular in a neighbourhood of q1 = · · · = qd = 0 as a power series in q1, . . . , qd, meaning we have
a lower bound k1, . . . , kd ≥ −1 for the above summation.

Furthermore, suppose F is symmetric in w1, . . . , wr and symmetric in m1, . . . ,mN , then we can
expand in the following elementary symmetric polynomial basis:

logF (Q; m⃗; w⃗; eλ1 , . . . , eλd) =
∑

µ,ξ partitions
k1,...,kd≥−1

H
µ,ξ,⃗k

(Q)

ℓ(µ)∏
i=1

eµi(w⃗)

ℓ(ξ)∏
i=1

eξi(m⃗)λk1
1 . . . λkd

d

for some series H
µ,ξ,⃗k

.

Let Y = Cd and
T0 = (C∗)d,T1 = (C∗)N ,T2 = (C∗)r

with the natural actions on Y,E = CN ⊗OY , V = Cr ⊗OY respectively. Denote T = T0 × T1 × T2.
Say the equivariant cohomology ring of T is H∗

T(pt) = C[λ1, . . . , λd;m1, . . . ,mN ;w1, . . . , wr]. Then
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V as a T-equivariant bundle has equivariant Chern roots w1, . . . , wr, and E has Chern roots
m1, . . . ,mN , so ei(m1, . . . ,mN ) = cTi (E), ei(w1, . . . , wr) = cTi (V ). Therefore

logF (Q; m⃗; w⃗; eλ1 , . . . , eλd) =
∑

µ,ξ partitions
k1,...,kd≥−1

H
µ,ξ,⃗k

(Q)cµ(V )cξ(E)λk1
1 . . . λkd

d .

For k⃗ = (k1, . . . , kd) where k1, . . . , kd ≥ −1, there exist polynomials E
k⃗
such that

1

d!

∑
τ permutation

λ
kτ(1)
1 · · ·λkτ(d)

d =
E

k⃗
(e1(λ1, . . . , λd), . . . , ed(λ1, . . . , λd))

λ1 · · ·λd

Now suppose F is symmetric in the variables q1, . . . , qd, so Hµ,k = Hµ,τ(k) for any permutation τ .
Hence

logF (Q; m⃗; w⃗; eλ1 , . . . , eλd)

=
∑

µ partition
k1,...,kd≥−1

H
µ,ξ,⃗k

(Q)E
k⃗
(e1(λ1, . . . , λd), . . . , ed(λ1, . . . , λd))cµ(V )cξ(E)

Note the equivariant weights of the tangent space T0Y are exactly λ1, . . . , λd, so ei(λ1, . . . , λd) =
cTi (Y ). By Example 2.5, we have

logF (Q; m⃗; w⃗; eλ1 , . . . , eλd) =
∑

µ partition
k1,...,kd≥−1

H
µ,ξ,⃗k

(Q)

∫
Y
E

k⃗
(c1(Y ), . . . , cd(Y ))cµ(V )cξ(E)

(2.3)

Redistributing the terms, we get

logF (Q; m⃗; w⃗; eλ1 , . . . , eλd) =
∑

µ,ν,ξ partitions

Hµ,ν,ξ(Q)

∫
Y
cν(Y )cµ(V )cξ(E)

for some series Hµ,ν,ξ. Exponentiate both sides, and we obtain the following universal series
expression for F .

Proposition 2.7. Let F (Q; m⃗; w⃗; q⃗) ∈ Q(q1, . . . , qd)[[Q;m1, . . . ,mN ;w1, . . . , wr]] be admissible with
respect to the variables q1, . . . , qd. Suppose F is symmetric in w1, . . . , wr, in m1, . . . ,mN , and
symmetric in q1, . . . , qd, then there exist power series Gµ,ν,ξ(Q) labeled by partitions µ, ν, ξ, such that

F (Q; m⃗; w⃗; eλ1 , . . . , eλn) =
∏
µ,ν

Gµ,ν,ξ(Q)
∫
Y cν(Y )cµ(V )cξ(E).

3. Segre and Verlinde invariants on C2

3.1. An auxiliary invariant for compact surfaces. A general tactic for studying the Segre and
Verlinde series is using a more general genus. In the non-virtual surface case this could be [GM22,
Equation (1.1)] defined below. In the virtual case we will use the invariant (3.11). For Calabi-Yau
4-folds, we consider the Nekrasov genus (5.2), introduced by [NP19].

For a vector bundle V over Y define

Λz(V ) =
∑
i≥0

[ΛiV ]zi ∈ K0(Y )[z], Λz(−V ) =
∑
i≥0

[Symi V ](−z)i ∈ K0(Y )[[z]]

which extends to a homomorphism Λz : (K
0(Y ),+)! (K0(Y )[[z]], ·). For α ∈ K0(S), set

I(α; q, z) :=
∞∑
n=0

(−q)nχ
(
Hilbn(S), (Λ−zα

[n])⊗ det(O[n]
S )−1

)
.(3.1)
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This invariant is chosen so that the Chern series and Verlinde series can be recovered from it by
taking limits. L. Göttsche and A. Mellit computed some of its universal series and used them to
find universal series for the Segre and Verlinde invariants. We state their theorem for the case of
rank r = 2 for later use.

Theorem 3.1 (Göttsche-Mellit [GM22]). For any r ∈ Z, there exist power series G0, G1, G2, G3, G4 ∈
Z[[q, z]] such that for all smooth projective surfaces S and α ∈ K0(S) of rank r, we have

I(α; q, z) = G0(q, z)
c2(α)G1(q, z)

χ(detα)G2(q, z)
1
2
χ(OS)G3(q, z)

c1(α)KS− 1
2
K2

SG4(q, z)
K2

S .

When r = 2, we have

G0(q, z) = 1− qz, G1(q, z) =
1− qz2

1− qz
, G2(q, z) =

(1− q)2

(1− qz)2

G3(q, z) = G4(q, z) = 1.

3.2. Equivariant invariants on Hilbert schemes. As mentioned in the introduction, the
equivariant invariants on S = C2 are defined by equivariant localization. The following definition
gives a more precise description. Let T = (C2)∗ be the 2-dimensional torus acting on S = C2 by
scaling:

(t1, t2) · (x1, x2) = (t1x1, t2x2) ∈ C2.

This lifts to an action on Hilbn(S). For a T-equivariant bundle V , V [n] is also T-equivariant.
The T-fixed locus on Hilbn(S) is a finite collection of reduced points corresponding to monomial
ideals of C[x1, x2] by Lemma 3.3. Therefore we can define the equivariant Segre and Chern
invariants by replacing the usual integration with equivariant integration (2.1). Similarly, the
Verlinde invariants on S are defined using K-theoretic equivariant localization [Tho92, Theorem
3.5]. Since we are interested in comparing the Segre and Verlinde series, we convert the Verlinde
invariants into cohomological invariants using the equivariant Hirzebruch-Riemann-Roch formula
[EG99, Corollary 3.1].

Definition 3.2. When S = C2, the equivariant Chern series of α ∈ KT(S) is

IC(α; q) :=
∞∑
n=0

qn
∫
Hilbn(S)

c(α)

:=

∞∑
n=0

qn
∑

Z∈Hilbn(S)T

c(α[n]|Z)
e(TZ)

∈ H∗
T(pt)loc[[q]] = C(λ1, λ2)[[q]]

where TZ is the Zariski tangent space of Hilbn(S) at [Z]. The equivariant Verlinde number is

IV(α; q) :=
∞∑
n=0

qn
∫
Hilbn(S)

ch(det(α[n])) td(T )

:=

∞∑
n=0

qn
∑

Z∈Hilbn(S)T

ch(det(α[n]|Z)) td(TZ)

e(TZ)

=

∞∑
n=0

qn
∑

Z∈Hilbn(S)T

ch(det(α[n]|Z))
ch(Λ−1T∨

Z )
∈

( ∞∏
i=0

H i
T(pt)

)
loc

[[q]].

Lemma 3.3. The T-fixed locus Hilbn(S)T consists of finitely many reduced points.
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Proof. Since T acts on C2 by scaling coordinates, it acts on the coordinate ring C[x1, x2] by

(t1, t2) · xi = t−1
i xi.

Observe the T-fixed ideals of C[x1, x2] are exactly the monomial ideals, of which there are only
finitely many that have length n. For these points to be reduced, it suffices to show the Zariski
tangent space in Hilbn(S) has no T-fixed parts, which follows from the characterization of the
tangent space (3.3). □

We shall explain how to calculate the above invariants. First consider the correspondence
between monomial ideals of C[x1, x2] and partitions. For a partition µ, the corresponding point
[Zµ] ∈ Hilbn(S) is given by the monomial ideal IZµ such that

OZµ = C[x1, x2]/IZµ = span{xc(□)1 x
r(□)
2 : □ ∈ µ}.

It follows that the character of OZµ is∑
□∈µ

t
−c(□)
1 t

−r(□)
2 ∈ KT(pt) = Z[t±1 , t

±
2 ].

Let V = ⊕r
i=1OS⟨vi⟩ be a equivariant bundle on S of rank r, twisted with weights vi for i = 1, . . . , r.

For any point [Zµ] ∈ Hilbn(X)T, the fiber of V [n] is

V [n]|Zµ = p∗(OZ ⊗ q∗V )|Zµ = H0(X,OZµ ⊗ V ) = H0(V |Zµ).

The right hand side is the following rn-dimensional representation in KT(pt):

r⊕
i=1

OZµ⟨vi⟩ =
r∑

i=1

∑
□∈µ

vit
−c(□)
1 t

−r(□)
2 .(3.2)

It was shown in [ES87, Lemma 3.2] that the Zariski tangent bundle at [Zµ] is

TZµ =
∑
□∈µ

t
a(□)+1
1 t

−l(□)
2 + t

−a(□)
1 t

l(□)+1
2 .(3.3)

Denote wi := cT1 (vi) the equivariant Chern roots of V , we may now expand Definition 3.2 and get

IC(V ; q) =
∑
µ

q|µ|
∏
□∈µ

∏r
i=1(1 + wi − c(□)λ1 − r(□)λ2)

((a(□) + 1)λ1 − l(□)λ2)((l(□) + 1)λ2 − a(□)λ1)
,

IV(V ; q) =
∑
µ

q|µ|
∏
□∈µ

∏r
i=1 vit

−c(□)
1 t

−r(□)
2(

1− t
−(a(□)+1)
1 t

l(□)
2

)(
1− t

a(□)
1 t

−(l(□)+1)
2

) .
Note the expression for the Verlinde series uses the identification in Remark 2.4.

An important tool for studying the Segre and Verlinde series on S = C2 used by [GM22] is the
master partition function. For each r ∈ Z, it is defined by

Ω(Q; z1, . . . , zr; q1, q2) :=
∑
µ

Q|µ|
∏
□∈µ

∏r
i=1(1− q

c(□)
1 q

r(□)
2 zi)

(q
a(□)+1
1 − q

l(□)
2 )(q

a(□)
1 − q

l(□)+1
2 )

.

On S = C2 with the bundle V = ⊕r
i=1OS⟨wi⟩, the invariant (3.1) can be defined equivariantly by

I(V ; q, z) = Ω(q; zew1 , . . . , zewr ; e−λ1 , e−λ2).

Furthermore, using the explicit expressions of IC and IV above, one can show that they are
specializations of Ω as follows.
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Proposition 3.4. ([GM22, Proposition 3.5]) The Chern and Verlinde series satisfy the following
limits:

IC(V ; q) = lim
ε!0

Ω

(
−qε2−r(1 + ε)r;

e−εw1

1 + ε
, . . . ,

e−εwr

1 + ε
; eελ1 , eελ2

)
,

IV(V ; q) = lim
ε!0

Ω
(
(−1)rqεr+1; ε−1ew1 , . . . , ε−1ewr , ε−1; e−λ1 , e−λ2

)
.

3.3. Relation to projective toric surfaces. We consider what the equivariant invariants will be
for a projective toric surface S′ with a natural action by the torus T = (C∗)2, and compare them
with the case S = C2. More details on this reduction can be found in [GM22, Section 3.2]; see also
[Arb21, Section 6.2] and [LYZ02, Section 3.2].

Let the fixed points on S′ be p1, . . . , pM . Denote the Chern roots of the tangent space at pi by

a
(i)
1 , a

(i)
2 . Let V ′ be a T-equivariant bundle of rank r on S′ with Chern roots w

(i)
1 , . . . , w

(i)
r at pi. By

equivariant localization, (3.1) for S′ and V ′ can be expressed as

I(V ′; q, z) =

(
M∏
i=1

Ω(q; zew
(i)
1 , . . . , zew

(i)
r ; e−a

(i)
1 , e−a

(i)
2 )

)∣∣∣∣
λ1=λ2=0

.(3.4)

As remarked in [EG95b], since S′ is compact, the product on the right hand side lives in H∗
T(pt) =

C[λ1, λ2]. Therefore it is indeed valid to set λ1 = λ2 = 0, and the equality follows from Bott residue
formula. This helps us in finding universal series for the S = C2 case because the universal series on
the left hand side is already known by Theorem 3.1.

Using Macdonald polynomials and results from [Mel18], Göttsche and Mellit [GM22, Proposition
2.5] showed that Ω is admissible with respect to q1, q2 in the sense of Definition 2.6. Applying
expansion (2.3), we have

log Ω(q; zew1 , . . . , zewr ; e−λ1 , e−λ2)

=
∑

µ partition
k1,k2≥−1

Hµ,k1,k2(q, z) ·
∫
S
Ek1,k2(c

T
1 (S), c

T
2 (S))c

T
µ(V )(3.5)

for some series Hµ,k1,k2 . Note that the integrand on the right is a homogeneous rational function in
the variables λ1, λ2 of total degree |µ|+ k1 + k2. Exponentiating both sides, we get

Ω(q; zew1 , . . . , zewr ; e−λ1 , e−λ2) =
∏

µ partition
k1,k2≥−1

Hµ,k1,k2(q, z)
∫
S Ek1,k2

(cT1 (S),c
T
2 (S))c

T
µ(V )

Substituting this into (3.4) yields

I(V ′; q, z) =

 ∏
µ,k1,k2≥−1

Hµ,k1,k2(q, z)
∫
S′ Ek1,k2

(cT1 (S
′),cT2 (S

′))cTµ(V
′)

∣∣∣∣
λ1=λ2=0

=
∏

|µ|+k1+k2=0

Hµ,k1,k2(q, z)
∫
S′ Ek1,k2

(c1(S′),c2(S′))cµ(V ′).

where the integral in the first line is equivariant integration, while the integral in the second line
is the usual non-equivariant integration. Comparing this expansion with the one in Theorem 3.1,
together with a quick computation that E−1,−1(x1, x2) = 1, E−1,0(x1, x2) = 1

2x1, E0,0(x1, x2) =
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x2, E−1,1(x1, x2) =
1
2(x

2
1 − 2x2), we obtain [GM22, Equation (3.16)]

logG0(q, z) = H(2),−1,−1(q, z), logG1(q, z) = 2H(1,1),−1,−1(q, z),

logG2(q, z) = 24(H(0),0,0(q, z)− 2H(0),−1,1(q, z))− 4H(1,1),−1,−1(q, z),

logG3(q, z) = H(1),−1,0(q, z) +H(1,1),−1,−1(q, z),

logG4(q, z) = −H(0),0,0(q, z) + 3H(0),−1,1(q, z)−
1

2
(H(1),−1,0(q, z) +H(1,1),−1,−1(q, z))

The series Gi(q, z) are as in Theorem 3.1, which give, in rank r = 2,

H(2),−1,−1(q, z) = log(1− qz),

H(1,1),−1,−1(q, z) = −H(1),−1,0(q, z) =
1

2
log

1− qz2

1− qz
,

H(0),0,0(q, z) = 3H(0),−1,1(q, z) =
1

4
log

(1− q)(1− qz2)

(1− qz)2
.

(3.6)

To summarize, we have observed that the universal series for the projective case are exactly the
ones for the S = C2 case whose powers have degree 0 in H∗

T(pt).

3.4. Virtual invariants. Before defining virtual invariants, we recall the notion of a perfect
obstruction theory in the sense of [BF98, Definition 4.4]. For our purposes, we use the following
simplified version.

Definition 3.5. Let X be a scheme over C. An obstruction theory is a complex of vector bundles

E• = [. . .! E−2 ! E−1 ! E0]

for some a ∈ Z, together with a morphism in the derived category D(QCoh(X)) to the cotangent
complex

φ : E• ! L•
X

such that h0(φ) is an isomorphism and h−1(φ) is surjective. It is a (2-term) perfect obstruction
theory if Ei = 0 for i ̸= 0,−1. The virtual tangent space T vir = E• = (E•)∗ is the class of the dual
complex of a given obstruction theory.

Let S be a surface and E a torsion free sheaf. It is well known that QuotS(E,n) admits an
obstruction theory given by the dual complex of RH omp(I,F), where I,F are respectively the
universal subsheaf and quotient sheaf. When S is a projective surface, [MOP15, Lemma 1] shows
that this obstruction theory is perfect of virtual dimension nN . Using this, we can define a virtual
fundamental class [QuotS(E,n)]vir via the methods from [BF98, LT96] as well as a virtual structure
sheaf Ovir using [CFK09]. Applying the same argument for S = C2 gives us a T-equivariant
perfect obstruction theory. We note that since F is compactly supported, the Ext-groups are finite
dimensional vector spaces, so the steps involving Serre duality still work.

Let S = C2 and E = ⊕N
i=1OS⟨yi⟩. Recall from the introduction the following tori:

T0 = (C∗)2, T1 = (C∗)N , T2 = (C∗)r+s.

Set T = T0 × T1 × T2, with

KT(pt) = Z[t±1
1 , t±1

2 ; y±1
1 , . . . , y±1

N ; v±1
1 , . . . , v±1

r+s],

H∗
T(pt) = C[λ1, λ2;m1, . . . ,mN ;w1, . . . , wr+s].

Under these actions, the T1-fixed locus of QuotS(E,n) decomposes into the form

0! ⊕N
i=1Ii⟨yi⟩! ⊕N

i=1OS⟨yi⟩! ⊕N
i=1Fi⟨yi⟩! 0.
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Thus the T1-fixed locus can be identified as⊔
n1+···+nN=n

Hilbn1(S)× · · · ×HilbnN (S).

Consequently, the T-fixed locus QuotS(E,n)T consists of finitely many reduced points of form

Zµ = ([Z1], [Z2], . . . , [ZN ]) ∈ Hilbn1(S)× · · · ×HilbnN (S),

labeled by N -colored partitions µ =
(
µ(1), . . . , µ(N)

)
.

The following equivariant invariants are defined similarly to Definition 3.2, now motivated by
virtual equivariant localization [GP97], virtual K-theoretic equivariant localization [CFK09, Theorem
5.3.1], and the virtual Hirzebruch-Riemann-Roch formula [RS21, Corollary 1.2].

Definition 3.6. Let S = C2 and

α = [⊕r
i=1OY ⟨vi⟩]− [⊕r+s

i=r+1OY ⟨vi⟩] ∈ KT(S)

the equivariant virtual Segre, Chern, Verlinde series on Quot schemes are respectively

SS(E,α; q) :=

∞∑
n=0

qn
∑

Z∈QuotS(E,n)T

s(α[n]|Z)
e(T vir

Z )
,

CS(E,α; q) :=
∞∑
n=0

qn
∑

Z∈QuotS(E,n)T

c(α[n]|Z)
e(T vir

Z )
,

VS(E,α; q) :=
∞∑
n=0

qn
∑

Z∈QuotS(E,n)T

ch(det(α[n]|Z))
ch(Λ−1(T vir

Z )∨)
.

We shall describe how to calculate these invariants, and refer to [FMR21, Section 5.1] and [Lim21,
Section 3.3] for the following argument. On each T1-fixed locus

D = Hilbn1(S)× · · · ×HilbnN (S),

the universal subsheaf and universal quotient sheaf of D are
⊕N

i=1 IZi⟨yi⟩ and
⊕N

j=1OZj ⟨yi⟩ where
Zi is the universal subscheme of Hilbni(S). The virtual tangent bundle over D is then

T vir
D =

N⊕
i,j=1

RH omp(IZi ,OZj )⟨y
−1
i yj⟩

where p : D ×X ! D is the projection. Further restricting to each Zµ = ([Z1], [Z2], . . . , [ZN ]) ∈
QuotS(E,n)T gives the virtual tangent bundle at Zµ as follows

T vir
Zµ

=
N⊕

i,j=1

Ext(IZi ,OZj )⟨y
−1
i yj⟩ ∈ KT(S).(3.7)

To give an explicit formula for T vir, we consider a T0-equivariant free resolution of IZi . We refer to
[Eis95, Page 439] for the following Taylor resolution. Say IZi is generated by monomials m1, . . . ,ms.
For each k = 0, . . . , s, let Fk be the free C[x1, . . . , xn]-module module with basis {eI}, indexed by
subsets I ⊆ {1, . . . , s} of size k. Set

mI = least common multiple of {mi : i ∈ I}.
For k = 1, . . . , s, define differential dk : Fk ! Fk−1 by

dk(eI) =
k∑

j=1

(−1)j
mI

mI−{ij}
eI−{ij}
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for each subset I = {i1, . . . , ik} such that i1 < · · · < ik. Giving each eI the weight of mI , we obtain
the T0-equivariant free resolution

0! Fs ! . . .! F0 ! IZi ! 0

where

Fk =
⊕

I⊆{1,...,s},|I|=k

OS⟨mI(t)⟩

for some dkI ∈ Z2. Define

P (IZi) =
∑

k,|I|=k

(−1)kmI(t).(3.8)

Note that the character of OS = C[x1, x2] is
∑

i,j≥0 t
−i
1 t−j

2 = 1/(1− t−1
1 )(1− t−1

2 ), so the character

of OZi = OS/IZi is

Qi :=
1− P (IZi)

(1− t−1
1 )(1− t−1

2 )
.

Therefore the character of T vir
Zµ

in KT(pt) can be expressed as

N⊕
i,j=1

Ext(IZi ,OZj )⟨y
−1
i yj⟩ =

N∑
i,j=1

∑
k,|I|=k

(−1)k Hom(OS⟨mI(t)⟩,OZj )y
−1
i yj

=
N∑

i,j=1

∑
k,I

(−1)kOZj ⟨mI(t)
−1⟩y−1

i yj

=
N∑

i,j=1

P (IZi)Qjy
−1
i yj

=

N∑
i,j=1

(Qj − (1− t1)(1− t2)QiQj) · y−1
i yj

(3.9)

where (·) denotes the involution ti 7! t−1
i . For the T-equivariant bundle V = ⊕r

i=1OS⟨vi⟩, the fiber

of V [n] over Zµ = (Z1, . . . ZN ) is the rn-dimensional representation

r⊕
i=1

N⊕
j=1

OZj ⟨viyj⟩ =
r∑

i=1

N∑
j=1

∑
□∈µ(j)

viyjt
−c(□)
1 t

−r(□)
2 .

Substituting the above calculations into the definition, we obtain the following expressions for
the Chern and Verlinde series of vector bundles

CS(E, V ; q) :=
∑
µ

q|µ|
∏N

j=1

∏
□∈µ(j)

∏r
i=1 (1 + wi +mj − c(□)λ1 − r(□)λ2)

e(T vir|Zµ)
,

VS(E, V ; q) :=
∑
µ

q|µ|
∏N

j=1

∏
□∈µ(j)

∏r
i=1 viyjt

−c(□)
1 t

−r(□)
2

ch(Λ−1(T vir|Zµ)
∨)

.

(3.10)
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3.5. Universal series expansion. For projective surfaces, define an auxiliary virtual invariant
(c.f. (3.1)) as follows

NS(E,α; q, z) :=
∞∑
n=0

qnχvir
(
QuotS(E,n),Λ−zα

[n]
)
.(3.11)

where z is considered as the weight of an extra C∗-action that is trivial on S and QuotS(E,n). We
shall refer to this as the Nekrasov genus for Quot schemes of surfaces (c.f. (5.2)).

Similar to before, we generalize this to the equivariant setting using virtual equivariant localization.
On S = C2 for vector bundles, this is given by:

NS(E, V ; q, z) :=
∑
µ

q|µ|
∏N

j=1

∏
□∈µ(j)

∏r
i=1(1− t

−c(□)
1 t

−r(□)
2 viyjz)

ch(Λ−1(T vir|Zµ)
∨)

∈ Q(t1, t2; y1, . . . , yN )[[q, z]].

(3.12)

The choice of this invariant is based on Göttsche-Mellit’s invariant (3.1). The following Chern
and Verlinde limits are satisfied, analogous to [GM22, Proposition 3.5].

Lemma 3.7. For S = C2, the Chern series and the Verlinde series can be retrieved from NS by
taking limits. We have

CS(E, V ; q) = lim
ε!0

NS

(
E, V ; (−1)Nqε(N−r)(1 + ε)r, (1 + ε)−1

) ∣∣
λ⃗⇝−ελ⃗,w⃗⇝−εw⃗,m⃗⇝−εm⃗

,

VS(E, V ; q) = lim
ε!0

NS

(
E, V ; (−1)rqεr, ε−1

)
.

Proof. For the Chern limit, first consider the substitutions λi ⇝ −ελi, wi ⇝ −εwi,mi ⇝ −εmi.

This turns the term
∏N

j=1

∏
□∈µ(j)

∏r
i=1(1− t

−c(□)
1 t

−r(□)
2 viyj(1 + ε)−1) into

N∏
j=1

∏
□∈µ(j)

r∏
i=1

1− e−ε(wi+mj−c(□)λ1−r(□)λ2)

1 + ε

=
1

(1 + ε)r|µ|

N∏
j=1

∏
□∈µ(j)

r∏
i=1

(1 + ε− e−ε(wi+mj−c(□)λ1−r(□)λ2))

=

(
ε

1 + ε

)r|µ| N∏
j=1

∏
□∈µ(j)

r∏
i=1

(1− c(□)λ1 − r(□)λ2 + wi +mj +O(ε))

For the denominator in the sum (3.12), we note that for a Chern root x, substituting it by −εx

turns 1 − e−x = x − x2

2 + ... into 1 − eεx = −ε(x + O(ε)). Therefore after the substitution, the

denominator ch(Λ−1(T
vir|Zµ)

∨) becomes

(−1)N |µ|εN |µ|(e(T vir
Zµ

) +O(ε))

Substituting back into (3.12), the Chern limit becomes the limit of∑
µ

(−1)N |µ|q|µ|ε(N−r)|µ|(1 + ε)r|µ| · εr|µ|

(−1)N |µ|εN |µ|(1 + ε)r|µ|
·

∏N
j=1

∏
□∈µ(j)

∏r
i=1(1− c(□)λ1 − r(□)λ2 + wi +mj +O(ε))

(e(T vir
Zµ

) +O(ε))

=
∑
µ

q|µ|
∏N

j=1

∏
□∈µ(j)

∏r
i=1(1− c(□)λ1 − r(□)λ2 + wi +mj +O(ε))

(e(T vir
Zµ

) +O(ε))
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which converges to CS(E, V ; q) by (3.10). For the Verlinde series, we have

lim
ε!0

NS(E, V ; (−1)rqεr, ε−1)

= lim
ε!0

∑
µ

(−1)r|µ|q|µ|εr|µ| ·
∏N

j=1

∏
□∈µ(j) t

c(□)
1 t

r(□)
2

∏r
i=1(1− t

−c(□)
1 t

−r(□)
2 viyjε

−1)

ch(Λ−1(T vir|Zµ)
∨)

= lim
ε!0

∑
µ

q|µ|
∏N

j=1

∏
□∈µ(j)

∏r
i=1(t

−c(□)
1 t

−r(□)
2 viyj − ε)

ch(Λ−1(T vir|Zµ)
∨)

=VS(E, V ; q).

□

Before starting the proof for universal series expressions, let us discuss how the expansion of

NS(E, V ; q, z) as a formal Laurent series in the variables λ⃗, m⃗, w⃗, q, z would look like. In [Arb21,
Proposition 3.2], N. Arbesfeld shows that invariants such as [qn]NS(E, V ; q, z) can be written as a
quotient whose numerator is a Laurent polynomial in t⃗, y⃗, v⃗, z, and whose denominator is of the
form

∏
w(1− w) for some non-compact weights w in the sense of the following definition.

Definition 3.8. [Arb21, Definition 3.1] Let M be a quasi-projective scheme with an action by some
torus T. For a weight w ∈ T∨, denote Tw the maximal subtorus of T containing kerw. If the fixed
locus MTw is proper, then w is a compact weight, otherwise, it is a non-compact weight.

Fasola-Monavari-Ricolfi used this to prove that the K-theoretic Donaldson-Thomas partition
functions on C3 are Laurent polynomials with respect to the variables y1, . . . , yN [FMR21, Theorem
6.5]. We give an outline of their argument, applied to the invariant NS for S = C2. First note that
by (3.9), for any N -colored partition µ, we have

1

ch(Λ−1(T vir|Zµ)
∨)

= A(⃗t )
∏

1≤i,j≤N,i̸=j

∏
a∈Aij

(1− y−1
i yjt

a)∏
b∈Bij

(1− y−1
i yjtb)

for some series A(⃗t ) ∈ Q[[t1, t2]]loc and some sets of weights Aij , Bij . We shall show that the

denominator of NS does not have factors of the form (1− y−1
i yjt

b) for any i ̸= j and b ∈ Z2. By

[Arb21, Proposition 3.2], we need to prove w = y−1
i yjt

b is a compact weight. Since

kerw = {(⃗t, y⃗, v⃗) : yi = yjt
b}

is itself a torus, we have Tw = kerw. By definition, it suffices to show QuotS(E,n)Tw is proper.
With the automorphism T! T defined by

(⃗t, y1, . . . , yj , . . . , yN , v⃗) 7! (⃗t, y1, . . . , yjt
b, . . . , yN , v⃗),

we identify the subgroup Tw to T0 × {(w1, . . . , wN ) : wi = wj} × T2, which contains the subgroup
T0 = T0 × {(1, . . . , 1)}. This gives us an inclusion

QuotS(E,n)Tw ↪−! QuotS(E,n)T0 .

The quotients in the fixed locus QuotS(E,n)T0 are all supported at the origin 0 ∈ C2, so the fixed
locus lies inside the punctual Quot scheme QuotS(E,n)0. The punctual Quot scheme is proper
since it is a fiber of the Quot-to-Chow map QuotS(E,n)! Symn S, which is a proper morphism
[FMR21, Remark 3.4]. In conclusion, [qn]NS(E, V ; q, z) is a Laurent polynomial with respect to the
variables y1, . . . , yN , so it can be expanded into a power series with respect to the cohomological
parameters m1, . . . ,mN .

Furthermore, if w is a weight that contains both t1 and t2, then we have Tw
∼= {(t1, t2) : t1t2 =

1} × T1 × T2. The fixed locus of this subgroup remains the same as that of T, as explained in the
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next section for reduced invariants. Therefore w is a compact weight, and the denominator of NS

will not contain factors of the form (1 − ta1t
b
2) for any a ̸= 0, b ̸= 0. This means in cohomology,

[qn]NS(E, V ; q, z) can be expanded into a Laurent series in λ1, λ2 whose coefficients are power series
in m⃗, w⃗, z, where the degrees on λ1, λ2 are bounded below individually. We shall see the importance
of this lower bound in the proof of the following theorem.

Theorem 3.9. Let S = C2. For any r ∈ Z, N > 0, there exist universal power series Aµ,ν,ξ(q), Bµ,ν,ξ(q),

dependent on N and r, such that for E = ⊕N
i=1OS⟨yi⟩ and α ∈ KT(S) of rank r, the equivariant

virtual Segre and Verlinde series on QuotS(E,n) can be written as the following infinite products

SS(E,α; q) =
∏

µ,ν,ξ partitions

Aµ,ν,ξ(q)
∫
S cµ(α)cν(S)cξ(E)c1(S),

VS(E,α; q) =
∏

µ,ν,ξ partitions

Bµ,ν,ξ(q)
∫
S cµ(α)cν(S)cξ(E)c1(S),

CS(E,α; q) =
∏

µ,ν,ξ partitions

Cµ,ν,ξ(q)
∫
S cµ(α)cν(S)cξ(E)c1(S).

Proof. We begin with the case where α is a vector bundle V . Assume V = ⊕r
i=1OS⟨vi⟩, and at end

of the proof, we can generalize this to arbitrary T-equivariant bundles by substituting T-weights
into the variables v1, . . . , vr.

Begin by expanding logNS(E, V ; q, z) as a Laurent series in λ1, λ2 as follows:

logNS(E, V ; q, z) =
∑

(j,k)∈Z2

Hj,k(q, z; m⃗; w⃗)λj
1λ

k
2

for some series Hj,k ∈ Q[[q, z;m1, . . . ,mN ;w1, . . . , wr]]. By the symmetry in w1, . . . , wr and the
symmetry in m1, . . . ,mN , this expands to

logNS(E, V ; q, z) =
∑

µ,ξ partitions
j,k≥−1

Gµ,ξ,j,k(q, z) · λj
1λ

k
2cµ(V )cξ(E)

+
∑

µ,ξ partitions
min{j,k}≤−2

Gµ,ξ,j,k(q, z) · λj
1λ

k
2cµ(V )cξ(E)

for some series Gµ,ξ,j,k ∈ Q[[q, z]].
Our goal is to get a universal series expression by exponentiating the above equality. To do so,

we first show the terms in the second summation vanish using a similar approach as in Section
3.3. This proves that NS(E, V ; q, z) is admissible, from which we deduce the desired expressions by
taking the limits of Lemma 3.7.

Let S′ be a toric projective surface with a natural action by T0 = (C∗)2. Say the fixed points

are p1, . . . , pM and the Chern roots of the tangent space of S′ at pi are a
(i)
1 , a

(i)
2 , which live in

H∗
T0
(pt) = C[λ1, λ2]. Let E′, V ′ be two arbitrary T-equivariant bundles on S′ with Chern roots

b
(i)
1 , . . . , b

(i)
N and c

(i)
1 , . . . , c

(i)
r respectively at pi. By a virtual version of the argument in Section 3.3,

this time via the virtual Bott residue formula, we have

NS′(E′, V ′; q, z) =

(
M∏
i=1

NS(E, V ; q, z)
∣∣∣
λ⃗⇝a⃗(i),m⃗⇝b⃗(i),w⃗⇝c⃗(i)

)∣∣∣∣
λ⃗=m⃗=w⃗=0

where the symbol ⇝ denotes a substitution of variables. After the substitution inside the bracket of
the right hand side, we know from equivariant integration that the resulting expression is a power
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series in λ⃗, m⃗, w⃗, which is why we are able to set these variables to 0 and obtain a number. Now we
focus on the bundles

E′ =

N⊕
j=1

OS′⟨yj⟩, V ′ =

r⊕
j=1

OS′⟨vj⟩

whose Chern roots at each pi are m1, . . . ,mN and w1, . . . , wr respectively, independent of i. Thus

NS′(E′, V ′; q, z) =

(
M∏
i=1

NS(E, V ; q, z)|
λ⃗⇝a⃗(i)

)∣∣∣∣
λ⃗=w⃗=m⃗=0

.

Again, note that the term inside the bracket is a power series with respect to λ1, λ2. Substituting
the previous expansion of logNS(E, V ; q, z), we see that

logNS′(E′, V ′; q, z) =

 M∑
i=1

∑
µ,ξ partitions
min{i,j}≥−1

Gµ,ξ,i,j(q, z) · λj
1λ

k
2cµ(V )cξ(E)

∣∣∣∣
λ⃗⇝a⃗(i)


∣∣∣∣∣
λ⃗=w⃗=m⃗=0

+

 M∑
i=1

∑
µ,ξ partitions
min{i,j}≤−2

Gµ,ξ,i,j(q, z) · λj
1λ

k
2cµ(V )cξ(E)

∣∣∣∣
λ⃗⇝a⃗(i)


∣∣∣∣∣
λ⃗=w⃗=m⃗=0

.

Since the elementary symmetric polynomials form a basis for symmetric polynomials, we know the
coefficients in front of q, z of the term

M∑
i=1

∑
j,k∈Z

Gµ,ξ,j,k(q, z) · λj
1λ

k
2

∣∣∣∣
λ⃗⇝a⃗(i)

(3.13)

are power series in λ1, λ2 for each µ, ξ.
Let S′ = P1 × P1, with T0-action

(t1, t2) · ([x0 : x1], [y0 : y1]) = ([x0 : t1x1], [y0, t2y1]).

We refer to [LYZ02, Section 3.7] for the following computations of equivariant weights. The fixed
points are

p1 = p00 = ([1 : 0], [1 : 0]), p2 = p01 = ([1 : 0], [0 : 1]),

p3 = p10 = ([0 : 1], [1 : 0]), p4 = p11 = ([0 : 1], [0 : 1]).

The corresponding weights are a⃗(1) = a⃗(00), a⃗(2) = a⃗(01), a⃗(3) = a⃗(10), a⃗(4) = a⃗(11) where

a
(ij)
1 = (−1)iλ1, a

(ij)
2 = (−1)jλ2

for i, j ∈ {0, 1}. Substituting into (3.13), we see the summands with odd j or k would cancel each
other out, leaving us with ∑

j,k even

Gµ,ξ,j,k(q, z) · 4λj
1λ

k
2.

Since λj
1λ

k
2 are linearly independent for all distinct j, k, and they are not polynomials for min{j, k} ≤

−2, the coefficients Gµ,ξ,j,k must all be 0 for these j and k.
Having dealt with the case where j, k are both even, we would like to apply the same argument

to the other cases. To do so we need to solve the problem that the summands vanish whenever one
of j, k is odd. The fixed points on QuotS′(E′, n) correspond to M -tuples of N -coloured partitions

(µ(1), . . . , µ(M)), where µ(i) = (µ(i,1), . . . , µ
(i,N)
i ) and each µ(i,j) is a partition for i = 1, . . . ,M and
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j = 1, . . . , N . If we replace wk by uk(l + λ1 + λ2)
2 for some symmetric polynomial p and numbers

l, u1, . . . , ur, the Chern roots of (OS′⟨wk⟩)[n] would be replaced by

M⋃
i=1

N⋃
j=1

⋃
□∈µ(i,j)

{uk · (l + a
(i)
1 + a

(i)
2 )2 +mj − c(□)a(i)1 − r(□)a(i)2 }.

We claim that taking symmetric series of these Chern roots would result in terms composed of

symmetric series of Chern roots of K
[n]
S′ , and that of O[n]

S′ , which are respectively given by the sets

M⋃
i=1

N⋃
j=1

⋃
□∈µ(i,j)

{a(i)1 + a
(i)
2 +mj − c(□)a(i)1 − r(□)a(i)2 },

M⋃
i=1

N⋃
j=1

⋃
□∈µ(i,j)

{mj − c(□)a(i)1 − r(□)a(i)2 }.

This is a result of Lemma 3.10 by setting x⃗ = (a
(i)
1 +a

(i)
2 )i=1,...M , y⃗ = (mj−c(□)a(i)1 −r(□)a(i)2 )□∈µ

(i,j)

i=1,...,M .

Therefore after replacing wk by uk(l + a
(i)
1 + a

(i)
2 ), the resulting invariant is still an integral of

characteristic classes of tautological bundles, so the new version of (3.13) remains a power series
in λ1, λ2. View u1, . . . , ur as formal variables and replace them with w1, . . . , wr, we see in total we

have replaced each wk by (l + a
(i)
1 + a

(i)
2 )wk for k = 1, . . . , r.

As a result of the previous paragraph, the coefficients of

M∑
i=1

∑
j,k

Gµ,ξ,j,k(q, z) · λj
1λ

k
2 · (l + λ1 + λ2)

2|µ|
∣∣∣∣
λ⃗⇝a⃗(i)

=

2|µ|∑
s=0

M∑
i=1

∑
j,k

(
2|µ|
s

)
Gµ,ξ,j,k(q, z) · λj

1λ
k
2 · l2|µ|−s(λ1 + λ2)

s

∣∣∣∣
λ⃗⇝a⃗(i)

are power series in λ1, λ2 for any integer l ≥ 0. When µ ̸= (0), the matrix formed by the vectors((
2|µ|
0

)
l2|µ|,

(
2|µ|
1

)
l2|µ|−1,

(
2|µ|
2

)
l2|µ|−2, . . . ,

(
2|µ|
2|µ|

)
l0
)

for l = 1, 2, 3, . . . has maximal rank, we may take a linear combination of the above expression, and
get that

M∑
i=1

∑
j,k∈Z

Gµ,ξ,j,k(q, z) · λj
1λ

k
2 · (λ1 + λ2)

s

∣∣∣∣
λ⃗⇝a⃗(i)

is a power series in λ1, λ2 for each s = 0, 1, . . . , 2|µ|.
Take s = 2, we get

M∑
i=1

∑
j,k

Gµ,ξ,j,k(q, z) · λj
1λ

k
2 · (λ1 + λ2)

2

∣∣∣∣
λ⃗⇝a⃗(i)

=
∑

j,k odd

Gµ,ξ,j,k(q, z) · 8λj+1
1 λk+1

2 .

Again, since λj+1
1 λk+1

2 are linearly independent for distinct j, k and are not polynomials in λ1, λ2

for any min{j, k} ≤ −2, we know Gµ,ξ,j,k = 0 whenever j, k are both odd and µ ̸= (0).
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In the case one of j, k is odd and the other is even, continuing to assume µ ̸= (0), we take s = 1
and get

M∑
i=1

Gµ,ξ,j,k(q, z) · λj
1λ

k
2 · (λ1 + λ2)

∣∣∣∣
λ⃗⇝a⃗(i)

=

{
Gµ,ξ,j,k(q, z) · 8λj+1

1 λk
2, if j odd, k even

Gµ,ξ,j,k(q, z) · 8λj
1λ

k+1
2 , if k odd, j even.

Although these are not polynomials when min{j, k} ≤ −2, we see there might be some linear
dependence, i.e. we could have

Gµ,ξ,j,k = −Gµ,ξ,j+1,k−1

for j odd and k even, and terms canceling each other out in the sum. To solve this issue, we further
apply the argument to the s = 3 case and obtain the following dependencies

Gµ,ξ,j,k = −Gµ,ξ,j+3,k−3

for all j odd, k even and min{j, k} ≤ −4. Combining these relations we see for min{j, k} ≤ −2,
there exist some constants C±

µ,ξ,a,b,l, labeled by the partitions µ, ξ, integers a, b, l and a sign ±, such

that

Gµ,ξ,j,k(q, z) =
∑
a,b

((−1)j − (−1)k)C±
µ,ξ,a,b,j+kq

azb

=


∑

a,b 2C
+
µ,ξ,a,b,j+kq

azb if j even, k odd, j ≥ 0∑
a,b−2C+

µ,ξ,a,b,j+kq
azb if j odd, k even, j > 0,∑

a,b 2C
−
µ,ξ,a,b,j+kq

azb if j even, k odd, j < 0∑
a,b−2C−

µ,ξ,a,b,j+kq
azb if j odd, k even, j < 0,

The reason for the superscript ± is due to cases such as j = −1, k = 0, where we would have
min{j, k} > −2, so the dependence does not necessarily hold. Because of this gap, we can not
always relate the coefficient when j ≥ 0 to j < 0, resulting in separated cases. By the paragraphs
preceding this theorem, for a fixed a, the degrees j, k on λ1, λ2 of the [qa] coefficient are bounded
below. However the above indicates that the constants C±

µ,ξ,a,b,l only depend on the value l = j + k,

and we can make j or k arbitrarily small. Hence C±
µ,ξ,a,b,l = 0 whenever µ ̸= (0).

With all the vanishings of Gµ,ξ,j,k, we write

logNS(E, V ; q, z) =
∑

µ,ξ partitions
j,k≥−1

Gµ,ξ,j,k(q, z) · λj
1λ

k
2 · cµ(V )

+
∑

ξ partition
min{j,k}≤−2

G(0),ξ,j,k(q, z) · λ
j
1λ

k
2.

To deal with the terms G(0),ξ,j,k(q, z) for min{j, k} ≤ −2, we apply Lemma 4.1 and find

DzG(0),ξ,j,k(q, z) = kG(1),ξ,j,k(q, z) = 0,

soG(0),j,k is constant with respect to the variable z. Let us attempt to extract the [qnλj
1λ

k
2c(0)(V )cξ(E)]

coefficient of the Chern series from G(0),ξ,j,k using the Chern limit of Lemma 3.7. This results in a

limit ε! 0 of the term εn(N−r)ε|ξ|εj+k, which does not make sense when the rank r is sufficiently
large, so we must have G(0),ξ,j,k = 0 for such r. To generalize this to arbitrary ranks, we apply
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[GM22, Lemma 3.3] to NS , which says the coefficients of NS are polynomials in r when r ≥ 0. Now
we can write

logNS(E, V ; q, z) =
∑

µ,ξ partitions
j,k≥−1

Gµ,ξ,j,k(q, z) · λj
1λ

k
2 · cµ(V )cξ(E).

As noted in [OP22, Equation (31)], the obstruction on Hilbn(S) at a fixed point [Zµ] is (K
[n]
S )∨|Zµ .

From (3.2), we see a copy of K∨
S = t1t2 is in K

[n]
S |Zµ . By (3.9), the obstruction bundle on QuotS(E,n)

at any fixed-point has at least one copy of K∨
S as a direct summand. For a line bundle L, we have

ch(Λ−1L
∨) = 1− e−c1(L) = e(L) · (1 + . . . )

where . . . are some omitted terms in H>0
T (pt). Therefore 1/ ch(Λ−1(T

vir
Z )∨) has a factor of e(K∨

S ) =
c1(S) = λ1 + λ2 in its numerator. We also note that this factor does not appear in the denominator
because if we pass to the subtorus {(t1, t2) : t1t2 = 1}, the Zariski tangent space has no T-fixed parts:
by (3.7), the fixed part can only come from the direct summands with i = j, which correspond to
the Hilbert scheme case; but by (3.3), these summands have no fixed parts because a(□), l(□) ≥ 0
for any box □. Therefore we may extract this factor of c1(S) and obtain

logNS(E, V ; q, z) =
∑

µ,ξ partitions
j,k≥−1

Hµ,ξ,j,k(q, z) · λj
1λ

k
2 · cµ(V )cξ(E)c1(S).

for some series Gµ,ξ,j,k ∈ Q[[q, z]]. Furthermore, since j, k are now bounded below by −1, multiplying
by λ1λ2 would give us a power series expansion in λ1, λ2, allowing us to use the symmetry in λ1, λ2

and write

logNS(E, V ; q, z) =
∑

µ,ν,ξ partitions

Hµ,ν,ξ(q, z) ·
∫
S
cµ(V )cν(S)cξ(E)c1(S).(3.14)

for some series Hµ,ν,ξ ∈ Q[[q, z]].
Finally, taking Chern and Verlinde limits of Hµ,ν,ξ as in Lemma 3.7, then exponentiating gives us

series Cµ,ν,ξ, Bµ,ν,ξ such that

CS(E, V ; q) =
∏

µ,ν,ξ partitions

Cµ,ν,ξ(q)
∫
S cµ(V )cν(S)cξ(E)c1(S),

VS(E, V ; q) =
∏

µ,ν,ξ partitions

Bµ,ν,ξ(q)
∫
S cµ(V )cν(S)cξ(E)c1(S).

and the fact that SS(E, V ; q) = CS(E,−V ; q) implies that there exists series Aµ,ν,ξ such that

SS(E, V ; q) =
∏

µ,ν,ξ partitions

Aµ,ν,ξ(q)
∫
S cµ(V )cν(S)cξ(E)c1(S).

To generalize this to arbitrary K-theory classes α = [V ′]− [V ′′] ∈ KT(S) for equivariant bundles
V ′, V ′′ of rank m, l respectively, we apply [GM22, Lemma 3.3] once more; it states that the invariants
for α are obtained by substituting

r ⇝ m− l, pn(v1, v2, . . . , vr)⇝ pn(v
′
1, v

′
2, . . . , v

′
m)− pn(v

′′
1 , v

′′
2 , . . . , v

′′
l ),

where pn are the power-sum symmetric polynomials. Hence the above universal series expressions
hold for all α ∈ KT(S). □

Lemma 3.10. Let F (x⃗, y⃗) be a polynomial symmetric in x⃗ = (x1, . . . , xn) and symmetric in
y⃗ = (y1, . . . , ym), then F can be written as a polynomial expression of symmetric functions in

{y1, . . . , ym} and symmetric functions in {xi + yj}j=1,...,m
i=1,...,n .
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Proof. Expand F in the elementary symmetric polynomial basis with respect to the variables
y1, . . . , ym:

F (x⃗, y⃗) =
∑

µ partition

fµ(x⃗)eµ(y⃗).

An induction on the degree of F shows that fµ(x⃗) can be written in the desired form for µ ̸= (0).
Thus we may assume F is independent of y. Furthermore, since if the statement holds for F and G,
then it holds for F +G and F ·G, we can assume F = ek(x⃗). We have

ek({xi + yj}j=1,...,m
i=1,...,n ) = K · ek(x⃗) +G(x⃗, y⃗)

for some constant K ∈ Z, and G is a polynomial symmetric in x⃗ and in y⃗, and every monomial term
in G contains some yj . Apply the same argument to G and we conclude that G satisfies the claim,
therefore so does F by the above equation. □

By the non-equivariant Segre-Verlinde correspondence [Boj21a, Theorem 1.7] and the relations
between the non-equivariant series and equivariant series illustrated in Section 3.3, we have a weak
Segre-Verlinde correspondence as the following corollary. The same argument of the following proof
also gives us a weak symmetry in the form of Corollary 1.12.

Corollary 3.11. In the setting of Theorem 3.9, we have the following correspondence

Aµ,ν,ξ(q) = Bµ,ν,ξ((−1)Nq).

whenever one of µ, ν, ξ is (1) and the other two are (0). In particular, the degree 0 part satisfies

SS,0(E,α; q)− VS,0(E,α;−q) =

∞∑
n=2

fn
(λ1λ2)n−2

·
(∫

S
c1(S)

)2

· qn

for some terms fn ∈ H2n−2
T (pt) dependent on α.

Proof. By the argument of Section 3.3, the universal series in Theorem 3.9, when passed to a toric
projective surface, must give the Segre-Verlinde correspondence of [Boj21a, Theorem 1.7] in degree
0. Since the degree 0 terms occur only when one of µ, ν, ξ is (1) and the other two are (0), we have

Aµ,ν,ξ(q) = Bµ,ν,ξ((−1)Nq)

in those cases.
Note that when we take exp of (3.14), the total degree 0 part might come from the product

of a negative-degree term and a positive-degree term, but since each term in the integrand is
accompanied by a copy c1(S), we know this difference must be a multiple of c1(S)

2. We also see the
[qn] coefficients are sums of products of at most n such integrals, giving a denominator of λn

1λ
n
2 , so

we are done.
For illustration, we shall extract this difference, and express it explicitly. This is just a standard

computation. For a partition µ = (µ1, µ2, . . . , µL) of size n with length L, and a sequence of positive
integers κ = (k1, k2, . . . , kL), write κ|µ if each ki|µi. We also associate a set of tuples of partitions
to κ by

Mκ :=

((µ(i))Li=1, (ν
(i))Li=1, (ξ

(i))Li=1

) ∣∣∣∣∣∣
µ(i), ν(i), ξ(i) are partitions for each i, s.t.∑L

i=1 ki(|µ(i)|+ |ν(i)|+ |ξ(i)| − 1) = 0 and
µi = νi = ξi = 0 for some i.

 .

For each n > 0, we would like to find the degree 0 part of the [qn] coefficient of exp of (3.14). By
expanding the exponential using definition, we observe that these terms come from products of
integrals labeled by µ(i), ν(i), ξ(i) in Mκ for some tuples κ|π for some partition π of size n. A more
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precise description is given by the following equation. Suppose log(Aµ,ν,ξ(q)) =
∑∞

i=1 aµ,ν,ξ,iq
i and

log(Bµ,ν,ξ(q)) =
∑∞

i=1 bµ,ν,ξ,iq
i, we have

[qn](SS,0(E,α; q)− VS,0(E,α; (−1)Nq)

=
∑
|π|=n
ℓ(π)>1

∑
κ|π

∏
(µ⃗,ν⃗,ξ⃗)∈Mκ

ℓ(π)∏
i=1

1

ki!

(
aµ(i),ν(i),ξ(i),πi/ki

∫
S
cµ(i)(α)cν(i)(S)cξ(i)(E)c1(S)

)ki

− (−1)Nn
∑
|π|=n
ℓ(π)>1

∑
κ|π

∏
(µ⃗,ν⃗,ξ⃗)∈Mκ

ℓ(π)∏
i=1

1

ki!

(
bµ(i),ν(i),ξ(i),πi/ki

∫
S
cµ(i)(α)cν(i)(S)cξ(i)(E)c1(S)

)ki

=
∑
|π|=n
ℓ(π)>1

∑
κ|π

∏
(µ⃗,ν⃗,ξ⃗)∈Mκ

ℓ(π)∏
i=1

a
ki|Mk|
µ(i),ν(i),ξ(i),πi/ki

− (−1)Nn

ℓ(π)∏
i=1

b
ki|Mk|
µ(i),ν(i),ξ(i),πi/ki



·
ℓ(π)∏
i=1

c1(S)
ki

ki!λ
ki
1 λki

2

(
cµ(i)(α)cν(i)(S)cξ(i)(E)

)ki
.

In the summation we have ℓ(π) > 1 because Mκ is empty for any κ|π if π = (n) by definition.

Therefore 2 ≤
∑ℓ(π)

i=1 ki ≤ n. By multiplying some appropriate power of λ1λ2 to the denominator and
numerator of the right hand side, we can express it as a rational function in λ1, λ2, with denominator
λn
1λ

n
2 and numerator a multiple of c1(S)

2. Setting this multiple as fn ∈ C[λ1, λ2] gives the desired
expression.

□

Example 3.12. The universal series for NS are known explicitly in the compact case [Boj21a,
Theorem 1.2]. For a smooth projective surface S and α of rank r, we apply [AJL+21, Theorem 17,
Equations (16),(17)] for f(x) = 1− zex, g(x) = x

1−e−x and get

NS(OS , α; q, z) =

[(
1− zQ

1− z

)r (−rzQ(1−Q)

1− zQ
+ 1

)]c1(S)2 [1− zQ

1− z

]c1(S)·c1(α)
via the substitution

q =
1−Q−1

(1− zQ)r
.

As mentioned in the introduction, when N = 1, we shall set y1 = 1, and omit the subscript ξ
for Hµ,ν,ξ. The formula above allows us to compute H(1),(0)(q, z) and H(0),(1)(q, z). For a smooth
projective surface S and α of rank 0, we have

NS(OS , α, q, z) =

(
1− q − z

(1− q)(1− z)

)c1(S)·c1(α)
.

The exponent is interpreted as intersection product, which in the toric case corresponds to the
equivariant push-forward ∫

S
c1(α)c1(S).

Therefore for rank 0, we have the following series from expansion (3.14)

H(1),(0)(q, z) = log
1− q − z

(1− q)(1− z)
, H(0),(1)(q, z) = 0,
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Take the Chern limit of Lemma 3.9 by substituting q ⇝ −qε, z ⇝ (1 + ε)−1 and get

C(1),(0)(q) = 1 + q

Replacing α by −α in the Chern series to get the Segre series for α, we see

A(1),(0)(q) = C(1),(0)(q)
−1 =

1

1 + q

On the other hand, the Verlinde limit yields

B(1),(0)(q) =
1

1− q

The Segre-Verlinde correspondence of Corollary 3.11 is indeed satisfied.

Example 3.13. Let S = C2, n = N = 2, E = OS⟨y1⟩⊕OS⟨y2⟩ and L = OS⟨v⟩. The T1-fixed locus
of QuotS(E,n) is the disjoint union of

Hilb0(S)×Hilb2(S), Hilb1(S)×Hilb1(S), Hilb2(S)×Hilb0(S)

Denote Zµ the point in Hilbi(S)T0 corresponding to a partition µ, then the T-fixed points of
QuotS(C2, 2) are

(Zϕ, Z(2)), (Zϕ, Z(1,1)), (Z(1), Z(1)), (Z(2), Zϕ), (Z(1,1), Zϕ)

Therefore by (3.7), the virtual tangent bundles at these five points are respectively

(t21 + t2 − t21t2 + y−1
1 y2)(1 + t−1

1 )

(t22 + t1 − t1t
2
2 + y−1

1 y2)(1 + t−1
2 )

(t1 + t2 − t1t2)(1 + y−1
1 y2)(1 + y1y

−1
2 )

(t21 + t2 − t21t2 + y1y
−1
2 )(1 + t−1

1 )

(t22 + t1 − t1t
2
2 + y1y

−1
2 )(1 + t−1

2 )

The equivariant Chern roots of α[n] at these points are respectively

{m2+w,m2−λ1+w}, {m2+w,m2−λ2+w}, {m1+w,m2+w}, {m1+w,m1−λ1+w}, {m1+w,m1−λ2+w}
The contribution to the Segre numbers at each of these fixed points are

(2λ1 + λ1)(λ1 + λ2)

2(m1 −m2 + λ1)(m1 −m2)(m2 − λ1 + w1 + 1)(m2 + w1 + 1)(λ2 − λ1)λ2
1λ2

,

(λ1 + 2λ2)(λ1 + λ2)

2(m1 −m2 + λ2)(m1 −m2)(m2 − λ2 + w1 + 1)(m2 + w1 + 1)(λ1 − λ2)λ1λ2
2

,

(λ1 + λ2 +m1 −m2)(λ1 + λ2 −m1 +m2)(λ1 + λ2)
2

(m1 −m2 + λ1)(m1 −m2 − λ1)(m1 −m2 + λ2)(m1 −m2 − λ2)(m1 + w1 + 1)(m2 + w1 + 1)λ2
1λ

2
2

,

(2λ1 + λ1)(λ1 + λ2)

2(m1 −m2 − λ1)(m1 −m2)(m1 − λ1 + w1 + 1)(m1 + w1 + 1)(λ2 − λ1)λ2
1λ2

,

(λ1 + 2λ2)(λ1 + λ2)

2(m1 −m2 − λ2)(m1 −m2)(m1 − λ2 + w1 + 1)(m1 + w1 + 1)(λ1 − λ2)λ1λ2
2

.

Summing them up, we have

[q2]S2(α;q)=


m1m2λ1−m1λ2

1−m2λ2
1+λ3

1+m1m2λ2−3m1λ1λ2−3m2λ1λ2+3λ2
1λ2−m1λ2

2−m2λ2
2

+3λ1λ2
2+λ3

2+m1λ1w+m2λ1w−2λ2
1w+m1λ2w+m2λ2w−6λ1λ2w−2λ2

2w

+λ1w2+λ2w2+m1λ1+m2λ1−2λ2
1+m1λ2+m2λ2−6λ1λ2−2λ2

2+2λ1w+2λ2w+λ1+λ2

(λ1+λ2)

2(m1−λ1+w+1)(m1−λ2+w+1)(m1+w+1)(m2−λ1+w+1)(m2−λ2+w+1)(m2+w+1)λ21λ
2
2

.



33

A similar computation yields another complicated expression for the Verlinde number. We are

interested in the total degree 0 part of their difference in the variables λ⃗, m⃗, w⃗, this computes to

[q2](SS,0(E,L; q)− VS,0(E,L; q)) = −
(
3m1m2 − λ1λ2 + 3m1w + 3m2w + 3w2

)
(λ1 + λ2)

2

3λ2
1λ

2
2

=

(
1

3
c2(S)− c2(E)− c1(E)c1(V )− c1(V )2

)(∫
S
c1(S)

)2

.

Note that even though the expressions for Segre and Verlinde numbers are complicated, their
difference in degree 0 simplifies tremendously and satisfies Corollary 3.11.

3.6. Reduced virtual classes and invariants. As mentioned previously, the obstruction for
QuotS(E,n) at Z contains at least one copy of K∨

S . For K-trivial surfaces, this causes the Euler
class of T vir to vanish. Therefore the virtual Verlinde and Segre numbers both vanish. One can
instead study the “reduced” versions of these invariants. By [Lim21, Proposition 9], when S is a
K-trivial surface, n > 0, and E a torsion free sheaf, there is a reduced obstruction theory that is
perfect in the sense of Definition 3.5. The reduced (virtual) tangent bundle in this case is given by
adding a trivial summand to the usual virtual tangent bundle:

T red = T vir +OQuotS(E,n).

In this section, we study the equivariant analogue where S = C2 with the natural action of the
the 1-dimensional torus

T0 = C∗ = {(t1, t2) : t1t2 = 1}.

Write
H∗

T0
(pt) = C[λ1, λ2]/(λ1 + λ2) = C[λ],

KT0(pt) = Z[t±1
1 , t±1

2 ]/(t1t2 − 1) = Z[t±1].

Using the argument of [CK17, Lemma 3.1], we see that the T = (T0 × T1 × T2)-fixed locus of
QuotS(E,n) stays unchanged, and the Zariski tangent space at each of the fixed points has no fixed
parts by the descriptions (3.3) and (3.7). The equivariant reduced Segre and Verlinde series Sred

S

and Vred
S are defined the same as the virtual ones by replacing T vir with T red. Here we omit the

subscript since we are only interested in the S = C2 case.

Sred(E,α; q) :=
∞∑
n>0

qn
∑

Z∈QuotS(E,n)T

c(α[n]|Z)
e(T red

Z )
,

Vred(E,α; q) :=
∞∑
n>0

qn
∑

Z∈QuotS(E,n)T

ch(det(α[n]|Z))
ch(Λ−1(T red

Z )∨)
.

Note that we do not include the n = 0 term because condition 2 of [Lim21, Proposition 9] is only
satisfied when n > 0.

The same strategy from the previous section can be applied to study these invariants. For
E = ⊕N

i=1OS⟨yi⟩ and V = ⊕r
i=1OS⟨vi⟩, define

N red(E, V ; q, z) :=
∑
µ̸=(0)

q|µ|
∏
□∈µ

∏N
j=1

∏r
i=1(1− t−c(□)+r(□)viyjz)

ch(Λ−1(T red|Z)∨)
.

Again note that the [q0] coefficient is 0. We can think of the reduced obstruction as removing a copy of
K∨

S from the usual obstruction in Z[t±1
1 , t±1

2 ], then passing to the quotient ring Z[t±1
1 , t±1

2 ]/(t1t2− 1).
This gives us the following result.
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Corollary 3.14. For n > 0, the [qn] coefficient of N red can be obtained from the non-reduced
version by taking the following limit:

[qn]N red(E, V ; q, z) = [qn]
NS(E, V ; q, z)

1− e−c1(K∨
S )

∣∣∣∣
−λ2!λ1=λ

= [qn] lim
−λ2!λ1=λ

NS(E, V ; q, z)

λ1 + λ2
.

Expand the universal series expression from Theorem 3.9 and obtain

SS(E,α; q) =
∞∑
i=1

1

i!
(λ1 + λ2)

i

∑
µ,ν,ξ

logAµ,ν,ξ(q, z) ·
∫
S
cµ(α)cν(S)cξ(E)

i

.

Using the above corollary to extract the reduced coefficients, we see the terms with i > 1 all vanish
and

Sred(E,α; q) =
∑
µ,ν,ξ

logAµ,ν,ξ(q, z) ·
∫
S
cµ(α)cν(S)cξ(E).

The Chern and Verlinde cases are similar, thus we have the following result.

Theorem 3.15. When S = C2, the equivariant reduced Segre and Verlinde series for E =
⊕N

i=1OS⟨yi⟩ and α ∈ KT(S) are

Sred(E,α; q) =
∑
µ,ν,ξ

log (Aµ,ν,ξ(q)) ·
∫
S
cµ(α)cν(S)cξ(E),

Vred(E,α; q) =
∑
µ,ν,ξ

log (Bµ,ν,ξ(q)) ·
∫
S
cµ(α)cν(S)cξ(E),

Cred(E,α; q) =
∑
µ,ν,ξ

log (Cµ,ν,ξ(q)) ·
∫
S
cµ(α)cν(S)cξ(E)

where Aµ,ν,ξ, Bµ,ν,ξ and Cµ,ν,ξ are the same series from Theorem 1.7.

The integrals in the above theorem labeled by µ, ν, ξ have degree |µ|+ |ν|+ |ξ| − 2, which is one
degree lower than the integrals in the non-reduced expressions. Therefore we have a Segre-Verlinde
correspondence in degree −1 for the reduced setting. However, results for degree −1 have no compact
analogues since they automatically vanish in the compact setting. In the Section 4.3, we compute
some of the universal series explicitly, giving us some Segre-Verlinde relations in non-negative degrees
for the reduced case.

4. Explicit computations of universal series on Hilbn(C2)

4.1. Equivariant Segre number at rank r = −2. We shall compute the explicit expression for
the equivariant (non-virtual) Chern series at rank r = 2 for the Hilbert schemes. First recall the
Chern limit from Proposition 3.4,

IC(V ; q) = lim
ε!0

Ω

(
−qε2−r(1 + ε)r;

e−εw1

1 + ε
, . . . ,

e−εwr

1 + ε
; eελ1 , eελ2

)
.(4.1)

By definition, the Chern number [qn]IC(V ; q) of any rank 2 equivariant bundle V has total degree
−2n to 0 in λ1, λ2. Thus by comparing coefficients, we see the positive degree terms in (3.5) must
vanish after taking this limit. The following lemma, based on a similar statement mentioned in
[GM22, Section 4.6], allows us to compute the remaining negative degree coefficients

H(0),−1,−1(q, z), H(1),−1,−1(q, z), H(0),−1,0(q, z)
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from the degree 0 coefficients given by (3.6).

Lemma 4.1. Let r ≥ 0 and suppose H(z1, . . . , zr) is a power series in z1, . . . zr whose coefficients
are series in some other variables q1, q2, . . . . If H is symmetric in z1, . . . , zr with expansion

H(zex1 , . . . , zexr) =
∑

µ partition

Hµ(z)

ℓ(µ)∏
i=1

eµi(x1, . . . , xr),

then for any k ≥ 0, we have

Dk
zH(0)(z) = k!

∑
|µ|=k

(
r

µ

)
Hµ(z)

where
(
r
µ

)
denotes

∏ℓ(µ)
i=1

(
r
µi

)
, and Dz = z ∂

∂z .

Proof. We begin by claiming that the statement is closed under polynomial expressions; that is, if
the equality holds for both F (z1, . . . , zr) and G(z1, . . . , zr), then it holds for F ·G and aF +G for
any a ∈ Q[[q1, q2, . . . ]]. The additive part is straightforward, and we shall prove the multiplicative
part of this claim. Expand

F (zex1 , . . . , zexr) =
∑

µ partition

Fµ(z)eµ(x1, . . . , xr),

G(zex1 , . . . , zexr) =
∑

µ partition

Gµ(z)eµ(x1, . . . , xr),

then H = F ·G can be expanded as

H(zex1 , . . . , zexr) =
∑

µ partition

Hµ(z)eµ(x1, . . . , xr) =
∑

ν+ξ=µ

Fν(z)Gξ(z)eµ(x1, . . . , xr)

where by ν + ξ we mean combining them as sequences to get a partition of size |ν|+ |ξ| with length
ℓ(ν) + ℓ(ξ). Suppose the statement holds for both F and G, then we have

Dk
zH(0)(z) = Dk

z

(
F(0)(z)G(0)(z)

)
=

k∑
i=1

(
k

i

)
Di

zF(0)D
k−i
z G(0)

=
k∑

i=1

(
k

i

)
i!(k − i)!

∑
|ν|=i,|ξ|=k−i

(
r

ν

)
Fν

(
r

ξ

)
Gξ

= k!
∑
|µ|=k

(
r

µ

)
Hµ.

Since H(z1, . . . , zr) is symmetric, by the above observation, it suffices to prove the statement
when H is the power sum symmetric polynomial pn(z1, . . . , zr) = zn1 + · · ·+ znr . For each n ≥ 0, we
expand

H(zex1 , . . . , zexr) = pn(ze
x1 , . . . , zexr) =

r∑
j=1

znenxj = zn

(
r +

∑
i>0

ni

i!
pi(x1, . . . , xr)

)
.

This means H(0)(z) = rzn and

Dk
zH(0)(z) = rnkzn.
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Fix r ≥ 1, we write

pn(x1, . . . , xr) =
∑
|µ|=n

Cµeµ(x1, . . . , xr)

for some constant terms Cµ. Evaluate at x1 = · · · = xr = 1 and get

r =
∑
|µ|=n

(
r

µ

)
Cµ.

Hence

k!
∑
|µ|=k

(
r

µ

)
Hµ(z) = znnk

∑
|µ|=k

(
r

µ

)
Cµ = rnkzn = Dk

zH(0)(z).

A quick calculation for the k = 0 or r = 0 cases finishes the proof.
□

We would like to apply the above lemma to the series from (3.6). First, using the admissibility of
Ω combined with an expansion as used in (2.3), we obtain

log Ω(q; z1, . . . , zr; e
−λ1 , e−λ2) =

∑
k1,k2≥−1

Gk1,k2(q; z1, . . . , zr)

∫
S
Ek1,k2(c1(S), c2(S))

for some series Gk1,k2(q, z1, . . . , zr). Comparing to (3.5), we see

Gk1,k2(q; ze
w1 , . . . , zewr) =

∑
µ partition

(−1)k1+k2Hµ,k1,k2(q, z)cµ(V )

Apply Lemma 4.1, where we set H(z1, . . . , zr) in the lemma to be Gk1,k2(q; z1, . . . , zr) and the
variables x1, . . . , xr to be w1, . . . wr, we conclude

Dk
zH(0),k1,k2(q, z) = k!

∑
|µ|=k

(
r

µ

)
Hµ,k1,k2(q, z).

When r = 2, the series H(2),−1,−1, H(1,1),−1,−1 and H(1),−1,0 are known explicitly by (3.6). This allows
us to calculate H(1),−1,−1, H(0),−1,−1 and H(0),−1,0 by taking anti-derivatives using the identities

Li1 = − log(1− q), Dz Lin(qz
k) = k Lin−1(qz

k)

for k, n > 0. They are obtained as follows

H(1),−1,−1(q, z) = −Li2(qz
2) + Li2(qz),

H(0),−1,−1(q, z) = h(0),−1,−1(q)− Li3(qz
2) + 2Li3(qz),

H(0),−1,0(q, z) = h(0),−1,0(q) +
1

2
Li2(qz

2)− Li2(qz),

(4.2)

for some terms h(0),−1,−1(q), h(0),−1,0(q) independent of z. By (3.5) and the following lemma, we
have

h(0),−1,−1(q) = [λ−2] log Ω(q; 0, . . . , 0; eλ, eλ) = −Li3(q),

h(0),−1,0(q) = [λ−1]
1

2
log Ω(q; 0, . . . , 0; eλ, eλ) =

1

2
Li2(q)

where the factor 1
2 in the second line is due to H(0),−1,0 = H(0),0,−1.

Lemma 4.2. The following identity is satisfied:

log Ω(Q; 0, . . . , 0; eλ, eλ) = −
∞∑
n=1

1

n

Qn

(1− enλ)2
.
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Proof. By [GM22, Theorem 2.3],

Ω(Q; z1, . . . , zr; q1, q2)

=Exp

(
− Q+

∑
zi

(1− q1)(1− q2)

)
·
∑
µ

(−1)|µ|
H̃µ[Q+ 1; q1, q2]H̃µ[z1 + · · ·+ zr; q1, q2]Tµ(q1, q2)

Nµ(q1, q2)
.

Here Tµ(q1, q2) =
∏
□∈µ q

c(□)
1 q

r(□)
2 , Nµ(q1, q2) =

∏
□∈µ(q

a(□)+1
1 − q

l(□)
2 )(q

a(□)
1 − q

l(□)+1
2 ), and H̃µ is

the modified Macdonald polynomial defined by [GH93, Theorem 1]. Evaluating at z1 = · · · = zn = 0,

the term H̃µ[z1 + · · ·+ zr; q1, q2] vanishes unless µ = (0), and when µ = (0), we have H̃µ = 1. This
can be seen from its Schur function expansion [GH93, Definition 1]

H̃µ[X; q1, q2] =
∑

|ν|=|µ|

sν [X]K̃µν(q1, q2)

where K̃µν are the modified Macdonald-Kostka polynomials. Therefore when z1 = · · · = zr = 0, the
summation in the above equation evaluates to 1, and

Ω(Q; 0, . . . , 0; q1, q2) = Exp

(
− Q

(1− q1)(1− q2)

)
By definition of plethystic exponential,

log Ω(Q; 0, . . . , 0; q1, q2) = −
∞∑
n=1

1

n

Qn

(1− qn1 )(1− qn2 )
.

Substituting q1 = q2 = eλ gives the desired form. □

Now we can compute the Chern series. In order to take the limit (4.1) of Hµ,k1,k2(q, z), we need
to substitute q ⇝ −qε2−r(1 + ε)r and z ⇝ (1 + ε)−1. In (3.5), the series Hµ,k1,k2 is multiplied by a
homogeneous function of degree k1 + k2 in λ1, λ2, as well as a homogeneous function of degree |µ|
in w1, . . . , wr. The limit requires us to substitute λ⃗⇝ −ελ⃗ and w⃗ ⇝ −εw⃗. Therefore before taking
the limit ε! 0, we need to multiply by (−ε)|µ|+k1+k2 . Applying this procedure to (3.6) and (4.2),
the limit of H(0),−1,−1, H(1),−1,−1, H(2),−1,−1 in the r = 2 case all return log(1 + q), while the other
terms all vanish. Hence (4.1) yields

IC(V ; q) = exp

(
log(1 + q)

∫
S
c0(V ) + log(1 + q)

∫
S
c1(V ) + log(1 + q)

∫
S
c2(V )

)
=(1 + q)

∫
S c(V )

(4.3)

for any T-equivariant bundle V of rank 2.

4.2. Virtual Segre number in rank r = −1. Recall that on Hilbert schemes, the obstruction

theory at a fixed point [Zµ] is given by (K
[n]
S )∨|Zµ , so

1

e(T vir
Zµ

)
=

e((K
[n]
S )∨|Zµ)

e(TZµ)
= (−1)|µ|

e((K
[n]
S )|Zµ)

e(TZµ)
.

Let L = OS⟨v1⟩ be an equivariant line bundle, and V = L⊕OS⟨v2⟩. Apply (4.3) to V and we have

IC(V ; q) = (1 + q)
∫
S c(V ) = (1 + q)

∫
S(1+w1+w2+w1w2).

Set w2 = c1(KS)− 1 and replace q by −q, then this becomes

IC(V ;−q)|w2=c1(KS)−1 = (1− q)
∫
S c(L)c1(KS).
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On the other hand, we have by definition

IC(V ;−q)|w2=c1(KS)−1

=
∑
µ

(−1)|µ|q|µ|
∏
□∈µ

(1 + w1 − c(□)λ1 − r(□)λ2)(c1(KS)− c(□)λ1 − r(□)λ2)

((a(□) + 1)λ1 − l(□)λ2)((l(□) + 1)λ2 − a(□)λ1)

=
∑
µ

(−1)|µ|q|µ|
c(L[n]|Zµ)e((K

[n]
S )|Zµ)

e(T |Zµ)

=
∑
µ

q|µ|
c(L[n]|Zµ)

e(T vir|Zµ)
= CS(OS , L; q)

Therefore we conclude

CS(OS , L;w) = (1− q)
∫
S c(L)c1(KS) =

(
1

1− q

)∫
S c(L)c1(S)

.

In particular, restricting to the lowest degree part in the variables λ1, λ2, w1, we obtain the following
Corollary.

Corollary 4.3. For S = C2, the following equality holds
∞∑
n=1

qn
∫
[Hilbn(S)]vir

1 :=
∑

Z∈Hilbn(S)T

1

e(T vir
Z )

= e
(λ1+λ2)
λ1λ2

q
.

4.3. Segre-Verlinde correspondence in positive degrees. Recall that we use the notation
Hµ,ν,ξ for the series from (3.14) describing the virtual Nekrasov genus for Quot schemes on C2. For
a smooth projective surface S, a torsion free sheaf E of rank N , and a K-theory class α of rank r,
we apply [Boj21a, Equation (4.1), Theorem 4.1] by setting f(x) = 1− zex, g(x) = x

1−e−x and get

NS(E, V ; q, z) =

(
N∏
i=1

F (Hi)

)c1(S)c1(α)( N∏
i=1

F (Hi)

) r
N
c1(S)c1(E)

G(R)c1(S)
2
.

Here R = f rgN , F (x) = f(x)
f(0) , the series Hi(q) are Newton–Puiseux solutions to

HN
i = qR(Hi),

and G(R) is given by [Boj21a, Equation (4.24)]. Therefore

H(1),(0),(0)(q, z) =
N∑
i=1

logF (Hi)

H(0),(1),(0)(q, z) = logG(R)

H(0),(0),(1)(q, z) =
r

N

N∑
i=1

logF (Hi)

(4.4)

Now let S = C2. Note that NS satisfies

NS(y1, . . . , yN ; v1, . . . , vr; q, z) = NS(y1, . . . , yN ; zew1 , . . . , zewr ; q, 1)

= NS(ze
m1 , . . . , zemN ; v1, . . . , vr; q, 1).

Applying Lemma 4.1 to Hµ,ν,ξ in the variables w1, . . . , wr and gives us for r > 0,

Dk
zH(0),ν,ξ(q, z) = rDk−1

z H(1),ν,ξ(q, z) = k!
∑
|µ|=k

(
r

µ

)
Hµ,(0)(q, z),
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while applying in the variables m1, . . . ,mN yields

Dk
zHµ,ν,(0)(q, z) = NDk−1

z Hµ,ν,(1)(q, z) = k!
∑
|ξ|=k

(
N

µ

)
Hµ,ν,ξ(q, z).(4.5)

When the rank r is negative, we consider α = −[V ] where V = ⊕−r
i=1OS⟨vi⟩, and the same argument

applies. Thus for all r ̸= 0,

Dk
zH(0),ν,ξ(q, z) = |r|Dk−1

z H(1),ν,ξ(q, z) = k!
∑
|µ|=k

(
|r|
µ

)
Hµ,ν,ξ(q, z).(4.6)

Our goal for this section is to apply Chern and Verlinde limits to (4.5) and (4.6), together with
the explicit expressions (4.4), and obtain relations between the Chern and Verlinde series for various
µ, ν and ξ.

4.3.1. The Chern limit. For an arbitrary series f(q, z), we define its Chern limit of degree k and
rank r by

lim
ε!0

(−ε)kf

(
(−1)NqεN−r(1 + ε)r,

1

1 + ε

)
.

Note that when applied to Hµ,ν,ξ, the Chern limit of degree k = |µ|+ |ν|+ |ξ|− 1 in this sense agrees
with the Chern limit of Lemma 3.7. These limits can be computed using the following analogue of
[GM22, Lemma 4.2].

Lemma 4.4. Suppose f(q, z) =
∑

m,n≥0 fm,nq
mzn such that

fm,n = (−1)npm(n)

(
rm

n

)
for some polynomial pm(x) of degree at most mN + k. The Chern limit of degree k for f is

lim
ε!0

(−ε)kf

(
(−1)NqεN−r(1 + ε)r,

1

1 + ε

)
=

∞∑
m=0

[xmN+k]pm(x)(rm)(mN+k)q
m.

Proof. First observe that both sides of the identity are polynomials in r, so it suffices to prove the
equality for r large enough. We shall assume r > max{N + k, 0}, then

(
rm
n

)
vanishes when n > rm.

Let g(q, ε) = f
(
(−1)NqεN−r(1 + ε)r, (1 + ε)−1

)
, fm(z) =

∑rm
n=0 fm,nz

n then

[qm]g(q, ε) = (−1)mNfm

(
1

1 + ε

)
(1 + ε)rmεmN−rm =

rm∑
i=0

ciε
mN−i

for some numbers ci. Substitute ε = z−1 − 1 we have
rm∑
n=0

(−1)npm(n)

(
rm

n

)
zn =fm(z)

=(−1)mN
rm∑
i=0

ciz
i(1− z)rm−i

=(−1)mN
rm∑
i=0

ci

rm∑
n=i

(−1)n−i

(
rm− i

n− i

)
zn.

Therefore

pm(x) =

rm∑
i=0

(−1)mN+i (x)(i)

(rm)(i)
ci.
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Since the degree of pm(x) must be at most mN + k, we can extract the coefficient

[xmN+k]pm(x) = (−1)k
cm+k−1

(rm)(mN+k)

and get

lim
ε!0

(−ε)kf

(
(−1)NqεN−r(1 + ε)r,

1

1 + ε

)
=

∞∑
m=0

(−1)kcmN+kq
m

=
∞∑

m=0

[xmN+k]pm(x)(rm)(mN+k)q
m.

□

4.3.2. The Verlinde limit. For an arbitrary series f(q, z), its Verlinde limit of rank r is

lim
ε!0

f((−1)rqεr, ε−1).

Suppose r > 0 and f(q, z) ∈ Q[z][[q]]. Write f(q, z) =
∑∞

m=0 fm(z), then this limit makes sense
when fm are polynomials of degree at most rm. In this case, we have for each m > 0,

[qm] lim
ε!0

f((−1)rqεr, ε−1) = (−1)rm[zrm]fm(z)

Now suppose r < 0 and f ∈ Q[[q, z]]. For each m > 0, the limit extracts the following coefficients
term-wise

[qm] lim
ε!0

f((−1)rqεr, ε−1) = (−1)rm[z−rm]fm(z−1).

4.3.3. Computations. We begin with the case ν = (0), ξ = (0) and apply the Chern limit of Lemma
3.7 to |r|Dk−1

z H(1),(0),(0)(q, z) for k > 0. By [Boj22, Corollary 2], we have

[qm]H(1),(0),(0) =
1

m
[tmN−1]

(
−etz(1− etz)rm−1

(
t

1− e−t

)mN
)
.

We may extract the zn coefficient and get

[znqm]H(1),(0),(0) =
(−1)n

m

(
rm− 1

n− 1

)
[tmN−1]

(
etn
(

t

1− e−t

)mN
)

= (−1)n
n

rm2
[tmN−1]

(
etn
(

t

1− e−t

)mN
)(

rm

n

)
.

By the identity Dz(z
n) = nzn, we have

|r|[znqm]Dk−1H(1),(0),(0) = (−1)n
nk|r|
rm2

[tmN−1]

(
etn
(

t

1− e−t

)mN
)(

rm

n

)
Since the right hand side of (4.6) consists of universal series whose powers have degree k−1, we take

the Chern limit of degree k − 1 via the Lemma 4.4 by setting pm(x) = xk

rm2 [t
mN−1](etx( t

1−e−t )
mN ).
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Then (4.6) gives us

[qm]k!
∑
|µ|=k

(
|r|
µ

)
logCµ,(0),(0)(q, z) =

|r|(rm)(mN+k−1)

rm2
[xmN−1tmN−1]

(
etx
(

t

1− e−t

)mN
)

=
|r|(rm)(mN+k−1)

rm2(mN − 1)!

=
|r|
m

(
mr − 1

mN − 1

)
(m(r −N))(k−1),

[qm]
∑
|µ|=k

(
|r|
µ

)
logCµ,(0),(0)(q, z) =

|r|
mk

(
mr − 1

mN − 1

)(
m(r −N)

k − 1

)
.

Observe that the Verlinde series for α ∈ KT(S) only depends on c1(α) by definition. Therefore
the universal series are non-trivial only when µ = (1)k := (1, . . . , 1) has k copies of 1. Taking the
Verlinde limit, we get

k!|r|k logB(1)k,(0),(0)(q, z) = (−1)rm|r|(|r|m)k−1[z|r|mqm]H(1),(0),(0)

=
|r|(|r|m)k−1

m
[tmN−1]

(
ermttmN

(1− e−t)mN

)
= |r|kmk−2 rest=0

ermt

(1− e−t)mN

where res refers to the residue of a meromorphic function. Let 0 < R < 1. We compute the above
residue by integrating along the rectangular contour formed by the points {±R± iπ}:

2πi rest=0
ermt

(1− e−t)mN
=

∫ R

−R

erm(z+iπ)

(1− e−(z+iπ))mN
dz −

∫ R

−R

erm(z−iπ)

(1− e−(z−iπ))mN
dz

+ i

∫ π

−π

erm(R+iz)

(1− e−(R+iz))mN
dz − i

∫ π

−π

erm(−R+iz)

(1− e−(−R+iz))mN
dz

The first two integrals cancel each other out because eiπ = e−iπ. The third integral gives us

i

∫ π

−π

erm(R+iθ)

(R− e−(1+iθ))mN
dθ =

∮
zrm−1

(1− z−1)mN
dz

= 2πi resz=0 z
mN+rm−1(z − 1)−mN

= 2πi

(
m(r +N)− 1

mr

)
.

Similarly, we could show the last integral vanishes. Hence for r ̸= 0, we have

[qm] logB(1)k,(0),(0)(q) =
mk−2

k!

(
m(r +N)− 1

mr

)
.

Note that H(0),(0),(1) =
r
NH(1),(0),(0). Thus a similar argument using (4.5) gives us

[qm]
∑
|ξ|=k

(
N

ξ

)
logC(0),(0),ξ(q) =

r

mk

(
mr − 1

mN − 1

)(
m(r −N)

k − 1

)
,

[qm]
∑
|ξ|=k

(
N

ξ

)
logB(0),(0),ξ(q) =

|r|k−1Nmk−2

k!

(
m(r +N)− 1

mN

)
.
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Alternatively, when r > 0, we can combine (4.5) and (4.6) and obtain for k1, k2 ≥ 1,

[qm]
∑

|µ|=k1

∑
ξ=k2

(
r

µ

)(
N

ξ

)
logCµ,(0),ξ(q) =

r(r −N)

k1k2

(
mr − 1

mN − 1

)(
m(r −N)− 1

k1 − 1, k2 − 1

)
,

[qm]
∑
ξ=k2

(
N

ξ

)
logB(1)k1 ,(0),ξ

(q) =
rk2mk1+k2−2

k1!k2!

(
m(r +N)− 1

mr

)
.

This yields the following Segre-Verlinde relations for terms with ν = (0).

Theorem 4.5. For rank r ̸= 0 and n, k > 0, the universal series of Theorem 3.9 satisfy the following
identities

[qm]
∑
|µ|=k

(
|r|
µ

)
logCµ,(0),(0)(q, z) =

|r|
mk

(
mr − 1

mN − 1

)(
m(r −N)

k − 1

)
,

[qm] logB(1)k,(0),(0)(q) =
mk−2

k!

(
m(r +N)− 1

mr

)
,

[qm]
∑
|ξ|=k

(
N

ξ

)
logC(0),(0),ξ(q) =

r

mk

(
mr − 1

mN − 1

)(
m(r −N)

k − 1

)
,

[qm]
∑
|ξ|=k

(
N

ξ

)
logB(0),(0),ξ(q) =

|r|k−1Nmk−2

k!

(
m(r +N)− 1

mN

)
where (1)k = (1, . . . , 1) is the partition with k copies of 1.

When r > 0, we have

[qm]
∑

|µ|=k1

∑
|ξ|=k2

(
r

µ

)(
N

ξ

)
logCµ,(0),ξ(q) =

r(r −N)

k1k2

(
mr − 1

mN − 1

)(
m(r −N)− 1

k1 − 1, k2 − 1

)
,

[qm]
∑

|ξ|=k2

(
N

ξ

)
logB(1)k1 ,(0),ξ

(q) =
rk2mk1+k2−2

k1!k2!

(
m(r +N)− 1

mr

)
.

Applying the k = 2 case of the above theorem, we get the following Segre-Verlinde correspondence

Corollary 4.6. The universal series of Theorem 3.9 satisfy the following correspondence(
C−r,N
(1,1),(0),(0)(q)

)r2 (
C−r,N
(2),(0),(0)(q)

)(|r|2 )
=
(
Br,N

(1,1),(0),(0)((−1)Nq)
)|r|(r+N)

.

(
C−r,N
(0),(0),(1,1)(q)

r2C−r,N
(0),(0),(2)(q)

(|r|2 )
)|r|

=
(
Br,N

(0),(0),(1,1)(−q)r
2
Br,N

(0),(0),(2)(−q)(
|r|
2 )
)r+N

.

Remark 4.7. As mentioned in the introduction, combining Theorem 4.5 with Theorem 3.15
yields the corresponding relations for reduced invariants. In particular, Corollary 4.6 implies a
correspondence in degree 0 for reduced invariants, which could provide insight into the reduced
invariants for K3 surfaces in the compact setting.

5. Segre and Verlinde invariants on C4

Consider X = C4 with a (C4)∗-action by scaling coordinates

(t1, t2, t3, t4) · (x1, x2, x3, x4) = (t1x1, t2x3, t3x3, t4x4).
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Let T0 = {(t1, t2, t3, t4) : t1t2t3t4 = 1} ⊆ (C4)∗ be the subtorus which preserves the usual volume
form on X, making X a smooth quasi-projective toric Calabi-Yau 4-fold. As in the surface case, we
also have the two additional tori

T1 = (C∗)N , T2 = (C∗)r+s

where T1 on CN , and T2 acts on Cr ×Cs, giving us the bundle E = ⊕N
i=1OX⟨yi⟩ and K-theory class

α = [⊕r
i=1OX⟨vi⟩]− [⊕r+s

i=r+1OX⟨vi⟩]. Write

KT(pt) = Z[t±1
1 , t±1

2 , t±1
3 , t±1

4 ; y±1
1 , . . . , y±1

N ; v±1
1 , . . . , v±1

r+s]/(t1t2t3t4 − 1),

H∗
T(pt) = C[λ1, λ2, λ3, λ4;m1, . . . ,mN ;w1, . . . , wr+s]/(λ1 + λ2 + λ3 + λ4).

By [HT08, Theorem 4.1] the truncated Atiyah class of the universal subsheaf I defines an
obstruction theory

RH omp(I, I)∨0 [−1]! L•
QuotX(E,n)

where RH omq = Rq∗ ◦RH om, (·)0 denotes the trace free part. Note that the obstruction theory
is T-equivariant by [Ric21, Theorem B]. The virtual tangent bundle is then

T vir = −RH omp(I, I)0 ∈ KT(QuotX(E,n)).

5.1. Virtual invariants. When X is a projective Calabi-Yau 4-fold, the virtual fundamental class
involves a choice of orientation on QuotX(E,n). Let L = detRH omq(I, I) be the determinant line
bundle. An orientation o(L) is a choice of square root of the isomorphism

Q : L ⊗ L! OQuotX(E,n)

induced by Serre duality. From this Borisov–Joyce [BJ15] constructed virtual class [QuotX(E,n)]viro(L) ∈
H2nN (QuotX(E,n),Z). For γ ∈ H2nN (QuotX(E,n)), the Donaldson-Thomas invariants [CL14] are
defined to be

DT4(γ) =

∫
[QuotX(E,n)]vir

o(L)

γ.

For the non-compact X = C4, similar to the surface case, we have that the T-fixed locus of
Hilbn(X) consists of only finitely many reduced points [CK17, Lemma 3.6], so we can define these
invariants equivariantly using Oh-Thomas’ localization formula [OT20, Theorem 7.1].

Definition 5.1. For n > 0, γ ∈ H∗
T(QuotX(E,n)), the Donaldson-Thomas invariants are

DT4(X,E, n, γ) :=
∑

Z∈QuotX(E,n)T

(−1)o(L|Z) γ|Z√
e(T vir|Z)

where
√
e(·) is the equivariant version of the Edidin-Graham square root Euler class [EG95a].

Note that this definition depends on a choice of signs at each fixed point Z, which we denote
(−1)o(L)|Z . We shall see the virtual tangent bundle at Z is self-dual and admits some square root√

T vir|Z ∈ KT(pt) such that

T vir|Z =
√
T vir|Z +

√
T vir|Z ,

where (·) denotes the involution ti 7! t−1
i . We then have

√
e(T vir|Z) = ±e

(√
T vir|Z

)
,

where the sign depends on a choice of orientation, which can be absorbed into the choice of signs
(−1)o(L)|Z .
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Definition 5.2. Let X = C4, α = [⊕r
i=1OX⟨vi⟩]− [⊕r+s

i=r+1OX⟨vi⟩] ∈ KT(X), and E = ⊕N
i=1OX⟨yi⟩.

The equivariant Segre and Chern series for a choice of signs o(L) are respectively

SX(E,α; q) :=

∞∑
n=0

qn
∑

Z∈QuotX(E,n)T

(−1)o(L)|Z
s(α[n]|Z)

e
(√

T vir|Z
)

∈ C(λ1, λ2, λ3, λ4;m1, . . . ,mN ;w1, . . . , wr+s)

(λ1 + λ2 + λ3 + λ4)
[q],

CX(E,α; q) :=
∞∑
n=0

qn
∑

Z∈QuotX(E,n)T

(−1)o(L)|Z
c(α[n]|Z)

e
(√

T vir|Z
) .

To define the Verlinde number, we first consider the untwisted virtual structure sheaf

Ovir := Ôvir ⊗ det
1
2 ((E∨)[n]).(5.1)

where Ôvir is the (twisted) virtual structure sheaf of [OT20, Definition 5.9]. For compact X and
α ∈ K0(X), the Verlinde series is defined in [Boj21a, Section 1.3] by

VX(E,α; q) :=
∞∑
n=0

qnχvir
(
QuotX(E,n), det(α[n])

)
:=

∞∑
n=0

qnχ̂vir
(
QuotX(E,n), det(α[n])⊗ det

1
2 ((E∨)[n])

)
.

Using the virtual Riemann-Roch formula and equivariant localization of Oh-Thomas [OT20,
Theorem 6.1, Theorem 7.3], we have the following equivariant virtual Euler characteristic for
X = C4:

χ̂vir
T (QuotX(E,n), α) :=

∑
Z∈QuotX(E,n)T

(−1)o(L)|Ze

(
−
√

T vir|Z
)√

td
(
T vir|Z

)
chT(α)

where
√
td is the the square-root Todd class satisfying

√
td(T vir|Z) = td

(√
T vir|Z

)
ch

(
det

1
2

√
T vir|Z

∨)

=
e
(√

T vir|Z
)

ch
(
Λ−1

√
T vir|Z

∨) ch

(√
Kvir

1
2

)
.

Here we denote

Kvir = det(T vir)∨,
√
Kvir = det

√
T vir

∨
.

Substituting into the above equation, we have

χ̂vir(QuotX(E,n), α) =
∑

Z∈QuotX(E,n)T

(−1)o(L)|Z
ch

(√
Kvir|Z

1
2

)
ch
(
Λ−1

√
T vir|Z

∨) ch(α[n]|Z).
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Definition 5.3. The equivariant Verlinde series for a choice of signs o(L) is

VX(E,α; q) :=
∞∑
n=0

qn
∑

Z∈QuotX(E,n)T

(−1)o(L)|Z
ch

(√
Kvir|Z

1
2

)
ch
(
det

1
2 ((E∨)[n]|Z)

)
ch
(
Λ−1

√
T vir|Z

∨) ch
(
det(α[n]|Z)

)
∈ Q(t1, t2, t3, t4; y1, . . . , yN ; v1, . . . , vr+s)

(t1t2t3t4)
[[q]].

The relation between Segre and Verlinde numbers in the compact case is studied in [Boj21a] using
the Nekrasov genus for Hilbert schemes, introduced for the 3-fold case by [NO14]. We consider the
following Quot scheme version from [NP19]

NX(E,α; q) :=
∞∑
n=0

qn
∑

Z∈QuotX(E,n)T

(−1)o(L)|Z
ch(
√

Kvir|Z
1
2 )

ch(Λ−1

√
T vir|Z

∨
)
ch

(
Λ−1

det
1
2

α[n]|Z
)
.(5.2)

Remark 5.4. Recall in [CKM22], the Nekrasov genus for Hilbert schemes involves a variable y
coming from a trivial C∗-action on X. This is exactly the N = 1 case for the above definition, where
we have the parameter y1 from the T1-action on E.

5.2. Vertex formalism. The invariants in the previous section can be calculated for Hilbert schemes
using a vertex formalism developed by [CK20], based on the method introduced in [MNOP06a]
for Calabi-Yau 3-folds. We generalize this to Quot schemes using the computations from [Boj21a,
Section 2.1]. First when N = 1, the T-fixed points of Hilbn(X) correspond to monomial ideals of
C[x1, x2, x3, x4] [CK17, Lemma 3.1], which are labeled by solid partitions π of size n where

OZπ = C[x1, x2, x3, x4]/IZπ = span{xa1xb2xc3xd4 : (a, b, c, d) ∈ π}.
We denote Qπ the character of OZπ

Qπ =
∑

(i,j,k,l)∈π

t−a
1 t−b

2 t−c
3 t−d

4 ∈ K∗
T(pt) =

Z[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]

(t1t2t3t4 − 1)
.

Similar to the surface case, for E = ⊕N
i=1OX⟨yi⟩, the T-fixed points for QuotX(E,n) are labeled by

N -colored solid partitions π = (π(1), . . . , π(n)) of size n, i.e. sequences of form

Zπ = ([Z1], [Z2], . . . , [ZN ]) ∈ Hilbn1(X)× · · · ×HilbnN (X)

such that each Zi corresponds by solid partition π(i).
Let Qi be the character of OZi . The virtual tangent bundle at Zπ is

T vir
Zπ

=Ext

 N⊕
i=1

IZi⟨yi⟩,
N⊕
j=1

IZj ⟨yj⟩


0

=
N∑

i,j=1

OX ⊗ (1− P (IZi)P (IZj ))y
−1
i yj

=

N∑
i,j=1

(
Qj + t1t2t3t4Qi − t1t2t3t4P1234QiQj

)
y−1
i yj

(5.3)

where P (I) is the Poincaré polynomial of I defined analogously to (3.8) from previous section,
and PI =

∏
i∈I(1 − t−1

i ) for any set of indices I. Specializing t1t2t3t4 = 1, we get the following
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(non-unique) square root √
T vir
Zπ

=

N∑
i,j=1

(
Qj − P123QiQj

)
y−1
i yj .

The reason for the above choice of square root is so that

ch

(√
Kvir|Zπ

1
2

)
= ch

∏
i,j

det((Qj − P 123QjQi)y
−1
i yj)

1
2 )


= ch

∏
i,j

det
1
2 (Qj)yiy

−1
j )


=

1

ch
(
det

1
2 ((E∨)[n]|Zπ)

)
matches our twist in (5.1), and this simplifies our computation as now we have

VX(E,α; q) =

∞∑
π

q|π|(−1)o(L)|Zπ
ch
(
det(α[n]|Zπ)

)
ch
(
Λ−1

√
T vir|Zπ

∨)
The fiber of V [n] = ⊕r

i=1O
[n]
X ⟨vi⟩ over Zπ = (Z1, . . . ZN ) is the rn-dimensional representation

V [n]|Zπ =

r⊕
i=1

N⊕
j=1

OZj ⟨viyj⟩ =

 r∑
i=1

N∑
j=1

∑
(a,b,c,d)∈π(j)

viyjt
−a
1 t−b

2 t−c
3 t−d

4

 ∈ KT(pt).

Therefore for any point Z corresponding to an N -colored solid partition π, we have

c(V [n]|Zπ) =

N∏
j=1

∏
(a,b,c,d)∈π(j)

r∏
i=1

(1 + wi +mj − aλ1 − bλ2 − cλ3 − dλ4)

det(V [n]|Zπ) =
N∏
j=1

∏
(a,b,c,d)∈π(j)

r∏
i=1

vit
−a
1 t−b

2 t−c
3 t−d

4 ,

ch(
√
Kvir|Zπ

1
2

) ch

(
Λ−1

det
1
2

V [n]|Zπ

)
=

N∏
j=1

∏
(a,b,c,d)∈π(j)

t
a
2
1 t

b
2
2 t

c
2
3 t

d
2
4

·
r∏

i=1

(
y

1
2 v

1
2
i t

−a
2

1 t
− b

2
2 t

− c
2

3 t
− d

2
4 − y

− 1
2

j v
− 1

2
i t

a
2
1 t

b
2
2 t

c
2
3 t

d
2
4

)
.

Using these expressions, we see the Chern and Verlinde series can be extracted by taking limits of
the Nekrasov genus, similar to the surface case. Also, it follows that

NX(E, V ; q) ∈ Q(t
1
2
1 , t

1
2
2 , t

1
2
3 , t

1
2
4 )

(t1t2t3t4 − 1)
[[q, y

± 1
2

1 , . . . , y
± 1

2
N , v

± 1
2

1 , . . . , v
± 1

2
r ]].

The argument of [CKM22, Proposition 1.13, 1.15] can be applied to show that NX(E, V ; q) in fact

lives in Q(t1,t2,t3,t4)
(t1t2t3t4−1) [[q, y

± 1
2

1 , . . . , y
± 1

2
N , v

± 1
2

1 , . . . , v
± 1

2
r ]]. This enables us to talk about admissibility (up

to specializing t1t2t3t4 = 1) in the sense of Definition 2.6.
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Remark 5.5. As n increases, the number of choices for signs (−1)o(L) increases exponentially with
the number of fixed points. However, it has been observed in previous studies of the equivariant
invariants that statements analogues to the non-equivariant cases hold for some canonical choice
of signs [CK17, Nek20]. This choice of signs is conjectured to be unique in for instance [CK17,
Conjecture 3.21] and [CKM22, Conjecture 0.5]. In [Mon22], S. Monavari described a canonical signs
compatible to the above choice of square roots as follows: for any solid partition π,

o(L)|Zπ := |π|+#{(i, j, k, l) ∈ π : i = j = k < l};

and for any N -colored solid partition π,

o(L)|Zπ :=
N∑
i=1

o(L)|Zi .

This is the choice of signs that we used in our SageMath program when checking our conjectures.

5.3. Factor of c3(X). In the surface case, we saw the powers in the universal series of virtual
invariants are multiples of c1(S). In the X = C4 case, we shall show that if the universal expressions
exist, then they are multiples of c3(X) by showing show that

e

(
−
√

T vir|Zπ

)
has c3(X) = −(λ1 + λ2)(λ1 + λ3)(λ2 + λ3) in its numerator. This factor of c3(X) and the weak
Segre-Verlinde correspondence in the surface case shall motivate Conjecture 1.16.

It suffices to show that this term vanishes when we set λi = −λj for i ̸= j in {1, 2, 3}. By
symmetry, we may assume i = 1, j = 2. Recall e is the top equivariant Chern class, which vanishes
when λ1 = −λ2 if −

√
T vir|Zπ has a T-fixed summand when t1 = t−1

2 , i.e. the character of
√
T vir|Zπ

in KT(pt) having a strictly negative constant term. This occurs if and only if the image of T vir
Zπ

in

Z[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]/(t1t2 − 1, t3t4 − 1)

has a strictly negative constant term (which is necessarily a negative even integer). From (5.3), we
see it suffices to show this for the term

Qπ + t1t2t3t4Qπ − t1t2t3t4P1234QπQπ

whenever π is a non-trivial solid partition.

Lemma 5.6. For any non-trivial solid partition π, the expression

Qπ + t1t2t3t4Qπ − t1t2t3t4P1234QπQπ

has a strictly negative constant term when viewed in the quotient ring

Z[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]/(t1t2 − 1, t3t4 − 1).

Proof. Let x = t1 =
1
t2
, y = t3 =

1
t4
, so that

Z[t±1
1 , t±1

2 , t±1
3 , t±1

4 ]/(t1t2 − 1, t3t4 − 1) = Z[x±1, y±1].

Let Pπ be the image of Qπ in Z[x±1, y±1], then

T vir|Zπ = Pπ + Pπ − PπPπ(1− x)(1− 1

x
)(1− y)(1− 1

y
).(5.4)

Write

Pπ =
∑
i,j∈Z

pi,jx
iyj .
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The image of Qπ is then

Pπ =
∑
i,j∈Z

pi,jx
−iy−j .

We see the constant terms of Pπ and Pπ are both p0,0. By definition, all monomial terms in Qπ

have positive coefficients, and Qπ has constant term 1, so p0,0 > 0. We need to find the constant

term of PπPπ(1− x)(1− 1
x)(1− y)(1− 1

y ).

Observe that

(1− x)(1− 1

x
)(1− y)(1− 1

y
) = 4− 2

(
x+ y +

1

x
+

1

y

)
+

(
xy +

1

xy
+

x

y
+

y

x

)
.

Write F =
∑

fi,jx
iyj , the constant term of F · (1− x)(1− 1

x)(1− y)(1− 1
y ) is equal to

4f0,0 − 2(f0,1 + f1,0 + f0,−1 + f−1,0) + (f1,1 + f1,−1 + f−1,1 + f−1,−1).(5.5)

If we set F = PπPπ, then

fi,j =
∑

a−c=i
b−d=j

pa,bpc,d.

In particular,

f0,0 =
∑
a,b∈Z

p2a,b,

f0,1 + f1,0 + f0,−1 + f−1,0 =
∑
a,b∈Z

pa,b(pa−1,b + pa+1,b + pa,b−1 + pa,b+1),

f1,1 + f1,−1 + f−1,1 + f−1,−1 =
∑
a,b∈Z

pa,b(pa+1,b+1 + pa+1,b−1 + pa−1,b−1 + pa−1,b+1).

Denote

sa,b = 4pa,b − 2(pa−1,b + pa+1,b + pa,b−1 + pa,b+1);

+ (pa+1,b+1 + pa+1,b−1 + pa−1,b−1 + pa−1,b+1),

s++
a,b = pa,b − (pa+1,b + pa,b+1) + pa+1,b+1,

s+−
a,b = pa,b − (pa+1,b + pa,b−1) + pa+1,b−1,

s−+
a,b = pa,b − (pa−1,b + pa,b+1) + pa−1,b+1,

s−−
a,b = pa,b − (pa−1,b + pa,b−1) + pa−1,b−1;

S++ =
∑
a,b≥0

pa,bs
++
a,b + pa+1,bs

−+
a+1,b + pa,b+1s

+−
a,b+1 + pa+1,b+1s

−−
a+1,b+1,

S+− =
∑

a≥0,b≤0

pa,bs
+−
a,b + pa+1,bs

−−
a+1,b + pa,b−1s

++
a,b−1 + pa+1,b−1s

−+
a+1,b−1,

S−+ =
∑

a≤0,b≥0

pa,bs
−+
a,b + pa+1,bs

++
a+1,b + pa,b+1s

−−
a,b+1 + pa+1,b+1s

+−
a+1,b+1,

S−− =
∑
a,b≤0

pa,bs
−−
a,b + pa+1,bs

+−
a+1,b + pa,b+1s

−+
a,b+1 + pa+1,b+1s

++
a+1,b+1.
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Then (5.5) becomes ∑
a,b∈Z

pa,bsa,b =
∑
a,b∈Z

pa,b · (s++
a,b + s+−

a,b + s−+
a,b + s−−

a,b )

=S++ + S+− + S−+ + S−−.

For the remainder of this proof, we shall show S++ ≥ p0,0. The same will hold for the summands
S+−, S−+, S−− by symmetry. We conclude the value of (5.5) is at least 4p0,0. Hence by (5.4) the
constant term of T vir|Zπ is at most −2p0,0 < 0, and we are done.

Recall

Qπ =
∑

(i,j,k,l)∈π

ti1t
j
2t

k
3t

l
4,

so

Pπ =
∑

(i,j,k,l)∈π

xi−jyk−l, and

pa,b = #{(i, j, k, l) ∈ π : i− j = a, k − l = b}.
Fix k and l, then the set {(i, j) : (i, j, k, l) ∈ π} is a plane partition. By property (2.2) of solid
partitions, for fixed b = k − l, we have pa,b ≥ pa+1,b when a ≥ 0. For the same reason, we have
pa,b ≥ pa,b+1 when b ≥ 0. Therefore the numbers (pa,b)a,b≥0 are non-increasing as the pair (a, b)
move away from the origin.

We apply induction on max{a : pa,0 ̸= 0}. Suppose for all sequences (qa,b) with max{a : qa,0 ≠
0} < max{a : pa,0 ̸= 0}, we have

S++(qa,b) ≥ q0,0

whenever the sequence (qa,b)a,b≥0 satisfies qa,b is non-increasing in a, b. The base case is simply when
qa,b = 0 for all a, b, which sums to 0. Let qa,b = pa+1,b, then

S++(pa,b) =
∑
a,b≥0

(pa,b − pa+1,b − pa,b+1 + pa+1,b+1)
2

=S++(qa,b) +
∑
b≥0

(p0,b − p1,b − p0,b+1 + p1,b+1)
2

≥p1,0 +
∑
b≥0

(p0,b − p1,b − p0,b+1 + p1,b+1)
2

(5.6)

where the first equality follows from the definition and the inequality is by induction hypothesis.
Now apply another induction on the value of max{b : p0,b ̸= 0}. The induction hypothesis is that

for any sequences (qa,b) with qa,b non-increasing in a, b and max{b : q0,b ̸= 0} < max{b : p0,b ̸= 0},
we have ∑

b≥0

(q0,b − q1,b − q0,b+1 + q1,b+1)
2 ≥ q0,0 − q1,0.

Again, the base case is trivial, and we can apply the hypothesis to qa,b = pa,b+1, giving us∑
b≥1

(p0,b − p1,b − p0,b+1 + p1,b+1)
2 ≥ p0,1 − p1,1

So we have the following inequalities

(p0,0 − p1,0 − p0,1 + p1,1)
2 +

∑
b≥1

(p0,b − p1,b − p0,b+1 + p1,b+1)
2 − (p0,0 − p1,0)

≥(p0,0 − p1,0 − p0,1 + p1,1)
2 − (p0,0 − p1,0 − p0,1 + p1,1)

≥0
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where the last inequality is due to p0,0 − p1,0 − p0,1 + p1,1 being an integer. Therefore∑
b≥0

(p0,b − p1,b − p0,b+1 + p1,b+1)
2 ≥ p0,0 − p1,0,

finishing the second induction. By (5.6),

S++(pa,b) ≥ p1,0 + (p0,0 − p1,0) = p0,0,

which finishes the first induction and the proof.
□

5.4. Cohomological limits. Recall the proof of Theorem 3.9 mainly involved showing that the
genus IS is admissible in the sense of Definition 2.6. Also, by Proposition 2.7, universal series
expressions for the Nekrasov genus, and therefore the Segre and Verlinde series, can be obtained
if and only if the Nekrasov genus is admissible. Thus one might ask when the Nekrasov genus is
admissible. For rank r = N case, we shall show that admissibility is a consequence of the following
explicit formula conjectured by Nekrasov-Piazzalunga [NP19, Section 2.5]. Denote

[x] = x
1
2 − x−

1
2 .

Conjecture 5.7 (Nekrasov-Piazzalunga). There exists some choice of signs o(L) such that for
E = ⊕N

i=1OX⟨yi⟩, V = ⊕N
i=1OX⟨vi⟩,

NX(E, V ; q) = Exp

(
[t1t2][t2t3][t1t3]

[t1][t2][t3][t4]

[s]

[s
1
2 q][s−

1
2 q]

)
with a change of variable s =

∏N
i=1 yivi.

Proposition 5.8. Nekrasov-Piazzalunga’s Conjecture 5.7 implies Nekrasov’s genus of NX for rank
r = N is admissible with respect to the variables t1, t2, t3, t4.

Proof. Expand the term inside the plethystic exponential, specializing with the relation t1t2t3t4 = 1,
we have

[t1t2][t2t3][t1t3][s]

[t1][t2][t3][t4][s
1
2 q][s−

1
2 q]

=
(1− t1t2)(1− t2t3)(1− t1t3)

(1− t1)(1− t2)(1− t3)(1− t4)
· [s]

[s
1
2 q][s−

1
2 q]

Recall Definition 2.6, we have

L = (1− t1t2)(1− t2t3)(1− t1t3)
[s]

[s
1
2 q][s−

1
2 q]

is a series in q, y
± 1

2
1 , . . . , y

± 1
2

N , v
± 1

2
1 , . . . , v

± 1
2

r whose coefficients are polynomials in t1, t2, t3, t4, as
required. □

Lastly, we prove the claim made in the introduction that Conjecture 1.17 is a consequence of
Conjecture 5.7 in the X = C4 case.

Proposition 5.9. Let X = C4. If Conjecture 5.7 holds for some choice of signs, then Conjecture
1.17 holds for Y = X for some choice of signs.

In addition, Conjecture 5.7 implies the following Donaldson-Thomas integral:
∞∑
n=0

qn
∫
[QuotC4 (E,n)]vir

o(L)

1 :=

∞∑
n=0

qn
∑

Z∈QuotX(E,n)T

(−1)o(L)|Z
1

eT

(√
T vir
Z

)
=

{
e

(λ1+λ2)(λ1+λ3)(λ2+λ3)
λ1λ2λ3(λ1+λ2+λ3)

q
, when N = 1

1, otherwise.



51

Remark 5.10. One can compare this to the 3-fold case where [FMR21, Theorem 7.2] states

∞∑
n=0

qn
∫
[QuotC3 (E,n)]vir

1 = M((−1)Nq)
−N

(λ1+λ2)(λ1+λ3)(λ2+λ3)
λ1λ2λ3 .

Here M denotes the MacMahon function.

Proof. We shall compute the following limit using both the definition and the expression from
Conjecture 5.7, then compare the two sides:

lim
ε!0

wN!∞

NX

(
E, V ;

Q

wN

) ∣∣∣∣
λi⇝ελi,mi⇝ε(1+mi),wi⇝εwi

.

Let V = ⊕N
i=1OX⟨vi⟩ be a rank N bundle, then for any Zπ ∈ QuotX(E,n)T, we have

chT(
√
Kvir|Zπ

1
2 )

chT(Λ−1

√
T vir|Zπ

∨
)
chT

(
Λ−1

det
1
2

V [n]|Zπ

) ∣∣∣∣
λi⇝ελi,mi⇝ε(1+mi),wi⇝εwi

=εNn−Nn eT(V
[n]|Zπ) +O(ε)

eT

(√
T vir
Zπ

)
+O(ε)

=

∏N
i=1

∏N
j=1

∏
(a,b,c,d)∈π(j)(1 + wi +mj + aλ1 + bλ2 + cλ3 + dλ4) +O(ε)

eT

(√
T vir
Zπ

)
+O(ε)

.

Take limit ε! 0 and let Q = mNq, then

lim
ε!0

chT(
√
Kvir|Zπ

1
2 )

chT(Λ−1

√
T vir|Zπ

∨
)
chT

(
Λ−1

det
1
2

V [n]|Zπ

) ∣∣∣∣
λi⇝ελi,mi⇝ε(1+mi),wi⇝εwi

· qn

=

∏N
i=1

∏N
j=1

∏
(a,b,c,d)∈π(j)(1 + wi +mj − aλ1 − bλ2 − cλ3 − dλ4)

eT

(√
T vir
Zπ

) · Qn

mn
N

=

∏N−1
i=1

∏N
j=1

∏
(a,b,c,d)∈π(j)(1 + wi +mj − aλ1 − bλ2 − cλ3 − dλ4)

eT

(√
T vir
Zπ

)
·

N∏
j=1

∏
(a,b,c,d)∈π(j)

(
1 +

mj

wN
− aλ1

wN
− bλ2

wN
− cλ3

wN
− dλ4

wN

)
Qn.

Now take wN !∞ and substitute into Definition 5.2. Let V ′ = ⊕N−1
i=1 OX⟨vi⟩, then

lim
ε!0

wN!∞

NX

(
E, V ;

Q

wN

) ∣∣∣∣
λi⇝ελi,mi⇝ε(1+mi),wi⇝εwi

= CX(E, V ′;Q).(5.7)

On the other hand, we apply the same procedure to

NX(E, V ; q) = Exp

(
[t1t2][t2t3][t1t3]

[t1][t2][t3][t4]

[s]

[s
1
2 q][s−

1
2 q]

)
.
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For n ≥ 1, we have

lim
ε!0

wN!∞

[tn1 t
n
2 ][t

n
2 t

n
3 ][t

n
1 t

n
3 ]

[tm1 ][tn2 ][t
n
3 ][t

n
4 ]

[
∏

yni v
n
i ]

[
∏

y
n
2
i v

n
2
i qn][

∏
y
−n

2
i v

−n
2

i qn]

∣∣∣∣
λi⇝ελi,mi⇝ε(1+mi),wi⇝εwi

= lim
ε!0

wN!∞

(εn)3(λ1 + λ2)(λ1 + λ3)(λ2 + λ3) +O(ε5)

(εn)4λ1λ2λ3(λ1 + λ2 + λ3) +O(ε5)
·
(εn)

∑
i(1 +mi + wi) +O(ε)

(q
n
2 − q−

n
2 )2

= lim
wN!∞

(λ1 + λ2)(λ1 + λ3)(λ2 + λ3)

λ1λ2λ3(λ1 + λ2 + λ3)
·
∑

i(1 +mi + wi)(
Q
wN

)n

(1− ( Q
wN

)n)2

=

{
(λ1+λ2)(λ1+λ3)(λ2+λ3)

λ1λ2λ3(λ1+λ2+λ3)
Q, when n = 1

0, otherwise.

Together with (5.7), we have

CX(E, V ′;Q) =e
(λ1+λ2)(λ1+λ3)(λ2+λ3)

λ1λ2λ3(λ1+λ2+λ3)
Q

=exp

(
Q

∫
X
c3(X)

)
.

This is exactly Conjecture 1.17.
With the same method, we can take limits

lim
ε!0

wN!∞

NX

(
E, V ;

Q

wNwN−1 . . . wN−i+1

)
for 1 < i ≤ N and V of rank N − i, and get

CX(E, V ;Q) = 1.

In particular, when i = N and N > 1, we have

∞∑
n=0

Qn

∫
[QuotC4 (E,n)]vir

o(L)

1 = 1.

□
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[NP19] N. Nekrasov and Nicolò Piazzalunga, Magnificent four with colors, Communications in Mathematical
Physics 372 (2019), 573–597.

[OP22] Dragos Oprea and Rahul Pandharipande, Quot schemes of curves and surfaces: virtual classes, integrals,
Euler characteristics, Geometry & Topology 25 (2022), 3425–3505.

[OT20] Jeongseok Oh and Richard P. Thomas, Counting sheaves on Calabi-Yau 4-folds, I, arXiv:2009.05542
(2020).
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